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ABSTRACT

Background: Few studies conducted in China have assessed the effects of ambient air pollution
exposure on tuberculosis (TB) risk and mortality, especially with a multicity setting.

Objective: We evaluated the effect of short and long term ambient sulfur dioxide (SO,), nitrogen
dioxide (NO,), carbon monoxide (CO), ozone (O3), and particulate matter<<2.5 um in aerodynamic
diameter (PM, 5) exposures on development and mortality of active TB in 7 Chinese cities in

Shandong province from January 1, 2013 to December 31, 2017

Methods: We estimated the pollution-associated risk to new infection TB, recurrent TB and
mortality in relation to 1pg/m? increases in air pollutants using the penalized multi-variate Poisson

regression models.

Results: A total of 83,555 new infection TB and 3,060 recurrent TB including 997 deaths were
recorded. Short and long term exposure to outdoor air pollutants (SO,, NO,, CO, O3, and PM, 5) was
significantly associated with new infection TB, recurrent TB risk, and mortality. The dominant
positive effects of SO,, NO,, CO, and PM,; 5 for new infection and recurrent TB risk was observed at
long term (>30 days) exposure, whereas the dominant effects SO,, CO, and PM, s for mortality was
observed at short term (<30 days) exposures. Of the 5 air pollutants we assessed, SO,, and PM, 5
exhibited more consistently and strongly associations with TB related outcomes. We estimated an
increase of 1.33% (95% CI: 1.29%, 1.37%), and 3.04% (95% CI: 2.98%, 3.11%) in new infection
TB count for each 1pg/m3 increase of SO, at lag 0—180 days, and PM, 5 at lag 0-365 days,
respectively.

Conclusions: This epidemiologic study in China shows that air pollution exposure is associated with
increased risk of development of active TB and mortality. Control of ambient air pollution may
benefit the control and decrease the mortality of TB disease.

Keywords: Air pollution; Tuberculosis; Recurrent Tuberculosis; Mortality; China; Multi-city;

Panelized regression.
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1. Introduction

Despite improvements in recent years, tuberculosis (TB) remains a major infectious disease globally,
and was the 9% leading cause of mortality worldwide, with the majority of which occur in the
developing world (WHO, 2017). TB burden in China accounted for approximately 14% of the global
total (WHO, 2016). Identification of potential risk factors for TB progression is necessary for
reducing the disease burden, and smoking, diabetes, malnutrition, acquired immune deficiency
syndrome (AIDS), and immunosuppressive treatment are well-known risk factors for TB progression
(Lai et al., 2016; Lin et al., 2007; Lonnroth et al., 2009).

Air pollution is a substantial cause of morbidity and mortality worldwide. Numerous studies have
reported the deleterious effects of air pollution on human health. Indoor air pollution, which
primarily from biomass fuel combustion, was shown to be associated with TB disease in previous
meta-analyses (Lin et al. 2007; Sumpter and Chandramohan 2013). Several ecologic and
epidemiologic studies also suggests that ambient air pollution exposures may associated with the
development of TB (Iwai et al. 2005; Smith et al. 2014; Tremblay 2007). Correlation was found
between suspended particles in air and increased TB risk in previous ecologic studies (Iwai et al.
2005). However, present epidemiologic studies have provided inconsistent evidences linking outdoor
air pollution to TB risks. For instance, several studies found significant associations between
particulate matter<<2.5 um in aerodynamic diameter (PM, s) and positive TB status (Jassal et al.,
2013; You et al., 2016). Whereas, other studies suggested no positive correlation between PM, s and
active TB (Lai et al., 2016; Smith et al., 2014, Hwang et al., 2014). In a nested case-control study,
Smith et al (2014) showed that carbon monoxide (CO) and nitrogen dioxide (NO;) were associated
with increased risk of pulmonary TB. Another South Korea study reported that the interquartile
increase in sulfur dioxide (SO,) concentration but not CO, NO, or O3, was associated with increased
incidence of TB in males (Hwang et al., 2014). Whereas, a recent study conducted in Ningbo city in

China reported negative correlation between ambient SO, exposure and daily TB patient visits.

The majority of previous studies were based on single city data (Popovic et al., 2019), and the
generalizability of the findings was uncertain. Multicity studies were less prone to biases which
might affect small studies and were believed to generate more stable results. In addition, most
previous research were conducted in developed countries, and only limited data have been generated
in China. In the view of the heterogeneities in population status, pollutant characteristics, and
meteorological patterns between developed and developing countries, as well as the enormous TB
disease burden in the latter, an urgent need for the multicity analysis about air pollution on the risk of
active TB in China. Moreover, evidence for the association between ambient air pollution and the
mortality of TB patients is limited. To our knowledge, up to now, only 1 study conducted in
Shanghai city in China, has examined the effects of PM, 5 exposure on TB mortality, which showed
that long-term PM, 5 exposure might increase the risk of death from TB and other diseases among TB



178
179
180
181
182
183
184
185
186
187
188
189
190
191

92
93

94
95
96
97
98
99

192100

193

1941

195

1961

197

198!

199
200

01

02

03

104

201105
202106

203

204107

205
206
207
208

108

109

209110

210l

211

11

212112
213113

214
215

114

216115
217116

218

220118

221

222119

223

224120

225

226121

2271

228

22

229123
230124

231

2321

25

233126

234
235
236

patients (Peng et al., 2016). Further more comprehensive evaluation of ambient air pollution
exposure and the mortality of TB is also needed.

The objectives of the present study were to present an extensive analysis of the effect of short and
long term ambient SO,, NO,, CO, O3 and PM, s exposures on development and mortality of active
TB, using data in 7 large Chinese cities in Shandong province from January 1, 2013 to December 31,
2017.We quantifies the associations between various air pollutants and new-infection TB, recurrent
TB risks and mortality with a panelized regression approach.We also explore the spatial
heterogeneities of the pollutants’ effects on TB risks and mortality among 7 cities and compared the
pollutant-associated risk rate by different sub-groups of population. Both short-term and long-term,

instantaneously and cumulative lagged effects of air pollutants were studied.
2. Methods
2.1 Ethics

Ethics approval was obtained from the Ethics Committee of Shandong Provincial Hospital, affiliated
with Shandong University, Shandong, China. Before analysis, patient records were anonymized
and deidentified.

2.2 Study settings

Seven cities in Shandong Province were included in this study, including 6 inland cities Jinan,
Weifang, Linyi, Jining, Liaocheng, and dezhou; and 1 coastal city Yantai (Fig. 1). Shandong
peninsula located in the east of China, which is the third largest economic province and the second
most populous province in China. Jinan, is the capital city of Shandong Province, with a resident
population of approximately 7 million, and is 8,227 square kilometers. Weifang, Linyi, Jining,
Liaocheng, dezhou and Yantai had 9.3, 11.2, 8.3, 6.0, 7.2 and 7.1 million residents, respectively. The
7 cities are more than half of the total population and area of Shandong Province and distributed in
the eastern, western, southern, northern and central regions of Shandong Province. These cities have
a typical temperate monsoon climate, with cold and dry winter, high temperature and rainy summer.

The annual average temperature is 11-14 °C.

2.3 Study Population

Daily TB case reports in the 7 cities were obtained from the Shandong Provincial Center for Disease
Control and Prevention (Shandong CDC) from January 1, 2013 to December 31, 2017. China
implements an online national infectious disease reporting system “China National Notifiable
Disease Surveillance System”. According to the national guidelines on TB control, active or
suspected TB cases detected in any health facilities should be reported through the reporting system
within 24 hour. The system recorded patient’s demographic data, home address, diagnosis, names of
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the hospital for TB diagnosis and treatment, initial outpatient visit date for TB related symptom, and
so on using a standard case report form (Wang et al., 2010). TB cases in the Shandong CDC database
were diagnosed by isolation of Mycobacterium tuberculosis (M. tb) or in the absence of
bacteriological confirmation, TB diagnosis were made in the light of clinical, radiologic evidence,
and/or histologic grounds together with anti-tuberculosis treatment (prescription for at least 2 anti-

tuberculosis medications including isoniazid, rifampin, ethambutol, and pyrazinamide).
2.4 Mortality data

Death information were also obtained from the infectious disease reporting system in the Shandong
CDC. The treatment outcomes including cure or end of treatment, treatment failure or incomplete,
loss of follow-up, death, or others were reported and documented in the reporting system. The death
refer to all cause death.

2.5 Air pollutant data.

Air pollutant data included SO,, NO,, CO, O3 and PM; 5 concentration, in each city of Shandong
Province from January 1, 2013 to December 31, 2017 were obtained from the department of
Ecological Environment of Shandong Province. Air pollutants concentration were measured at the
air monitoring stations in each of the 7 cities: 17 stations in Jinan, 10 stations in Weifang, 8 stations
in Linyi, 7 stations in Jining, 5 stations in Liaocheng, 6 stations in dezhou, and 11 stations in Yantai.
There are 5-17 fixed-site air monitoring stations in each city, which dispersed throughout the
metropolitan areas. For SO,, NO,, CO and PM, s, daily data were 24-hour averages, and daily
maximum of 8-hourly running average was used for O;. The Chinese government mandated
extensive quality assurance and quality control programs at the monitoring stations in order to
provide reliable and comparable real-time hourly air pollutants concentrations. The monitoring

measurements have been shown to be able to reflect urban air pollution levels (Chen et al., 2012).
2.6 Meteorological data.

Daily weather information were collected from the China Meteorological Science Data Sharing
Service Network for the period from January 1, 2013 to December 31, 2017. The information

including daily average temperature, relative humidity, wind speed, and so on was downloaded.
2.7 Statistical analysis

The penalized regression model is adopted to estimate the risk effects of pollution variants on the
tuberculosis (TB) incidence and mortality rates (Goeman et al., 2010; Tibshirani et al., 1996). We
treat the daily counts of the TB following a Poisson process that depends on many factors including
demographic data, weather and pollution factors, and other seasonal factors. We model this Poisson
process as a penalized multivariate regression against the pollutant variables and other co-variates.
We also include dummy variables to offset the heterogeneities of different cities and detrend the

unmeasurable temporal patterns. The regression model is given in Eqn (1).
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E[Y,|t] = exp [Zl.,B i Xicr T Zjaj,TX it + covariates + 9], (1)

where f; > 0 for all is. The function E[-] represents the expectation, and 6 is the interception term.
The term Y, denotes the TB counts at time 7, and term X;, denotes the i-th independent pollutant
variable (i.e., predictor) at time ¢. The index i denotes the factor that is penalized, e.g., pollution
factors, by forcing the coefficient to be positive. The index j is for those free factors, e.g., temporal
and spatial dummy, demographic, weather variables. Thus, the regression parameter o can be
unconstrained. The term 7 is the lag term. To explore the lagged effects of the pollutants, the models

in Eqn (1) are fitted to three types of TB risks with various lag terms (7).

Single-day lag effect estimates may underestimate the cumulative correlations between air pollution

levels and TB outcomes, therefore, we use two types of the lag effects
o the instantaneously lag effect; and
o the cumulative lag effect, which is the effect of the past number of days.

In this work, we consider the lag terms to be ranged from 0 to 365 days. We estimated the overall
effects from lag0, lagl5, lag30, 1ag90, lagl80, to lag365 for the instantaneously lag effect. And
similarly, the effects from lag0-1, lag0-15, lag0-30, lag0-90, lag0-180, and lag0-365 in the
cumulative lag model, respectively. For the instantaneously lag effect, the lagged meteorological
data are used in the model. And for the cumulative lag effect, the averages of the meteorological data
in the past number of days are used in model. For the regression parameters under restriction (fi), we
force the effects of all pollutants to be positive except for the O3, of which a free (i.e., no penalty)
effect is implemented. The effect estimates were presented as the percentage change (mean and
95%Cls), i.e., the excess rate, in daily mortality for each 1 pg/m? increase of daily PM2.5

concentrations.

Since the regression framework is based on “Y~exp(fX)”, the term [exp(/)-1]*100% is the change
rate, also known as the excess risk, of “Y” (i.e., the TB incidence or mortality risk in this work) when
there is one unit increase in “X” (i.e., one of the pollution factors). We also explore the relative risk
(i.e., risk ratio, RR) between different groups of population. The population are divided according to
the genders, age groups, and sputum smear tests. Age group was classified into two levels: 4-64
years and 65 years or above; sputum smear status was grouped into smear positive cases and smear
negative cases. We estimation the RRs of each pollution variants to the TB risk of the new infection,

recurrent, and death respectively.

We avoid to smooth the variable time series, and instead, we directly use raw data to fit the
penalized regression model. Therefore, the models could be noisy so that it may be difficult to
provide apparent shape of curve of the effect (5) versus lag (r). To be able to recognize a clear shape
of the curve, it is preferable to restrict the coefficients to vary smoothly with lag terms. Inspired by

previous study (Zanobetti et al., 2003), we restrict the effect terms to a natural cubic spline of the lag
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terms. Hence, for the i-th variable, we have f;, = fi(t) = ns{(r), where “ns” represents the natural
cubic spline function. Here, we consider 7 ranging from 0 to 365 days, and set up 5 knots, which are
evenly distributed in one year period (i.e., from 0 to 365 days), to develop the spline function of each
effect function for all is in Eqn (1).

To check the fitting performance of the penalized regression model, the likelihood ratio (LR) test
is adopted to verify the significance of the full model in Eqn (1) against the null model. To further
investigate the spatial heterogeneity in the seven different cities, we employ the Cochran's Q test to

exam the heterogeneity of the pollutant effect estimates in different places (Lin et al., 2016).

All data process and analysis are conducted by using R (version 3.4.3) (Team et al., 2013). R
package ‘penalized’ is used for fitting the penalized regression models (Goeman et al., 2018). R
package ‘Epi’ is used for developing the natural spline function of the effect (f) versus lag (1)
(Carstensen et al., 2008). R package ‘metafor’ is used for conducting the Cochran's Q tests
(Viechtbauer et al., 2010).

3. Results
3.1 Descriptive results

Table 1 summarizes the incidence of new infection TB, recurrent TB, and death in the seven cities in
Shandong province from 1st January 2013 to 31st December 2017. During the study period, a total of
83555 new infection TB cases, and 3060 recurrent TB cases, including 997 deaths were recorded in
the seven cities. The daily incidence of new infection TB and recurrent TB (per 100,000 population)
varied among the cities and ranged from 24.3 to 48.5, and from 0.5 to 1.7, respectively. The daily
incidence rates of death in all TB cases range from 0.2 to 0.6 (per 100000 population) and from 6.2

to 15.7 (per 1000 infection) respectively. There was an overall decreasing trend of new infection TB
incidence in the seven cities over the period. Six of seven cities have decreasing trends of the
recurrent TB except Yantai. However, we also found increasing trends of mortality rates in the TB
cases in Shandong. Yantai has a highest mortality rate and Liaocheng has the lowest.

Table 1 also summarizes the air pollutants concentration, and meteorological variables in the
seven cities. The daily mean concentrations of SO; in the cities ranged from 23.2 to 56.0 pg/m?3, NO,
ranged from 34.6 to 51.3 pg/m3, CO ranged from 0.8 to 1.7 pg/m3, O3 ranged from 106.9 to 129.3
pg/m3, and PM, s ranged from 44.2 to 97.7 pg/m?3. Jinan had the highest levels of SO, and NO,,
whereas Liaocheng showed the highest concentrations of CO and PM, 5. Yantai, the only coastal city,
showed the lowest concentrations of SO,, NO,, CO and PM, 5. The mean temperature of the seven
cities ranged from 13.1 °C to 15.4 °C. Table 2 shows the the mean values for the Spearman
correlation coefficients between air pollutants in seven cities from 2013 to 2017. SO,, NO, CO, and
PM, 5 was positively correlated with each other, whereas O3 had negative correlation with other

pollutants.
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3.2. Regression results

Table 3 shows results from the single-lag day (L0, L15, L30, L90, L180, L365) and cumulative
lag days (LO-1, LO-15, L0-30, L0-90, L0-180, L0O-365) using multi-pollutants models for the percent
increase (mean and 95%ClIs) in daily new infection TB,and recurrent TB counts per 1pug/m? in

pollution in seven cities during 2013-2017.

New infection TB In single-day lag models, statistically significant effects on new infection TB
counts were observed for SO, (L0, L15, L30, L180, L365), NO, (L.180), O3 (L0, L15, L30, L365),
CO (L30), and PM, 5 (LO, L15, L30, L90) exposure (all p-value < 0.05). In the cumulative exposure
models, high exposure to SO, (LO-1, L0-15, L0-30, L0-180), NO, (L0-15, L0-30, L0-90, L0-365),
O; (LO-1, LO-15, L0-30, L0-365), CO (L0-15, L0-30) and PM, 5 (LO-1, LO-15, L0-30, L0O-180, LO-
365) were all significantly associated with increased incidence of new infection TB (all p-value <
0.05). For instance, we estimated an increase of 1.33% (95% CI: 1.29%, 1.37%), 1.58% (95% CI:
1.54%, 1.62%), and 3.04% (95% CI: 2.98%, 3.11%) in new infection TB count for each 1ug/m3
increase of SO, at lag 0—180 days, NO, at lag 0-90 days, and PM, 5 at lag 0—365 days, respectively.
The effect estimates of the 5 pollutants in multi-day exposure models generally produced larger
estimates compared with the single-day lag models, suggesting the cumulative effects of SO,, NO,,
03, CO, and PM; 5 on new infection TB. The effect estimates achieved highest at lag 0-180 for SO,,
at lag 0-90 for NO,, at lag 0-15 for O3, at lag 0-30 for CO, at lag 0-365 for PM, s, respectively. Thus,
we used these lags for each pollutant in the following analyses.We show the estimated percentage
change rates of new infection TB of all lags from 0 to 365 days in the Figure S1.

Recurrent TB In single-day lag models, statistically significant relationships were observed for
recurrent TB incidence with SO, (L0, L15, L30, L180, L365), NO, (L90), O5 (L0, L15, L30, L365),
CO (L15,L30, L180), and PM, 5 (L0, L15, L.90, L180) (P< 0.05). In cumulative exposure models,
exposure to SO, (LO-1, LO-15, L0-30, L0-365), NO, (L0-90, L0-365), O5 (LO-1, L0O-15, L0-30, LO-
365), CO (L0-15, L0-30, L0-90, LO-180, L0-365) and PM, 5 (L0-90, L0-180, L0-365) were also
significantly associated with increased incidence of recurrent TB (p-value < 0.05). We estimated an
increase of 0.59% (95% CI: 0.50%, 0.67%), 0.49% (95% CI: 0.43%, 0.54%), 1.47% (95% CI: 1.41%,
1.53%) and 0.55% (95% CI: 0.52%, 0.57%) in recurrent TB count for each 1 pg/m? increase of SO,
at lag 0180 days, NO, at lag 90 days, O; at lag 0-365 days and PM, 5 at lag 0-365 days, respectively.
We show the estimated percentage change rates of recurrent TB of all lags from 0 to 365 days in the

Figure S1.

Mortality Statistically significant effects on mortality were observed for exposure to SO, ( L15,
L30, L180), NO, (L180, L365), O; (L180), CO (L15, L30), and PM, 5 (L15, L30, L90) in the single-
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day lag models. In cumulative-day lag models, SO, (LO-1, LO-15, L0-30), NO, (L0-90), O; (L0-180),
CO (LO0-15, L0-30) and PM, 5 (L0O-15, LO-30, L0-90) were significantly associated with increased
incidence of mortality. An increase of 1pg/m?in SO, (L0-1), NO, (L365), O3 (L0-180), and PM, 5 (
L0-30) were associated with a 0.12% (95% CI: 0.11%, 0.14%), 0.07% (95% CI: 0.03%, 0.11%),
0.38% (95% CI1:0.34%, 0.41%) and 0.20% (95% CI: 0.19%, 0.22%) increase of mortality,
respectively. The cumulative effect estimates of SO, and PM, s were larger than the single day
exposures. We also show the percentage change rate estimate of the TB mortality in the Figure S1.

Fig. 2 illustrates the percentage increase of new infection TB incidence associated with a 1pg/m?
increase of air pollutants concentrations in the seven cities. In the multi-pollutants models,
statistically significant effects of SO, (L180), NO, (L90), O5 (L30), CO (L15), and PM; 5 (L365)
with new infection TB incidence were observed in most of the cities we studied. However, the
associations of the five pollutants with new infection TB varied by cities (Fig. 2), and Q-tests showed
that the heterogeneity was statistically significant for meta-analyses (all p-value < 0.05). For instance,
we observed that Yantai, which with lowest concentrations of SO,, NO,, CO and PM, 5 among the
seven cites, showed higher effect estimates per unit increase of SO2, CO and PM2.5 concentrations
(Fig. 2). The percentage change estimation results of TB risks to different pollutants in different

cities of all lags from 0 to 365 days were shown in Figure S2.

3.3. Stratified analyses

Table 4 shows the effect estimates of stratified analyses by age group, sex, and sputum smear tests.
For new infection TB, the effect estimates of SO, and O; were higher among the females, the young
population (4-64 years old), and among smear positive cases; whereas, the effect estimates of NO,
and PM; s were higher among the males, the elderly aged 65 years or more, and also among smear
positive cases. For recurrent TB, high exposure to NO,, CO, and PM, 5 was associated with increased
risk of recurrent TB among men and smear positive cases, but not among women and smear negative
cases. For different age groups, the effect estimates of O; and PM, 5 among the young population
were found higher than those among the elderly, whereas a higher risk of recurrent TB was observed
among the elderly exposed to higher levels of NO,. We also showed the effect estimates of stratified

analyses by age group, sex, and sputum smear tests of all lags from 0 to 365 days in the Figure S3-S8.

4. Discussion

To the best of our knowledge, this is the largest epidemiologic study and the first multicity study
to date on the association between ambient air pollution and TB outcomes in China. Using data from
seven cities in the Shandong province, our study provided evidence that short and long term
exposure to outdoor air pollutants (SO,, NO,, O3, CO, and PM, 5) was significantly associated with
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new infection TB,recurrent TB incidence, and mortality using multi-pollutants models. SO,, and
PM, s exhibited more consistently and strongly associations with TB risks among the 5 air pollutants.
Moreover, the health effects implicated different lag structures for various pollutants in our study.
Specifically, the positive effects of SO,, NO,, O; and PM, 5 for new infection TB and recurrent TB
were observed at both short (<30 days) and long term (with the length of lag from 31 to 365 days)
exposure. The significant effects of CO for new infection TB were observed at within 30 days
exposure only, and for recurrent TB were found at both short- and long-term exposure. Additionally,
the dominant positive effects of SO,, CO, and PM, 5 for mortality was observed at short term (<30
days) exposures.

In the present study, we found a consistently positive correlation between SO, exposure and
increased incidence of new infection TB, recurrent TB, and mortality rate. Mixed findings were
reported in previous studies investigating the effects of SO, exposure on TB incidence. A recent
time-series study by Zhu et al. (2018) and a previous Korea study by Hwang et al. (2014) which both
explored short-term exposure effects, showed that SO, exposure led to an increased risk of TB
incidence. But the study by Hwang et al. (2014) only used single pollutant models, with no
adjustment made for possible confounding pollutants. Other 2 epidemiological studies suggested no
significant associations between TB and SO, level in Taiwan (Lai et al., 2016) and in northern
California (Smith et al., 2016). Interestingly, a recent study conducted in Ningbo, China, suggested
short-term SO, exposure contributed to decreased risk of initial TB outpatient visits. China is one of
the few countries with highest SO, levels in the world (Su et al., 2011). Shandong and its
surrounding Beijing-Tianjin-Yi areas have gathered electricity, iron and steel, chemical and other
high-energy industries, with a large amount of coal and other energy consumption. Especially after
the winter heating season, the emission of pollutants from coal burning increased, the emission of
SO, increased nearly 50% and PM, 5 emission increased by 30%. For example, the mean SO,
concentrations in the seven cities in our study ranged from 23.2 pg/m3 (Yantai) to 56.0 pg/m?3 (Jinan).
In contrast, Sunyer et al. reported that the mean SO, levels in 7 European cities varied from 5 pg/m?
(Stockholm) to 21 pg/m? (London) (Sunyer et al., 2003b). SO, concentrations in Ningbo were also
lower than most cities in China with a daily average of 25 pg/m?, and the counter-intuitive protective
effects of SO, reported by Ge et al. (2017) is observed based on single city data with less than one
week lag time window. In contrast, our results are based on the recent 5 years data from seven cities
that are broadly representative of the Northern China population and with one year observation time
lag window. Moreover, we use multi-pollutants models to adjust for potential confounding effects of
co-pollutants. After adjusting for PM,; 5, NO,, CO and Os, the current analysis suggests that short and
long term SO, exposure was independently related with TB outcomes in the 7 cities in Shandong
province. The heterogeneity of various findings may reflect differences in the characteristics of local

air pollution or patterns of exposure among local residents.

In the present study, exposure to PM, s was found to be significantly associated with an increased

risk of new infection and recurrent TB as well as mortality. Similarly, in previous research, PM, 5
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was also shown to be more strongly and frequently associated with TB related outcomes than other
pollutants. Four of prior six studies analyzing PM; s and TB prevalence or mortality, reported
statistically significant effects (Jassal et al., 2013; Peng et al., 2016; Smith et al., 2014; You et al.,
2016). Different lag structures of PM, s for TB incidence and mortality were observed in our analysis.
Statistically significant effects on TB incidence (new infection TB and recurrent TB) were seen
ranging from lag0 to one year, with the largest effect estimates of PM,; 5 obtained at long-term
cumulative time lags (365 days). In particular, it suggests that the adverse response to PM, s for
increased TB risks persists to a year or even longer after exposure. Whereas, a shorter lagged effects
were seen for mortality. The longer lagged effects for TB incidence may be explained by the latent
period of TB which varied from several weeks to years. Moreover, previous evidence suggested
there were also several months delay in the diagnosis and notification of TB disease. The median
patient-related delay (from symptoms onset to first contact with health services) was between 34.5
and 54 days and median health care-related delay (from first contacting with health services to
initiate treatment) was 29.5 days. On the other hand, death for TB cases showed an acute response to
trigger agents. The deleterious effects of PM, 5 on TB outcomes could be explained by several
potential mechanisms. Firstly, increased PM, 5 exposure could modify or impair the immunology of
the human respiratory system so as to increase host's susceptibility to TB. Existing studies showed
that PM; s exposure could adversely impact lung immunology by inducing nitrosative stressors and
oxidative (Kappos et al., 2004; Nel, 2005). It also has been documented that inhaled PM could
weaken mucociliary clearance function and alveolar macrophage activity which are critical defense
mechanisms against M. tb (D'amato et al., 2010; Smith et al., 2010). Moreover, elevated PM, 5 level
was shown to be consisted of high levels of transition metals which may increase iron availability so
as to aid in M. tb proliferation (Ghio, 2014; Zelikoff et al., 2002). Iron acquisition is needed for
microbial growth, and exogenous iron accumulation in the host due to PM, 5 exposure creates a
favourable environment for invading M. tb (Banerjee et al., 2011; Ratledge, 2004; Weinberg,
2009).Further investigations to explore the mechanisms of the deleterious effects of PM, 5 on TB are

still required.

Our study showed NO, was also positively associated increased risk of new infection and
recurrent TB incidence in both short and long term exposure time. Inconsistent results were reported
in previous studies exploring exposure effects of NO,. A long term exposure studies by Smith et al
(2016) showed significant associations with ambient NO, pulmonary TB risk in a case-control study
in California. In another time-series study (Zhu et al. 2018) which investigated short-term exposure
effects, positive associations between NO, and the incidence of TB at lag 0-2 days were also
observed in Chengdu, China (Zhu et al. 2018). The other three studies showed no significant effects
of NO, (Lai et al. 2016; Hwang et al., 2014; Chen et al., 2016). NO, is primarily produced from
combustion sources, such as electric generating units, and motor vehicle exhaust. There is skepticism
on whether the adverse effects of NO, are reflecting other traffic pollutants effects such as PM with
which NO, are highly correlated. However, the statistically significant effects of NO, for TB
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outcomes observed in the present analysis after adjusting for PM, s, SO,, and other pollutants

suggesting an independent effect.

The present analysis suggested O; was contributed independently to increased TB risks in analyses
that controlled for other pollutants. Previous studies exploring ozone exposure with TB incidence
have been inconsistent. Most of previous studies reported no evidence of significant association
between O; exposure and TB outcomes, but the findings were based on limited sample size.
However, in the case-control study by Smith et al. (2016), an inverse correlation was seen between
O; exposure and pulmonary TB, with O; exposures above the lowest quintile level resulted in
decreased pulmonary TB risk. Evidences from prior large cohort studies demonstrated O; exposure
was significantly associated with death from respiratory disease. And there is biologic plausibility for
a respiratory effect of O3. O3 was shown to increase airway inflammation, worse pulmonary function
and gas exchange in laboratory studies (Bell et al. 2014). However, the extent to which the biological
mechanisms be relevant to TB infection is unknown. Given the relatively small sample size and
mixed findings of prior studies, future more research is advocated to address the effect of ambient O3

on TB outcomes.

We observed between-city heterogeneity in the associations of ambient air pollution and TB
outcomes in the seven cities. The heterogeneity may be related to differences in air pollution levels,
components of pollutants especially PM, s, climate conditions, indoor air pollution, sensitivity of

local residents to the environmental exposures (e.g., age, smoking, socioeconomic status).

Our study has several limitations. Firstly, a proportion of TB cases identified from Shandong CDC
were diagnosed based on clinical and radiologic evidence without of pathogenic proof. Also the
traditional methods (smear microscopy and bacterial culture) may cause underdiagnoses of TB-
positive cases due to testing procedures. This might lead to diagnosis misclassification. Secondly, we
did not investigate several covariates that could also have affected study outcomes, such as smoking
history, body mass index (BMI), and indoor air pollutants exposure. Indoor air pollutants including
PM, 5 as well as nitrogen oxides produced by incomplete combustion of solid fuels have been proved
to be risk factors for both initial TB infection and TB progression. The lack of indoor pollutants’

assessment might lead to estimation biases of the pollutants’ effects.

In summary, our study suggests that ambient air pollution is significantly associated with
increased risk of active TB development and mortality in 7 Chinese cities. SO, and PM, 5 exhibited
more consistently and strongly associations with TB related outcomes. These findings support the
Chinese government efforts in reducing high levels of air pollution, in order to reduce TB incidence
and mortality.
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Figure legends

Figure 1 The map of the seven cities, i.e., Dezhou, Jinan, Jining, Liaocheng, Linyi, Weifang
and Yantai, in Shandong, China. The upper panel show the location of Shandong province in

China. The lower panel highlights the locations of the seven cities in Shandong.

Figure 2. The percentage change estimation results of pollutants and TB new infection risks
in different cities. Note that the lag term in the panel label is the cumulative lag, i.e., lag x

means lag 0-x days. The dots are the point estimations and the bars are the 95%Cls.

Figure 3. The percentage change estimation results of pollutants and TB new infection risks
in different cities. Note that the lag term in the panel label is the lag of instantaneously effect.

The dots are the point estimations and the bars are the 95%CIs.
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