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CONVERGENCE OF DZIUK’S SEMIDISCRETE FINITE ELEMENT
METHOD FOR MEAN CURVATURE FLOW OF CLOSED SURFACES
WITH HIGH-ORDER FINITE ELEMENTS*
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Abstract. Dziuk’s surface finite element method (FEM) for mean curvature flow has had a
significant impact on the development of parametric and evolving surface FEMs for surface evolution
equations and curvature flows. However, the convergence of Dziuk’s surface FEM for mean curvature
flow of closed surfaces still remains open since it was proposed in 1990. In this article, we prove
convergence of Dziuk’s semidiscrete surface FEM with high-order finite elements for mean curvature
flow of closed surfaces. The proof utilizes the matrix-vector formulation of evolving surface FEMs
and a monotone structure of the nonlinear discrete surface Laplacian proved in this paper.
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1. Introduction. We consider the evolution of a closed surface under mean
curvature flow, moving with velocity v = — Hn, where H and n are the mean curvature
and outward unit normal vector of the surface. The surface at time ¢ € [0,7] can be
described by

L(t) =T[X(t)] = {X(p,t):pe T}, tel0,T],

as the image of a flow map X : T'? x [0,T] — R?, which is a smooth embedding at
every time ¢ € [0,7] from a given closed initial surface '’ into R3, satisfying the
geometric evolution equation

0 X (p,t) = (Arix(.id) o X(p,t) for pe I'% and ¢ € (0,77,
(1.1)
X(p,0)=p for p e T?,

where Ap(x(.) denotes the Laplace-Beltrami operator on the surface I[X(-,t)], and
id is the identity function satisfying id(z) = x for all x € R3.

Numerical approximation to mean curvature flow by the parametric finite element
method (FEM) was first considered by Dziuk [12] in 1990. The method determines
the parametrization of the unknown surface by solving PDEs on a surface using the
surface FEM. The evolution of the nodes determines the approximate evolving surface.
This idea has had a significant influence on the development of surface FEMs for many
different types of geometric evolution equations and was systematically developed to
the evolving surface FEMs in [15].

However, proving convergence of Dziuk’s method for mean curvature flow of closed
surfaces remains still open. For curve shortening flow, convergence of semidiscrete
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FEM was proved in [13]; convergence of nonlinearly implicit and linearly implicit
FEMs was proved in [27] and [24], respectively. Convergence of nonparametric FEMs
for mean curvature flow of graph surfaces was proved by Deckelnick and Dziuk [5, 7],
but the analysis cannot be extended to closed surfaces.

Many other techniques were also developed for approximating mean curvature
flow. For example, Deckelnick and Dziuk [6] have introduced an artificial tangential
velocity to reformulate curve shortening flow into a nondivergence form; Barrett,
Garcke, and Niirnberg introduced a parametric FEM based on a different variational
formulation [3] and a parametric FEM based on choosing different test functions [4];
and Elliott and Fritz [20] introduced DeTurck’s trick of reparametrization into the
computation of mean curvature flow, leading to a nondegenerate parabolic system in
a nondivergence form, which generalizes the reformulation of Deckelnick and Dziuk
in [6].

For all the methods mentioned above, convergence of semi- and fully discrete
FEMs for mean curvature flow of closed surfaces remains open. Convergence of
semidiscrete FEMs was proved for curve shortening flow in [6, 20], for anistropic
curve shortening flow in [14, 25], for curve shortening flow coupled with reaction—
diffusion in [2, 26], and for mean curvature flow of axisymmetric surfaces in [1] based
on DeTurck’s trick. The only convergence result of surface FEMs for mean curvature
flow of closed surfaces was in [22] for an equivalent system of equations governing the
evolution of normal vector and mean curvature instead of for the original equation
(1.1) used by Dziuk [12] and many others.

In this paper, we prove convergence of Dziuk’s semidiscrete FEM for mean curva-
ture flow of closed surfaces for sufficiently high-order finite elements. Our proof utilizes
two ideas, i.e., the matrix-vector formulation of the evolving surface FEM and the
monotone structure of the finite element discrete operator associated to —Arpx)ido X.
The matrix-vector formulation was used in [23] in an analysis of convergence of evolv-
ing surface FEMs for solution-driven surfaces; the monotone structure of the nonlinear
finite element discrete operator associated to —Ap[xjido X was used in [24] for analysis
of curve shortening flow.

In the following, we briefly explain the two ideas in proving convergence of Dziuk’s
semidiscrete FEM for mean curvature flow of closed surfaces.

Let x° = (p1,...,pn)7T be the vector that collects all nodes p; € I'°, j =1,..., N,
in a triangulation of the initial surface I'° (with finite elements of degree k). The nodal
vector x° defines an approximate surface I‘% that interpolates I'? at the nodes p;. We
evolve the vector x¥ in time and denote its position at time ¢ by x(¢), which determines
the approximate surface I', [x(t)] to mean curvature flow and satisfies an ODE in the
matrix-vector form (see section 2 for details)

(1.2) M(x)x + A(x)x = 0,

with initial value x(0) = x°, where M(x) and A (x) are the mass and stiffness matrices
on the surface I';[x]. Equation (1.2) is the matrix-vector formulation of Dziuk’s
semidiscrete FEM. Correspondingly, Dziuk’s linearly implicit parametric FEM in [12]
is equivalent to the linearly implicit Euler method for (1.2),

x" — anl

(1.3) M(x"h) +A(x""Hx" =0,

T

where 7 denotes the step size of time discretization.
As mentioned in [2, 24], the main difficulty of numerical analysis for mean curva-
ture flow (1.1) is the lack of full parabolicity; namely, there does not exist a positive
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constant A satisfying
(1.4) —(Arxjido X — AppyjidoY) - (X —=Y) > AV (X — Y)J?,

even if the two flow maps X and Y are smooth and sufficiently close to each other.
Similarly, if we denote by I'j, [x*] the interpolated surface of exact surface I' and denote
by || - [|a(x+) the discrete H' seminorm on I'y[x*] defined by

V1B ey = AV - v = / Ve e
h[X*

with vy, denoting the finite element function on the surface 'y [x*] with nodal vector
v, then there does not exist a positive constant A satisfying

(1.5) (A(x)x - A(x*)x*) C(x=x") > AIx— X*HQA(X*),

even if the two vectors x and x* are sufficiently close to each other. This is the
main difficulty in the analysis of Dziuk’s semidiscrete FEM for mean curvature flow
of closed surfaces.

We overcome this difficulty by showing the identity (a monotone structure)

(16) (AGox = A ) - (=) = [ [ (Vegent .

where ez is the finite element function with nodal vector
e=x—Xx

on the intermediate finite element surface I'Y = (1 — 0)[',[x*] + 0", [x] and 7Y is the
unit normal vector on I'Y. The identity (1.6) can be used to control the H! seminorm
of the normal component of the error. It was known for closed curves and was used
to analyze convergence of Dziuk’s linearly implicit FEM for curve shortening flow
in [24]. We extend this approach to mean curvature flow of closed surfaces using the
matrix-vector technique.

In addition to (1.6), we also show that

. ok . d .
(M(x)% — M(x")%") - (x = x") > 5= llellfaeo = o€ lelRaee

1
(1.7) e [ [ e as,
0 F?L

where € can be arbitrarily small and ||e|[nr(x) is the discrete L? norm on the surface

T [x], defined by
lelRao = [ el
e Lplx]

h

DN | =

with e; being the finite element function on the surface T'y[x] with nodal vector e.
Hence, the last term in (1.7) can be absorbed by (1.6) in the error estimation, and
Gronwall’s inequality can be applied to yield an error estimate.

To illustrate the idea clearly without complicating the problem, we focus on Dz-
iuk’s semidiscrete FEM (instead of fully discrete FEMs). As we shall see, high-order
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finite elements of polynomial degree k > 6 are needed to bound the nonlinear terms
in the error estimation, though the computations in [12] seem to work well with
lower-order finite elements.

In the next section, we present rigorous description of the matrix-vector formula-
tion of Dziuk’s semidiscrete FEM and present the main theorem of this paper. The
proof of the main theorem is presented in section 3.

2. The main result.

2.1. Basic notions and notation. If u(-,t) is a function defined on the surface
I'(t) = T[X(-,t)] for t € [0,T], then the material derivative of u with respect to the
parametrization X is defined as

Ofu(x,t) = X(p,t),t) for z=X(p,t)eT(¢).

d

a Ut
On any regular surface I' C R3, for any function u : I' — R, we denote by Vru : ' —
R3 the surface tangential gradient as a three-dimensional column vector. For a vector-
valued function u = (uy,uz,u3)’ : T — R3 we define Vru = (Vruy, Vrug, Vrus),
where each Vru; is a three-dimensional column vector. We denote by V- f the surface
divergence of a vector field f on I' and by Aru = Vr - Vru the Laplace—Beltrami
operator applied to u; see [8] or [19, Appendix A] for these notions.

2.2. Triangulation. The given smooth initial surface I'° is partitioned into an
admissible family of shape-regular and quasi-uniform triangulations 7, with finite
elements of degree k and mesh size h; see [9, 15] for the notion of an admissible
family of triangulations. For a fixed triangulation with mesh size h, we denote by
x? = (p1,...,pn)T the vector that collects all nodes p; € T%, j = 1,..., N, in the
triangulation of I'C by finite elements of degree k. The nodal vector x° defines an
approximate surface 1"2 that interpolates I'® at the nodes Dj-

We consider the evolution of the nodal vector x = (x1,...,2y5)7 and denote its
value at time ¢ by x(t), with initial condition x(0) = x°. By piecewise polynomial
interpolation on the plane reference triangle that corresponds to every curved triangle
of the triangulation, the nodal vector x(t) defines a closed surface denoted by

Ly(t) = Tolx(t)]-

There exists a unique finite element function X} (-, ) of polynomial degree k defined
on the surface I';,[x°] satisfying

Xn(pj, t) =x;(t) for j=1,...,N.
This is the discrete flow map, which maps the initial surface T'y[x°] to T [x(t)]. If

w(-,t) is a function defined on T'y[x(t)] for ¢ € [0,T], then the material derivative
0w on I'p[x(t)] with respect to the discrete flow map X}, is defined by

op pw(z,t) = %w(Xh(p, t),t) for x = Xp(p,t) € Th[x(t)].

2.3. Finite element spaces. The globally continuous finite element basis func-
tions on the surface I',[x] are denoted by

oilx] : Thlx] = R, 1=1,...,N,
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which satisfy
qbi[x](xj):éij for all i,j:L...,N.

The pullback of ¢;[x] from any curved triangle on I'; [x] to the reference plane triangle
is a polynomial of degree k. It is known that the basis functions ¢,[x(¢)], 7 =1,..., N,
have the following transport property (see [15]):

(2.1) Rpdixt)] =0 on Dy[x(t)], j=1,...,N.

The finite element space on the surface I'y[x] is defined as
N
Sh(T'r[x]) = span Zvjd)j[x] v, €R3 G
j=1

where each v; is a three-dimensional column vector.

2.4. Interpolated surface and lift onto the exact surface. In order to
compare functions on the exact surface I'[X (-, ¢)] with functions on the approximate
surface I'y[x(t)], we introduce the interpolated surface I'j, [x*(¢)], where x*(t) denotes
the nodal vector collecting the nodes x}(t) = X(p;,t), j = 1,..., N, moving along
with the exact surface.

For any point x € I'y[x*(t)], there exists a unique lifted point 2! € T'[X(-,t)],
which was defined for linear and higher-order surface approximations in [11] and [9],
respectively. The lift operator is one to one and onto. As a result, any function w on
I'y[x*] can be lifted to a function w! on I, defined as

w'(z!) = w(x).

Let d,(x) be the quotient between the continuous and interpolated surface measures,
i.e., dA(2!) = 6, (z)dAp(x). Then the following inequality holds (cf. [21, Lemma 5.2]):

(2.2) 11— 0n | oo (rsy < k™

If we denote by I, : C(T[X (-, t)]) = Sh(Tr[x*(t)]) the standard Lagrange interpo-
lation operator, then the lifted Lagrange interpolation (I,v)! approximates a function
v on I'[X (-, t)] with optimal-order accuracy (cf. [9, Proposition 2.7]), i.e.,

(2.3) HU — (Ihv)l”L?(F[X(-,t)]) § C”U”Hk+1(r[x(.7t)])hk+1.

Ak,

We denote by 7} the normal vector on I'y[x*(t)] and denote by 7, its lift onto

I[X(-,t)]. Then ﬁZ’l approximates the normal vector n on I'[X (-, t)] with the following
accuracy (cf. [9, Propositions 2.3]):

Ak,
(2.4) 17" = nll Lo rix o < Ch*.

2.5. The main result. The mean curvature flow equation (1.1) can be equiva-
lently written as

0rid = Apix(.pid on T'[X(-, )] for t € (0,77,
(2.5)

I[X(-,0)] =TI
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Correspondingly, the semidiscrete evolving surface FEM for mean curvature flow is to
find a nodal vector x(t), t € [0,T] such that the corresponding approximate surface
T [x(t)] satisfies the following weak form:

/ ({9t°id -vp + / VF;L [x(t)]id : vl“h [x()]Vh = 0
Ty [x(t)] Tp[x(t)]

(2.6) Yoy, € Sp(Thx(1)]), te€ (0,7,

x(0) = x°.

The mass matrix M(x) and stiffness matrix A(x) on the surface I'j,[x] consist of
block components

M;;(x) = Is/r [ ]¢i[x]¢j[x] and  Ayj(x) = I3 - ]th[x]¢i[X] -V, % ?5[X]

fori,j=1,...,N, where I3 is the 3 x 3 identity matrix. Substituting
N
id = ij (t)pjx] and vy = ¢i[x]
j=1

into (2.6) and using the transport property (2.1), we obtain the following matrix-
vector form of the semidiscrete FEM:

{M(x)x +A(x)x =0,

27) x(0) = x°.

The main result of this paper is the following theorem.

THEOREM 2.1. Consider the semidiscrete FEM (2.7) with finite elements of de-
gree k. Suppose that the mean curvature flow problem (1.1) admits an exact solution
X that is sufficiently smooth on the time interval t € [0,T] and that the flow map
X(-,t) : T® = T[X (-, t)] C R? is nondegenerate so that T[X(-,t)] is a reqular surface
for every t € [0,T]. Then there exists a constant hg > 0 such that, for all mesh sizes
h < hg, the following error bound holds when k > 6:

2 XL() = X (1 < ch™
(2.8) (L5l 16 1) = X Ollzerey < e
2.9 t) = x*(t)[|oo < ch*72,
(2.9) e, Ie(®) =3 (Dl <

where X},(-,t) denotes the lift of the approzimate flow map Xp(-,t) from I',[x°] onto
I'°, and the constant c is independent of h.

3. Proof of Theorem 2.1. Throughout, we denote by ¢ a generic positive
constant that takes different values on different occurrences.

3.1. Preliminaries. We denote by e = (ey,...,en)’ = x — x* the vector con-

sisting of the errors of numerical solutions at the nodes and denote by
N
en =y e;o;[x"]
j=1

the finite element error function on surface I'y[x*].
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Let t* € [0,T] be the maximal time such that the solution of (2.7) exists and the
following inequality holds (with coefficient 1):

(31) ||eh('at)||L2(Fh[x*(t)]) < h*  for ¢ € [O,t*].

Since ep(+,0) = 0, it follows that ¢* > 0, as the solution x of the ODE (2.7) exists
locally in time and is continuous in time. In the following, we prove the stated error
bounds for ¢ € [0,¢*]. Then we show that ¢* actually coincides with 7.

The smoothness and nondegeneracy of the flow map X(-,t) : T — I'(t) guar-
antees that it is locally close to an invertible linear transformation with bounded
gradient uniformly with respect to h. Hence, it preserves the admissibility of grids
with sufficiently small mesh width h < hg. This guarantees that the triangulations
determined by the nodes z7(t) = X(p;,t) remain admissible uniformly for ¢ € [0, T']
and h < hg, and the interpolated flow map Xj(-,t) and its inverse are bounded in
W1oo(T,[x%]) (uniformly in h). Then (3.1) implies, through inverse inequality,

(3.2) Heh(',t)le,oo(Fh[x*(t)]) < Ch,2 for te [O,t*].

Remark 3.1. The powers of h in (3.1) and (3.2) are needed to bound the nonlinear
terms in the error estimation. For example, (3.1) is used to prove the W1 bounded-
ness of the numerical velocity in (3.20), which is used in bounding the nonlinear term
in (3.25); inequality (3.2) is used in estimating the nonlinear terms in (3.31), (3.37),
and (3.39). The powers of h in (3.1) and (3.2) require high-order finite elements of
degree k > 6 in view of our error estimate (2.8): The power of h in (2.8) should be
strictly bigger than 4 in order to absorb the constant ¢ in the derivation of (3.1). This
is done in (3.45) for sufficiently small h.

Since Xp (- t) = X; (-, t)+en(-, t)o X (-, t) and X (-, t) is bounded in W0 (T, [x°])
(uniformly in h), the estimate above guarantees that the approximate flow map
Xn(+,t) : Tp[x%] — Th[x(t)] and its inverse are bounded in W (T, [x°]) uniformly
with respect to h. Since deformation is the gradient of position, the boundedness of
Xp(-t) in Who(T',[x%]) (uniformly with respect to h) guarantees that the mesh on
the approximate surface is not degenerate. Moreover, we can define an intermediate
surface

(3.3) % :=T,[x% with nodal vector x? = (1 — 0)x* + 6x.

The estimate (3.2) also guarantees that the intermediate surface I') is well defined
with nondegenerate mesh, with

I} =Th[x] and T9 =T} =T4[x"].

The argument above is standard and was used in [22].
For any nodal vector w = (wy, ..., wy)T with w; € R3, we define a finite element
function

N
wh = w;g;[x] € S,(T7)
j=1

on the intermediate surface FZ. In particular,

N
[% 0
€hp = Zej¢j[x }
j=1
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is the finite element error function on the surface I'Y. As 6 changes from 0 to 1, the
surface I'Y moves with velocity ef = Z;\Ll e;¢;[x?] (with respect to 6). When 6 = 0,
we simply denote

(3.4) e, = ep,

which is a function on I',[x*]. The lift of e} € S,[I'}] onto I is denoted by eZ’l.
On the intermediate surface FZ, we define the following discrete L? norm and H'
seminorm:

(3.5) Wl e) = WM")W = [whllFz o),
(3.6) W&oy = WA )W = [[Vro w) |72 o)
LEMMA 3.1. In the above setting, the following identities hold:
w (M(x) — M(x*))z

1
(3.7) = wh (Vo - €9)28 db,
o Jre "

w’ (A(x)x — A(x")x")
1
(3.8) = /0 /F ) (Vrzwz : (Drgef,)Vpgid + Vpgw) - vrzez> de,

where A : B = tr(AT B) for two 3 x 3 matrices A and B and
Droej, = tr(E°)I3 — (E° + (E°)")  with E® = Vrpeej.

Proof. Identity (3.7) was proved in [23, Lemma 4.1]. Identity (3.8) can be proved
as follows.

Let w = (wy,...,wy)T, and denote w? = Z;VZI w;¢;[x] to be the finite element
function on the surface T'Y with nodal vector w, where x? is defined in (3.3). As 6
changes from 0 to 1, the surface I'Y moves with velocity ef = Z;\le e;p;[x%] with
respect to 6 and 5‘5w9 = 0. By using the fundamental theorem of calculus and the
Leibniz formula, we have

wl (A (x)x — A(x*)x")

= / thw}l : Vpiid — / Vpgwg : Vr‘%id
rl r9
1 d 0 .
= o @ o VF’@Lwh . Vr‘ild d9
h
1
:/ / ((vrz - e))Vrowp, : Vygid — Vpowy, : (Vigeh + (Vpoel)T)Vioid
o Jro , : , : / ,

+ Vo dgwf) : Vpoid + Vg w) : szﬁgid) de,

where the last equality was essentially proved in [15, equation (2.11)]. By using the
notation EY and Dro e? in Lemma 3.1 and using the identities
opw’ =0 and 9gid =Y,

we obtain (3.8). d
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The following lemma combines [23, Lemmas 4.2 and 4.3] and [22, Lemma 7.3].

LEMMA 3.2. In the above setting, if

IV, xienlle e < 355

then, for 0 <0 <1 and 1 < p < oo, the finite element function
N
wl = ij(bj x’] on TY
j=1

satisfies the following norm equivalence:
(4
||wh||Lp(r;§) <c¢p ”wI[')L”LP(Fh[x*])v
4
Vs will ooy < ep Ve, e ll Loy e

where ¢, is an constant independent of 0 < 0 <1 and h, with coo = 2.

For sufficiently small h, (3.2) guarantees that

IV, pertenllzoe @npen) = Vs peiehll o (o)) <

e~ =

Then Lemma 3.2 implies that

0<9<1.

1
(3.9) ||VF262||Lw(rg) S5

By using this result in Lemma 3.1, together with the definition of the discrete L? and
H' norms in (3.5)—(3.6), we obtain the following result (as in [22, equation (7.7)]):

(3.10) The norms || - [[ng(x¢) are h-uniformly equivalent for 0 <6 < 1,
' and so are the norms || - || o (xe)-

3.2. The monotone structure. Note that the interpolated nodal vector x*
satisfies (2.7) up to some defect d, i.e.,

(3.11) M(x")x* + A(x*)x* = M(x")d,

where the defect satisfies the following estimate (to be proved in section 5):

(3.12) [df| vy < CRF7L

Subtracting (3.11) from (2.7), we obtain the error equation

(313)  M(x)é+AG)x — AX")x" = —(M(x) - M(x*))%" — M(x")d.
By using Lemma 3.1, we have

(A(x)x — A(x*)x") - (x — x¥)

1
= /0 /r@ (szez : (Drze,ﬂ)vpiid + szez : vaﬁZ) dé
h

1
(3.14) = /0 /F ) <VF§162 : [(Droep) P’ + Vo ei]) de,
h
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where Drgej = tr(E%) I3 — (B + (E°)") is defined in Lemma 3.1, and we have used
the 1dent1ty

Vrgid = I3 — i (A7)" =: P?,

with 29 denoting the unit normal vector on I'Y (thus, 29 ¢ S;,(T'%)).
Note that P? is a symmetric projection matrix satisfying

P'E’=FE° (E*)'P’=(E")", and
tr(PY(E”)") = tr((E")" P?) = tr(P'E") = tx(E").

By using the properties above and the expression of Dpi e‘Z, we furthermore reduce
(3.14) to

(A(x)x — A(x*)x") - (x — x*)

-/ 1 / 9 (%) ((E) 1 = B7 = ()P + (BB o
[ LI

(3.15)
/ / tr(E%)? — tr(EEY) + tr((E*)TE (I — P(’))] do.

tr(tr(EY)(E)T P’ — (EOTEPY — (EYT(E?)T PY) + tr((Ee)TEe)] dé

Then we use the following lemma, the proof of which is presented in section 4.

LEMMA 3.3. In the above setting, the following identity holds:
(3.16) / [tr(B%)? — tr(EYE%)] = 0.
N4
By applying Lemma 3.3 to (3.15), we obtain
1
(A(x)x — A(x*)x") - (x — x*) = / / tr((E%)"E°(I - P%)) do
e
1
(3.17) = / (Vg el )ih|?do.
0 Jr¢ )

This is the key identity to be used in our error estimation. This identity reflects the
monotone structure of the discrete nonlinear operator from x to A (x)x.

3.3. Error estimation. Testing (3.13) by e and using (3.17), we obtain

e e+/ / VFeeh nh‘ d@

(3.18) =—-(M(x) -M(x")x"-e — M(x")d - e.
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This can be equivalently formulated as

d 1
dt( x)e - e) / . Vpeeh DARKL

(3.19) _ %M( Je-e— (M(x) — M(x*))X" - e — M(x*)d - e.

Let v = —Hn be the velocity of the exact surface I', and let v} be the velocity of
the exact surface at the jth interpolation node. We define

N N
v =Y vioilx =) desx,
j=1 j=1

which is the interpolation of v onto Sj(I'y[x*]). Let Uhl be the lift of v} onto the
exact surface I', and denote

N N
=D ol =) a0,
j=1 j=1

which is a finite element function on the surface I'Y.
Let vy = Ejvzl &;¢;[x] be the velocity of the approximate surface I';[x], and let

N
0 . 0
vh =Y ddlx
j=1

Then the nodal vector associated to the finite element function v) — vy € Sp,(I')[x*])
is €, and by using the norm equivalence in Lemma 3.2,

Vs - onll e i) < ellVenpavallze ra )
< ||V, o)V | oo (e
< C\\Vrh[x*](vg - UZ)HLw(Fh[x*]) + C||Vrh[x*]UZ||Lw(rh[x*])
< ch ?|lvp — vkl L2, + ¢ (inverse inequality)
= ch™?||&]lm(x+) + ¢
< ch™*|le|lmxy + e 4 e
(3.20)

IA
o

where the last inequality uses (3.1) and k > 3, and the second-to-last inequality can
be proved as follows. Testing (3.13) with w, we obtain

(3.21)
M(x*)e-w=—(Ax)x — Ax")x") - w— (M(x) - M(x"))x*-w—-M(x")d - w.

By using Lemma 3.1, we have
—(A(x)x— A" )x") -w

1
- / / <Vpew2 . (Droed)Vroid + Vo w? vreez> de
FZ h h h h h
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1
< /o C||Vrgw2||L‘2(Fg) ”VFZ BZHL?(Fz)de

1
< [ e 2lufls e s a6

(3.22) = ch™?|| WM

e”M(x*)-

By denoting ¢ = Z] L &5¢;x%], we have
1
—(M(x) -M(Ex")x* -w = —/ (Vo - eDywl - i do
re '
Lo 0
< | clofliaqey) Vg el g0

1
S/o Ch_1||wiez||L2(rg)Hean?(rg)de
(323) = ChilnwnM(x*)||e||M(x*)'
By using the estimate (3.12) for the defect d, we have

(324) M(X*)d - W S C”dHM(x*) W”M(x*) S Chk71||W||M(x*).

Substituting (3.22)—(3.24) into (3.21) and choosing w = &, we obtain
lellvery < e(h* !+ A2 leflmeer))-

This proves the second-to-last inequality of (3.20).

Recall that the finite element function on I'y,[x] with the nodal vector e is denoted
by e} . By using (3.20), the first term on the right-hand side of (3.19) can be estimated
as follows:

1 1
§M( x)e-e = 5/ (Vr,x] - vn)ep, - € (this can be obtained from
Tnlx]

[15, equation (2.9)])
< c|lVr,x 'Uh||L°°(Fh[x])||6}L||%2(Fh[x])
< CHe”i/I(x)
(3.25) < cllellRager)s

where the norm equivalence in (3.10) is used.
The third term on the right-hand side of (3.19) satisfies

(326) - M(X*)d e S C”dHM(x*) eHM(X*) S ChkilneHM(xx).

We decompose the second term on the right-hand side of (3.19) into several terms
as follows:
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1
—/ (/ (Vs -ep)vy, - €5 — /(Vp; -e}:)lv;l e;;l) de
/ / Vr* cep) = Vr- ey }U;’l . eZ’l do
*l *,1
/ /Vr eh v) e, db

/ / Vr - eh VHn - ehldﬂ (we have substituted v = —Hn here)

1
(3.27) =i+ o+ Jz+Ja+ / /F(Vr ey Hn - e do.
0

The purpose of transforming from 'Y to I' (namely, to be able to replace v with Hn) is
to perform integration by parts on the last term of (3.27). This would yield (Vpe;;’l)n,
which is the only term that contains the partial derivative of eZ’l on the right-hand
side. The term (VpeZ’l)n can be furthermore converted to (Vps e9)n8 (which can be

absorbed by the left-hand side of (3.18)) after transforming T' back to I'?, as shown
in the following estimates.

The last term in (3.27) can be estimated as follows. Using the integration by
parts formula (cf. [16, section 2.3])

/Ffvr /an o— /Vrf o,
we have

//Vp eh YHn - ehld9
1
:/ /|Hn~62’l|2—/ /eZ’l-Vp(Hn-eZ’l)dQ
1
/ /|Hn er!2de — / / VrH)n-ep'dd — / /He;’l-(Vpn)eZ’ldQ
o Jr
—/ /Hei’l-(vpe;;’l)ndﬁ
0
LQ(F / /Heh (Vre,’ )nd6‘.

Recall that 71} denotes the normal vector on I',[x*] and that ﬁ;l is the lift of 7} onto
I'. By introducing H; € Sp,(T'[x*]) to be the finite element interpolation of H and
denoting by H Z’l the lift of H} to the surface I', the inequality above furthermore
implies that

1
/ /(Vr . eZ’l)Hn . efl’ldﬁ
o Jr

1
*,1 ENAPE N *,1
< clley, H%Z(F _/ /(H_Hh Jer” - (Vrey")ndd

//H*l P (Vrep')(n— gty do //H*le;jl (Vreph)ny'do

< clley’|

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/22 to 158.132.161.181 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DZIUK’S FEM FOR MEAN CURVATURE FLOW 1605
< cllep NZaqry + k™Ml ez I Vrer iz
1
T ch® et | 2y IV ey — / / HAe - (Vo yin do,
where the last inequality uses the interpolation error estimate (2.3)—(2.4). By using
the norm equivalence |lej"||z2ry ~ llefllz2(rs) and ||Vrer'(lz2w) ~ Vs ehllzaqry)

in Lemma 3.2 and using the inverse inequality of finite element functions, we obtain
from the above inequality

1
/ /(Vp . eZ’l)Hn . eZ’ldﬂ
o Jr

1
* ENEEN) ENAPN/
SCHehHQL?(F;)_/ /Hh’ e - (Vrey")ny” df
=c\|e2||%z<r;;>+/ (/ Hje}, - (Vrse})it /H W (Vrept)i hl) a9
1
o (L e et [ i (9 ) a

/ / Ol (Vg )l — ) do

- / Hyy%€] - (Vo el )iy do
0o Jr¢
= CH€Z||2L2(F;L) +J5 +Jo + J7 + s,

where H ;’9 is defined as the finite element function on I'Y with the same nodal vector
as H}. Substituting this into (3.27) yields

8
(3.28) —(M(x) — M(x")X" - < ellef 3o + 3 T

m=1

3.4. Estimation of J,,, m =1,...,8.

1
Jl = —/ </ (VFG eh)v;kle ez _/ (VF:, . e;kl)'l};; . 62) d6‘
h
/ / ( (Vg - ef ), - eZ) dodf (Newton—Leibniz rule)
do Fcr

d
= f/ (1-0) </ (Vrg - ef)vp” - e;’;) do  (order of integration is changed)
0 ¢ )

1
= —/ (1-0) (dt9/ (Vrpo - et ei) d¢ (o is changed to 0)
0 re '
(3.29)

1
— [ |a=or [ (o5(Tey e ch+ 19y el et ) |as
0 Fh

where the last inequality uses the properties 851);’9 = 93eY = 0 and the fact that the
surface FZ moves with velocity ez with respect to 6. By using the identity (cf. [18,
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Lemma 2.6])
0% (Vi ) = Vry 03¢t — | (Vryef = AGA)T (Vo)) Viyf|
(3.30) = —tr {(sz/eh —ad )T (Ve ed) )szeﬂ (since 95ef = 0),
we find that
Jm{AQM%yﬁquﬂvmﬂnﬂ@mﬁlﬂqﬂe
< /0 1 eh?||V o el o et zqeg) 0 (estimate (3.2) is used)

1
S/ chHeZHQLQ(Fi)dH (inverse inequality)
0
(3.31) = chHeH%\/I(x*). (norm equivalence (3.10)).

Let ! denote the lift of 2 € I’} onto I'. By using (2.2), we have

Jo = (/ (Vry - en)v - €, */(sz o)y e;l)
* T
h

:f/"uf&qu~ﬁwzfz
h

<c|ll = bnllzes)IVrs - enllz@slvnlle@sllenllzzes:)

< Vs - eflla )

h

< CthEZHZH(r;)

where we have used inverse inequality in the second-to-last inequality.
For the exact surface I' = I'(¢), we denote by d(x) the signed distance from x to
T', defined by

|z — 2| if z € R\,
d(z) = .
—Jx—2a if ze.

Let H = Vrn be the Weingarten matrix on I'. Then the following identity holds (for
example, see [17, Remark 4.1]):

Vr;eh (@) = Py(x)(I - d(@)H (")) Vre, (),

where Pp,(z) = I3 — nj (x)n) (x)", with 7} denoting the normal vector on I'}. Hence,
denoting P(z!) = I3 — n(x )fL(:zcl)T7 we have

)T
(Vrgen)'(a') = Vrey! ()]
= [Pu(@)(I - dl@)H(a")Trey! (') - P Ve (@)
= |[(Pu(@) = P — d(@)H(x")) - d(@) P(a Y H(z)] Vrey! ()]

< (ch* + chk+1)|VpeZ’ (zh)]|

(
(
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(3.33) < chk|Vrer! (2Y)],

where the second-to-last inequality uses estimate (2.4) in estimating Py (z) — P(x!)
and uses |d(z)| < ch**1 (see [21, Lemma 5.2]). For sufficiently small h, the inequality
above furthermore implies, via using the triangle inequality,

*,1 * *
(3.34) IVrey ll2ay < ell(Vezen) ey < el Vesenllary),

where we have used the norm equivalence between ||(Vrs e} )!|| L2 (ry and [|Vp: e llz2(rs)
as shown in Lemma 3.2. By using the two results above, we have

Js = —/Wr; ) = Vet e
r
< b Vrep | ey lop | noe oy llex | 2y
k—
<ch 1H%”L‘%F;)
= ch* elRg(xe-
where we have used inverse inequality in the second-to-last inequality.

Since the lifted Lagrange interpolation vZ’l has optimal-order accuracy in approx-
imating v, as shown in (2.3), it follows that

Ji=— / (Vr- )@ = v) - e
N

N N/ R
< cllvy” = vllLeem Ve - e [ L2myller” 2
< BV e 2y llen’ | oy

< "V - el e

671||L2(r;)
ki *
<ch ||€h\|%2(r;)
k
= ch"|lefRuex
Recall that Hj is the finite element interpolation of H onto I'y[x*] and that H, Z’l

is the lift of H} onto the surface I'. By using (2.2) and (3.33), we can estimate Js
similarly as Js, i.e.,

Js = /Hheh Vr: e}t /H*l*l (Vrerhar!
/5 lH*l *l (VF*eh szl /H*l w0 vFeh )n;:l

:/ngl—l)H;’lez’ (Vryei)' iy’ + / Hyley! - [(Vryen) — Vrep!lig!
l l
A Ylep |2y Vs e ey + ch*|le;!
Chk+1||€f*1||L2(r;)
k—
ch 1||62||2L2(r;)

(3.35) = ch" el Rgee)

IA

20 IVrs 7 | 2y

IA

Vs ehll2wsy + b el 2o IVrs €5l 2o

IN

where we have used inverse inequality in the second-to-last inequality.
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Recall that H, ;,0 is a finite element function on I'} with the same nodal vector

as the interpolated finite element function Hj. Since 62 = e}, as defined in (3.4), it
follows that

1
*.0 ~ 3,0 * % * 0\ Ak
Js :/0 (/Fe Hy eZ ) (Vrgeh) Ko Hyej, - (Verh)”h> do
h

I3

1
d *.0 o O\ AX,0
:/ / P . H,%ep - (Vrgep)ny,dodd

// s Hy%¢f - (Vrgeq)nydfdo  (order of integration is changed)
g 1'*:7 v

/0(170 P /U H,%¢ef - (Vreeq)n, do

/ (1-0 dé’/ Hel Vreeh)ﬁzadﬁ (o is changed to 6)

0

! 60 0 0
:/O (1-0) /F (Hh’ ef - 95 (Vra )iy + (Vo - ) Hy e - (Vo ef)ity: )da,
h

where the last equality uses the facts that 93 H;® = dgel = dgn;® = 0 and the
surface Fz moves with velocity ez with respect to 6. By substituting the identity
(cf. [18, Lemma 2.6])

9 (Vrfl 62) = Vrg B e — (Vrg eh — ﬁZ(ﬁZ)T(VFgeZ)T) Vri eh
(3.36) =— (VFZ eh — ﬁZ(ﬁ‘Z)T(VF}eL ez)T> Vra el (since fef = 0)

into the above expression of Jg, we obtain
1
0 0 9
To< [ el luma I Vagehllaag ledllaagydo
1
< / ch?|| Ve 62||L2(Fﬁ)||62|‘L2(F2)d6 (estimate (3.2) is used)
0

< / chHehH 2(r9) df (inverse inequality)

Let idp; be the restriction of the identity function to the surface I'}, and note
that the surface F9 has parametrization idry + fej, defined on I';. Hence, FZ has
parametrization idi‘; + Oe;’l defined on I'. Let ¢ be a local parametrization of the

surface T in a chart, and let ¢ = (idlpz + e o= idlrg o ¢+ (fe;") o ¢. Then

~ b X b ~ 1 (idh. © ¢) x By(idhs o
n o :M and 7y’ o0 =n}oidh 0p = 1(' a 9) 2(' fh ¢).
‘81(}5)( 62(Z5| " |81(1d ZO(ﬁ) X 82(1(1 zo¢)|

Since the exact surface is nondegenerate, we have ¢; < |01¢ X 02| < co. Hence,

| 0§ — iy’ 0 6| < |01 (¢ — idr, 0 ¢)| + ¢|02(¢ — idp. 0 @)
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< cf|V(ey' 0 9)l
< c|(Vrep') o || V).
This implies that
(338)  [laf, — 3’ | 2oy < el Veerllraqry < el Vg ehllzas) < ch ™ lehllcacrs),

where the second-to-last inequality is obtained from (3.34). By using the estimate
above, we have

J7—/ / Hh eh VFGBh ( }gl_ﬁ;;ﬁ)de
1—\9
< Vo€l Ay —ar? de
=, C||€h||L2 I“Z)” Fgeh”Lw(Fﬁ)H”h o3 ||L2(Fﬁ)
1
S/O CHEZHN(F;’L)||VF;’L€Z||L°°(FZ)h_1||€Z‘|L2(F§’L)d9 (estimate (3.38) is used)

1
S/ chHe‘ZHiQ(F?)de (estimate (3.2) is used)
0 g3

(3.39)
< chlle[Raex-)-

Finally,

/ / Hh eh VFéeh)nh d9
FO

<e / el oy (Vi €028 2o, 6
0

1 3
(3.40) < cllellmxr) ( /O /F , |<vpg,ei)ﬁ2|2d0>

Substituting the estimates of J,,,, m =1,...,8, into (3.28), we have

(3.41) —(M(x) — M(x*))x* -e < ce” 1He||M(x*) —|—e/ / F9€h NOARSUA

Remark 3.2. The estimates (3.25) and (3.41) together imply the result (1.7) men-
tioned in the introduction section.

Then, substituting (3.25)—(3.26) and (3.41) into (3.19), we obtain

d ! X
Glelhaco+2 [ [ [(Vegehatas
o Jro
1
(3.42) < ch?2 4 Ce*1||e|\§/[(x*) + 26/0 /1“9 |(VF26Z)ﬁZ|2d0,
h

where € can be an arbitrary positive number between 0 and 1. By choosing € = % and
integrating the inequality above in time, we have

s 1 s
(3.43) [le(s)2r00 + / / (Vg e0)8 264t < ch2 4 ¢ / ety
o Jo Jre 0
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which holds for all s € (0,¢*]. Since |le(s)||mx) is equivalent to [le(s)|lni(x+), as
explained in (3.10), applying Gronwall’s inequality yields

t* 1
Vo ey)nh > dodt < ch? 2.
s leliaer + [ [ [ 1(FreyatPasar <
Hence,

(3.44) max llen(-, )HLzm[x*(t)])*tﬂ[lgflllel\wx*) < chF

When k > 6 and h is sufficiently small, this implies that

1 4
(3.45) max llen(,OllL2, x))) = nax lellneer) < A%

If t* < T then the inequality above furthermore implies that the solution can be
extended to time t* + ¢, for some sufficiently small €5, such that (3.1) holds. The
maximality of t* for (3.1) implies that t* = T.

Hence, (3.44) holds with ¢* = T'. This also implies, via inverse inequality,

_ ) < chF2
H[I% llen (s )l o rux= ) <€

This proves (2.9). Since X;, — X} = en(-,t) 0 X}, (3.44) also implies
1 = Xl z2e oy < eh*
Lifting this onto I'g yields
1) — X0 | p2 oy < ch*2

Then, using the triangle inequality and the interpolation error estimate (2.3), we
obtain

1) = X[l r2oy < X7 — X' 2oy + 1X5" = X p2qroy < ehF2

This completes the proof of Theorem 2.1. 0

4. Proof of Lemma 3.3. In this section we prove Lemma 3.3, which is used
in the proof of Theorem 2.1. Note that FZ is the boundary of a bounded Lipschitz
domain. We first prove the result for a smooth surface and then extend it to a general
Lipschitz surface through approximating it by smooth surfaces.

PROPOSITION 4.1. Let Iy be a bounded, closed, and smooth surface, and let e €
HYT,)3. Then
(4.1) / [tr(Vp* e)? —tr(Vr, eVp*e)] =0.
T

Proof. We denote Vr, f = (D;f,Dyf, Dsf)T and use the following formula of
integration by parts (cf. [16, Definition 2.11]):

(4.2) /F Do =- /F D+ /F foHin
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If e = (e}, e2,e%)T € H%(T,)3, then
/ {tr(vr*€)2 —tr(Vr, eVp*e)]
I
B / {(Dlel + Dye® + Dye?)? — Dieijei]

:/ (D€' + Dye® + Dye®)?

*

- / (ID1e' 2 + [Dye?? + |Dyc?? + 2D, ¢* Dot + 2D, Dy’ + 2565 Dye?)

*

= / 2 {(D161D2€2 —D,e’Dye’) 4 (Dye' Dye® — Dy e’ Dye’)
+ (Dye®Dye® — Dye® Dge®) |

By using (4.2) and the formula (cf. [16, Lemma 2.6])
QinU = Q]QZU + HninU - Haniu;
we have

/ (Qieinej fQieijei)

*

:/ (—e'D;D;e’ + Hnie'D,e’ — D¢’ D;e’)

*

:/ (—einQiej — Hnieinej +Hnjei2iej +Hnieinej fQieijei)

:/ (QjeiQiej — HnjeiQiej — Hnieinej
+ HnjeiQiej + Hnieinej - Qieijei)
=0.
This proves (4.1) for e € H?(I})3. Since H?(T})? is dense in H1(T})3, it follows that
(4.1) also holds for e € H'(T})3. ad

By using Proposition 4.1, we prove the following result, which implies Lemma 3.3.

PROPOSITION 4.2. If T, is the boundary of a bounded Lipschitz domain S0, then,
for e € HY(T,)3, the following identity holds:

(4.3) / [tr(vne)ttr(vnevne) =0.

*

Proof. In the following, we show that there exists a sequence of smooth functions
w" € C(R3)3 such that @™ converges to e in H(I}) as n — oo and a sequence of
smooth domains €, with smooth boundary I'J” such that I'}* — I', as m — oco. By
using the result of Proposition 4.1, we have

(44) / [tr(vr*m 1:[)”)2 — tr(Vp:nﬁ;an:nﬁ)n)} =0.
5
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By taking m — oo in the equality above, we shall prove the following result:

(4.5) / [tr(Vp*u?n)Q — (Ve @™V, @] = 0.

*

This would prove the desired result for the smooth function @w" € W1>°(R3)3. Since
W™ — e in HY(T}), letting n — 0 in (4.5) yields the desired result (4.3).

First, we consider a partition of unity ¢; € C5°(R?), j = 1,...,J, such that
Z}Izl ¢; = 1 in a neighborhood of I', and each ¢; has compact support in an open
ball B; in which the surface I', N B; can be represented by a Lipschitz graph after a
rotation Q;,

(46) ].—‘* N Bj = {QJ.’E 1 T3 = (pj(.%'171'2)7 (1’1,!172) € .Dj},
(4.7) BiNQ C{Qjz : x3 > pj(x1,72), (z1,22) € Dj},
(48) Bj\ﬁ C {Q]J? 3 < wj(xl,xg), (Z‘1,$2) S l)j}7

where ¢; is a Lipschitz continuous function on D;, which is a bounded domain in R2.

Hence,
J

e = Zeqzﬁj on F*.

j=1

For the Lipschitz domain €2, there exists a sequence of domains Q,,, m = 1,2,...,
with smooth boundary I'[" such that I'J* — I, as m — oo in the following sense
(see [10, Theorem 5.1)):

(4.9) YN B ={Qjz : x3 = ¢]"(v1,72), (z1,72) € Dj},

where @', m =1,2,..., is a sequence of functions converging to ¢; strongly in both
L>(D;) and W'P(D;) for all p € [1,00) and V¢}* converges to Vi; weakly* in
L>(D;)? (Vi is bounded in L>®(D;)? as m — c0).

Next, on the two-dimensional region D;, we define ®;(z1,z2) = (21, 22, ¢;(x1,22))T
R? and
(4.10) wj(x1,w2) = (eg;) o (Qj®;) (w1, 22) for (1,22) € Dj.

Then Q;®; : D; — I', N B; is a parametrization of I', N B; and w; € H}(D;)3. We
can approximate w; in H'(D;)? by a sequence of smooth functions w} € C>(R?)?
with compact supports inside D;. These functions have natural extensions to w7} €
C>(R3)3, i.e.,

(4.11) W5 (21,22, 73) = W} (71, T2)Xa(T3) for (w1,79,73) € R3,

where x.(z3) is a one-dimensional smooth cutoff function which satisfies

(4.12) Xa(0) =1, X,(0)=0 and xa(x3)=0 for |z3|> a.

Then we can define a smooth function @} € C*°(R*)* (with compact support in Bj)
that approximates e¢; in H*(I', N B;), i.e.,

(4.13) UN)?(QW) = @?(Il,l’z,x:s - @?(Ihxz)) for (171,132,953)T eR’.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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By choosing a sufficiently small o, the extended functions @} € C*(R?)® have com-
pact supports in B;. Since Q;®; : D; — I'yx N B; is a parametrization of I', N By,
it follows that “@? converges to e¢; in H'(T, N By)” if and only if “@} o (Q;®;)
converges to (e¢;) o (Q;®;) in H'(D;)”. In view of the definitions in (4.10)-(4.11)
and (4.13), we have

Wy o (Q;®;)(x1,22) — (ed;) © (Q;P;)(x1, x2)
= w?(xl,xz)xa(gﬁj(xl,xZ) - 90?(3717552)) - wj(xlv Iz)

(4.14) = w} (21, 22)[Xalpj(T1,22) — @] (21, 72)) — 1] + [w] (21, 22) — w;(21, 2)].

Since ¢} converges to @; in L>(D;) N WhP(D;) as n — oo for arbitrary p € [1,00)
(see the statement below (4.9)) and wf converges to w; in H'(D;) < LP(D;) for all
p € [1,00) (this is how w? is defined), from (4.14) it is straightforward to verify that
w7} o (Q;®;) converges to (ep;) o (Q;®;) in H'(Dj). As a result, @} converges to ep;

in H'(I', N B;). Therefore,

J

~n __ ~n _

w —E wi, n=12...,
j=1

is a sequence of functions in C*°(R3)? that converges to e = ijl e¢; in H'(I,) as
n — 0.

Finally, we prove that taking m — oo in (4.4) would yield (4.5). This would
complete the proof of Proposition 4.2. To this end, we consider the decomposition

/ (Ve )2 = (V@ V)|
rm

J J

(4.15) => / (V™) 2 — Y / tr(Vem 0" Vim0,
=1 /rrnB; =1 /rrnB;
and prove the following two results:
(4.16) lim tr(Viemw™)?¢; = / tr(Vr, 0")2¢; for every j,
m—0 I'mnB; L NB;
(4.17)
lim tr(fomw"VpInw")qu = / tr(VRw"VDw")@ for every ]
m—=0 JrmnB,; I.NB;
Let ®7'(x1,x2) = (21,22, ¢} (21,22))" € R®. Then ®7" is a parametrization

of the surface I']' N B; after a rotation by ;. By using this parametrization, the

left-hand side of (4.16) can be written as

(4.18)

/ tr(Vp*mw")%j
F;’”QBJ‘
2

7 m awn(Q@m) m m
gf(wj)#@am@j (¢ 0 @)y /1 + |V |2 dydas,
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where gM(V@T) is the inverse matrix of the Riemannian metric tensor g; (V®}"), i.e.,
gie(VOT') = 0, @7 - 0,97, i, £=1,2.

Since @’ converges to ®; in L>®(D;)NW!P(D;) as m — oo for all p € [1, 00), it follows
that g; (V@) converges to g (V®;) in LP(D;) for all p € [1, 00). Furthermore, since

det(gie(VET")) = 1+ [Ve|?

is bounded from both below and above (because Vyi' is bounded in L>(D;)? as

m — o0), it follows that the inverse matrix gie(V@;”) also converges, i.e.,

(4.19) g”(V@}”) converges to g**(V®,) in LP(D;) for all p € [1,00) as m — oo.

Note that
0" Qs (wr,w2)) (90" 007 (o1, 72)
oy = <8xq 0 (Q;®] )(9317962)> Qj,qT’
0w (Q;® (w1, 2)) (O™ e - 0%j(x1,79)
O = &Tq O(QJ(I)J)(9U17$2) Qj.q Oxy )

where @), denotes the gth row of @;. Since %L;: € C>(R?)? for fixed n and o7

converges to ®; in L>°(D;) N WP(D;) for all p € [1,00) as m — oo, it follows that

(4.20)

olu" o (Q;97")]
8;315

Ilw" o (Q;%,)]

in LP(Dy) for all p € [1,00) as m — oo.
8:5@

converges to

Since ¢; is smooth and ®7* converges to ®; in L>(D;) as m — oo, it follows that
(4.21) ¢; o @ converges to ¢; o ®; in L>(D;) as m — oo.

Then, substituting (4.19)—(4.21) into the right-hand side of (4.18) and taking limit
m — oo, we obtain (4.16). The proof of (4.17) is similar and omitted.

Substituting (4.16)—(4.17) into (4.15) yields the desired result (4.5). This com-
pletes the proof of Proposition 4.2. ]

5. Proof of the defect’s estimate (3.12). In this section, we prove (3.12),
which is used in the proof of Theorem 2.1. We rewrite (1.1) into

(5.1) orid = AF[X(-,t)]id on T'[X(-,t)] Vte (0,T].
Let wy, € Sp(Th[x*]) be a finite element function on the interpolated surface I'j,[x*],

and let w! € H'(T') be the lift of wy, onto the exact surface I' = T'[X(-,¢)]. Then,
testing (5.1) by w!, we obtain

(5.2) / orid - wl, + / Vrid - Vewl, =0 Yy, € Sp(Thx"]).
T T

This can be furthermore written as

*
h

(53) / 8;}11(‘1 - Wp + / szld . szwh = / dp -wp, Ywy € Sh(I‘h[x*]),
h I r
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Downloaded 07/18/22 to 158.132.161.181 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DZIUK’S FEM FOR MEAN CURVATURE FLOW 1615

where dj, € S, (T'};) is the unique finite element function determined by the relation

Ty 5 T

+ ( Vrsid - Vs wy, — / Vrid - vaﬁl>
T r
=: &1(wp) + Ea(wp).
In the matrix-vector form, (5.3) can be equivalently written as
(5.4) M(x")%" + A(x")x" = M(x)d,

with d being the nodal vector of the finite element function d;, € S, (I'}).

Note that 97 ,id = v}, on I';, and 97id = v on T', where v}, and v are the velocity
of the surfaces I'; and I', respectively. In particular, vj is the Lagrange interpolation
of v. Hence, by using (2.3) and (2.2),

!
51(wh)=/ Uz-wh—/v-wh
r; r
1 1
—</ v}i.whf/v; w2>+/(v; —v) - w)
r; r r

:/ (1—6h>vz'wh+/<v;’l—v>~wz
r: r

< " il Lo os) llwnll L2 (os ) + b Jwh || L2y

< w2y

Let idp; and idr be the identity function restricted to I'; and I', respectively, and let
idiﬂz be the lifted function on I'. Then

Eg(wh) = VledF: . szwh — /F Vpidp . VFU}Z

T
:( Vr:idr: - Vs wy, — / vpidlrz .va;> + / Vp(idlrz —idr) - Vpwl,
rs r r

< b Vrsidr; || 22 ()

S cthVp;«Lide

Ve whllz2(rs ) + b Vs whl| 2oy

L2(T3) |whHL2(F’£) + Chk_1 ||whHL2(F;§)7

where the second-to-last inequality again uses [21, Lemma 5.2]. This proves that

’/ dh~wh
h

In the matrix-vector form, this can be equivalently written as

< Chk_1||wh||L2(r;)~

IM(x*)d - w| < ch* | w|aeee)-
Hence, by choosing w = d in the inequality above, we obtain
”dHM(x*) < Chk_l.

This proves the defect’s estimate (3.12). d
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6. Concluding remarks. The main contribution of this paper is the discov-
ery of the structure (1.6) and its application to proving the convergence of Dziuk’s
semidiscrete FEM for mean curvature flow of closed surfaces with sufficiently high-
order finite elements.

The following additional difficulty would appear in the analysis of linearly implicit
time discretization:

(6.1) (A(x"_l)x" - A(x*’”_l)x*’") (Xt = xTT)

is no longer in the form of the left-hand side of (1.6) due to the shift of superscript
indices. Hence, additional terms would appear in converting (6.1) to the form of the
left-hand side of (1.6). Those additional terms may be bounded by using the approach
in [24] under a certain grid-ratio condition.

It is straightforward to verify that both (3.15) and Proposition 4.1 can be extended
to higher dimensions, i.e., for mean curvature flow of d-dimensional hypersurfaces in
R*! with d > 2. As a result, the monotone structure and the convergence proof can
be generalized to this case. However, the monotone structure of mean curvature flow
of two-dimensional surfaces in higher codimensions is not obvious from the current
proof, and therefore the convergence of evolving surface FEMs in this case still remains
open.

Convergence of Dziuk’s semidiscrete FEM with low-order finite elements as well
as the parametric FEMs of Barrett, Garcke, and Niirnberg [3, 4] remain open for mean
curvature flow of closed surfaces. Efficient numerical methods for the nondivergence
parabolic system constructed from DeTurck’s trick in [20], allowing singularity to
appear in the numerical simulation of closed surfaces, is still challenging.

Acknowledgment. I would like to thank Prof. Christian Lubich for reading the
manuscript and providing many valuable comments and suggestions.
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