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1 Introduction

Objective: apply the perturbation method from Herdegen et al. (2020) to study an optimal dividend,

investment, and risk control problem, in which an insurer aims to maximize the expected discounted

utility of dividend over an infinite horizon.

The rest of the paper is organized as follows. In Section 2, we introduce the market model and

formulate the main stochastic control problem of the paper. We first solve the problem for a restricted

class of strategies–constant strategies in Section 3 and next verify the optimal constant strategy is also

globally optimal among all the unrestricted admissible strategies in Section 4. In Section 5, we conduct a

thorough economic analysis along both the analytic and the numerical directions to investigate the impact

of various parameters on the optimal strategy. Finally, we conclude in Section 6.
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2 Problem Formulation

2.1 The Markets

We consider a representative insurer (“she”), who has access to a financial market consisting of a risk-free

asset and a risky asset (e.g., a stock index or a mutual fund). The risk-free asset earns at a constant rate

r continuously. The price process S = (St)t≥0 of the risky asset is modeled by

dSt = µSt dt+ σSt dW
(1)
t ,(2.1)

where µ, σ > 0 and W (1) is a standard Brownian motion. We assume the underlying financial market is

ideal and frictionless.

The insurer’s main business is to underwrite policies against insurable risks. Following Zou and Cade-

nillas (2014b), we model such risks on a unit basis (e.g., per policy) by

dRt = α dt+ βρdW
(1)
t + β

√
1− ρ2 dW

(2)
t + γ dNt,(2.2)

where α, β, γ > 0, −1 < ρ < 1, W (2) is another standard Brownian motion, and N is a homogeneous

Poisson process with constant intensity λ > 0. Let p represent the unit premium rate, corresponding to

the unit risk process R in (2.2). We further impose the following assumptions on the model (2.1)-(2.2)

throughout the rest of this paper:

µ > r and p > α+ λγ.(2.3)

We discuss the economic interpretations of the above assumptions in (2.3) in Remark 2.1. On the technical

level, we assume the processes W (1), W (2), and N are independent under a complete probability space

(Ω,F ,P) and the filtration F := (Ft)t≥0 is generated by these three processes, augmented with P-null sets.

Remark 2.1. As argued in Stein (2012)[Chapter 6], a major mistake in the AIG’s business operation

during the financial crisis of 2007-2008 is ignore or underestimate the negative correlation between the

financial market and its insurance liabilities. Such a negative correlation can be easily captured by the risk

model of R in (2.2) by setting ρ ∈ (−1, 0); see, e.g., Zou and Cadenillas (2014b), Peng and Wang (2016),

Bo and Wang (2017), and Zhou et al. (2017).

The two assumptions in (2.3) both have reasonable economic meanings. The first condition implies that

the Sharpe ratio of the risky asset, Λ := µ−r
σ , is strictly positive, which holds true for all “good” assets

(e.g., stock indexes) over long run in the financial market. Since E[dRt] = (α+λγ)dt, the second condition

implies that the insurer should charge the unit premium rate p greater than α+λγ, the so-called “actuarial

fair price”. Otherwise (i.e., if p ≤ α+ λγ), the insurer’s ruin probability (without investment) is equal to

1. If we apply the expected value principle to calculate insurance premium (i.e., p = (1 + θ) (α+λγ)), then

assuming p > α + λγ is equivalent to setting θ > 0, where θ is often called the loading factor. Note that

we do not assume that p is given by the above expected value principle, which is nevertheless imposed in

many works in order to derive the optimal insurance in closed form; see, e.g., Arrow (1974) and Moore

and Young (2006).
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2.2 The Insurer’s Strategies and Wealth Process

The representative insurer chooses a triplet strategy (control) that consists of an investment strategy, a

liability ratio strategy, and a dividend strategy in its business operations, as described in what follows.

• In the financial market, the insurer chooses a dynamic investment strategy π = (πt)t≥0, where πt

denotes the proportion of wealth invested in the risky asset at time t.

• In the insurance market, we assume the insurer can directly control the amount of liabilities (number

of units or policies) in the underwriting, denoted by L = (Lt)t≥0. Following Stein (2012), we define

κt := Lt/Xt, where Xt is the insurer’s wealth at time t (defined later in (2.4)), and call κ = (κt)t≥0

the insurer’s liability ratio strategy.

• The insurer chooses a dividend strategy D = (Dt)t≥0 to distribute profits to the shareholders, where

Dt denotes the continuous dividend rate payable at time t. Namely, the dividend payment over

[t, t+ dt] is given by Dtdt.

We denote the insurer’s strategy by u := (π, κ,D). We offer some explanations to the insurer’s liability

strategy κ and dividend strategy D in the following remark.

Remark 2.2. Motivated by the AIG case during the financial crisis of 2007-2008, Stein (2012) finds that

the liability ratio provides an early warning signal to the AIG’s failure and sets up a model in which the

insurer directly controls its liability ratio. Such a setup attracts considerable attention in the actuarial

science literature, as evidenced by a series of follow-up works on the optimal control study for an insurer;

see Zou and Cadenillas (2014b), Jin et al. (2015), Peng and Wang (2016), and Shen and Zou (2020),

among many others. From an economic point of view, the assumption that the insurer can dynamically

control the liability ratio is not unreasonable, as major insurers have monopoly power in the insurance

market and can “discriminate” policy holders. For instance, in the business of health insurance, insurers

often reject potential policy applications based on certain risk factors. Lapham et al. (1996) study a group

of participants with genetic disorders in the family and find that 25% of them believed they were refused life

insurance and 22% were refused health insurance. A recent work of Bernard et al. (2020) confirms that,

under certain circumstances, “it may become optimal for the insurer to refuse to sell insurance to some

prospects”.

The dividend strategy D described above is absolutely continuous with respect to the Lebesgue measure,

which is used in many related works; see, e.g, Asmussen and Taksar (1997), Avanzi and Wong (2012), and

Jin et al. (2015) for a short list. As such, the corresponding control problem is a classical one, instead of a

singular or impulse one. We refer to Jeanblanc-Picqué and Shiryaev (1995) and Sotomayor and Cadenillas

(2011) for both classical and singular control of optimal dividend problems. As argued in Avanzi and Wong

(2012), optimal dividend strategies obtained in the literature are often volatile (e.g., “bang-bang” strategies),

which are unlikely to be adopted by managers. In consequence, they consider a setup where dividends are
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paid at a constant rate g of the company’s surplus and seek to find the optimal rate g∗. Note that the above

dividend strategy D includes the threshold strategies (also called refracting strategies), where Dt = constant

when the wealth (surplus) at time t is greater than a given threshold and Dt = 0 otherwise. For studies

on threshold-type dividend strategies, please see the review articles Albrecher and Thonhauser (2009) and

Avanzi (2009), and the recent works of Albrecher et al. (2018) and Renaud and Simard (2020).

Let us denote by X = (Xt)t≥0 the insurer’s wealth process under a triplet strategy of investment,

liability ratio, and dividend u := (π, κ,D). The dynamics of X is obtained by

dXt =
(
Xt−(r + (µ− r)πt + (p− α)κt)−Dt

)
dt+ (σπt − βρκt)Xt− dW

(1)
t(2.4)

− β
√

1− ρ2 κtXt− dW
(2)
t − γκtXt− dNt, X0 = x > 0.

It is clear from (2.4) that the insurer’s wealth process depends on her initial wealth x and strategy u, and

we write it as X for national simplicity.

We next define the admissible strategies in Definition 2.3 and close this subsection with some remarks.

Definition 2.3 (Admissible Strategies). A strategy u = (π, κ,D) is called admissible, denoted by u ∈ A,

if (1) u is predictable with respect to the filtration F; (2) for all t ≥ 0, we have
∫ t
0 π

2
s ds <∞, 0 ≤ κt < 1

γ ,

and E[
∫ t
0 Ds ds] < ∞ with Dt ≥ 0; (3) there exists a unique strong solution to (2.4) such that Xt ≥ 0 for

all t ≥ 0.

Remark 2.4. The constraint 0 ≤ κt <
1
γ stipulates that the wealth process X will not become negative

or zero at the jump times of the Poisson process N . According to Definition 2.3, given an admissible

control u, the corresponding wealth Xu may hit 0 (ruin or bankruptcy). Let us define the ruin time by

τu := inf{t ≥ 0 : Xu = 0, u ∈ A}. We follow the standard treatment to set ut to be any constant within

the feasible region for all t ≥ τu. For instance, Zou and Cadenillas (2014a) and Jin et al. (2015) set ut ≡ 0

after ruin. Last, we mention that the condition on the investment strategy π is weaker than the standard

square integrability condition E[
∫ t
0 π

2
s ds] <∞ for all t ≥ 0.

2.3 The Problem

Given a triplet strategy u, we define the insurer’s objective functional J by

J(x;u) := E
[∫ ∞

0
e−δt U(Dt) dt

]
,(2.5)

where E denotes taking expectation under the physical measure P, δ > 0 is the subjective discount factor,

and U is a standard utility function (strictly increasing and strictly concave). The concavity of U implies

risk aversion in the insurer’s decision making. Applying a concave utility function to the dividend pay-

ments is in fact not unusual in the optimal dividend literature. Cadenillas et al. (2007) provide economic

justifications for incorporating risk aversion in the objective (see pp.85 therein); see also Thonhauser and

Albrecher (2011), Jin et al. (2015), and Xu et al. (2020).

We now formulate the main optimal investment, liability ratio, and dividend problem of this paper.
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Problem 2.5. The insurer seeks an optimal strategy u∗ = (π∗, κ∗, D∗) to maximize the expected discounted

utility of dividend over an infinite horizon. Equivalently, the insurer solves the following stochastic control

problem:

V (x) := sup
u∈A

J(x;u) = J(x;u∗),(2.6)

where the admissible set A is defined in Definition 2.3 and the objective functional J is defined in (2.5).

Using the ruin time τu defined in Remark 2.4, we can rewrite J in (2.5) as

J = E
[∫ τu

0
e−δt U(Dt) dt+

∫ ∞
τu

e−δt U(Dt) dt

]
.

If we further set the second integral to 0 and take U(x) ≡ x (risk neutrality), the above J reduces to the

standard setup in optimal dividend literature (see Albrecher and Thonhauser (2009) and Avanzi (2009)).

However, such an extra assumption is not necessary under our setup, as it turns out that ruin will not

happen under the optimal strategy u∗ (i.e., τu
∗

=∞).

In this work, we consider the utility function U is of power form, which belongs to the hyperbolic

absolute risk aversion (HARA) family. In particular, U is given by

U(x) =
1

1− η
x1−η, η > 0,(2.7)

where the limit case of η = 1 is treated as log utility U(x) = lnx. Note that U in (2.7) is well defined for

all x > 0. If U is given by log utility (η = 1) or negative power utility (η > 1), we set U(0) = −∞. The

choice of power utility is dominant in the optimal investment literature (see the classical papers of Merton

(1969, 1971)). We comment that the relative risk aversion η in (2.7) can be any positive number, and is

in particular allowed to be greater than 1 (arguably the case in real life, see Meyer and Meyer (2005)). In

comparison, 0 < η ≤ 1 is assumed in Cadenillas et al. (2007), Thonhauser and Albrecher (2011), Jin et al.

(2015), and Xu et al. (2020).

3 Analysis of Constant Strategies

In this section, we study Problem (2.6) over a restricted set of constant strategies Ac, which is defined by

Ac := {u = (π, κ,D) |πt ≡ πc, κt ≡ κc, Dt ≡ ξcXt, where πc, κc, ξc ∈ R, κc ∈ [0, 1/γ), ξc ≥ 0}.(3.1)

We denote constant strategies in Ac by uc := (πc, κc, ξc), which is slightly different from u = (π, κ,D) ∈ A
introduced in Section 1. For any uc ∈ Ac, there exists a unique strong (positive) solution X to (2.4) and

E[X2
t ] < ∞ for all t ≥ 0 (see, e.g., Theorem 1.19 in Øksendal and Sulem (2005)). This result, along with

the definition in (3.1), implies that all the conditions in Definition 2.3 are satisfied. Therefore, we conclude

that the set of constant strategies Ac is a (proper) subset of the set of admissible strategies A.
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To begin, we solve (2.4) explicitly and obtain the insurer’s wealth Xt at time t (for all t ≥ 0) by

Xt = x exp
((
f(πc, κc)− ξc

)
t+
(
σπc − βρκc

)
W

(1)
t − β

√
1− ρ2κcW (2)

t + ln(1− γκc) Ñt

)
,(3.2)

where Ñ = (Ñt)t∈[0,T ], with Ñt := Nt − λt, is the compensated Poisson process. In addition, the function

f is defined over R× [0, 1/γ) by

f(y1, y2) := r + (µ− r)y1 + (p− α)y2 −
1

2

(
σ2y21 − 2βρσy1y2 + β2y22

)
+ λ ln(1− γy2).(3.3)

For future convenience, we define three constants A, B, and C by

A := γβ2(1− ρ2), B := β2(1− ρ2) + γ(p− α+ βρΛ), C := p− α+ βρΛ− λγ,(3.4)

where Λ is the Sharpe ratio of the risky asset, i.e.,

Λ :=
µ− r
σ

.(3.5)

Due to ρ ∈ (−1, 1) and (2.3), we have A > 0 and B > 0. If ρ ≥ 0, then C > 0; but if ρ < 0, C may be

negative.

We first analyze the case of log utility U(x) = lnx, corresponding to η = 1 in (2.7). Using (3.1)-(3.2)

along with the definition of J in (2.5), we obtain

E
[∫ ∞

0
e−δtU(Dt) dt

]
=

1

δ
lnx+

1

δ2
f(πc, κc) +

1

δ
ln ξc −

1

δ2
ξc.(3.6)

Solving Problem (2.6) over Ac when U(x) = lnx is now equivalent to maximizing the right hand side of

(3.6), which is solved in the proposition below.

Proposition 3.1. Suppose U(x) = lnx and the constant C defined in (3.4) is non-negative. The optimal

constant strategy u∗c = (π∗c , κ
∗
c , ξ
∗
c ) to Problem (2.6) over Ac is given by

π∗c =
µ− r
σ2

+
ρβ

σ
κ∗c , κ∗c =

B −
√
B2 − 4AC

2A
, ξ∗c = δ,(3.7)

where the constants A, B, and C are defined in (3.4). Furthermore, the value function Vc is obtained by

Vc(x) := sup
uc∈Ac

E
[∫ ∞

0
e−δt ln(Dt) dt

]
= J(x;u∗c) =

1

δ
ln(δx) +

1

δ2
(f∗ − δ),(3.8)

where f∗ := f(π∗c , κ
∗
c) = max

(y1,y2)∈R×[0,1/γ)
f(y1, y2), with π∗c and κ∗c derived in (3.7) and f given in (3.3).

Proof. By applying the first-order condition to maximizing the right hand side of (3.6), we obtain that π∗c

and ξ∗c are given in (3.7) and κ∗c solves a quadratic equation Ay2−B y+C = 0, where the constant A, B,

and C are defined in (3.4). We compute B2 − 4AC =
(
β2(1 − ρ2) − γ(λγ + C)

)2
+ 4λB2γ2(1 − ρ2) > 0,

implying that there are two candidate solutions to the quadratic equation. We next verify that the bigger

solution is greater than 1/γ and the smaller solution is less than 1/γ. Consequently, κ∗c is given by the

smaller solution as shown in (3.7), which is non-negative if and only if C ≥ 0. By verifying the second-

order condition, we show that u∗c in (3.7) is indeed an optimal constant strategy over Ac to Problem (2.6).

Plugging u∗c back into J in (2.5), after tedious computations, leads to the value function in (3.8).
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We next study the case of power utility U(x) = x1−η/(1− η), where η > 0 and η 6= 1. For any uc ∈ Ac,
we obtain

J(x;uc) = E
[∫ ∞

0
e−δt

(ξcXt)
1−η

1− η
dt

]
=
x1−η

1− η
ξ1−ηc

δ − (1− η) · g(πc, κc) + (1− η)ξc
,(3.9)

provided δ − (1− η)g(πc, κc) + (1− η)ξc > 0. Here, the function g is defined over R× [0, 1/γ) by

g(y1, y2) := r + (µ− r)y1 + (p− α)y2 −
η

2

(
σ2y21 − 2βρσy1y2 + β2y22

)
+

λ

1− η
(
(1− γy2)1−η − 1

)
.(3.10)

We now present the main result for power utility as follows.

Proposition 3.2. Suppose U(x) = x1−η/(1− η), where η > 0 and η 6= 1, and the following two conditions

hold

C ≥ 0 and ψ :=
δ − (1− η)g∗

η
> 0,(3.11)

where C is defined in (3.4) and g∗ := max
(y1,y2)∈R×[0,1/γ)

g(y1, y2), with g defined in (3.10). The optimal

constant strategy u∗c = (π∗c , κ
∗
c , ξ
∗
c ) to Problem (2.6) over Ac is given by

π∗c =
µ− r
ησ2

+
ρβ

σ
κ∗c , κ∗c = unique solution of (3.13), ξ∗c = ψ,(3.12)

where κ∗c solves the following non-linear equation

(1− γy)−η +
ηA

λγ2
y − C

λγ
− 1 = 0,(3.13)

with the constants A and C defined in (3.4). Furthermore, the value function Vc is obtained by

Vc(x) := sup
uc∈Ac

E
[∫ ∞

0
e−δtU(Dt) dt

]
= J(x;u∗c) =

ψ−η

1− η
x1−η.(3.14)

Proof. Applying the first-order condition to the maximizing problem of the right hand side of (3.9) leads

to the results of u∗c in (3.12) and the non-linear equation of κ∗c in (3.13), which has a unique solution in

[0, 1/γ) due to the condition C ≥ 0. By imposing ψ > 0, we obtain ξ∗c = ψ > 0 and δ− (1− η)g(πc, κc) > 0

for all (πc, κc) ∈ R× [0, 1/γ). A straightforward verification process then completes the proof.

By (3.11), we have limη→1 ψ = δ. We also notice that, when η → 1, the non-linear equation (3.13)

reduces to the quadratic equation satisfied by κ∗c in the log utility case. As such, Proposition 3.1 for log

utility can be seen as the limit result of Proposition 3.2 for power utility. In the literature, a diffusion

process without jumps is commonly used to approximate the classical Craḿer-Lundberg model; see, e.g.,

Browne (1995) and Højgaard and Taksar (1998). Such a setup corresponds to setting λ = 0 in the risk

process (2.2). The results in Proposition 3.2 can be simplified when λ = 0, as shown in the corollary below.
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Corollary 3.3. Suppose the utility function U is given by (2.7) and there are no jumps (λ = 0) in the risk

process (2.2). Further suppose two technical conditions hold:

p− α+ βρΛ > 0 and δ > (1− η)ĝ∗,(3.15)

where the constant ĝ∗ is defined by

ĝ∗ := r +
(p− α+ βρΛ)2

2ηβ2(1− ρ2)
+

Λ2

2η
.(3.16)

The optimal constant strategy u∗c = (π∗c , κ
∗
c , ξ
∗
c ) to Problem (2.6) over Ac is given by

π∗c =
µ− r
ησ2

+
ρβ

σ
κ∗c , κ∗c =

p− α+ βρΛ

ηβ2(1− ρ2)
, ξ∗c =

δ − (1− η)ĝ∗

η
.(3.17)

Proof. Introduce ĝ := g|λ=0, where g is defined by (3.10). Maximizing ĝ and (3.9) leads to the above

optimal strategy (3.17). Note that ĝ∗ = max ĝ(y1, y2) = ĝ(π∗c , κ
∗
c), where π∗c and κ∗c are obtained in

(3.17).

We end this section by offering some explanations on the technical assumptions C ≥ 0 and ψ > 0

imposed in Proposition 3.2 (or C ≥ 0 in Proposition 3.1). First, since limη→1 ψ = δ > 0 automatically

holds, ψ > 0 is not needed for the log utility case in Proposition 3.1. By the model assumption in (2.3)

and the definition of C in (3.4), if ρ ≥ 0 (recall ρ measures the correlation between the risky asset and

the insurable risk process), we always have C ≥ 0 and such an assumption becomes redundant for ρ ≥ 0.

If ρ < 0 is the true scenario (as argued in Stein (2012) and Zou and Cadenillas (2014b) among many

others), the assumption of C ≥ 0 means that the risky investment opportunity cannot be too “good”,

comparing to the insurance business. To see this, we rewrite C < 0 as Λ = µ−r
σ > p−α−λγ

−ρβ , where the left

hand side is the Sharpe ratio of the risky asset, and the numerator of the right hand side measures the

insurer’s expected profit (including operation costs) from the insurance business. In practice, on the one

hand, insurers are only allowed to invest in “safe” risky assets (with relatively low Sharpe ratio); while

on the other hand, many insurance businesses are lucrative and insurers charge sufficient safe loading in

premiums for solvency reasons. Therefore, imposing C ≥ 0 not only guarantees the optimal liability ratio

κ∗c is non-negative but also makes economic sense. The other technical assumption ψ > 0 makes Problem

(2.6) well-posed. Indeed, if this assumption fails (i.e. ψ ≤ 0), we have V (x) = +∞ when 0 < η < 1 and

V (x) = −∞ when η > 1 (see Corollary 6.5 in Herdegen et al. (2020)). By (3.11), ψ > 0⇔ δ > η+(1−η)g∗,

i.e., the subjective discount rate δ should be greater than a threshold. Similar conditions are commonly

imposed for infinite-horizon control problems; see, e.g., Jin et al. (2015)[Eq.(4.11)].

4 Verification for Admissible Strategies

We consider the HARA type utility function U , given by (2.7), in the formulation of our main stochastic

problem (see Problem (2.6)). The special scale property of the value function inherited from the HARA
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utility and the classical results from optimal investment problems (see Merton (1969, 1971)) motivate us

to make the following conjecture:

The optimal strategy u∗ over the admissible set A to Problem (2.6) is a constant strategy, and

hence coincides with the optimal constant strategy u∗c obtained in Section 3.

The goal of this section is to verify that the above conjecture is indeed correct when U is given by (2.7).

4.1 Notations

Previously in Sections 2 and 3, we have used simplified notations to make presentation more concise, since

there is no risk of confusion there. Now we need to introduce notations in a more rigorous way for the

general analysis. Given an initial wealth x > 0 and an admissible control u, we denote the insurer’s wealth

at time t by Xx,u
t , for all t ≥ 0, which satisfies the stochastic differential equation (SDE) in (2.4). By

Definition 2.3, the set of admissible strategies A depends on the insurer’s initial wealth x (x > 0), and

we will write it as A(x). However, it is still safe to use Ac to denote the set of constant strategies, as

its definition in (3.1) is independent of the initial wealth. Introduce X
(1)
t := X

1,u∗c
t and D

(1)
t := ξ∗cX

(1)
t

for all t ≥ 0, where u∗c is the optimal constant strategy obtained in (3.12). Namely, X(1) (resp. D(1)) is

the corresponding wealth process (resp. dividend process) under the unit initial wealth (x = 1) and the

optimal constant strategy u∗c .

Let us take two arbitrary admissible controls u1 = (π1, κ1, D1) ∈ A(x1) and u2 = (π2, κ2, D2) ∈ A(x2),

where x1, x2 > 0. We define a new control u = (π, κ,D), denoted by u := u1 ⊕ u2, along with the

corresponding wealth X = (Xx,u
t )t≥0 such that the following holds true: x = x1+x2, πtX

x,u
t = π1,tX

x1,u1
t +

π2,tX
x2,u2
t , κtX

x,u
t = κ1,tX

x1,u1
t + κ2,tX

x2,u2
t , and Dt = D1,t + D1,t, which imply Xx,u

t = Xx1,u1
t + Xx2,u2

t .

By this definite and the linearity of (2.4), we have u1 ⊕ u2 ∈ A(x1 + x2) and V (x1) + V (x2) ≤ V (x1 + x2).

For any u ∈ A(x) and ε > 0, define a perturbed objective functional Jε by

Jε(x;u) := J(x+ ε;u⊕ u∗c) = E

[∫ ∞
0

e−δt
(
Dt + εD

(1)
t

)1−η
1− η

dt

]
,(4.1)

where the second equality comes from the definitions of the operator ⊕ above and J in (2.5). Let us define

the corresponding value function Vε by

Vε(x) := sup
u∈A(x)

Jε(x;u),(4.2)

where Jε is defined in (4.1).

4.2 Main Results

We now present the main result of this paper in Theorem 4.1.
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Theorem 4.1. Suppose U(x) = x1−η/(1− η), where η > 0 and η 6= 1, C defined in (3.4) is non-negative,

and ψ defined in (3.11) is positive. For any ε > 0 and x > 0, we have

Vε(x) = Vc(x+ ε),

where Vε is defined in (4.2) and Vc is obtained in (3.14).

Proof. Using the definition of Jε in (4.1), we easily see that Jε(x;u∗c) = J(x+ ε;u∗c) = Vc(x+ ε), where u∗c

is the optimal constant strategy derived in (3.12). Since u∗c ∈ A(x), we obtain Vε(x) ≥ Vc(x + ε). In the

remaining of the proof, we aim to show the converse inequality, Vε(x) ≤ Vc(x+ ε), also holds.

Let ε > 0 and x > 0 be given, take any admissible control u ∈ A(x). We define a new control uε := u⊕u∗c ,
where the initial wealth associated with the strategy u∗c is ε, and denote it by uε = (πε, κε, Dε). Introduce

the corresponding wealth process by Xε = (Xε
t )t≥0, i.e., Xε

t := Xx+ε,uε

t . Recall from (3.2) that the wealth

process under a constant strategy is always positive, which leads to

Xε
t = Xx,u

t + εX
(1)
t ≥ εX(1)

t > 0, ∀ t ≥ 0.(4.3)

Define another new process M ε by

M ε
t :=

∫ t

0
e−δsU(Dε

s) ds+ e−δt Vc(X
ε
t ), ∀ t ≥ 0.(4.4)

Recall from (3.14) that Vc(x) = ψ−ηx1−η/(1− η). Since Vc is a smooth function over (0,∞) and Xε > 0,

we can apply Itô’s lemma to M ε. Using the SDE (2.4) of Xε, we obtain

dM ε
t = e−δtVc(X

ε
t−)
[
(σπεt − βρκεt) dW

(1)
t − β

√
1− ρ2κεt dW

(2)
t +

(
(1− γκεt)1−η − 1

)
dÑt

]
+(4.5)

e−δt

{
− δVc(Xε

t ) + U(Dε
t) + V ′c (Xε

t )
[
(r + (µ− r)πεt + (p− α)κεt)X

ε
t −Dε

t

]
1

2
V ′′c (Xε

t )
(
σ2(πεt)

2 − 2βρσπεtκ
ε
t + β2(κεt)

2
)
(Xε

t )
2 + λ

(
Vc((1− γκεt)Xε

t−)− Vc(Xε
t−)
)}

dt.

We decompose the dt term in (4.5) into two parts as e−δt(Y
(1)
t + Y

(2)
t )dt, where

Y
(1)
t := U(Dε

t)−Dε
t V
′
c (Xε

t )−
η

1− η
(
V ′c (Xε

t )
)1− 1

η ,

and Y
(2)
t is the remaining part of the dt term in (4.5). Using the first-order condition, we show that the

inequality 1
1−η y

1−η − y − η
1−η ≤ 0 holds true for all y ≥ 0 (the maximum value is 0 taken at y = 1). By

substituting Dε
t (V ′c (Xε

t ))
1/η for y in the above inequality, we obtain that Y

(1)
t ≤ 0 for all t ≥ 0. Recall the

result of Vc in (3.14), from which we get V ′c (x) = (ψx)−η and V ′′c (x) = −ηψ−ηx−1−η. We then analyze

Y
(2)
t as follows

Y
(2)
t :=

η

1− η
(
V ′c (Xε

t )
)1− 1

η − δVc(Xε
t ) +Xε

t V
′
c (Xε

t )
(
r + (µ− r)πεt + (p− α)κεt

)
10



1

2
V ′′c (Xε

t )
(
σ2(πεt)

2 − 2βρσπεtκ
ε
t + β2(κεt)

2
)
(Xε

t )
2 + λ

(
Vc((1− γκεt)Xε

t−)− Vc(Xε
t−)
)

= (g(πεt , κ
ε
t)− g∗) · (1− η)Vc(X

ε
t ) = (g(πεt , κ

ε
t)− g∗) · ψ−η(Xε

t )
1−η,

where we have used the definitions of g in (3.10) and ψ in (3.11) to derive the last equality. Since g∗ is the

maximum value of the function g over R× [0, 1/γ), we obtain Y
(2)
t ≤ 0 for all t ≥ 0. In addition, we notice

that Y
(1)
t = Y

(2)
t = 0 if and only if uε = u∗c .

Let us denote Lε the local martingale part of dM ε
t in (4.5). We claim that Lε is a supermartingale. To

see this result, we define M ε
0 similar to that of M ε in (4.4), but under x = 0 and u ≡ 0. By repeating the

above analysis, we easily show that M ε
0 is a uniformly integrable martingale (recall with u ≡ 0, uε = u∗c).

Now using the monotonicity of both U and Vc, we deduce that M ε ≥M ε
0, which immediately proves that

Lε is indeed a supermartingale as claimed. By the previous finding on Y
(1)
t and Y

(2)
t , we get

E [M ε
t ] ≤ Vc(x+ ε) + E [Lεt] ≤ Vc(x+ ε).(4.6)

In the final step, using (4.1), (4.3), (4.4), and the above results, we obtain

Jε(x;u) = lim
t→∞

E
[∫ t

0
e−δs U(Dε

s) ds

]
= lim

t→∞
E
[
M ε
t − e−δt Vc(Xε

t )
]

≤ lim sup
t→∞

E [M ε
t ]− lim inf

t→∞
E
[
e−δt Vc(X

ε
t )
]

≤ lim sup
t→∞

E [M ε
t ] ≤ Vc(x+ ε),

where, to prove the second inequality above, we have used the following result

lim inf
t→∞

E
[
e−δt Vc(X

ε
t )
]
≥ ψ−ηε1−η lim inf

t→∞
E

[
e−δt

(X
(1)
t )1−η

1− η

]
= 0.(4.7)

By taking supremum over A(x), we obtain Vε(x) ≤ Vc(x+ ε). The proof is now complete.

Using Theorem 4.1 and the monotonicity result J(x;u) ≤ Jε(x;u), we have the following corollary that

eventually verifies the conjecture in the opening of this section.

Corollary 4.2. Under the same assumptions as in Theorem 4.1, we have

V (x) = Vc(x) = J(x, u∗c), ∀x > 0,

where u∗c and Vc are given respectively by (3.12) and (3.14), and V is the value function to Problem (2.6).

In both Theorem 4.1 and Corollary 4.2, the utility function is of power form, with η 6= 1. When η = 1

(i.e., the log utility case), the same result holds, namely, we still have V (x) = Vc(x), where now Vc is given

by (3.8) from Proposition 3.1. The analysis leading to this conclusion is similar to the one given above for

the power utility case, and is thus omitted.

Corollary 4.3. Suppose U(x) = lnx and the constant C defined in (3.4) is non-negative. We have

V (x) = Vc(x) = J(x, u∗c), ∀x > 0,

where u∗c and Vc are given respectively by (3.7) and (3.8), and V is the value function to Problem (2.6).
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4.3 Comparisons with the HJB Approach

In this subsection, we compare the perturbation approach adopted in this paper (see Herdegen et al. (2020))

with the standard HJB approach of solving stochastic control problems (see, e.g., Merton (1969, 1971)).

The perturbation approach works brilliantly for the insurer’s problem under HARA (power and log)

utility considered in Section 4.2. In addition, the proof to Theorem 4.1 applies to all the cases of the

relative risk aversion η: 0 < η < 1, η = 1, and η > 1. In comparison, the HJB approach encounters

technical issues when η > 1. For this reason, many related existing works that rely on the HJB approach

assume 0 < η ≤ 1; see Cadenillas et al. (2007), Thonhauser and Albrecher (2011), Jin et al. (2015), and

Xu et al. (2020). Below we discuss some of these issues in details.

• A key step in the verification theorem under the HJB approach is to guarantee the validness of

interchanging the order of a limit and a conditional expectation (integral) for a family of processes

when passing the limit to infinity. A sufficient condition for such an interchange is the uniform

integrability of the processes, which can be achieved by imposing the growth condition on the value

function or the utility function. For instance, Korn and Korn (2001)[Theorem 5.17, p.229] assume

that |V (t, x)| ≤ K(1 + |x|k) holds for the candidate value function V (t, x), where K > 0 and k ∈ N;

Sotomayor and Cadenillas (2009)[Eq.(2.2)] assume that U(x) ≤ K(1+x) holds for the utility function

U , where K,x > 0; see also a similar condition in Capponi and Figueroa-López (2014)[Eq.(4.10)].

Alternatively, one may “simply” impose a much stronger condition of uniform boundedness on both

the drift and the diffusion terms; see Fleming and Soner (2006)[Section IV.5, Eq.(5.2), p.164]. It is

trivial to see that both “solutions” are restrictive and do not apply to Problem (2.6) when η > 1.

• The second technical issue we discuss is the possibility of bankruptcy (i.e., Xx,u
t = 0 at some t <

∞). A full and rigorous treatment of bankruptcy under the standard approaches requires lengthy

technical arguments. Karatzas et al. (1986) introduce a free parameter P as the bequest value at

the bankruptcy time and consider a modified version of the original problem (which has a boundary

condition limx↓0 V
P (x) = P ), and take pages to show that the value function V P (x) of the modified

problem converges to the value function V (x) of the original problem as P → −∞.

• Last, a commonly required condition for an infinite horizon problem is the so-called transversality

condition, which is given by

lim
t→∞

E
[
e−δt

(Xu
t )1−η

1− η

]
= 0 or in a weaker version lim inf

t→∞
E
[
e−δt

(Xu
t )1−η

1− η

]
≥ 0.(4.8)

The above transversality condition (4.8) is satisfied automatically if 0 < η < 1 but may fail in

general when η > 1. Proving (4.8) is certainly not trivial when η > 1, although many applications

“simply” assume (4.8) holds to avoid a proof. In fact, (4.8) may not be expected; see Herdegen et al.

(2020)[Remark 4.7].
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Further technical discussions can be found in Herdegen et al. (2020). We remark that another standard

approach, the martingale (duality) method, faces the “dual” side of the technical issues/assumptions in the

HJB approach. For that, we refer readers to Karatzas and Shreve (1998)[Section 3.9] on optimal investment

problems over an infinite horizon.

Having seen some of the technical difficulties under the HJB approach, we now explain why the per-

turbation approach proposed in Herdegen et al. (2020) works so well in the proof of Theorem 4.1. First,

by (4.3), the perturbed wealth process Xε is strictly positive, immediately yielding a significant advantage.

That is, we no longer need to deal with bankruptcy in the proof of Theorem 4.1. Second, by utilizing

the explicit results from Section 3 and the monotonicity of the utility/value functions, we easily show

that M ε
0 is uniformly integrable and M ε

t ≥ M ε
0,t for all t ≥ 0. (Note M ε is defined by (4.4) and M ε

0 is

a special version of M ε under x = 0 and u = 0.) There results together verify that the process Lε, the

local martingale part of M ε, is a supermartingale, which leads to an essential inequality in (4.6). In other

words, a carefully-chosen special (optimal) strategy enables us to obtain a lower bound on the process M ε,

bypassing the difficulty of proving uniform integrability of (e−δtV (Xu
t ))t≥0. Note that in the definition of

M ε in (4.4), the second term is e−δtVc(X
ε
t ), not e−δtV (Xu

t ) as in the standard HJB approach. Here the

advantages are at least twofold: (1) Vc is already obtained explicitly in (3.14) and is smooth, while the

value function V is assumed to be smooth and is yet to be solved from the associated HJB equation, and

(2) Xε
t > 0 but Xu

t ≥ 0 for all t. Last, we point out that we derive an inequality in (4.7), which is in

the same spirit to the transversality condition in (4.8). To be precise, replacing Xu by Xε in (4.8) leads

to (4.7). In our case, proving (4.7) is very easy, by the monotone increasing property of Vc and (4.3).

However, as already pointed out previously, the transversality condition (4.8) does not hold in general,

and even for specific problems when it does hold, proving it is not trivial in the case of η > 1 due to the

possibility of bankruptcy.

In the last part, we discuss the shortcomings of the perturbation approach. Such an approach is

restrictive and only applies to the HARA-type utility function under a market model with deterministic

parameters. In some sense, this approach can be seen as a tailored method to tackle stochastic control

problems under power utility with risk aversion η > 1. On the other hand, the standard HJB and martingale

approaches can be applied to solve a wide range of control problems beyond utility maximization.

5 Economic Analysis

In this section, we conduct an economic analysis to study how the model parameters and risk aversion affect

the insurer’s optimal strategy u∗. Due to the popularity of applying a diffusion process to approximate

the risk model (see Browne (1995) and Højgaard and Taksar (1998)), we assume there are no jumps in the

risk process R (setting λ = 0 in (2.2)), unless stated otherwise. Recall that, in the case of no jumps, we

obtain the optimal strategy u∗ = u∗c , given by (3.17), in Corollary 3.3. We divide the economic analysis

along two directions, with analytic results in Section 5.1 and numerical results in Section 5.2.
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5.1 Analytic Results

In the insurance literature, one often assumes that the insurance market is independent of the financial

market, i.e., ρ = 0 in (2.2). But as argued in Stein (2012) and many others, ignoring the possible dependence

between the two markets could lead to catastrophic consequences (e.g., the infamous AIG case in the

financial crisis of 2007-2008). Hence in the first study, we investigate the impact of ρ on the insurer’s

optimal strategy. By (3.17), we obtain

∂π∗c
∂ρ

=
β

σ
κ∗c > 0,

∂κ∗c
∂ρ

=
Λ

ηβ
+ 2ρκ∗c ,

∂ξ∗c
∂ρ

= −1− η
η2

[
βΛκ∗c + ρ

(
κ∗c
)2]

,(5.1)

where the Sharpe ratio Λ = (µ− r)/σ is defined in (3.5). An interesting result is that ∂π∗c/∂ρ > 0, which

is also found in Zou and Cadenillas (2014b)[Figures 1-3] and Shen and Zou (2020)[Figure 1]. By (3.17)

and (5.1), when ρ > 0, we observe ∂κ∗c/∂ρ > 0 and Sign (∂ξ∗c/∂ρ) = Sign (η− 1), and further π∗c > 0. Note

that when ρ > 0 the risky asset provides a natural hedge to the insurance business: an increase in the

risk R (losses to the insurer) is associated with an increase in the risky asset price S. This observation

implies that the insurer should long the risky asset, explaining why π∗c |ρ>0 > 0. For the same reason,

when the positive correlation becomes stronger, the hedging effect amplifies, or equivalently, the “risky”

insurance business becomes “less risky”, indicating ∂κ∗c
∂ρ |ρ>0 > 0. Regarding the result of ∂ξ∗c/∂ρ in (5.4),

observe that the inequality βΛκ∗c + ρ(κ∗c)
2 > 0 holds if and only if ρ > −βΛ/κ∗c , which can be seen as a

good indication of the overall market condition.1 Next, recall that the power utility function in (2.7) is

applied to quantitatively measure the welfare of dividend payments (monetary wealth). In similar settings,

empirical evidence often shows that the relative risk aversion η is greater than 1; see for instance Meyer

and Meyer (2005)[Table 1]. As a result, it is reasonable for us to assume η > 1, although we do not rule out

the possibility of 0 < η ≤ 1. Now when ρ increases in the region (−βΛ/κ∗c , 1), the overall market condition

is likely to become more favorable to the insurer. As such, insurers with high risk aversion (η > 1) pay

dividend at a higher rate, since they prefer to “cash out” now while the market is still in “good” regime;

on the other hand, insurers with low risk aversion (0 < η < 1) reduce the dividend rate, as the desire to

invest more capital in the risky asset is dominating. We end this study by commenting that our theoretical

result in (5.1) offers insight on η > 1 as shown in the empirical findings. To see this, let us assume for

a moment that ρ > 0. Then as ρ increases, the overall market improves for the insurer and naturally we

expect all the insurer’s strategies π∗c , κ
∗
c , and ξ∗c to increase at the same time; while (5.1) shows that ξ∗c

increases only if η > 1.

As seen in the above analysis on the correlation coefficient ρ, the insurer’s (relative) risk aversion

parameter η is decisive in the comparative statics of the optimal dividend strategy. We next analyze how

1Recall that π∗c = µ−r
ησ2 + ρβ

σ
κ∗c , where all the components are positive except the possibility of ρ being negative. When ρ is

negative, the second term of hedging demand becomes negative and acts on the opposite direction of the first term (Merton’s

strategy) in π∗c . When ρ ≤ −βΛ/κ∗c , the negative second term dominates the positive first term in π∗c , i.e., the insurer needs

to “short sell” the risky asset mainly for the hedge purpose, which may lead to excessive risk taking.
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the changes in η affect the insurer’s optimal strategy. To that end, we obtain from (3.17) that

∂π∗c
∂η

= −1

η
π∗c ,

∂κ∗c
∂η

= −1

η
κ∗c < 0,

∂ξ∗c
∂η

= −1

η
ξ∗c +

ĝ∗ + (η − 1)r

η2
.(5.2)

Due to (3.15), κ∗c > 0 and that implies a higher risk aversion always leads to a reduction of underwriting

in the insurance business. Since Sign(∂π∗c/∂η) = −Sign(π∗c ), when the optimal investment strategy is a

“buy” strategy (resp. a “short-sell” strategy), the investment proportion in the risky asset reduces (resp.

increases) as the risk aversion η increases. Notice that when π∗c < 0, an increase in π∗c means the absolute

value of π∗c decreases. Therefore, given an increase in the risk aversion η, the insurer always invests less

proportion in absolute values in the risky asset (i.e., less risk taking). Such a result is clearly consistent

with the economic definition of risk aversion. Despite the analytical result of ∂ξ∗c/∂η in (5.2), how risk

aversion affects the dividend strategy is still unclear, since the first term is always negative but the second

term is always positive (note ĝ∗ − r > 0 by (3.16)).

In the third analysis, we focus on the impact of the financial market on the optimal strategy. Introduce

the excess return µ̄ and the excess premium p̄ by

µ̄ := µ− r and p̄ := p− α,(5.3)

where µ̄ > 0 and p̄ > 0 by (2.3). To see how the excess return µ̄ affects the insurer’s decision, we compute

∂π∗c
∂µ̄

=
1

ησ2(1− ρ2)
> 0,

∂κ∗c
∂µ̄

=
ρ

ηβσ(1− ρ2)
,

∂ξ∗c
∂µ̄

= −1− η
η2

ρp̄+ βΛ

βσ(1− ρ2)
.(5.4)

By (5.4), following an increase in µ̄, the insurer invests more in the risky asset and underwrites more (resp.

less) insurance policies if ρ > 0 (resp. ρ < 0). These findings can be explained using the discussions of

ρ in the above study and the “fact” that the higher the excess return µ̄, the more attractive the risky

asset. Note that in our framework the insurer is exposed to both the investment risk from the risky asset

S and the insurable risk R. But according to (5.4), ∂π∗c/∂µ̄ > 0 always holds, regardless of the sign of ρ.

That is, even though we allow a non-zero correlation ρ in our model, the result ∂π∗c/∂µ̄ > 0 is still in line

with the standard optimal investment literature; see Merton (1969, 1971) and Herdegen et al. (2020). We

mention that ρ impacts the sensitivity magnitude of π∗c with respect to µ̄: the stronger the correlation, the

more sensitive π∗c is to the changes of µ̄. Assuming ρp̄ + βΛ > 0,2 as µ̄ increases, insurers with low risk

aversion (0 < η < 1) reduce the dividend rate but insurers with high risk aversion (η > 1) reacts exactly

the opposite way. But, if ρp̄ + βΛ < 0,3 the converse of the above statement holds true. Another key

parameter in the financial market is the volatility σ of the risky asset, and the related sensitivity results

are obtained by

∂π∗c
∂σ

= − (2− ρ2)Λ
ησ2(1− ρ2)

− ρβ

σ2
κ∗c ,

∂κ∗c
∂σ

= − ρµ̄

ηβσ2(1− ρ2)
,

∂ξ∗c
∂σ

=
1− η
η2

µ̄

σ2
ρp̄+ βΛ

β(1− ρ2)
.(5.5)

2A sufficient condition for this inequality is ρ ≥ 0, as p̄, β,Λ > 0.
3Equivalently, ρ < 0 and p̄ > −βΛ/ρ > 0. The economic meaning of this condition is that, in an “adverse” market (since

correlation is negative), the insurer sets the net insurance premium above a threshold.
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If we set ρ = 0 in (5.5), we have ∂π∗c/∂σ = −2Λ/(ησ2) < 0, but such a result is not expected in general,

which is different from the standard literature; see Merton (1969, 1971). From (5.5), we observe that

∂π∗c/∂σ < 0 whenever ρ ≥ 0 and Sign(∂κ∗c/∂σ) = −Sign(ρ). Consequently, assuming the two markets

are positively correlated, when the volatility σ increases, the insurer invests less in the risky asset and

reduces insurance liabilities. Under a negatively correlated condition, the insurer’s reaction to an increase

of the volatility σ is to underwrite more policies. However, given ρ < 0, how the insurer should adjust her

investment strategy to an increase of σ is not easily seen, and will be investigated numerically in the next

subsection. Comparing (5.3) with (5.5) shows that ∂ξ∗c/∂σ = −Λ ∂ξ∗c/∂µ̄, and thus the opposite side of

the previous discussions on ∂ξ∗c/∂µ̄ applies here.

Our last agenda is to study the impact of the insurance market, the drift parameter α and the diffusion

parameter β in the risk process (2.2), on the insurer’s optimal strategy. We first focus on the optimal

liability strategy κ∗c and obtain

∂κ∗c
∂α

= − 1

ηβ2(1− ρ2)
< 0 and

∂κ∗c
∂β

= − 2p̄

ηβ3(1− ρ2)
< 0.(5.6)

The sensitivity results in (5.6) fit exactly our intuition: when α or β increases, the insurable risk R becomes

more risky and the insurer should reduce underwriting in response. Regarding the optimal investment

strategy π∗c , we have

∂π∗c
∂α

=
ρβ

σ

∂κ∗c
∂α

and
∂π∗c
∂β

=
ρβ

σ

(
κ∗c
β

+
∂κ∗c
∂β

)
.(5.7)

An immediate result is that Sign(∂π∗c/∂α) = Sign(ρ), which is consistent with the preceding analysis on

ρ. But the story of ∂π∗c/∂β in (5.7) is more complex; it not only depends on the correlation ρ but also κ∗c

(positive by (3.15)) and its derivative with respect to β (negative by (5.6)). Last, we analyze the optimal

dividend strategy ξ∗c and obtain

∂ξ∗c
∂α

=
1− η
η

κ∗c and
∂ξ∗c
∂β

=
1− η
η2

p̄2 + βρp̄Λ

β3(1− ρ2)
.(5.8)

From (5.8), we easily see that Sign(∂ξ∗c/∂α) = Sign(1 − η) and Sign(∂ξ∗c/∂β) = Sign(1 − η) if p̄ >

max{0,−βρΛ}. Now if we assume η > 1 and p > max{0,−βρΛ}, both derivatives in (5.8) are negative,

implying that the insurer should reduce the optimal dividend payment rate when the insurance business

becomes more risky. This finding may further support that η > 1 is a more reasonable scenario.

5.2 Numerical Results

In Section 5.1, we analyze the sensitivity of the optimal strategy with respect to various model parameters

analytically. Here, in this subsection, we continue the same analysis, but from a numerical point of view.

In particular, we focus on two important parameters: the correlation coefficient ρ and the relative risk

aversion η.
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Table 1: Default Model Parameters

Parameters r µ σ α β p δ

Values 0.01 0.05 0.25 0.1 0.1 0.15 0.15

Note. δ is the subjective discount factor, p is the premium rate, and all other parameters are from the model (2.1) and (2.2).

Since our sensitivity analysis is qualitative, we set the base values for the model parameters of (2.1)-

(2.2) in Table 1 and allow one parameter to vary over a reasonable range in each study. We compute the

insurer’s optimal investment, liability ratio, and dividend rate strategies u∗ = (π∗, κ∗, ξ∗), where u∗ = u∗c

in (3.17), when the correlation coefficient ρ varies from -0.8 to 0.8. We plot the results under four different

risk aversion levels (η = 0.8, 1, 2, 5) in Figure 1. Our main findings are summarized as follows:

• (Optimal investment π∗ in the upper panel of Figure 1)

We observe that π∗ is an increasing function of ρ, which verifies the result in (5.1). In consequence,

the insurer invests more in the risky asset as ρ increases. There exists a negative threshold ρ̂4 (ρ̂

is about -0.32 in the numerical example), below which the optimal investment π∗ is negative, i.e.,

short selling is optimal. We also notice that the absolute investment weight |π∗| in the risky asset is

a decreasing function of the relative risk aversion η. Economically, that means insurers with higher

relative risk aversion invest more conservatively than those with lower relative risk aversion, which

is obviously consistent with the definition of risk aversion.

• (Optimal liability ratio κ∗ in the middle panel of Figure 1)

κ∗ is not a monotone function of ρ globally. Instead, there exists a negative threshold ρ̂ (ρ̂ is around

-0.15 in the numerical example) such that κ∗ is increasing over (ρ̂, 1) and decreasing over (−1, ρ̂). In

addition, the increasing part is “steeper” than the decreasing part, i.e., the same increment of ρ over

(ρ̂, 1) has a bigger impact on κ∗ than the one over (−1, ρ̂). On the other hand, we observe that κ∗ is

a decreasing function of the risk aversion parameter η. Therefore, an increase in risk aversion always

leads to a decrease in the optimal liability ratio κ∗.

• (Optimal dividend rate ξ∗ in the bottom panel of Figure 1)

An immediate and also important observation is that the shape of ξ∗ differs dramatically over different

regions of η. When η = 1 (corresponding to log utility), the optimal dividend rate ξ∗ is a straight

line, equal to δ (δ = 0.15 from Table 1), confirming the result in (3.7). When 0 < η < 1, ξ∗ is a

concave function of ρ, increasing first from -1 to a negative threshold (around -0.25 in Figure 1) and

decreasing afterwards. When η > 1, ξ∗ is a convex function of ρ, decreasing first and then increasing.

Furthermore, when η increases over (1,∞), the insurer reduces the optimal dividend rate ξ∗.

4We use ρ̂ to denote a genetic threshold constant of ρ, which may differ content by content.
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Our sensitivity analysis so far is based on the assumption that there are no jumps in the risk process

R, given by (2.2). In what follows, we relax this assumption and numerically study how the jump intensity

λ affects the insurer’s optimal strategy u∗, which is now given by (3.12) in Proposition 3.2. Due to the

inclusion of jumps, we now set the premium rate by the expected value principle: p = (1 + θ)× (α+ λγ),

where θ = 50%.5 We further assume the insurer’s risk aversion is η = 2 > 1 and fix the jump size γ = 0.3

(3 times the diffusion parameter β = 0.1). We plot the insurer’s optimal investment π∗, liability ratio κ∗,

and dividend rate ξ∗ as a function of λ over (0.01, 0.2) in Figure 2. The key results are summarized as

follows:

• (Optimal investment π∗ in the upper panel of Figure 2)

As anticipated, the results are divided into two regions of the correlation coefficient ρ by a negative

threshold ρ̂. When ρ is greater than ρ̂, the optimal investment strategy π∗ is a decreasing function

of the jump intensity λ, and thus the insurer invests less in the risky asset as λ increases. When

ρ is less than ρ̂, π∗ becomes an increasing function of λ. In particular, for a very negative ρ (e.g.,

ρ = −0.6 in Figure 2), π∗ may even change from a negative value to a positive value when λ increases.

These results can be explained by the expression of π∗ in (3.12), which has a positive myopic term,

independent of λ, and a hedging term with the same sign as ρ, which depends on λ through κ∗. Last,

Figure 2 also confirms the finding from Figure 1 that π∗ is an increasing function of ρ.

• (Optimal liability ratio κ∗ in the middle panel of Figure 2)

We observe that κ∗ is a decreasing function of λ. The economic explanation for such a result is that,

as λ increase, the insurable risk becomes more risky and less profitable, and the insurer’s rational

response is to reduce underwriting. Another observation from the numerical example is that κ∗

increases as the correlation ρ increases.

• (Optimal dividend rate ξ∗ in the bottom panel of Figure 2)

Similar to the result of π∗, how the jump intensity λ affects the optimal dividend strategy ξ∗ also

depends on the value of ρ. When ρ is greater than a negative threshold ρ̂, a negative relation

between ξ∗ and λ is shown by Figure 2. However, for a very negative ρ (e.g., ρ = −0.6 in Figure

2), it is possible that ξ∗ goes up as λ increases. Following the discussions on ρ in Section 5.1, let us

interpret ρ > ρ̂ as a “preferable” market condition and ρ < ρ̂ an “adverse” market condition. In a

preferable market, although an increase in λ makes the insurance business less profitable, the insurer

still wants to maintain the surplus at a relatively high level (since the market is preferable), and to

achieve so, the insurer reduces the optimal dividend rate. To the contrary, in an adverse market, the

insurer pays dividend at a higher rate when λ increases, that is because keeping a large surplus is no

longer attractive when the available business opportunities are unfavorable. In other words, when

5Such a rule on premium guarantees that the assumptions in (3.11) hold true. Note that the choice of p = 0.15 in Table 1

is equivalent to p = (1 + 50%) × (α+ λγ), with λ = 0 there.
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the market is in adverse condition, the “utility” of cashing out dividends now outweighs the “utility”

of saving for business opportunities in future.

6 Conclusions
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Figure 1: Impact of the Correlation Coefficient ρ and Risk Aversion η on the Optimal Strategies
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Note. We plot the insurer’s optimal investment π∗ (upper panel), liability κ∗ (middle panel), and dividend ξ∗ (lower), as a

function of the correlation coefficient ρ over (−0.8, 0.8), under four different risk aversion levels η = 0.8 (dotted blue), η = 1

(solid red), η = 2 (dashed brown), and η = 5 (dash-dot black). The parameters are chosen from Table 1.
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Figure 2: Impact of the Jump Intensity λ on the Optimal Strategies
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Note. We plot the insurer’s optimal investment π∗ (upper panel), liability κ∗ (middle panel), and dividend ξ∗ (lower), as a

function of the jump intensity λ over (0.01, 0.2), under four different correlation levels ρ = −0.6 (dotted blue), ρ = −0.2 (solid

red), ρ = 0.2 (dashed brown), and ρ = 0.6 (dash-dot black). We set p = 1.5(α+ λγ), η = 2, γ = 0.3, and the rest by Table 1.
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