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Abstract

This paper considers a multi-period weighted mean-variance portfolio selection problem with un-

certain time-horizon and a stochastic cash flow in a Markov regime-switching market. The random

returns of risky assets and amount of the cash flow all depend on the states of a stochastic market

which are assumed to follow a discrete-time Markov chain. Based on the conditional distribution

of uncertain time-horizon caused by exogenous factors, we construct a more general mean-variance

investment model. Within a game theoretic framework, we derive the equilibrium strategy and e-

quilibrium value function in closed-form by applying backward induction approach. In addition, we

show the equilibrium efficient frontier and discuss some degenerate cases. Finally, some numerical

examples and sensitivity analysis are presented to illustrate equilibrium efficient frontiers and the

effects of uncertain time-horizon on the equilibrium strategy and equilibrium efficient frontier as

well as regime-switching and stochastic cash flow on the equilibrium efficient frontier.

Keywords: Uncertain time-horizon; Markov regime-switching; Stochastic cash flow; Multi-period

weighted mean-variance portfolio selection; Equilibrium strategy; Equilibrium efficient frontier

1. Introduction

Markowitz (1952) pioneered the mean-variance model, which first laid the portfolio selection

problem under the return-risk framework and paved the foundation of modern portfolio theory.

But due to the non-separability of variance in the sense of dynamic programming, the extension
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of the static single-period model by Markowitz (1952) to dynamic (multi-period or cotinuous-time)

models has taken a long time. Until recently, Li and Ng (2000) and Zhou and Li (2000) derived the

analytical optimal solutions to multi-period and continuous-time mean-variance models by using

an embedding technique, respectively. After that, the study of dynamic mean-variance portfolio

models under various realistic conditions has been developed rapidly. For example, Zhu et al.

(2004) and Bielecki et al. (2005) considered a multi-period and a continuous-time mean-variance

portfolio model with risk control over bankruptcy, respectively. Cui et al. (2014) investigated the

optimal strategy of multi-period mean-variance portfolio selection under no short-selling constraint.

The investment time-horizon of most portfolio selection problems is assumed to be predeter-

mined at the beginning of the investment, either finite or infinite. In the real world, however,

investors never know exactly when exit the financial market at the initial time. They might be

forced to exit the market before the time they planned due to some exogenous or endogenous

factors. Exogenous factors include accidental death, sudden need of money, and so on. One pos-

sible example of endogenous factors is: When investors’ portfolios are underperforming or even in

bankruptcy, investors may decide to withdraw from the market ahead of time in order to avoid

greater losses. Therefore, it is of great theoretical and practical significance to relax the restric-

tive assumption of deterministic time-horizon to uncertain time-horizon for the study of portfolio

selection problems. Research on this subject is traced back to Yaari (1965), who considered an op-

timal consumption, investment and life insurance problem with uncertain lifetime. Then, Merton

(1971) investigated a continuous-time optimal investment and consumption problem with uncertain

exit time following a Poisson process. In recent years, the research with uncertain time-horizon

has been paid much attention. For example, Martellini and Urošević (2006) considered a static

portfolio selection problem in cases with exogenously and endogenously uncertain exit times which

either are independent of or dependent on returns of assets. Yi et al. (2008) studied a multi-period

asset-liability management problem with uncertain exit time, in which the random exit time is

determined by exogenous factors. Wu and Li (2011) investigated a multi-period mean-variance

portfolio optimization problem with uncertain exit time and regime switching market environment.

Landriault et al. (2018) studied equilibrium feedback strategies for the mean-variance investment

problem over a random horizon under both discrete-time and continuous-time frameworks.

Some related studies in finance do not consider the possibility that the market state changes

over time, that is, it is assumed that there is only one state or mode in the underlying market. But

a large number of empirical studies show that returns of assets depend on the states of the financial
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market that are comprehensive reflection of current economic situations, national policies, moods

of investors in the market, and other economic factors. A most common model used to characterize

stochastic market environment is the Markov jump model, where the number of the market states

is assumed to be finite, such as “bullish” and “bearish” in the stock market, and the switching

process of the market states follows a Markov chain. This is also known as regime switching. All

the key market parameters, such as the bank interest rate, stocks appreciation rates and volatility

rates, may change according to different market modes. In recent years, regime-switching models

have gradually become popular in finance. For example, Zhou and Yin (2003) investigated a

continuous-time mean-variance portfolio selection problem with regime switching while Çakmak

and Özekici (2006) considered a discrete-time version. Wu et al. (2014) considered a multi-period

mean-variance portfolio selection model with uncertain time-horizon in a regime-switching market,

where the conditional distribution of the time-horizon was assumed to be stochastic and depended

on the market states.

The current research on many financial issues does not pay substantial attention to stochastic

cash flows, that is, these related models are self-financing. In reality, however, the investors might be

faced with the situation of fund injection or withdrawal during the investment process. For example,

in order to gain greater returns, the investors tend to invest more on some risky assets in the bull

market. In contrast, they may reduce the investment amount on risky assets to avoid risk when

the market is depressing. For a company, it may unexpectedly receive government subsidies for its

product development or be fined for breaking the rules. Recently, there has been a growing interest

on this subject. For instance, using the expected utility maximization model, Munk and Sørensen

(2010) studied a continous-time asset allocation problem with stochastic income and interest rates.

Wu and Li (2012) investigated a multi-period mean-variance portfolio selection problem with regime

switching and a stochastic cash flow. Yao et al. (2013) considered a multi-period mean-variance

asset-liability management problem with uncontrolled cash flow and uncertain time-horizon. Yao

et al. (2016) further studied the asset-liability management problem with stochastic cash flows in

a Markov regime-switching market, in which the stochastic cash flows depend on the market states

occurred simultaneously in both wealth and liability processes.

It is now accepted that time consistency should be a required condition for multi-period portfolio

selection problems. But it is well known that the variance operator lacks iterated-expectation

property and hence the dynamic mean-variance portfolio problem is time-inconsistent. Early studies

of time inconsistency began with Strotz (1955), which pointed out three different ways to deal with
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time inconsistency. If the optimal strategy at the initial time is promised to implement by decision

makers at any time after the initial time in order to achieve the optimal goal at the initial time,

regardless of whether the strategy is currently optimal, it is called a pre-commitment strategy. In

view that investment psychology and tastes of people are changing over time, the pre-commitment

strategy has been criticized for lacking rationality in recent years. Hence, it is becoming more and

more popular to look for the time-consistent strategy of a time-inconsistent problem. Based on this

consideration, the game theoretic framework is adopted in many recent related work. Björk and

Murgoci (2010) gave a general approach to handle time-inconsistent problems, formally defined the

equilibrium strategy, and derived the extended Hamilton-Jacobi-Bellman (HJB) equation and its

verification theorem for a very general objective function. Further, Björk et al. (2014) discussed a

realistic continuous-time mean-variance portfolio model, in which the risk aversion factor depends

dynamically on the current wealth. Wu and Zeng (2015) investigated an equilibrium investment

strategy for defined-contribution pension schemes with generalized mean-variance criterion and

mortality risk. Xiao et al. (2020) studied several multi-period mean-variance portfolio optimization

problems with the serially correlated returns, and derived the analytical expressions of the time-

consistent strategies. Readers may refer to Li et al. (2012), Czichowsky (2013), Bensoussan et al.

(2014), Wu and Chen (2015), Zhou et al. (2016), Hu and Wang (2018) etc. for more research on

time-consistent strategies.

As far as we know, except for Wu and Zeng (2015) and Landriault et al. (2018), the existing

multi-period mean-variance portfolio selection problems with uncertain time-horizon only consider

pre-commitment strategies, which are time-inconsistent. However, the problem considered by Wu

and Zeng (2015) is a DC pension optimization problem, not a general discrete-time mean-variance

portfolio problem. And the problem’s uncertain exit time is caused by the special background –

mortality risk. It does not take into account other possible uncontrollable factors that lead investors

to exit the market ahead of schedule, such as unexpected major expenditure of individual investors,

or a dim view of the market’s prospects. Moreover, Wu and Zeng (2015) only considered a simple

case with one market state and with one risk-free asset and one risky asset. In addition, although

Wu and Zeng (2015) considered stochastic nonnegative salary, which can be regarded as a special

case of stochastic cash flow, they neglected the possibility of withdrawal of funds and the affection of

market states on cash inflows or outflows. While Landriault et al. (2018) considered the equilibrium

strategies for the mean-variance investment problem over a random horizon within both discrete-

time and continuous-time frameworks. Therefore, this paper incorporates Markov regime-switching
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and stochastic cash flow into a general multi-period mean-variance portfolio selection model with

uncertain time-horizon, in a market with one risk-free asset and multiple risky assets, and try to

derive the explicit expression for the time-consistent equilibrium investment strategy within the

game theoretic framework. In our model, the uncertain time-horizon refers to the termination of

investment behavior, exiting the market ahead of time is due to any exogenous factors, and the

conditional probability distribution of the exit time can be determined according to the specific

circumstances. In particular, our objective function is a weighted sum of linear combinations of

the conditional expectation and variance of the wealth at the times of exiting the market. This

objective function can be seen as a special form of the objective function in Costa and Nabholz

(2007), which not only considered the conditional expectation and variance of terminal wealth,

but also the intermediate restrictions on portfolios. Therefore, our model is a more general mean-

variance investment model. Mathematically speaking, the uncertain time-horizon portfolio selection

problem becomes more complicated after incorporating Markov regime-switching and stochastic

cash flow. All these factors drastically increase the difficulty to derive the closed-form equilibrium

strategy to the problem under our model. In this paper, we will apply the backward induction

approach to solve the problem.

The remainder of this paper is organized as follows. We present the problem formulation and

give the assumptions and primal notations in Section 2. In Section 3, the equilibrium investment

strategy and equilibrium value function are derived explicitly by backward induction. In addition,

the equilibrium efficient frontier is also provided. Some degenerate cases and a property of our

equilibrium strategy are presented in Section 4. Section 5 provides some numerical examples to

illustrate our results. The paper is concluded in Section 6. Proofs of the lemmas, propositions and

theorem are given in Appendices A-H.

2. Model formulation and notations

Assume that an investor, who enters a financial market that consists of one risk-free asset and

N risky assets at time 0 with initial wealth x0, plans to invest her wealth in the market within T

consecutive time periods. Suppose that there are L states in the market; the set of all market states

is denoted by S = {1, 2, · · · , L} and the state of the market at period n+ 1 (i.e. the time interval

[n, n + 1)) by ξn, ξn ∈ S, n = 0, 1, · · · , T − 1. Let {ξ0, ξ1, · · · , ξT } be a time-homogeneous Markov

chain with transition matrix Q = (qij)L×L, where qij = Pr(ξk+1 = j | ξk = i) ≥ 0,
∑L

j=1 qij = 1,

for k = 0, 1, · · · , T − 1 and i, j ∈ S, and Pr(·) is the probability measure. Denote the return of
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risk-free asset by a positive constant rf , and the returns of the risky assets in period n + 1 with

market state ξn ∈ S by a vector Rn(ξn) = (Rn,1(ξn), Rn,2(ξn), · · · , Rn,N (ξn))
′, where Rn,k(ξn) is

the random return of the kth risky asset in period n+1 with its probability distribution depending

on ξn. In this paper, the superscript ′ stands for the transpose of a matrix or vector.

Although the investor originally plans to invest in T consecutive time periods, she may be forced

to exit the market at an uncertain time τ for some uncontrollable reasons during the investment

process. Suppose that τ is a positive exogenous random variable and takes integer values 1, 2, · · · .

Therefore, the actual exit time of the investor is T ∧ τ = min{T, τ}. Let pn,m be the conditional

probability that the investor exits the market at time m(n + 1 ≤ m ≤ T ) under the condition of

staying in the market at time n, i.e.,

pn,m := Pr(T ∧ τ = m | T ∧ τ > n)

where n = 0, 1, · · · , T − 1; m = n + 1, n + 2, · · · , T . Then the conditional probability that the

investor exits the market as planned at terminal time T

pn,T = 1−

T−1
∑

m=n+1

pn,m, n = 0, 1, · · · , T − 1. (2.1)

Note that pn,m, the conditional probability of exiting the market, is related to not only the exit time

m, but also the initial time n. The definition mechanism of the exit probability is quite different

from most current literature with uncertain exit time where the exit probabilities only depend on

the exit times and initial time 0.

Assume that transactions are carried out at the beginning of every period, and transaction costs

and taxes are not taken into account. Let πk
n be the amount invested in the kth risky asset at time n,

and πn = (π1
n, π

2
n, · · · , π

N
n )′ be the portfolio at time n. Now, we define πn+ := {πn, πn+1, · · · , πT−1}

as the investment strategy from time n on, and Xπ
n as the wealth at time n under the strategy π,

n = 0, 1, · · · , T . Then the amount invested in the risk-free asset is Xπ
n −

∑N
k=1 π

k
n. As mentioned

in the introduction, there would be a random cash inflow or outflow during the investment process.

This uncontrolled cash flow may directly affect the investor’s tradable wealth level, and thus affect

the selection of investment strategies. Let cn(ξn) be the stochastic cash flow at time n on state

ξn. When cn(ξn) > 0, it says that the inflow of stochastic cash is greater than the outflow, in

which the difference can be used for additional investment; when cn(ξn) < 0, it means that the cash

outflow exceeds the inflow, and the amount of money invested in financial market is correspondingly

reduced; when cn(ξn) = 0, investment will not be affected. Then the dynamic wealth process can
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be formulated as

Xπ
n+1 = (Xπ

n −
N
∑

k=1

πk
n)rf +Rn(ξn)

′πn + cn(ξn) = Xπ
nrf +Re

n(ξn)
′πn + cn(ξn), n = 0, 1, · · · , T − 1,

(2.2)

where Re
n(ξn) = (Re

n,1(ξn), R
e
n,2(ξn), · · · , R

e
n,N (ξn))

′,and Re
n,k(ξn) = Rn,k(ξn) − rf is the excess

return of the kth risky asset given state ξn in period n+ 1.

Suppose that the investor can observe directly the current wealth and market state. Denoted by

Fn := σ{(Xπ
k , ξk)|0 ≤ k ≤ n} a σ-field, representing the information (including the wealth levels and

the market states) available to the investor up to time n. In view of the Markov property, we have

E(·|Fn) = E(·|(Xπ
n , ξn)) := En(·). An investment strategy πn+ = {πm;m = n, n+ 1, · · · , T − 1} is

time-n admissible if πm is adapted to Fm for all m = n, n+ 1, · · · , T − 1. Let An be the collection

of all time-n admissible investment strategies.

In our problem, the investor does not know exactly when she will exit the market, and this

leads to the difficulty of expressing the conditional expectation and conditional variance of terminal

wealth in the traditional mean-variance model. Given the initial time n and the information that

ξn = i and Xπ
n = xn, instead of considering the conditional expectation and conditional variance

of terminal wealth Xπ
T∧τ , we consider the weighted average conditional expectation and weighted

average conditional variance of the wealth after time n, denoted by EU
n (X

π
T∧τ ) and V arUn (X

π
T∧τ )

respectively, that is

EU
n (X

π
T∧τ ) :=

T
∑

m=n+1

pn,mEn(X
π
m), (2.3)

V arUn (X
π
T∧τ ) :=

T
∑

m=n+1

pn,mV arn(X
π
m). (2.4)

where the weights are the conditional probabilities that the investor exists the market after the

initial time n and their sum equals 1, and V arn(·) = V ar(·|Fn) = V ar(· | Xπ
n = xn, ξn = i).

We aim to find an optimal investment strategy to the so called multi-period weighted mean-

variance portfolio selection problem

max
πn+

EU
n (X

π
T∧τ )− ωV arUn (X

π
T∧τ ) s.t. (2.2),

for n = 0, 1, · · · , T − 1, where ω > 0 is the risk aversion coefficient of the investor.

The objective function of the above problem can be equivalently rewritten as

Jn(xn, i;π) :=

T
∑

m=n+1

pn,m[En(X
π
m)− ωV arn(X

π
m)] (2.5)
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according to (2.3) and (2.4). The objective function is a weighted sum of a series of linear combi-

nations of the expectation and variance of the wealth at exit times conditional on the information

on time n.

Remark 1. A similar form of objective function (2.5) first appeared in Costa and Nabholz (2007).

In the paper, a multi-period mean-variance optimization model with intermediate restrictions on

the portfolio was proposed, which can control the intermediate behavior of the portfolio’s expected

returns or variances more efficiently. The biggest difference between the above paper and our paper

is the decision-making mechanism of the strategy. It focuses on the pre-commitment strategy, which

is time-inconsistent, while our paper pursues the time-consistent equilibrium strategy. Furthermore,

Zhou et al. (2016), based on the model of Costa and Nabholz (2007), considered a stochastic

cash flow and derived the pre-commitment and time-consistent strategies, respectively. While we

consider the equilibrium strategy for a multi-period weighted mean-variance portfolio selection

problem in a Markov regime-switching market with uncertain time-horizon and a stochastic cash

flow that depends on the market states.

Remark 2. Our model is time-inconsistent in the sense that Bellman optimality principle does

not hold, that is, the optimal strategy at time n will no longer be optimal for the optimization

problem at some time t with n+ 1 ≤ t ≤ T − 1. According to the discussion of time inconsistency

in Björk and Murgoci (2010), the time inconsistency of our model results from two factors: one is

the mean-variance utility, which is known as one of time-inconsistent utilities, and the other is the

inconsistent viewpoints on the exit conditional probabilities when the investor is at different initial

times. That is to say, the exit condition probabilities incorporate the information of the initial

moment to the objective function, and hence the objective function of the optimization problem

changes with initial times, which obviously increases the time inconsistency of the model. Here, we

will adopt the game theoretic framework to deal with the time inconsistence.

In Björk and Murgoci (2010), the decision process is regarded as a non-cooperative game. It

is assumed that at each point n in time there is one player, who is called “player number n”, and

the rule is that player number n can only choose her optimal control πn, not the control of anyone

else. As time goes by, the information faced by the player has changed or different preference has

been generated. These players who have different informations or preferences at different times in

the future are regarded as different future incarnations of player number n. If player number n

knows that all players coming after her will choose their optimal controls, then she only needs to
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choose her own optimal control to obtain a so-called subgame perfect Nash equilibrium strategy.

According to Definition 2.2 in Björk and Murgoci (2010), the equilibrium strategy for model (2.5)

can be defined as follows.

Definition 2.1. Consider a given strategy π̂n+ := (π̂n, π̂n+1, · · · , π̂T−1). For any n(n = 0, 1, · · · , T−

1), define the strategy

π̄n+ = (πn, π̂n+1, · · · , π̂T−1),

where πn is an arbitrarily portfolio at time n. Then π̂n+ is said to be a subgame perfect Nash

equilibrium strategy (shortly equilibrium strategy) if for all n < T , the following condition holds

max
πn

Jn(xn, i; π̄n+) = Jn(xn, i; π̂n+).

If equilibrium strategy π̂n+ exists, the equilibrium value function is defined as

V n(xn, i) = Jn(xn, i; π̂n+).

For the sake of simplicity, π̂ represents the equilibrium strategy π̂n+ in the following paragraphs.

Given wealth level xn and state ξn = i at time n, our objective is to identify the equilibrium

investment strategy π̂n+ in the sense of Definition 2.1 for the following problem:

Vn(xn, i) = max
πn

Jn(xn, i; (πn, π̂n+1, · · · , π̂T−1)) s.t. (2.2) (2.6)

Throughout this paper, we introduce the following assumptions and notations.

Assumption 2.1. The covariance matrix V ar(Re
n(i)) = V ar(Rn(i)) is positive definite for all

n = 0, 1, · · · , T − 1, i ∈ S.

Assumption 2.2. Random series Υk(ξk) = (Rk(ξk)
′, ck(ξk)), k = 0, 1, · · · , T − 1, are statistically

independent, i.e., Υn(i) and Υm(j) are independent for all n,m = 0, 1, · · · , T − 1, n 6= m, i, j ∈ S.

Assumption 2.3. Rn(i) and cn(i) are independent for all n = 0, 1, · · · , T − 1, i ∈ S.

In reality, for example, unexpected expenditure of individual investors, changes in contributions

of a pension fund, claims encountered by the insurers and dividend payments of firms, which are

uncontrolled cash flow, are not affected by the returns of risky assets.

Assumption 2.4. Given ξn = i ∈ S, c0(i), c1(i), · · · , cT−1(i) are identically distributed.

Assumption 2.5. Short selling is permitted for all risky assets in all periods. Unlimited borrowing

and lending are allowed for the riskless asset at the current rate of return of the risk-free asset.
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Notation 2.1. E(Re
n(i)) = ren(i), which is assumed to be nonzero for n = 0, 1, · · · , T − 1.

Notation 2.2. E(cn(i)) = µ1(i), V ar(cn(i)) = µ2(i), n = 0, 1, · · · , T − 1.

Notation 2.3. Q(i) is the ith row of matrix Q, a(i) is the ith element of vector a, diag(a) is the

diagonal matrix whose diagonal elements are the components of a.

Notation 2.4. For any matrix AL×L and a L-dimension column vector a, define matrix Aa =

Adiag(a), Ā = A1L×1, 1L×1 = (1, 1, · · · , 1)′. Specially, Qa = Qa.

Notation 2.5. For L-dimension column vectors a, b, define a ·b as a column vector with (a ·b)(i) =

a(i)b(i). In particular, a2 is a column vector with (a2)(i) = (a(i))2.

Notation 2.6. Qm is the m-step transition probability matrix of the Markov chain, which can be

obtained as the mth power of Q. Q0 is defined as an identity matrix.

Notation 2.7.
∑n

k=m uk = 0, if n < m for any sequence {uk}.

Notation 2.8. gn is a L-dimension column vector whose ith component is gn(i) = ren(i)
′V ar−1(Re

n(i))r
e
n(i),

where V ar−1(·) is the inverse matrix of V ar(·).

Notation 2.9. For k = 0, 1, · · · , l = 1, 2, · · · and m = 0, 1, · · · , l − 1, γk, ηk, δm,l and ρm,l are

L-dimension column vectors whose ith components are, respectively,

γk(i) := V arn(Qk
µ1
(ξn+1)) = Q

(Qk
µ1

)2
(i)− (Q

(Qk
µ1

)
)2(i), (2.7)

ηk(i) := V arn(Qk
gn+1+k

(ξn+1)) = Q
(Qk

gn+1+k
)2
(i) − (Q

(Qk
gn+1+k

)
)2(i), (2.8)

δm,l(i) := Covn(Qm
µ1
(ξn+1), Ql

µ1
(ξn+1)) = Q

(Qm
µ1

·Ql
µ1

)
(i)− (Qm+1

µ1 )(i)(Ql+1
µ1 )(i), (2.9)

ρm,l(i) := Covn(Qm
gn+1+m

(ξn+1), Ql
gn+1+l

(ξn+1)) = Q
(Qm

gn+1+m
·Ql

gn+1+l
)
(i) − (Qm+1

gn+1+m)(i)(Q
l+1
gn+1+l

)(i).

(2.10)

The second equality in (2.7)-(2.10) can be obtained by Lemma 2.1 below.

Lemma 2.1. Given ξn = i, for any L-dimension column vector a and n = 0, 1, · · · , T − 1, k =

0, 1, · · · ,

En[Qk
a(ξn+1)] = Qk+1

a (i). (2.11)
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3. Equilibrium strategy and efficient frontier

In order to obtain the equilibrium strategy, first we give a recursive formula for equilibrium

value function. Denote qn+1 := Pr(T ∧ τ > n + 1 | T ∧ τ > n) = 1 − pn,n+1, n = 0, 1, · · · , T − 2.

According to Definition 2.1 and (2.5), the recursive formula of the equilibrium value function

Vn(xn, i) is provided in the following proposition.

Proposition 3.1.

Vn(xn, i) =max
πn

{qn+1En[Vn+1(X
πn

n+1, ξn+1)] + pn,n+1[En(X
πn

n+1)− ωV arn(X
πn

n+1)]

− ω

T
∑

m=n+2

pn,mV arn[hn+1,m(Xπn
n+1, ξn+1)], n = 0, 1, · · · , T − 2, (3.1)

VT−1(xT−1, i) =max
πT−1

[

ET−1(X
πT−1

T )− ωV arT−1(X
πT−1

T )
]

, (3.2)

where

hn,m(xn, i) :=En(X
π̂
m) = En[hn+1,m(X π̂n

n+1, ξn+1)],

n = 0, 1, · · · , T − 1, m = n+ 1, n + 2, · · · , T, (3.3)

hn,n(xn, i) =xn, n = 0, 1, · · · , T. (3.4)

Given ξn = i ∈ S, for later use, we make some notations as follows:

λn,k =

T
∑

m=k+1

pn,mrm−1−k
f , (3.5)

θn,k =
T
∑

m=k+1

pn,m(r2f )
m−1−k, (3.6)

̟n =
λn,n

θn,n
=

∑T
m=n+1 pn,mrm−1−n

f
∑T

m=n+1 pn,m(r2f )
m−1−n

, (3.7)

An(i) =

T−1
∑

k=n

θn,n+T−1−kQ
T−1−k
µ2

(i) +

T−2−n
∑

j=0

T−1
∑

k=n+1+j

θn,n+j+T−kQ
T−1−k
γj (i)

+2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f θn,n+j+T−kQ

T−1−k
δl,j

(i), (3.8)

αn(i) =
T−1
∑

k=n

̟n+T−1−kλn,n+T−1−kQ
T−1−k
gn+T−1−k

(i), (3.9)

Bn(i) =

T−2−n
∑

j=0

T−1
∑

k=n+1+j

̟2
n+j+T−kθn,n+j+T−kQ

T−1−k
ηj (i)

+2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f ̟n+j+T−k̟n+l+T−kθn,n+j+T−kQ

T−1−k
ρl,j (i), (3.10)
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for n = 0, 1, · · · , T − 1, k = n, n+ 1, · · · , T − 1 and AT (i) = αT (i) = BT (i) = 0.

Lemma 3.1.

V arn

[

m−1
∑

k=n+1

rk−1−n
f ̟n+m−kQ

m−1−k
gn+m−k

(ξn+1)
]

=
m−n−2
∑

k=0

r
2(m−n−2−k)
f ̟2

n+1+kηk(i)

+ 2
m−n−2
∑

j=1

j−1
∑

l=0

r
2(m−n−2)−j−l

f ̟n+1+j̟n+1+lρl,j(i), (3.11)

V arn

[

m−1
∑

k=n+1

rk−1−n
f Qm−1−k

µ1
(ξn+1)

]

=

m−n−2
∑

k=0

r
2(m−n−2−k)
f γk(i) + 2

m−n−2
∑

j=1

j−1
∑

l=0

r
2(m−n−2)−j−l
f δl,j(i).

(3.12)

Lemma 3.2.

λn,nµ1(i) +
T−1
∑

k=n+1

λn,n+T−kQ
T−k
µ1

(i) =
T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i),

θn,nµ2(i) +

T−1
∑

k=n+1

θn,n+T−kQ
T−k
µ2

(i) =

T−1
∑

k=n

θn,n+T−1−kQ
T−1−k
µ2

(i).

Lemma 3.3.

T−3−n
∑

j=0

T−1
∑

k=n+2+j

θn,n+1+j+T−kQ
T−k
γj (i) +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−kγk(i)

=
T−2−n
∑

j=0

T−1
∑

k=n+1+j

θn,n+j+T−kQ
T−1−k
γj (i),

T−3−n
∑

j=0

T−1
∑

k=n+2+j

̟2
n+1+j+T−kθn,n+1+j+T−kQ

T−k
ηj (i) +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r
2
f )

m−n−2−k̟2
n+1+kηk(i)

=

T−2−n
∑

j=0

T−1
∑

k=n+1+j

̟2
n+j+T−kθn,n+j+T−kQ

T−1−k
ηj (i).

Lemma 3.4.

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f θn,n+1+j+T−kQ

T−k
δl,j

(i) +
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f δl,j(i)

=
T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f θn,n+j+T−kQ

T−1−k
δl,j

(i),

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f ̟n+1+j+T−k̟n+1+l+T−kθn,n+1+j+T−kQ

T−k
ρl,j (i)

+
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f ̟n+1+j̟n+1+lρl,j(i)

=

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f ̟n+j+T−k̟n+l+T−kθn,n+j+T−kQ

T−1−k
ρl,j (i).
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3.1. Equilibrium strategy and equilibrium value function

According to Lemmas 2.1-3.4 and Proposition 3.1, using the previous notations, we can obtain

the equilibrium strategy and equilibrium value function as given in the following theorem.

Theorem 3.1. For Problem (2.6), the equilibrium strategy is given by

π̂n(i) =
1

2ω
̟nV ar−1(Re

n(i))r
e
n(i), n = 0, 1, · · · , T − 1, (3.13)

the equilibrium value function is given by

Vn(xn, i) = rfλn,nxn +
T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i)− ωAn(i) +
1

4ω
αn(i)−

1

4ω
Bn(i),

n = 0, 1, · · · , T − 1, (3.14)

and we have

hn,m(xn, i) = rm−n
f xn +

m−1
∑

k=n

rk−n
f Qm−1−k

µ1
(i) +

1

2ω

m−1
∑

k=n

rk−n
f ̟n+m−1−kQ

m−1−k
gn+m−1−k

(i),

n = 0, 1, · · · , T − 1, m = n+ 1, n + 2, · · · , T. (3.15)

From (3.13), we can obtain some properties of the equilibrium strategy:

(a) At any time n, the amount invested in risky assets decreases in the risk aversion coefficient ω

and increases in the term V ar−1(Re
n(i))r

e
n(i) of the risky assets. In other words, the investor

will invest more wealth in risky assets as ω becomes smaller or V ar−1(Re
n(i))r

e
n(i) becomes

larger.

(b) The equilibrium strategy π̂n is independent of the current wealth xn and stochastic cash

flow cn(i), but is dependent on the return of the risk-free asset rf and the exit conditional

probabilities at future time n+ 1, n + 2, · · · , T .

For the equilibrium value function, we have:

(a) The equilibrium value function Vn(xn, i) is a linear function of the current wealth xn.

(b) Further, Vn(xn, i) can be divided into four parts

Vn(xn, i) = W f
n (i)− ωAn(i) +

1

4ω
αn(i)−

1

4ω
Bn(i), (3.16)
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where

W f
n (i) =rfλn,nxn +

T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i)

=

T
∑

m=n+1

pn,mxnr
m−n
f +

T−1
∑

k=n

T
∑

m=n+T−k

pn,mQT−1−k
µ1

(i)rm−n−T+k
f

(3.17)

can be regarded as a weighted sum of the returns by investing the current wealth xn and

expected cash flows in the risk-free asset from time n to time T − 1. By (3.8), −ωAn(i)

can be seen as the loss of the value function resulting from the stochastic cash flows. By

(3.10),− 1
4ωBn(i) can be viewed as the loss of the value function resulting from the risky

investment. By (3.9) and (G.11) in Appendix G, we have

1

4ω
αn(i) =

1

4ω
qn+1En[αn+1(ξn+1)] + En

[

T
∑

m=n+2

pn,mr
m−n−1
f Re

n(i)
′π̂n

]

+ pn,n+1[En(R
e
n(i)

′π̂n)− ωV arn(R
e
n(i)

′π̂n)]− ω

T
∑

m=n+2

pn,mV arn[r
m−n−1
f Re

n(i)
′π̂n]

=
1

4ω
qn+1En[αn+1(ξn+1)] +

T
∑

m=n+1

pn,m[En

(

rm−n−1
f Re

n(i)
′π̂n
)

− ωV arn
(

rm−n−1
f Re

n(i)
′π̂n
)

],

and

1

4ω
αT−1(i) =

1

4ω
gT−1(i) = E

(

Re
T−1(i)

′π̂T−1

)

− ωV ar
(

Re
T−1(i)

′π̂T−1

)

.

Since rm−n−1
f Re

n(i)
′π̂n can be taken as the total wealth obtained by investing the random

excess returns of the risky assets in the risk-free asset until the time the investor exits the

market, 1
4ωαn(i) can be regarded as the accumulated trade off between the expectation and

the variance of the excess return of the risky investment from time n to time T − 1.

3.2. Equilibrium efficient frontier

In this subsection, we will derive the explicit expressions for the expectation and variance of

the terminal wealth with uncertain exit time, and then give the equilibrium efficient frontier.

By (2.3) and (2.4), under the equilibrium strategy, the weighted average expectation and weight-

ed average variance of the terminal wealth at time n are, respectively,

EU
n (X

π̂
T∧τ ) =

T
∑

m=n+1

pn,mEn(X
π̂
m),

V arUn (X
π̂
T∧τ ) =

T
∑

m=n+1

pn,mV arn(X
π̂
m).
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Given X π̂
n = xn, ξn = i, by (2.2), we have

X π̂
m = rm−n

f xn +

m−1
∑

k=n

rm−1−k
f Re

k(ξk)
′π̂k +

m−1
∑

k=n

rm−1−k
f ck(ξk), m = n+ 1, n+ 2, · · · , T.

By (3.13), we further have

En(X
π̂
m) = En

[

rm−n
f xn +

1

2ω

m−1
∑

k=n

rm−1−k
f ̟kR

e
k(ξk)

′V ar−1(Re
k(ξk))r

e
k(ξk) +

m−1
∑

k=n

rm−1−k
f ck(ξk)

]

= rm−n
f xn +

1

2ω

m−1
∑

k=n

rm−1−k
f ̟kQ

k−n
gk (i) +

m−1
∑

k=n

rm−1−k
f Qk−n

µ1 (i).

Combining the expression (2.3) of EU
n (X

π̂
T∧τ ), we obtain

EU
n (X

π̂
T∧τ ) =

T
∑

m=n+1

pn,m

[

rm−n
f xn +

1

2ω

m−1
∑

k=n

rm−1−k
f ̟kQ

k−n
gk (i) +

m−1
∑

k=n

rm−1−k
f Qk−n

µ1 (i)

]

=

T
∑

m=n+1

pn,mrm−n
f xn +

T
∑

m=n+1

m−1
∑

k=n

pn,mrm−1−k
f Qk−n

µ1
(i)

+
1

2ω

T
∑

m=n+1

m−1
∑

k=n

pn,mrm−1−k
f ̟kQ

k−n
gk (i)

=rfλn,nxn +

T−1
∑

k=n

T
∑

m=n+T−k

pn,mrm−n−T+k
f QT−1−k

µ1 (i)

+
1

2ω

T−1
∑

k=n

̟n+T−1−k

T
∑

m=n+T−k

pn,mrm−n−T+k
f QT−1−k

gn+T−1−k
(i)

=rfλn,nxn +

T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i) +
1

2ω

T−1
∑

k=n

̟n+T−1−kλn,n+T−1−kQ
T−1−k
gn+T−1−k

(i).

In view of (3.17) and (3.9), it follows that

EU
n (X

π̂
T∧τ ) = W f

n (i) +
1

2ω
αn(i). (3.18)

By (3.18), (3.16) and noting that Vn(xn, i) = EU
n (X

π̂
T∧τ )− ωV arUn (X

π̂
T∧τ ), we obtain

V arUn (X
π̂
T∧τ ) =

EU
n (X

π̂
T∧τ )− Vn(xn, i)

ω
=

1

4ω2
αn(i) +An(i) +

1

4ω2
Bn(i). (3.19)

The following proposition gives the equilibrium efficient frontier, i.e., the relationship between

the expectation and variance of the terminal wealth for Problem (2.6).

Proposition 3.2. Given X π̂
n = xn, ξn = i ∈ S, the equilibrium efficient frontier at time n for

Problem (2.6) is

V arUn (X
π̂
T∧τ ) =

αn(i) +Bn(i)

(αn(i))2
[EU

n (X
π̂
T∧τ )−W f

n (i)]
2 +An(i), (3.20)

where W
f
n (i), An(i), αn(i) and Bn(i) are given by (3.17),(3.8), (3.9) and (3.10), respectively.
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It is known from Proposition 3.2 that the risks in our uncertain time-horizon model cannot be

completely eliminated even if the investor invests all of her wealth in the risk-free asset. The reason

for this phenomenon is that the risks generated by stochastic cash flow and uncertain exit time

cannot be fully hedged by investing in the financial market.

4. Some degenerated cases

Case 1. There is no cash flow, that is, cn(i) = 0 for all n = 0, 1, · · · , T−1, i ∈ S. Then the equilibrium

strategy π̂n(i) does not change, and the equilibrium value function (3.14) is reduced to

Vn(xn, i) = rfλn,nxn +
1

4ω
αn(i)−

1

4ω
Bn(i). (4.1)

By (3.18) and (3.19), the expectation and variance of the terminal wealth are respectively

reduced to

EU
n (X

π̂
T∧τ ) = rfλn,nxn +

1

2ω
αn(i),

V arUn (X
π̂
T∧τ ) =

1

4ω2
αn(i) +

1

4ω2
Bn(i),

and the equilibrium efficient frontier at time n is simplified to

V arUn (X
π̂
T∧τ ) =

αn(i) +Bn(i)

(αn(i))2
[EU

n (X
π̂
T∧τ )− rfλn,nxn]

2. (4.2)

Case 2. The exit time is deterministic, i.e., qn,T = 1, n = 0, 1, · · · , T − 1. Then the equilibrium

strategy (3.13) is reduced to

π̂c
n(i) =

V ar−1(Re
n(i))r

e
n(i)

2ωrT−1−n
f

, (4.3)

and the equilibrium value function (3.14) is reduced to

Vn(xn, i) =rT−n
f xn +

T−1
∑

k=n

rk−n
f QT−1−k

µ1
(i)

− ω

[

T−1
∑

k=n

(r2f )
k−nQT−1−k

µ2
(i) +

T−2−n
∑

j=0

T−1
∑

k=n+1+j

(r2f )
k−n−1−jQT−1−k

γj (i)

+ 2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
2(k−1−n)−j−l
f QT−1−k

δl,j
(i)

]

+
1

4ω

T−1
∑

k=n

QT−1−k
gn+T−1−k

(i)

−
1

4ω

[

T−2−n
∑

j=0

T−1
∑

k=n+1+j

QT−1−k
ηj (i) + 2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

QT−1−k
ρl,j (i)

]

.

(4.4)
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The expectation and variance of the terminal wealth are respectively reduced to

EU
n (X

π̂
T∧τ ) =En(X

π̂
T ) = rT−n

f xn +

T−1
∑

k=n

rk−n
f QT−1−k

µ1
(i) +

1

2ω

T−1
∑

k=n

QT−1−k
gn+T−1−k

(i),

V arUn (X
π̂
T∧τ ) =V arn(X

π̂
T ) =

1

4ω2

T−1
∑

k=n

QT−1−k
gn+T−1−k

(i) +

[

T−1
∑

k=n

r
2(k−n)
f QT−1−k

µ2 (i)

+
T−2−n
∑

j=0

T−1
∑

k=n+1+j

r
2(k−1−n−j)
f QT−1−k

γj (i)

+ 2
T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
2(k−n−1)−j−l

f QT−1−k
δl,j

(i)

]

+
1

4ω2

[

T−2−n
∑

j=0

T−1
∑

k=n+1+j

QT−1−k
ηj (i) + 2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

QT−1−k
ρl,j (i)

]

,

and the equilibrium efficient frontier at time n is simplified to

V arUn (X
π̂
T∧τ ) =

(

EU
n (X

π̂
T∧τ )− rT−n

f xn −
∑T−1

k=n rk−n
f QT−1−k

µ1 (i)
)2

∑T−1
k=n QT−1−k

gn+T−1−k
(i)

[

1

+

∑T−2−n
j=0

∑T−1
k=n+1+j Q

T−1−k
ηj (i)

∑T−1
k=n QT−1−k

gn+T−1−k
(i)

+ 2

∑T−2−n
j=1

∑j−1
l=0

∑T−1
k=n+1+j Q

T−1−k
ρl,j (i)

∑T−1
k=n QT−1−k

gn+T−1−k
(i)

]

+

[

T−1
∑

k=n

r
2(k−n)
f QT−1−k

µ2
(i) +

T−2−n
∑

j=0

T−1
∑

k=n+1+j

r
2(k−1−n−j)
f QT−1−k

γj (i)

+ 2
T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
2(k−1−n)−j−l
f QT−1−k

δl,j
(i)

]

.

(4.5)

Case 3. When the exit time is deterministic and there is no cash flow, then the equilibrium strategy

π̂n(i) = π̂c
n(i), and the equilibrium value function (3.14) is reduced to

Vn(xn, i) =rT−n
f xn +

1

4ω

T−1
∑

k=n

QT−1−k
gn+T−1−k

(i)

−
1

4ω

[

T−2−n
∑

j=0

T−1
∑

k=n+1+j

QT−1−k
ηj (i) + 2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

QT−1−k
ρl,j (i)

]

,

(4.6)

which is consistent with that in Wu and Chen (2015) (let ω(i) = ω). The expectation and

variance of the terminal wealth are respectively reduced to

EU
n (X

π̂
T∧τ ) = rT−n

f xn +
1

2ω

T−1
∑

k=n

QT−1−k
gn+T−1−k

(i),
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V arUn (X
π̂
T∧τ ) =

1

4ω2

T−1
∑

k=n

QT−1−k
gn+T−1−k

(i) +
1

4ω2

[

T−2−n
∑

j=0

T−1
∑

k=n+1+j

QT−1−k
ηj (i)

+ 2
T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

QT−1−k
ρl,j (i)

]

,

and the equilibrium efficient frontier at time n is simplified to

V arUn (X
π̂
T∧τ ) =

(EU
n (X

π̂
T∧τ )− rT−n

f xn)
2

∑T−1
k=n QT−1−k

gn+T−1−k
(i)

[

1 +

∑T−2−n
j=0

∑T−1
k=n+1+j Q

T−1−k
ηj (i)

∑T−1
k=n QT−1−k

gn+T−1−k
(i)

+ 2

∑T−2−n
j=1

∑j−1
l=0

∑T−1
k=n+1+j Q

T−1−k
ρl,j (i)

∑T−1
k=n QT−1−k

gn+T−1−k
(i)

]

.

(4.7)

Case 4. When the exit time is deterministic, and there are no cash flow and no regime-switching in

the market, then the equilibrium strategy (3.13) is reduced to

π̂n =
1

2ωrT−1−n
f

V ar−1(Re
n)r

e
n, (4.8)

and the equilibrium value function (3.14) is reduced to

Vn(xn) = rT−n
f xn +

1

4ω

T−1
∑

k=n

(rek)
′V ar−1(Re

k)r
e
k, (4.9)

which is consistent with that in Wu (2013) (let r
f
k = rf for any k). The expectation and

variance of the terminal wealth are respectively reduced to

EU
n (X

π̂
T∧τ ) = rT−n

f xn +
1

2ω

T−1
∑

k=n

(rek)
′V ar−1(Re

k)r
e
k,

V arUn (X
π̂
T∧τ ) =

1

4ω2

T−1
∑

k=n

(rek)
′V ar−1(Re

k)r
e
k,

and the equilibrium efficient frontier at time n is simplified to

V arUn (X
π̂
T∧τ ) =

(EU
n (X

π̂
T∧τ )− rT−n

f xn)
2

∑T−1
k=n(r

e
k)

′V ar−1(Re
k)r

e
k

. (4.10)

Furthermore, we propose a property of the equilibrium strategy. Due to the form of ̟n in the

equilibrium strategy (3.13), the following proposition further reveals the effect of the exit conditional

probability on the equilibrium strategy, and gives the relationship between π̂n(i) and π̂c
n(i).

Proposition 4.1. Given ξn = i ∈ S, π̂n(i) is increasing in pn,m for m = n + 1, n + 2, · · · , T − 1.

In particular, π̂c
n(i) ≤ π̂n(i) ≤

V ar−1(Re
n(i))r

e
n(i)

2ω , where π̂c
n(i) is given by (4.3).
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The proof of Proposition 4.1 is omitted, becasue it is similar to that of Proposition 3.2 in Wu

and Zeng (2015), which the reader can refer to.

Proposition 4.1 shows that under the equilibrium strategy, the greater the exit conditional

probabilities at time m = n + 1, n + 2, · · · , T − 1, the greater the amount invested in the risky

assets at the current time n. Specifically, given ξn = i, if the investor will certainly exit the market

at time n + 1 ≤ T , then ̟n = 1, and π̂n(i) =
V ar−1(Re

n(i))r
e
n(i)

2ω which reaches a maximum. If the

investor decides to exit the market at time T , from Case 2 we know π̂n(i) = π̂c
n(i), which reaches

a minimum. Therefore, Proposition 4.1 also indicates that in general the amount invested in the

risky assets is between the amounts in the above two extreme cases.

5. Numerical analysis

In this section, we provide some numerical examples to illustrate our results obtained in the

previous sections. First of all, we idealize the market states to only two regimes: i = 1 is bearish

and i = 2 is bullish. Suppose that the investor enters the financial market at time 0 with initial

wealth x0 = 1, initial state ξ0 = 1 and risk aversion ω = 1, and makes an investment plan for T = 5

periods. Assume that there are 4 assets in the market, including a risk-free asset and three risky

assets. We use part of the data in the simulations of Yao et al. (2016), and three risky assets are

Cisco Systems, Forest City Enterprises and Tandy Brands Accessories in the American market.

Suppose that the risk-free return rf = 1.0017, and the market parameters of three risky assets

with different market regimes as well as the state transition probability matrix are listed as follows:

ren(1) = (−0.0475,−0.0734,−0.0756)′ , ren(2) = (0.0753, 0.0627, 0.0647)′

V ar(Rn(1)) =













0.0155 −0.0005 0.0008

−0.0005 0.0110 −0.0004

0.0008 −0.0004 0.0143













, V ar(Rn(2)) =













0.0280 0.0015 0.0027

0.0015 0.0068 0

0.0027 0 0.0147













,

n = 0, 1, · · · , 4, Q =





0.4615 0.5385

0.5385 0.4615



 .

Assume that the expectations and variances of stochastic cash flows on different market states

are µ1(1) = 0.4513, µ1(2) = 0.4054; µ2(1) = 0.5055, µ2(2) = 0.3975. Based on the fact that people

always tend to complete the whole investment plan in actual investment and usually do not exit

the market too early in normal circumstances, we assume that the increase of the exit conditional
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Table 1: Values of the exit conditional probabilities pn,m.

n

m
1 2 3 4 5

0 1
16

1
16

1
8

1
4

1
2

1 - 1
12

1
12

1
6

2
3

2 - - 1
16

3
16

3
4

3 - - - 1
5

4
5

4 - - - - 1

probability pn,m about the exit time m is reasonable. For this reason, assume that pn,m are as

shown in Table 1.

5.1. Equilibrium efficient frontier at time 0

This subsection illustrates the results of the equilibrium efficient frontier at time 0 and its several

degenerated cases as above.

According to Proposition 3.2, we can obtain the equilibrium efficient frontier at time 0

V arU0 (X
π̂
T∧τ ) =

α0(i) +B0(i)

(α0(i))2
[EU

0 (X
π̂
T∧τ )−W

f
0 (i)]

2 +A0(i). (5.1)

Substituting the aforementioned data into Eqs.(3.5)-(3.7) yields















































−→
λ0 = (1.0052, 0.9411, 0.8771, 0.7509, 0.5000),

λ1,1 = 1.0041, λ2,2 = 1.0029, λ3,3 = 1.0014, λ4,4 = 1,

−→
θ0 = (1.0105, 0.9448, 0.8793, 0.7517, 0.5000),

θ1,1 = 1.0082, θ2,2 = 1.0058, θ3,3 = 1.0027, θ4,4 = 1,

−→̟ = (0.9948, 0.9959, 0.9971, 0.9987, 1),

(5.2)

where
−→
λ0 = (λ0,0, λ0,1, · · · , λ0,4),

−→
θ0 = (θ0,0, θ0,1, · · · , θ0,4),

−→̟ = (̟0,̟1, · · · ,̟4).

Further calculations yield















































Qµ1
(1) = 0.4266, Q2

µ1
(1) = 0.4285, Q3

µ1
(1) = 0.4283, Q4

µ1
(1) = 0.4284,

Qµ2
(1) = 0.4473, Q2

µ2
(1) = 0.4518, Q3

µ2
(1) = Q4

µ2
(1) = 0.4515,

γ0(1) = γ0(2) = Q4−k
γ0 (1) = 0.0005, k = 1, 2, 3,

Q4−k
γj (1) = 0, j = 1, 2, 3, k = j + 1, j + 2, · · · , 4,

Q4−k
δl,j

(1) = 0, j = 1, 2, 3, l = 0, 1, · · · , j − 1, k = j + 1, j + 2, · · · , 4,

(5.3)
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





























































g0(1) = 1.0590, g0(2) = 0.9534, Qg1(1) = 1.0021,

Q2
g2
(1) = 1.0065, Q3

g3
(1) = Q4

g4
(1) = 1.0062,

η0(1) = 0.0028, η0(2) = 0.0027, Qη0 (1) = 0.0027,

Q2
η0
(1) = 0.0028, Q3

η0
(1) = 0.0027,

Q4−k
ηj (1) = 0, j = 1, 2, 3, k = j + 1, j + 2, · · · , 4,

Q4−k
ρl,j (1) = 0, j = 1, 2, 3, l = 0, 1, · · · , j − 1, k = j + 1, j + 2, · · · , 4.

(5.4)

Substituting Eqs.(5.3),(5.4)into Eqs.(3.17), (3.8)-(3.10)(Let n = 0, i = 1) yields W f
0 (1) = 2.7737,

A0(1) = 1.8974, α0(1) = 4.1361 and B0(1) = 0.0084. By (5.1)(Let i = 1), we obtain the equilibrium

efficient frontier at time 0

V arU0 (X
π̂
T∧τ ) = 0.2423(EU

0 (X π̂
T∧τ )− 2.7737)2 + 1.8974.

Subsequently, we discuss the degenerated cases.

Case 1. There is no cash flow, that is, cn(i) = 0, n = 0, 1, · · · , T − 1, i ∈ S. By (4.2), the equilibrium

efficient frontier is

V arU0 (X
π̂
T∧τ ) = 0.2423(EU

0 (X π̂
T∧τ )− 1.0069)2.

Case 2. The exit time is deterministic, i.e., qn,T = 1, n = 0, 1, · · · , T − 1. Then by (4.5), (5.3) and

(5.4), the equilibrium efficient frontier is

V arU0 (X
π̂
T∧τ ) = 0.1973(EU

0 (X π̂
T∧τ )− 3.1791)2 + 2.3257.

Case 3. When the exit time is deterministic and there is no cash flow, by (4.7),(5.3) and (5.4), the

equilibrium efficient frontier is

V arU0 (X
π̂
T∧τ ) = 0.1973(EU

0 (X π̂
T∧τ )− 1.0085)2.

Case 4. When the exit time is deterministic, and there are no cash flow and no regime-switching in

the market, by (4.10), the equilibrium efficient frontier is

V arU0 (X
π̂
T∧τ ) = 0.1889(EU

0 (X π̂
T∧τ )− 1.0085)2.

Figure 1 presents equilibrium efficient frontiers corresponding to the general case in Problem

(2.6) and degenerated cases 1-4. From Figure 1, compared with the general case we find that the

equilibrium efficient frontier for Case 1 is relatively flat, which implies that when the expected
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terminal wealth is less than a critical value (about 5), there is less risk in the case of no cash flow.

Otherwise, the general case will make investors face less risk. Contrary to Case 1, the equilibrium

efficient frontier for Case 2 is relatively steep. The equilibrium efficient frontier for Case 3 dominates

the general case and Case 4 dominates Case 3. This shows that when the exit time is deterministic

and there is no cash flow, for a given expected terminal wealth, the risk faced by investors is lower

than that for the general case, and if there is no regime-switching in the market at the same time,

the risk is the lowest.

0 10 20 30 40 50 60 70 80 90 100
V ar

U

0 (X
π̂
T∧τ )

0

5

10

15

20

25

E
U 0
(X

π̂ T
∧
τ
)

General case
Degenerated case1
Degenerated case2
Degenerated case3
Degenerated case4

Figure 1: Equilibrium efficient frontiers for General case and Degenerated cases 1-4.

5.2. Impact of uncertain time-horizon

In the following, we further examine the impacts of uncertain time-horizon on the equilibrium

strategy and the equilibrium efficient frontier at time 0. To this end, we consider six cases about

uncertain time-horizon, which are represented by different conditional probability distributions of

exit time at initial time 0:






















P1 = (0, 0, 0, 0, 1), P2 = ( 1
40 ,

1
40 ,

1
40 ,

1
40 ,

9
10 ),

P3 = ( 1
20 ,

1
20 ,

1
20 ,

1
20 ,

4
5 ), P4 = (18 ,

1
8 ,

1
8 ,

1
8 ,

1
2),

P5 = (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ), P6 = ( 3

10 ,
3
10 ,

3
10 , 0,

1
10 ).

It is worth pointing out that P1 correspond to Case 2, that is, the exit time is deterministic. The

exit mechanisms of the cases corresponding to P2 to P5 are defined as follows. For the investor

who enters the market at time n(6= T −1), assume that the exit conditional probability at terminal

time T is always equal to that of the investor who enters the market at initial time 0, and the exit

conditional probabilities at other times n + 1, n + 2, · · · , T − 1 are equal. The case correspond to

P6 also meets the above uncertain exit mechanism except that the exit conditional probability at

time m = 4 is 0.
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Table 2: Values of ̟n in six cases of uncertain time-horizon.

P1 P2 P3 P4 P5 P6

̟0 0.9881 0.9889 0.9895 0.9917 0.9940 0.9961

̟1 0.9911 0.9916 0.9922 0.9940 0.9958 0.9978

̟2 0.9940 0.9946 0.9950 0.9963 0.9976 0.9994

̟3 0.9970 0.9973 0.9976 0.9985 0.9994 0.9970

̟4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

According to the equilibrium strategy (3.13) and the assumption that the market parameters of

the risky assets are independent with time, given state i, the values of π̂n(i) depend entirely on the

values of ̟n(n = 0, 1, · · · , 4). Table 2 shows the values of ̟n(n = 0, 1, · · · , 4) in six cases. In the

cases of P1 to P5, ̟n(n = 0, 1, · · · , 4) increases along with pn,m(n = 0, 1, · · · , T − 2;m = n+1, n+

2, · · · , T − 1). For P5 and P6, ̟n(n = 0, 1, 2) increases as pn,m(n = 0, 1, 2;m = n+ 1, n+2, · · · , 3)

increases, and ̟3 decreases as pn,4(n = 0, 1, 2, 3) decreases. Consequently, the equilibrium strategy

increases in pn,m. Moreover, since 1
r4−n
f

≤ ̟n ≤ 1, π̂c
n(i) ≤ π̂n(i) ≤

V ar−1(Re
n(i))r

e
n(i)

2ω . Specifically,

in the case corresponding to P1, pn,m = 0(n = 0, 1, 2, 3;m = n + 1, n + 2, · · · , 4) results in less

wealth being invested in the risky assets, in other words, the amount of investment in the risky

assets with uncertain exit time is not less than that with fixed exit time. When the investor enters

the market at time n = 4, whatever the uncertain time-horizon is, she is sure to exit the market

at next time T = 5. Accordingly, ̟4 = 1 and π̂4(i) reaches the maximum, that is, the amount of

money invested in the risky assets achieves the maximum, which means that in the case of only one

investment opportunity at time T − 1, a higher exit conditional probability or a shorter remaining

time horizon leads to more wealth being invested in the risky assets in order to obtain the optimal

mean-variance utility. At this point, all cases of uncertain exit time are equivalent to Case 2, and

so the equilibrium investment strategies at the final time period in our example are all equal, i.e.,

π̂4(i) = π̂c
4(i), which is consistent with the conclusion of Proposition 4.1.

To examine the impact of uncertain time-horizon on the equilibrium efficient frontier, we draw

the equilibrium efficient frontiers for these six different cases in Figure 2. We conclude that the

uncertain time-horizon has the clockwise rotated equilibrium efficient frontiers, and the more the

uncertainty is, the more the rotation is. A possible explanation for this phenomenon is as follows.

When the given expectation EU
0 (X

π̂
T∧τ ) of the terminal wealth with uncertain exit time is small,

short-term investment is easier to achieve the objective and can avoid the risk of financial market
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volatility due to long-term investment. Therefore, the greater the exit conditional probability Pn,m,

the smaller the variance V arU0 (X
π̂
T∧τ ) of the terminal wealth, and the graphs of the corresponding

equilibrium efficient frontiers from P6 to P1 are from left to right. On the other hand, when

EU
0 (X

π̂
T∧τ ) is high, short-term investment is difficult to achieve the goal and is more risky, and

long-term and robust investment will be more beneficial to the investor at this time. Consequently,

the graphs of the corresponding equilibrium efficient frontiers from P6 to P1 present the opposite

trend from right to left.
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Figure 2: Impact of uncertain time-horizon on the equilibrium efficient frontier.

In the following numerical sensitivity analysis, we all assume that P4 is the exit probability of

the original Problem (2.6) at initial time 0, and its corresponding exit mechanism is as described

above.

5.3. Impacts of regime switching on the equilibrium efficient frontier

In this subsection, we examine the impacts of regime switching on the equilibrium efficient

frontier. First, to focus on the difference of the equilibrium efficient frontiers with different starting

market modes, we depict the equilibrium efficient frontiers with the initial market states of bear

market and bull market, respectively, in Figure 3. We see that the equilibrium efficient frontier

with the bullish initial state (ξ0 = 2) lies in the upper left of that with the bearish initial state

(ξ0 = 1), which means that if the investor starts at a bull market, she can face less risk than

beginning at a bear market for a given expected return EU
0 (X

π̂
T∧τ ). Therefore, it is reasonable to
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start our investment when the market is bullish.
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Figure 3: Equilibrium efficient frontiers with different initial market states.

Table 3: Different transition probabilities.

q11 0.1 0.3 0.5 0.7 0.8

q22 0.9 0.7 0.5 0.3 0.2

Next, we study how different regime switching probabilities affect the equilibrium efficient fron-

tier. Table 3 shows five different transition probabilities to indicate that the market becomes “more

bearish” when q11 increases from 0.1 to 0.8 and q22 decreases from 0.9 to 0.2. Under the assump-

tion that the investor always enters the market at bearish time, i.e., ξ0 = 1, Figure 4 presents the

equilibrium efficient frontiers corresponding to these transition probabilities. From Figure 4, we

know that when an expected return EU
0 (X

π̂
T∧τ ) is given, with the change of q11 from 0.1 to 0.8, the

corresponding equilibrium efficient frontier moves to the lower right. This indicates an increasing

investment risk during this shift. Therefore, we conclude that it is not suitable to invest when the

market presents a downward trend or continues to decline.

5.4. Impact of stochastic cash flow on the equilibrium efficient frontier

To clarify the impact of stochastic cash flow on the equilibrium efficient frontier, we describe

the equilibrium efficient frontiers corresponding to three different cash flows in Figure 5(a), where

negative cash flow cn(1) = −0.6, cn(2) = −0.2, n = 0, 1, · · · , 4 indicates that the corresponding
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Figure 4: Equilibrium efficient frontiers with different regime switching probabilities.

funds are extracted under different market states to reduce investment, no cash flow cn(1) = cn(2) =

0, n = 0, 1, · · · , 4 corresponds to Case 1 in Subsection 5.1, and positive cash flow cn(1) = 0.3,

cn(2) = 0.5, n = 0, 1, · · · , 4 indicates that the corresponding funds are added under different

market states to increase investment.Figure 5(a) shows that the equilibrium efficient frontier with

positive cash flow dominates that without cash flow, which in turn dominates that with negative

cash flow. This means that the additional investment of capital will reduce the risk faced by the

investor, while reducing investment will increase the risk accordingly. As for the more complicated

situations, Figure 5(b) presents the equilibrium efficient frontiers corresponding to cash flows with

different symbols under different states and without cash flow, where positions of these equilibrium

efficient frontiers depend on the values of cash flow.

6. Conclusion

In this paper, we study a generalized multi-period mean-variance portfolio selection problem

with uncertain time-horizon and a stochastic cash flow in a Markov regime-switching market.

Assume that the financial market contains a limited number of states which are modelled by a

discrete-time Markov chain. The investor may be forced to exit the market at some time before the

planned investment period for some uncontrollable reasons during the investment process, which

results in our optimization problem with an uncertain time horizon. Moreover, the capital injection
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Figure 5: Equilibrium efficient frontiers with different stochastic cash flows.

or withdrawal at each period is allowed, and hence the market is not self-financing. The random

returns of risky assets and amount of the cash flow all depend on the states of the stochastic market.

By setting the objective function as the weighted sum of a linear combination of the expectation

and variance of the wealth at the time of exiting the market, where the weighted coefficients are the

corresponding exit conditional probabilities, we construct a more general mean-variance investment

model. Within the game theoretic framework, using backward induction approach, we derive the

equilibrium strategy, equilibrium value function and equilibrium efficient frontier in closed-form.

In addition, some degenerate cases are discussed. Finally, some numerical examples are presented

to illustrate equilibrium efficient frontiers, especially to exemplify the impacts of uncertain time-

horizon on the equilibrium strategy and equilibrium efficient frontier as well as regime-switching

and stochastic cash flow on the equilibrium efficient frontier.

Based on the work in this paper, the following interesting problems deserve further research:

(1) If the market has a bankruptcy state, and when bankruptcy happens, the investor can only

retrieve a random fraction of the wealth that she should acquire and must invest it in a

risk-free asset until the terminal time, then how to get the equilibrium strategy?

(2) When the conditional distribution of uncertain time-horizon depends on market states, how

to obtain the equilibrium strategy of the problem?

(3) With other realistic conditions, such as stochastic interest rate and inflation factor, how to

obtain the equilibrium strategy of the portfolio selection with uncertain time-horizon?
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Appendix A

Proof of Lemma 2.1.

En[Qk
a(ξn+1)] =

L
∑

j=1

qijQk
a(j) = (Q ·Qk

a)(i) = (Q ·Qka)(i) = (Qk+1a)(i) = Qk+1
a (i).

Appendix B

Proof of Proposition 3.1. By (2.1), pT−1,T = 1, then

VT−1(xT−1, i) = max
πT−1

[

ET−1(X
πT−1

T )− ωV arT−1(X
πT−1

T )
]

.

For n = 0, 1, · · · , T − 2, by (2.5), we have

Jn(xn, i;π) =
T
∑

m=n+1

pn,m[En(X
π
m)− ωV arn(X

π
m)].

Thus,

Jn+1(X
πn
n+1, ξn+1;π) =

T
∑

m=n+2

pn+1,m[En+1(X
π
m)− ωV arn+1(X

π
m)].

Then we have

Jn(xn, i;π) =qn+1En[Jn+1(X
πn

n+1, ξn+1;π)] + Jn(xn, i;π)− qn+1En[Jn+1(X
πn

n+1, ξn+1;π)]

=qn+1En[Jn+1(X
πn

n+1, ξn+1;π)] + pn,n+1[En(X
πn

n+1)− ωV arn(X
πn

n+1)]

+

T
∑

m=n+2

pn,m[En(X
π
m)− ωV arn(X

π
m)]

− qn+1En

{

T
∑

m=n+2

pn+1,m[En+1(X
π
m)− ωV arn+1(X

π
m)]

}
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=qn+1En[Jn+1(X
πn

n+1, ξn+1;π)] + pn,n+1[En(X
πn

n+1)− ωV arn(X
πn

n+1)]

+
T
∑

m=n+2

pn,m[En(X
π
m)− ωV arn(X

π
m)]

−
T
∑

m=n+2

qn+1 · pn+1,mEn[En+1(X
π
m)− ωV arn+1(X

π
m)].

Since qn+1 · pn+1,m = pn,m, according to the tower property of conditional expectations, we get

Jn(xn, i;π) =qn+1En[Jn+1(X
πn
n+1, ξn+1;π)] + pn,n+1[En(X

πn
n+1)− ωV arn(X

πn
n+1)]

− ω

T
∑

m=n+2

pn,m{V arn(X
π
m)− En[V arn+1(X

π
m)]}.

Further, using the variance formula V ar(X) = E(X2)− [E(X)]2 and the tower property of condi-

tional expectations again yields

Jn(xn, i;π) =qn+1En[Jn+1(X
πn

n+1, ξn+1;π)] + pn,n+1[En(X
πn

n+1)− ωV arn(X
πn

n+1)]

− ω

T
∑

m=n+2

pn,m{En[(X
π
m)2]− E2

n[En+1(X
π
m)]}

+ ω

T
∑

m=n+2

pn,m{En[(X
π
m)2]− En[E

2
n+1(X

π
m)]}

=qn+1En[Jn+1(X
πn
n+1, ξn+1;π)] + pn,n+1[En(X

πn
n+1)− ωV arn(X

πn
n+1)]

− ω

T
∑

m=n+2

pn,m{En[E
2
n+1(X

π
m)]− E2

n[En+1(X
π
m)]}

=qn+1En[Jn+1(X
πn
n+1, ξn+1;π)] + pn,n+1[En(X

πn
n+1)− ωV arn(X

πn
n+1)]

− ω

T
∑

m=n+2

pn,mV arn[En+1(X
πn
m )].

Let

hn,m(xn, i) :=En(X
π̂
m) = En[hn+1,m(X π̂n

n+1, ξn+1)],

n = 0, 1, · · · , T − 1, m = n+ 1, n+ 2, · · · , T,

hn,n(xn, i) =xn, n = 0, 1, · · · , T.

Then

Vn(xn, i) = max
πn

Jn(xn, i; (πn, π̂n+1, · · · , π̂T−1))
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=max
πn

{qn+1En[Jn+1(X
πn

n+1, ξn+1; π̂)] + pn,n+1[En(X
πn

n+1)− ωV arn(X
πn

n+1)]

− ω

T
∑

m=n+2

pn,mV arn[En+1(X
π̂
m)]}

=max
πn

{qn+1En[Vn+1(X
πn

n+1, ξn+1)] + pn,n+1[En(X
πn

n+1)− ωV arn(X
πn

n+1)]

− ω

T
∑

m=n+2

pn,mV arn[hn+1,m(Xπn

n+1, ξn+1)]}, n = 0, 1, · · · , T − 2.

The proposition is proved.

Appendix C

Proof of Lemma 3.1. We only prove the first equality while the second equality can be proved

in a similar way.

V arn

[

m−1
∑

k=n+1

rk−n−1
f ̟n+m−kQ

m−1−k
gn+m−k

(ξn+1)

]

= V arn

[

m−n−2
∑

k=0

rm−n−2−k
f ̟n+1+kQk

gn+1+k
(ξn+1)

]

=

m−n−2
∑

k=0

V arn[r
m−n−2−k
f ̟n+1+kQk

gn+1+k
(ξn+1)]

+ 2

m−n−2
∑

j=1

j−1
∑

l=0

Covn[r
m−n−2−j
f ̟n+1+jQ

j
gn+1+j(ξn+1), rm−n−2−l

f ̟n+1+lQl
gn+1+l

(ξn+1)].

By (2.8) and (2.10), we have

V arn

[

m−1
∑

k=n+1

rk−n−1
f ̟n+m−kQ

m−1−k
gn+m−k

(ξn+1)

]

=
m−n−2
∑

k=0

r
2(m−n−2−k)
f ̟2

n+1+kηk(i)

+ 2

m−n−2
∑

j=1

j−1
∑

l=0

r
2(m−n−2)−j−l
f ̟n+1+j̟n+1+lρl,j(i).

Appendix D

Proof of Lemma 3.2. We only prove the first equality while the second equality can be proved

in a similar way.

λn,nµ1(i) +
T−1
∑

k=n+1

λn,n+T−kQ
T−k
µ1

(i) = λn,nµ1(i) +
T−2
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i)

=

T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i).
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Appendix E

Proof of Lemma 3.3. We only prove the second equality while the first equality can be proved

in a similar way.

T−3−n
∑

j=0

T−1
∑

k=n+2+j

̟2
n+1+j+T−kθn,n+1+j+T−kQ

T−k
ηj (i) +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r
2
f )

m−n−2−k̟2
n+1+kηk(i)

=

T−2−n
∑

j=0

T−2
∑

k=n+1+j

̟2
n+j+T−kθn,n+j+T−kQ

T−1−k
ηj (i)

+
T−2−n
∑

k=0

T
∑

m=n+2+k

pn,m(r
2
f )

m−n−2−k̟2
n+1+kηk(i)

=

T−2−n
∑

j=0

T−2
∑

k=n+1+j

̟2
n+j+T−kθn,n+j+T−kQ

T−1−k
ηj (i) +

T−2−n
∑

j=0

θn,n+1+j̟
2
n+1+jηj(i)

=
T−2−n
∑

j=0

T−1
∑

k=n+1+j

̟2
n+j+T−kθn,n+j+T−kQ

T−1−k
ηj (i).

Appendix F

Proof of Lemma 3.4. We only prove the second equality while the first equality can be proved

in a similar way.

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f ̟n+1+j+T−k̟n+1+l+T−kθn,n+1+j+T−kQ

T−k
ρl,j (i)

+
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f ̟n+1+j̟n+1+lρl,j(i)

=

T−2−n
∑

j=1

j−1
∑

l=0

T−2
∑

k=n+1+j

r
j−l
f ̟n+j+T−k̟n+l+T−kθn,n+j+T−kQ

T−1−k
ρl,j (i)

+

T−2−n
∑

j=1

j−1
∑

l=0

T
∑

m=n+2+j

pn,m(r2f )
m−n−2−jr

j−l
f ̟n+1+j̟n+1+lρl,j(i)

=

T−2−n
∑

j=1

j−1
∑

l=0

T−2
∑

k=n+1+j

r
j−l
f ̟n+j+T−k̟n+l+T−kθn,n+j+T−kQ

T−1−k
ρl,j (i)

+

T−2−n
∑

j=1

j−1
∑

l=0

r
j−l
f θn,n+1+j̟n+1+j̟n+1+lρl,j(i)

=
T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f ̟n+j+T−k̟n+l+T−kθn,n+j+T−kQ

T−1−k
ρl,j (i).
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Appendix G

Proof of Theorem 3.1. For n = T − 1, by (3.2), we have

VT−1(xT−1, i) =max
πT−1

[

ET−1(X
πT−1

T )− ωV arT−1(X
πT−1

T )
]

=max
πT−1

[

ET−1(rfxT−1 +Re
T−1(i)

′πT−1 + cT−1(i))

− ωV arT−1(rfxT−1 +Re
T−1(i)

′πT−1 + cT−1(i))
]

=rfxT−1 + µ1(i)− ωµ2(i) + max
πT−1

[reT−1(i)
′πT−1 − ωπ′

T−1V ar(Re
T−1(i))πT−1].

Using the first-order condition, we have

π̂T−1 =
1

2ω
V ar−1(Re

T−1(i))r
e
T−1(i). (G.1)

Substituting (G.1) back into VT−1(xT−1, i) and (3.3), respectively, yields

VT−1(xT−1, i) = rfxT−1 + µ1(i)− ωµ2(i) +
1

4ω
gT−1(i), (G.2)

hT−1,T (xT−1, i) = ET−1(X
π̂
T ) = rfxT−1 + µ1(i) +

1

2ω
gT−1(i). (G.3)

Since ̟T−1 = λT−1,T−1 = θT−1,T−1 = 1, AT−1(i) = µ2(i), αT−1(i) = gT−1(i), BT−1(i) = 0,

(G.1)-(G.3) indicate that (3.13)-(3.15) hold for n = T − 1. Now we assume that (3.13)-(3.15) hold

for T − 1, T − 2, · · · , n+ 1. Then for n, by (3.1) and (3.14), we have

Jn(xn, i;(πn, π̂n+1, · · · , π̂T−1)) = qn+1En[Vn+1(X
πn
n+1, ξn+1)] + pn,n+1[En(X

πn
n+1)− ωV arn(X

πn
n+1)]

− ω

T
∑

m=n+2

pn,mV arn[hn+1,m(Xπn

n+1, ξn+1)]

=qn+1En[rfλn+1,n+1X
πn
n+1 +

T−1
∑

k=n+1

λn+1,n+T−kQ
T−1−k
µ1

(ξn+1)− ωAn+1(ξn+1)

+
1

4ω
αn+1(ξn+1)−

1

4ω
Bn+1(ξn+1)] + pn,n+1[En(X

πn
n+1)− ωV arn(X

πn
n+1)]

− ω

T
∑

m=n+2

pn,mV arn

[

rm−n−1
f Xπn

n+1 +

m−1
∑

k=n+1

rk−n−1
f Qm−1−k

µ1
(ξn+1)

+
1

2ω

m−1
∑

k=n+1

rk−n−1
f ̟n+m−kQ

m−1−k
gn+m−k

(ξn+1)
]

.
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Substituting (3.5) and (2.2) into the above formula, then taking advantage of Lemma 2.1 for further

calculations yields

Jn(xn, i;(πn, π̂n+1, · · · , π̂T−1))

=qn+1

{

rf

T
∑

m=n+2

pn+1,mrm−n−2
f

(

rfxn + ren(i)
′πn + µ1(i)

)

+

T−1
∑

k=n+1

T
∑

m=n+T−k+1

pn+1,mrm−n−T+k−1
f QT−k

µ1
(i)− ωEn[An+1(ξn+1)]

+
1

4ω
En[αn+1(ξn+1)]−

1

4ω
En[Bn+1(ξn+1)]

}

+ pn,n+1

[(

rfxn + ren(i)
′πn + µ1(i)

)

− ω
(

π′

nV ar(Re
n(i))πn + µ2(i)

)]

− ω

T
∑

m=n+2

pn,mV arn

[

rm−n−1
f

(

rfxn +Re
n(i)

′πn + cn(i)
)

+
m−1
∑

k=n+1

rk−n−1
f Qm−1−k

µ1
(ξn+1) +

1

2ω

m−1
∑

k=n+1

rk−n−1
f ̟n+m−kQ

m−1−k
gn+m−k

(ξn+1)
]

.

By means of qn+1 · pn+1,m = pn,m, Assumptions 2.2-2.3 and Lemma 3.1, we have

Jn(xn, i;(πn, π̂n+1, · · · , π̂T−1)) =

{

T
∑

m=n+2

pn,mrm−n−1
f

(

rfxn + ren(i)
′πn + µ1(i)

)

+

T−1
∑

k=n+1

T
∑

m=n+T−k+1

pn,mrm−n−T+k−1
f QT−k

µ1
(i)− ωEn[qn+1An+1(ξn+1)]

+
1

4ω
En[qn+1αn+1(ξn+1)]−

1

4ω
En[qn+1Bn+1(ξn+1)]

}

+ pn,n+1

[(

rfxn + ren(i)
′πn + µ1(i)

)

− ω
(

π′

nV ar(Re
n(i))πn + µ2(i)

)]

− ω

T
∑

m=n+2

pn,m

[

r
2(m−n−1)
f π′

nV ar(Re
n(i))πn

+ r
2(m−n−1)
f µ2(i) +

m−n−2
∑

k=0

r
2(m−n−2−k)
f γk(i) + 2

m−n−2
∑

j=1

j−1
∑

l=0

r
2(m−n−2)−j−l
f δl,j(i)

+
1

4ω2

m−n−2
∑

k=0

r
2(m−n−2−k)
f ̟2

n+1+kηk(i) +
1

2ω2

m−n−2
∑

j=1

j−1
∑

l=0

r
2(m−n−2)−j−l
f ̟n+1+j̟n+1+lρl,j(i)

]

.

Merging and rearranging the terms of the above formula, we have

Jn(xn, i;(πn, π̂n+1, · · · , π̂T−1)) =

T
∑

m=n+1

pn,mrm−n−1
f rfxn

+

(

T
∑

m=n+1

pn,mr
m−n−1
f µ1(i) +

T−1
∑

k=n+1

T
∑

m=n+T−k+1

pn,mrm−n−T+k−1
f

)

QT−k
µ1

(i)
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− ω

{

En[qn+1An+1(ξn+1)] +
T
∑

m=n+1

pn,m(r2f )
m−n−1µ2(i)

+

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−kγk(i)

+ 2
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f δl,j(i)

}

−
1

4ω

{

En[qn+1Bn+1(ξn+1)] +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−k̟2

n+1+kηk(i)

+ 2
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f ̟n+1+j̟n+1+lρl,j(i)

}

+
1

4ω
En[qn+1αn+1(ξn+1)] +

[

T
∑

m=n+1

pn,mr
m−n−1
f ren(i)

′πn

− ω

T
∑

m=n+1

pn,m(r2f )
m−n−1π′

nV ar(Re
n(i))πn

]

.

Using (3.5) and (3.6) to simplify the above formula, and by Lemma 3.2, we have

Jn(xn, i;(πn, π̂n+1, · · · , π̂T−1)) = rfλn,nxn +

T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i)− ω

{

En[qn+1An+1(ξn+1)]

+ θn,nµ2(i) +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−kγk(i)

+ 2
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f δl,j(i)

}

−
1

4ω

{

En[qn+1Bn+1(ξn+1)] +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r
2
f )

m−n−2−k̟2
n+1+kηk(i)

+ 2
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f ̟n+1+j̟n+1+lρl,j(i)

}

+
1

4ω
En[qn+1αn+1(ξn+1)] +

[

λn,nr
e
n(i)

′πn − ωθn,nπ
′

nV ar(Re
n(i))πn

]

.

(G.4)

By (3.6)-(3.9), we have

En[qn+1An+1(ξn+1)] =En

[

qn+1

(

T−1
∑

k=n+1

θn+1,n+T−kQ
T−1−k
µ2

(ξn+1)

+

T−3−n
∑

j=0

T−1
∑

k=n+2+j

θn+1,n+1+j+T−kQ
T−1−k
γj (ξn+1)

+ 2

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f θn+1,n+1+j+T−kQ

T−1−k
δl,j

(ξn+1)
)]
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=
T−1
∑

k=n+1

θn,n+T−kQ
T−k
µ2

(i) +
T−3−n
∑

j=0

T−1
∑

k=n+2+j

θn,n+1+j+T−kQ
T−k
γj (i)

+ 2
T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f θn,n+1+j+T−kQ

T−k
δl,j

(i),

(G.5)

En[qn+1Bn+1(ξn+1)] = En

[

qn+1

(

T−3−n
∑

j=0

T−1
∑

k=n+2+j

̟2
n+1+j+T−kθn+1,n+1+j+T−kQ

T−1−k
ηj (ξn+1)

+ 2

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f ̟n+1+j+T−k̟n+1+l+T−kθn+1,n+1+j+T−kQ

T−1−k
ρl,j (ξn+1)

)]

=
T−3−n
∑

j=0

T−1
∑

k=n+2+j

̟2
n+1+j+T−kθn,n+1+j+T−kQ

T−k
ηj (i)

+ 2

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f ̟n+1+j+T−k̟n+1+l+T−kθn,n+1+j+T−kQ

T−k
ρl,j (i),

(G.6)

En[qn+1αn+1(ξn+1)] = En

[

qn+1

T−1
∑

k=n+1

̟n+T−kλn+1,n+T−kQ
T−1−k
gn+T−k

(ξn+1)
]

=

T−1
∑

k=n+1

̟n+T−kλn,n+T−kQ
T−k
gn+T−k

(i).

(G.7)

In (G.4), substituting (G.5) into the following formula, and according to Lemmas 3.2-3.4, we have

En[qn+1An+1(ξn+1)] + θn,nµ2(i) +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−kγk(i)

+ 2

T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l
f δl,j(i)

=
(

T−1
∑

k=n+1

θn,n+T−kQ
T−k
µ2

(i) + θn,nµ2(i)
)

+
(

T−3−n
∑

j=0

T−1
∑

k=n+2+j

θn,n+1+j+T−kQ
T−k
γj (i)

+

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−kγk(i)

)

+ 2
(

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f θn,n+1+j+T−kQ

T−k
δl,j

(i) +
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f δl,j(i)
)

=

T−1
∑

k=n

θn,n+T−1−kQ
T−1−k
µ2

(i) +

T−2−n
∑

j=0

T−1
∑

k=n+1+j

θn,n+j+T−kQ
T−1−k
γj (i)

+ 2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f θn,n+j+T−kQ

T−1−k
δl,j

(i)

=An(i).

(G.8)
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Similarly, according to (G.6) and Lemmas 3.3-3.4, we have

En[qn+1Bn+1(ξn+1)] +

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−k̟2

n+1+kηk(i)

+ 2

T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l
f ̟n+1+j̟n+1+lρl,j(i)

=
(

T−3−n
∑

j=0

T−1
∑

k=n+2+j

̟2
n+1+j+T−kθn,n+1+j+T−kQ

T−k
ηj (i)

+

T
∑

m=n+2

m−n−2
∑

k=0

pn,m(r2f )
m−n−2−k̟2

n+1+kηk(i)

+ 2
(

T−3−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+2+j

r
j−l
f ̟n+1+j+T−k̟n+1+l+T−kθn,n+1+j+T−kQ

T−k
ρl,j (i)

+
T
∑

m=n+2

m−n−2
∑

j=1

j−1
∑

l=0

pn,mr
2(m−n−2)−j−l

f ̟n+1+j̟n+1+lρl,j(i)
)

=

T−2−n
∑

j=0

T−1
∑

k=n+1+j

̟2
n+j+T−kθn,n+j+T−kQ

T−1−k
ηj (i)

+ 2

T−2−n
∑

j=1

j−1
∑

l=0

T−1
∑

k=n+1+j

r
j−l
f ̟n+j+T−k̟n+l+T−kθn,n+j+T−kQ

T−1−k
ρl,j (i)

=Bn(i).

(G.9)

By (G.4), the optimal solution to Problem (2.6) obviously exists and is

π̂n(i) =
1

2ω

λn,n

θn,n
V ar−1(Re

n(i))r
e
n(i) =

1

2ω
̟nV ar−1(Re

n(i))r
e
n(i). (G.10)

Substituting (G.7)-(G.10) into (G.4), we have

Vn(xn, i) =rfλn,nxn +

T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i) − ωAn(i) −
1

4ω
Bn(i)

+
1

4ω

T−1
∑

k=n+1

̟n+T−kλn,n+T−kQ
T−k
gn+T−k

(i) +
1

4ω

λ2
n,n

θn,n
ren(i)

′V ar−1(Re
n(i))r

e
n(i)

=rfλn,nxn +
T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i) − ωAn(i) −
1

4ω
Bn(i)

+
( 1

4ω

T−2
∑

k=n

̟n+T−1−kλn,n+T−1−kQ
T−1−k
gn+T−1−k

(i) +
1

4ω
̟nλn,ngn(i)

)
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=rfλn,nxn +
T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i) − ωAn(i) −
1

4ω
Bn(i)

+
1

4ω

T−1
∑

k=n

̟n+T−1−kλn,n+T−1−kQ
T−1−k
gn+T−1−k

(i)

=rfλn,nxn +

T−1
∑

k=n

λn,n+T−1−kQ
T−1−k
µ1

(i) − ωAn(i) +
1

4ω
αn(i)−

1

4ω
Bn(i).

(G.11)

Furthermore, for m = n+ 1, n + 2, · · · , T , by (3.3), (3.13) and (3.15), we have

hn,m(xn, i) =En[hn+1,m(X π̂n

n+1, ξn+1)]

=En

[

rm−n−1
f X π̂n

n+1 +
m−1
∑

k=n+1

rk−n−1
f Qm−1−k

µ1
(ξn+1)

+
1

2ω

m−1
∑

k=n+1

rk−n−1
f ̟n+m−kQ

m−1−k
gn+m−k

(ξn+1)

]

=rm−n−1
f

(

rfxn + ren(i)
′π̂n + µ1(i)

)

+

m−1
∑

k=n+1

rk−n−1
f Qm−k

µ1 (i)

+
1

2ω

m−1
∑

k=n+1

rk−n−1
f ̟n+m−kQ

m−k
gn+m−k

(i)

=rm−n
f xn +

(

rm−n−1
f µ1(i) +

m−2
∑

k=n

rk−n
f Qm−1−k

µ1 (i)
)

+
( 1

2ω
rm−n−1
f ̟ngn(i) +

1

2ω

m−2
∑

k=n

rk−n
f ̟n+m−1−kQ

m−1−k
gn+m−1−k

(i)
)

=rm−n
f xn +

m−1
∑

k=n

rk−n
f Qm−1−k

µ1
(i) +

1

2ω

m−1
∑

k=n

rk−n
f ̟n+m−1−kQ

m−1−k
gn+m−1−k

(i).

Therefore, it is clear that (3.13)-(3.15) also hold for n. By the principle of mathematical induction,

the theorem is proved.

Appendix H

Proof of Proposition 3.2. By (3.18), we have

1

2ω
=

EU
n (X

π̂
T∧τ )−W

f
n (i)

αn(i)
.

Substituting this formula into (3.19) leads to the proposition.
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