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Abstract: We develop a class of regularization methods based on the penalized sieve least squares for simul-
taneous model pursuit, variable selection, and estimation in high-dimensional additive hazards regression
models. In the framework of sparse ultrahigh-dimensional models, the asymptotic properties of the estima-
tors including the structure identification consistency and the variable selection oracle properties are estab-
lished. The computational process can be efficiently implemented by applying the blockwise majorization
descent algorithm. Simulation studies demonstrate the performance of the proposed methodology, and the
primary biliary cirrhosis data analysis is provided for illustration. The Canadian Journal of Statistics xx: 1–
25; 20?? © 20?? Statistical Society of Canada

1. INTRODUCTION

Survival models have been extensively used in the fields such as biomedicine, finance and eco-
nomics with the goal of assessing the effectiveness of predictors on event times of interest. How-
ever, when the dimension of covariates p is large compared to sample size n, e.g., p = O(nα1) or
p = O(exp(nα2)) for some positive constants α1 and α2, the “curse of dimensionality” makes
the traditional statistical analysis methods infeasible. As a tool of alleviating problems of high di-
mensional data, variable selection aims to select a subset composing of sparse important variables
from a huge number of covariates, and then enhances the efficiency of estimates and improves
the predictive power. Among various variable selection techniques, regularization methods have
gained more popularity since this type of methods can identify important variables and estimate
the parameters simultaneously. Examples include but not limited to the least absolute shrinkage
and selection operator (LASSO) proposed by Tibshirani (1996), adaptive LASSO studied by Zou
(2006), the smoothly clipped absolute deviation (SCAD) penalty explored by Fan & Li (2001),
and the minimum concave penalty (MCP) considered by Zhang (2010). These selectors were
then extended to the Cox proportional hazards model by many researchers, such as Tibshirani
(1997), Fan & Li (2002), and Zhang & Lu (2007). Different from the Cox model which con-
cerns the relative risk, an additive hazards model describes the risk difference. Due to its easy
interpretation, this model has been studied in many literatures, such as Lin & Ying (1994), Ma,
Kosorok, & Fine (2006), and Xie, Strickler, & Xue (2013). Besides, for additive hazards regres-
sion models under a fixed dimensional setting, Leng & Ma (2007) used the weighted LASSO
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approach to obtain a path consistent model selector, Martinussen & Scheike (2009) considered
several regularization methods such as the LASSO, adaptive LASSO and Dantzig selector; un-
der a high-dimensional setting, Lin& Lv (2013) proposed regularization methods based on the
non-concave penalized likelihood approach, Zhang, Cheng, & Liu (2017) studied the properties
of the weighted LASSO, and Wang & Xiang (2017) presented the penalized empirical likelihood
inference procedure.

The above referred work assumed that covariates have only linear effects on the hazard func-
tion of the survival time. This assumption may cause a seriously biased estimation problem if a
nonparametric component is misspecified as a linear part. On the other hand, the model would
be more complex and lose efficiency if parametric parts are treated as nonparametric. Lee et al.
(2015), Kong et al. (2018), and Hao et al. (2020) studied a functional Cox model with a known
structure. In practice, how to identify the model structure is critical in the process of the statistical
inference, and this issue has drawn an extensive attention recently. Zhang, Cheng, & Liu (2011)
and Huang, Wei, & Ma (2012) studied a model pursuit problem for a partial linear model. Lian,
Lai, & Liang (2013) and Cao et al. (2016) considered the problem of simultaneous structure se-
lection and estimation for the Cox model under a fixed dimensional setting. Yan & Huang (2012)
and Bradic & Song (2015) proposed hierarchical group penalties to identify the structure of a
varying coefficient Cox model. Furthermore, Honda & Yabe (2017) used the orthogonal penalty
to study a problem of variable selection and structure identification for a varying coefficient Cox
model.

The Cox model assumes that effects of covariates on the hazard function are multiplicative.
When this assumption is violated, an additive hazards model may be more appropriate and fea-
sible. However, to the best of our knowledge, the problem of simultaneous variable selection,
model identification and estimation has not been studied for high-dimensional additive hazards
models with censored data. On the other hand, it was assumed in Honda & Yabe (2017) that
the number of important variables should be finite and p ∼ exp(nα) with nα = o(n2/5), which
may be restrictive in high-dimensional settings. These motivate us to provide an automatic proce-
dure for variable selection, model structure identification and estimation simultaneously in high-
dimensional additive hazards models and to establish the asymptotic properties of the proposed
estimators under some weaker conditions.

The main contributions of our work are threefold. First, we give milder conditions such that
additive hazards models with an unknown structure are identifiable in the process of statistical
inference compared to Zhang, Cheng, & Liu (2011). Second, we develop a class of regular-
ization approaches for simultaneous model pursuit, variable selection, and estimation in high-
dimensional additive hazards models with censored data by adopting the orthogonal decompo-
sition approach. Third, we establish the asymptotic properties of the estimators including both
the consistency of structure identification and the oracle properties of variable selection using
the modern empirical process theory. Our methods allow the number of important variables to
be diverging and the model dimensionality to be exponentially increasing. In particular, the con-
ditions required in the existing methods are relaxed, and thus the proposed approaches are more
applicable to general situations in high-dimensional survival data analysis.

The remainder of the paper is organized as follows. In Section 2, we propose the inference
method of orthogonal sieve estimation with penalties, and present the blockwise majorization
descent algorithm. The asymptotic properties of the estimates are established in Section 3. We
then present simulation studies in Section 4 to evaluate the finite-sample performance of some
competing penalized estimates, and in Section 5, we apply the proposed procedure to the primary
biliary cirrhosis data analysis. Some concluding remarks are made in Section 6. The proofs of
the main results are relegated to the Appendix.
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2. ESTIMATION PROCEDURE

2.1. Model setting
We denote Z(t) = (Z1(t), . . . , Zp(t))

T , φ = (φ1, . . . , φp)
T and g = (g1, . . . , gp)

T as
p−dimensional vectors. Suppose that TU denotes a failure time satisfying the following addi-
tive hazards model:

λ(t|Z) = λ0(t) +

p∑
j=1

gj(φ̃0j , t), (1)

where λ0(t) is an unspecified baseline hazard function, φ̃0j , j = 1, . . . , p are unknown functions,
and gj(φ̃0j , t) = Zj(t)φ̃0j(Zj(t)) with Zj(t) being the jth uniformly bounded covariate. This
kind of model setting takes a low cost to explain a nonparametric additive effect of covariate
Zj on one hand, and it ensures the selection process identifiable on the other hand. In practice,
covariate Zj is unimportant if and only if φ̃0j(·) = 0; if not, the covariate has a linear effect
on the hazard function only when φ̃0j(·) equals a non-zero constant, and it is a nonparametric
component otherwise. Thus, the problem of model pursuit and variable selection turns into the
discriminating problem on function φ̃0j(·).

Let C be a censoring time, T = TU ∧ C be a observed time, and ∆ = I(TU ≤ C) where
I(·) is an indicator function. We assume that the failure time TU and the censoring time C are
independent given covariateZ(·). Then the observed data consist of (Ti,∆i,Zi(·)) for individual
i = 1, 2, . . . , n. Define the observed failure counting process as Ni(t) = I(Ti ≤ t,∆i = 1) and
the at-risk indicator Yi(t) = I(Ti ≥ t). In this paper, we suppose that the true model satisfies the
following partially linear model with

λ(t|Z) = λ0(t) +

s1∑
j=1

β0jZj(t) +

s∑
j=s1+1

Zj(t)φ0j(Zj(t)).

This true model implies that the first s variables are important, among which the first s1 com-
ponents are linear effect parts and the last s2 ones are nonlinear parts with s2 = s− s1. Corre-
spondingly, we setA = {j : 1 ≤ j ≤ s}, B = {j : 1 ≤ j ≤ s1}, C = {j : s1 + 1 ≤ j ≤ s}, and
D = Ac as the index sets of important variables, important linear components, important non-
linear components, and unimportant components, respectively. We denote the true values of the
parametric and nonparametric parts as β0 = (β0j , j ∈ B) and φ0 = (φ0j , j ∈ C). We use ‖ · ‖
and ‖ · ‖∞ to represent L2−norm and L∞−norm, and assume that the follow-up time period is
[0, τ ] and E

∫ τ
0
gj(φ̃0j , t)dt = 0. Without loss of generality, we suppose that the covariate Z(t)

takes values on [a, b]p with a density function ft(z1, . . . , zp), where
∫ τ
0
ft(z1, . . . , zp)dt > 0,

and a and b are finite real numbers.

The following proposition shows that
p∑
j=1

gj(φ̃0j , t) with φ̃0j ∈ L2[a, b] can be identified into

linear and nonlinear components.

Proposition 1 (Identifiability) (i) Let G(·) be a Borel function on [a, b]p. Then G(Z1(t),
. . . , Zp(t)) = 0 for any t ∈ [0, τ ] implies that G(z1, . . . , zp) = 0 for (z1, . . . , zp) ∈ [a, b]p when∫ τ
0
ft(z1, . . . , zp)dt > 0;

(ii) Suppose that gj’s j = 1, . . . , p are Borel functions on [a, b] satisfying
p∑
j=1

gj(zj) = 0 for

(z1, . . . , zp) ∈ [a, b]p. Then there exist constants Cj’s such that gj = Cj , j = 1, . . . , p;

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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(iii) For any function φ̃j ∈ L2[a, b], there exists a unique βj ∈ R and φj ∈ H = {φ :∫ b
a
φ(x)dx = 0, φ ∈ L2[a, b]} such that

p∑
j=1

Zj(t)φ̃j(Zj(t)) =

p∑
j=1

βjZj(t) +

p∑
j=1

Zj(t)φj(Zj(t)) (2)

with E
( ∫ τ

0
Zj(t)φ̃j(Zj(t))dt

)
= E

( ∫ τ
0

[βjZj(t) + Zj(t)φj(Zj(t))]dt
)

for each j = 1, . . . , p.

2.2. Sieve estimation
Let k be a nonnegative integer such that ς = k + α > 0.5 for some α ∈ (0, 1]. We define φ(k) as
the kth derivative of function φ and let

G̃ = {φ : |φ(x1)− φ(x2)| ≤ C|x1 − x2|α, x1, x2 ∈ [a, b], φ(k) ∈ L2[a, b]} ⊂ L2[a, b].

Throughout the paper, we suppose that the kth derivative φ̃(k)0j exists and φ̃0j ∈ G̃, j = 1, . . . , p.

We use the sieve estimation to approximate the unknown function φ̃0j’s in (1). The
interval [a, b] is divided into Kn = O(nν) subintervals IKnj = [ξj , ξj+1), j = 0, . . . ,Kn −
1 and IKnKn

= [ξKn
, ξKn+1], where ξ0 = a, ξKn+1 = b, and 0 < ν < 0.5 such that

max1≤j≤Kn+1 |ξk − ξk−1| = O(n−ν). Denote Sn to be the space of polynomial splines of order
m ≥ 1 consisting of functions l, where l is a polynomial of order m on interval IKnj for 1 ≤
j ≤ Kn, and l is m′ times continuously differentiable on [a, b] for m ≥ 2 and 0 ≤ m′ ≤ m− 2.
According to Schumaker (1981), there exists a local basis B̄ = {B̄k, 1 ≤ k ≤ qn} such that for
any φnj ∈ Sn,

φnj(Zj(t)) =

qn∑
k=1

θ̄jkB̄k(Zj(t)), (3)

where qn = Kn +m. To identify linear components from nonlinear parts, following the idea of
Honda & Yabe (2017), we introduce a qn−dimensional equispaced orthogonal B-spline basis
B = AB̄ = (Bk, 1 ≤ k ≤ qn) such that∫ τ

0

B(Zj(t))B(Zj(t))
T dt = q−1n Iqn ,

where B1(·) = q
−1/2
n reflects the base function of constant coefficients, Iqn is the qn−order

identity matrix, and the matrix A can be constructed as in Honda & Yabe (2017). Thus, (3) can
be rewritten as

φnj(Zj(t)) =

qn∑
k=1

θjkBk(Zj(t)) = θTj B(Zj(t)),

where θj = (θj1, . . . , θjqn)T with θj = (θj1,θj1−)T . Then φnj is an appropriate approximation
for φ̃0j in that there exists some φnj ∈ Sn close enough to φ̃0j for any φ̃0j ∈ G̃ according to
Schumaker (1981), and the linear and nonlinear effects on the jth convariate can be decomposed
into θj1 and θj1−, respectively.

We define θ = (θT1 , . . . ,θ
T
p )T and Xi(t) = B(Zi(t))Zi(t), where B(Zi(t)) = diag(

B(Zi1(t)), . . . ,B(Zip(t))
)

is a pqn × p block diagonal matrix. Then following Lin & Ying

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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(1994), the estimated regression coefficient can be obtained by solving the pseudoscore estimat-
ing equation

U(θ) =
1

n

n∑
i=1

∫ τ

0

(Xi(t)−X(t))
(
dNi(t)− Yi(t)θTXi(t)dt

)
= 0,

whereX(t) =
n∑
i=1

Yi(t)Xi(t)/
n∑
i=1

Yi(t). Let

b =
1

n

n∑
i=1

∫ τ

0

(Xi(t)−X(t))dNi(t) and V =
1

n

n∑
i=1

∫ τ

0

Yi(t)(Xi(t)−X(t))⊗2dt.

Then the estimating equation is equivalent to the linear equation b− V θ = 0. Integrating−U(θ)
with respect to θ yields the least squares type loss function

L(θ) =
1

2
θTV θ − bTθ.

Based on this loss function, we propose the objective function

Q(θ) = L(θ) +

p∑
j=1

P (‖θj‖;λn), (4)

where P (‖θ‖;λ) is a penalty function. The estimator θ̂ is obtained by minimizing the objective
function (4), and then we define φ̂nj(Zj(t)) = θ̂Tj B(Zj(t)). To identify the model structure and
to select important variables simultaneously, we introduce the penalty function

P (‖θj‖;λn) = λ1nρ1(|θj1|;λ1n) + λ2nρ2(‖θj1−‖;λ2n), (5)

where the tuning parameter λn = (λ1n, λ2n)T , and the functions ρi(·), i = 1, 2 are set to select
important linear and nonlinear components, respectively. For the sake of simplicity, we omit the
subscript n in tuning parameters subsequently.

2.3. Blockwise majorization descent algorithm
Let the current value of θ be θ̃ = (θ̃1, . . . , θ̃p) and write θ∗ = (θ̃1, . . . , θ̃j−1,θj , θ̃j+1, . . . , θ̃p).
Define uj = ∂L(θ̃)/∂θj . Let Vj be the sub-matrix of V corresponding to θj and hj be the
largest eigenvalue of Vj . Then

L(θ∗) ≤L(θ̃) + (θj − θ̃j)Tuj +
1

2
(θj − θ̃j)TVj(θj − θ̃j)

≤L(θ̃) + (θj − θ̃j)Tuj +
hj
2
‖θj − θ̃j‖2.

Based on this relation, Yang & Zou (2015) proposed the blocked majorization descendent (BMD)
algorithm to obtain the optimal point θj in (4) by taking

θ̂j = arg min
θj

{
1

2
‖θj − (θ̃j − uj/hj)‖2 +

1

hj
P (‖θj‖;λ)

}
. (6)

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Thus, the value of θ is updated as θ = (θ̃1, . . . , θ̃j−1, θ̂j , θ̃j+1, . . . , θ̃p). The solution of (6) has
a closed form for the commonly used penalties. We list the solutions for the group LASSO, group
SCAD and group MCP penalties as follows.

For the group LASSO penalty P (‖θj‖;λ) = λ‖θj‖, θ̂j = S(cj ;λ/h), where S(cj ;λ) =

(1− λ/‖cj‖)+cj with cj = θ̃j − uj/hj .
For the group SCAD penalty with parameter a, we have

P ′(‖θj‖;λ) = λI(‖θj‖ ≤ λ) +
(aλ− ‖θj‖)+

a− 1
I(|θj‖ > λ),

and

θ̂j =


S(cj ;λ/hj), ‖cj‖ ≤ λ+ λ/hj ,
[hj(a−1)−λa/‖cj‖]cj

hja−hj−1 , λ+ λ/hj < ‖cj‖ ≤ λa,
cj , ‖cj‖ > λa.

For the group MCP penalty with parameter a, we have P ′(‖θj‖) = (aλ− ‖θj‖)+a−1, and

θ̂j =

{
S
(

hjcj
hj−1/a ; λ

hj−1/a

)
, ‖cj‖ ≤ λa,

cj , ‖cj‖ > λa.

Concretely, for the penalty form as in (5), we write hj1 as the first entry of Vj , and hj1−
as the largest eigenvalue of the sub-matrix of Vj by deleting the first row and the first column.
Using the BMD algorithm coordinately to θj1 and θj1− in (5), we have the following steps for
computation:

Step 1. Calculate hj1 and hj1− for j = 1, . . . , p;
Step 2. Choose an initial estimate θ̃ = θ(0);
Step 3. Repeat the following blockwise updates until convergence.

(i) Calculate uj1 = ∂L(θ̃)/∂θ̃j1;
(ii) Find the minimizer θ̂j1 and set θ̃j = (θ̂j1, θ̃j1−);

(iii) Calculate uj− = ∂L(θ̃)/∂θ̃j−;
(iv) Find the minimizer θ̂j1− and get θ̂j = (θ̂j1, θ̂j1−);
(v) Set θ̃ = (θ̃1, . . . , θ̃j−1, θ̂j , θ̃j+1, . . . , θ̃p).

Tseng & Yun (2009) established the global convergence and the linear convergence under a
local Lipschitzian error bound assumption for the block coordinate gradient descent method with
the L1−regularization, which provides the theoretical assurance for the proposed algorithm.

3. ASYMPTOTIC PROPERTIES

For simplicity, we write g0j(t) = gj(φ̃0j , t), and define

ĝnj(t) = gj(φ̂nj , t)−
1

τ
Pn
∫ τ

0

gj(φ̂nj , t)dt.

Here we use bold-faced letters to represent functional vectors. For example, we denote
g = (g1, . . . , gp)

T with gi being the ith observation of g, g0 = (g01, . . . , g0p)
T and ĝn =

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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(ĝn1, . . . , ĝnp)
T . We use the notation Λ(Γ) and Λmin(Γ) to denote the eigenvalue and the mini-

mum eigenvalue of matrix Γ, respectively, and use the subscript A for a vector or a matrix to de-
note the corresponding sub-vector or sub-matrix. For example, xA means the |A|−dimensional
vector consisting of components {xj , j ∈ A}, and VAA means the |A|−dimensional squared
matrix with entries {Vij , i ∈ A, j ∈ A}.

To present our main results, for k = 0, 1, 2, we define

S(k)(g, t) =
1

n

n∑
i=1

Yi(t)g
⊗k
i , s(k)(g, t) = E[Y (t)g⊗k],

e(g, t) = s(1)(g, t)/s(0)(g, t), and D = E
[ ∫ τ

0

Y (t){g0(t)− e(g0, t)}⊗2dt
]
.

Let d = 1
2 min
j∈A
‖g0j‖∞, κ(λ,θ) = max

1≤j≤q

∂2P (‖θ‖;λ)

∂|θj |2
for θ = (θ1, . . . , θq)

T , κ0 =

sup{κ(λ,θ) : ‖g − g0‖∞ ≤ d}, and µ = Λmin(DAA)− κ0. Let ρλ(θ) represent ρ1(θ;λ1) or
ρ2(θ;λ2). We need the following conditions.

Condition 1 The function ρλ(θ) is increasing and concave on each component θjl of θ,
and has a continuous partial derivative ∂ρλ(θ)/∂θjl for j = 1, . . . , p, l = 1, . . . , qn. In addition,
ρ′λ(θ) is increasing on tuning parameter λ, and ρ′λ(0+) = ρ′(0+) > 0 is independent of λ.

Condition 2
∫ τ
0
λ0(t)dt <∞ and P (Y (τ) = 1) > 0.

Condition 3 Let Z̃C(t) be the projection of ZB(t) on ZC(t), Γ1 = E
[ ∫ τ

0
(ZB(t)−

Z̃C(t))
⊗2dt

]
, Γ2 = E

[ ∫ τ
0
ZC(t)ZC(t)

T dt
]
, and Γ3 = E

[ ∫ τ
0
Z̃C(t)Z̃C(t)

T dt
]
. There exist fi-

nite positive constants ρ1, ρ2 and ρ∗3 such that Λ(Γj) ≥ ρj for j = 1, 2 and Λ(Γ3) ≤ ρ∗3.
Condition 1 is mild, which can be met by all the penalties listed in Section 2.3. Condition

2 is standard for survival models, and Condition 3 is needed technically to derive the L2−loss
convergence rate of the proposed estimators.

Let θ̂D = {θ̂j , j ∈ D}, θ̂1−B = {θ̂j1−, j ∈ B}, β̂n = {φ̂nj , j ∈ B}, φ̂n = {φ̂nj , j ∈ C}, and
ηn = n−νς + n−(1−ν)/2. We now present the results regarding the selection consistency of the
proposed estimators.

Theorem 1. (Consistency of the selection) Suppose that Conditions 1-3 hold. Also assume that

η−2n
log p

→∞, n+ η−2n
log s ∨ log n

→∞, (n+ η−2n )µ2

s2(log s ∨ log n)
→∞,

λ2n

log p ∨ log n
→∞, λ2nη−2n

p2(log p ∨ log n)
→∞,

(7)

where λ = min{λ1, λ2}, µ > 0, and 0.25/ς < ν < 0.5 with ς = k + α > 0.5 for some nonneg-
ative integer k. Then with probability tending to one, we have
(i) (Variable selection Sparsity) θ̂D = 0;
(ii) (Structure identification consistency) θ̂1−B = 0;
(iii) (L2−loss) ‖β̂n − β0‖2 = Op(s

2η2n) and ‖φ̂n − φ0‖2 = Op(s
2η2n).

Property (i) in Theorem 1 shows that the unimportant variables can be selected with high
probability; property (ii) illustrates the ability identifying the model structure; property (iii)

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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implies the convergence rate of the regression coefficient estimates of important variables in
L2−norm.

The first part in (7) is a condition on the relationship between the variable dimension p and
the important variable number s. Especially, if µ is a constant, then the proposed estimators can
handle the case with log p = o(n2νς + n(1−ν)) and s = o(nνς/ log n+ n(1−ν)/2/ log n). This
shows that the dimension of covariates is allowed to grow nonpolynomially and the dimension of
the true sparse model can be divergent. The following oracle property shows that the estimators
of important linear effects are asymptotically distributed normal.

Theorem 2. (Asymptotical Normality) Suppose that the conditions of Theorem 1 hold and λ1 =
o(s−11 n(1−ν)/2). Then for every u ∈ Rs1 with ‖u‖ = 1,

√
nuΣ−1/2(β̂n − β0) is asymptotically

standard normal, where the matrix Σ is defined as in the Appendix.

4. SIMULATION STUDIES

Simulation studies were conducted to evaluate the finite sample properties of the proposed pe-
nalized estimators via group LASSO, adaptive group LASSO, group SCAD, and group MCP
penalties. In the study, the failure time TU was generated from the additive hazards regression
model (1), and the censoring time C was generated form the Uniform(τ/2, τ ) such that the cen-
soring rate reaches at 20%. For the adaptive selector, we adopt the linear coefficients selected
by group lasso as the weights of the penalized linear part. The parameter a in group SCAD was
taken as 3.7, and a = 2/{1−max

i6=j
xTi xi/n} in group MCP. The tuning parameters λ1 and λ2

were selected by using the EBIC criterion suggested by Chen & Chen (2008). The orthogonal
cubic B-splines were adopted to select the important variables and to identify the structure, where
qn was taken 8 approaching to the order of O(n1/3). The simulation results are based on 200
replications for p = 15 and 100 replications for p = 500, 1000 with sample size n = 500 using
R software. To compare the performance of different penalties, we computed the L1 prediction
error (PE= ‖ĝn − g0‖1), the true positive rate (TPR) representing the rate that an important vari-
able is correctly selected, the false positive rate (FPR) representing the rate that an unimportant
variable is wrongly selected, TPRN representing the rate that an important variable with a non-
linear effect are correctly selected, and FPRN representing the rate that an unimportant variable
or an important variable with a linear effect are wrongly detected as having a nonlinear effect.

Example 1. Consider model (1) with

λ(t) = 2 + 2Z1 − 2Z2 + 2f1(Z3) +

15∑
j=1

0 · Zj ,

where f1(z) = sin(z) + 2z cos(2z). The covariates Zj’s were generated from an AR(1) model
trimmed to [−1, 1] with the initial standard normal distribution and Cov(Zj1 , Zj2) = 0.4|j1−j2|

for j1, j2 = 1, . . . , 15. Specifically, to generate the covariates Zj’s, we first generated i.i.d. ran-
dom variables Wj , j = 1, . . . , 15 from a normal distribution with mean 0 and variance 1− 0.42,
and Z1 independently from a standard normal distribution. Then we took Zj = 0.4Zj−1 +Wj

for j = 2, . . . , 15, and trimmed Zj to [−1, 1] for j = 1, . . . , 15. There are three important vari-
ables with two linear effects and one nonlinear effect.

Example 2. Consider model (1) with

λ(t) = 2 + Z1 − 1.5Z2 + 0.8Z3 + 2f1(Z4)− 0.5f2(Z5) +

p∑
j=6

0 · Zj ,
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where f1(z) = sin(z) + 2z cos(2z) and f2(z) = z(exp(2z2)− 3 log(2 + z2)). The setup for the
covariates Zj’s (j = 1, . . . , p) was the same as in Example 1. There are five important vari-
ables with three linear effects and two nonlinear effects. Different combinations of sample size
n = 500 and model sizes p = 15, 500, 1000 were considered to evaluate the performance of the
proposed method.

Example 3. Consider model (1) with

λ(t) = 2t3 + Z1(t)− 1.5Z2(t) + 0.8Z3(t) + 2f3(Z4(t)) +

15∑
j=5

0 · Zj(t),

where f3(z) = z3, and Zj(t), j = 1, . . . , 15 are time-dependent covariates. To generate the
covariates Zj(t), j = 1, . . . , 15, we first generated ηj’s from an AR(1) model trimmed to
[−1, 1] with the initial standard normal distribution and Cov(ηj1 , ηj2) = 0.4|j1−j2| for j1, j2 =
1, . . . , 15. Then we took Zj(t) = ηjt

3 for j 6= 4, and Z4(t) = η4t. There are four important vari-
ables with three linear effects and one nonlinear effect.

The simulation results are summarized in Tables 1-9. Tables 1 and 2 report the rate of each
component being selected as an important variable and the rate of each component being identi-
fied as having a nonlinear effect over 200 replications in Example 1, respectively. Based on Ex-
ample 2, Table 3 reports the rate of each component being selected as an important variable over
200 replications for p = 15; Table 4 reports the rate of each important variable being correctly se-
lected, PE, TPR and FPR for p = 500, 1000; Table 5 reports the rate of each component being se-
lected as having a nonlinear effect for p = 15; Table 6 reports the rates of each important variable
being identified as having a nonlinear effect, TPRN and FPRN for p = 500, 1000. Based on Ex-
ample 3, Tables 7 and 8 report the rate of each component being selected as an important variable
and the rate of each component being selected as having a nonlinear effect over 200 replications
for p = 15, respectively. All the four penalized detection methods perform well. They can cor-
rectly identify the important variables and the nonlinear effects on the hazard rate function with
high probability for all situations considered. In addition, the results indicate that for different
combinations of sample size and model size (e.g. (n, p) = (500, 15), (500, 500), (500, 1000)),
the adaptive group LASSO, the group SCAD, and the group MCP perform better than the group
LASSO in that they could select important variables and nonlinear components with much higher
true positive rates and lower false positive rates. Table 9 reports the estimation results for the lin-
ear regression coefficients of the important covariates by the adaptive group LASSO for p = 15,
including the bias, the sample standard deviation (SSE), the estimated standard error (ESE), and
the mean squared error of the estimated regression coefficients for important covariates in three
examples. The results show that the proposed estimates are nearly unbiased and the ESEs are
reasonably well.

Moreover, Figure 1 displays the functional estimates for important linear components z1, z2
and z3 in Example 1, while Figure 2 shows the functional estimates for important nonlinear
components z4 and z5 in Example 2 when p = 15. As the figures are similar, we only show the
figures by using the adaptive group LASSO selector in Examples 1 and 2. In these figures, the
solid line is the pointwise mean estimate from 200 Monto Carlo repetitions, the dot and dash
line is the true function, and the dotted lines are the 95% pointwise confidence bands. The 95%
confident intervals are produced by calculating the pointwise standard error using 200 bootstrap
replications. From Figures 1 and 2, we can see that the fitted functions are closed to the true
functions and the pointwise confidence bands cover the true values of the functions completely.
These results demonstrate that the proposed method can efficiently estimate linear and nonlinear
effects of covariates.
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5. AN APPLICATION

We applied the proposed methods to analyzing the primary biliary cirrhosis (PBC) data. The data
set recorded 424 patients suffering from PBC, which was conducted by the Mayo Clinic between
1974 and 1984. The main purpose of this trial was to investigate the risk factors of PBC. There
were two treatment groups (D-penicillamine and placebo) and 16 baseline covariates includ-
ing clinical and laboratory measurements collected for 312 randomized participants, denoted by
TRT, Age, Sex, Ascites, Hepato, Spiders, Edema, Stage, Bili, Chol, Albumin, Copper, Alk.phos,
SGOT, Trig, Platelet, and Protime. We used 276 complete observations for the analysis, discard-
ing the missing data. To analyze the hazard of the disease before the liver transplantation, we
considered the death time as the failure time, and the earlier of the liver transplantation time or
the follow-up time as the censoring time. The censoring rate of this data set is about 60%. More
details about the PBC data can be found in Fleming and Harrington (1991). The data have been
analyzed by many researchers, including Ma & Huang (2005), Zhang & Lu (2007), Leng & Ma
(2007), Cao et al. (2016), and Wang & Xiang (2017) among others.

To fit the model, we scaled each covariate by subtracting its minimum value and then dividing
the corresponding range such that all covariates took values in [0, 1] for convenience. We consid-
ered four competing selectors: the group LASSO, the adaptive group LASSO, the group SCAD,
and the group MCP. The tuning parameter was determined by the EBIC criterion (Chen & Chen,
2008). The results of variable selection and structure identification are summarized in Table 10.
Obviously, the models identified by the adaptive group LASSO, the group SCAD, and the group
MCP selectors are more sparse than the group LASSO selector. Our methods identify covariates
Age, Ascites, Spiders, and Edema as important variables having linear effects, and Bili, Albumin,
Copper, Alk.phos, SGOT, Trig, Platlet, and Protime as important factors having nonlinear effects.
As a comparison, Ma & Huang (2005) fitted the data to an additive hazards model and identi-
fied Age, Stage, log(Bili) and log(Copper) as important variables with linear effects using the
Lasso regularization method, while Leng & Ma (2007) and Wang & Xiang (2017) detected nine
covariates (Age, Ascites, Edema, Bili, Albumin, Copper, SGOT, Protime, and Stage) as impor-
tant variables with linear effects using the modified Lasso and the penalized empirical likelihood
method with the SCAD penalty for the additive hazards model, respectively. Our new finding is
that covariates Alk.phos, SGOT, Trig, Platelet, and Protime have nonlinear effects on the hazard
function, although Alk.phos, Trig and Platelet could not be detected as important predictors with
linear effects on the hazard function by the existing methods. This provides new insights into the
study of PBC data.

Furthermore, we took the selection results by using the adaptive group LASSO penalty as
an example to observe the trend of nonlinear effects on the hazard function shown in Figure 3,
where the solid lines display the estimates of the important nonlinear effects and the dotted lines
show the corresponding 95% pointwise confidence intervals based on 200 bootstrap replications.

6. DISCUSSION

We have considered the problem of simultaneous model pursuit, variable selection and estimation
for additive hazards regression models in the framework with ultrahigh-dimensional covariates
and diverging dimension of important variables. We have constructed the sieve least squares loss
function with the orthogonal penalty, and established the asymptotic properties of the resulting
estimators under mild conditions, showing that the proposed method can identify the model
structure and select important variables consistently as if we knew the true model in advance. The
proposed procedure can be implemented through the blockwise majorization descent algorithm.
The numerical results show that the proposed method performs well in identifying the model
structure, selecting important variables, and estimating the effects of variables simultaneously.
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Although we focus on additive hazards models in this paper, the proposed methods can be
extended to dealing with the following varying coefficient additive hazards model

λ(t) = λ0(t) +

p∑
j=1

Zj(t)gj(Xj(t)),

where Zj(t)’s are covariates andXj(t) is an influential variable treated as the index variable. The
equivalent problem becomes to decide whether the effect of variable Zj(t) is linear, coefficient-
varying or unimportant depending on the form of function gj . A critical issue in the selection
process is to determine stable optimal tuning parameter when the dimensionality of variables is
rarely high, which is still an open question now.
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APPENDIX

Proof of Proposition 1.
(i) Since E(|G(Z1(t), . . . , G(Zp(t))|) = 0, we have∫

[a,b]p
|G(z1, . . . , zp)|ft(z1, . . . , zp)dz1 · · · dzp = 0.

Define f(z1, . . . , zp) =
∫ τ
0
ft(z1, . . . , zp)dt. Integrating two sides of the above equation on t

from 0 to τ , we get that∫
[a,b]p

|G(z1, . . . , zp)|f(z1, . . . , zp)dz1 · · · dzp = 0.

Noting that f(z1, . . . , zp) > 0, we have G(z1, . . . , zp) = 0.

(ii) For any j = 1, . . . , p, gj(zj) = −
∑
k 6=j

gk(zk). By the Fubini’s theorem, there exists

some (z01 , . . . , z
0
j−1, z

0
j+1, . . . , z

0
p) ∈ [a, b]p−1 such that gj(zj) = −

∑
k 6=j

gk(z0k) holds for any

zj ∈ [a, b].

(iii) As we have φ̃j(x) = βj + φj(x) with βj =
∫ b
a
φ̃j(x)dx and φj(x) = φ̃j(x)− βj for j =

1, . . . , p, the decomposition (2) holds. To show the uniqueness of the decomposition, we assume
that there exist βlj ∈ R and φlj ∈ H, j = 1, . . . , p, l = 1, 2 such that

p∑
j=1

Zj(t)[β
1
j + φ1j (Zj(t))] =

p∑
j=1

Zj(t)[β
2
j + φ2j (Zj(t))]. (A.1)
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It suffices to prove that β1
j = β2

j and φ1j (x) = φ2j (x) for each j = 1, . . . , p. To this end, we note
that (A.1) implies that

p∑
j=1

zj

(
[β1
j − β2

j ] + [φ1j (zj)− φ2j (zj)]
)

= 0

by (i). Then by (ii), there exists some constant Cj such that

zj

(
[β1
j − β2

j ] + [φ1j (zj)− φ2j (zj)]
)

= Cj

for each j = 1, . . . , p and zj ∈ [a, b]. This yields that

Zj(t)
(

[β1
j − β2

j ] + [φ1j (Zj(t))− φ2j (Zj(t))]
)

= Cj .

Since E
( ∫ τ

0
[βljZj(t) + Zj(t)φ

l
j(Zj(t))]dt

)
= E

( ∫ τ
0
Zj(t)φ̃j(Zj(t))dt

)
, l = 1, 2, we have

(β1
j − β2

j ) + [φ1j (z)− φ2j (z)] = 0 (A.2)

for each j = 1, . . . , p. Integrating two sides of (A.2) on variable z from a to b and noting that
φlj(x) ∈ H, l = 1, 2, we obtain that β1

j = β2
j . Thus, (A.2) gives that φ1j (z) = φ2j (z). This com-

pletes the proof of the proposition. �

For any probability measure P, define L2(P) = {f :
∫
f2dP <∞} and ‖f‖ =( ∫

f2dP
)1/2

. For any subclass F of L2(P), define the bracketing number as N[](ε,F , L2(P))

and J[](η,F , L2(P)) =
∫ η
0

√
1 + logN[](ε,F , L2(P))dε. For i.i.d. random variables

X1, . . . , Xn with distribution P, let Pn be the empirical measure of these random

variables. We write f(t) = {
n∑
i=1

Yi(t)fi(t)}/{
n∑
i=1

Yi(t)} for a given function f(t). Let

Ωη = {ω : sup
t∈[0,τ ]

|gnj(t)− g0j(t)| ≤ ηn, j = 1, . . . , p} for some given ηn and gnj(t), the latter

of which can be defined as (A.6).

To prove the theorems, we need some lemmas.

Lemma A. 1 (Concentration of S(k)(·), k = 0, 1, 2) Recalling that the notation gn =
(gn1, . . . , gnp)

T , there exist constants C1, C2 and L such that

P
(

sup
t∈[0,τ ]

|S(0)
j (gn, t)− s(0)j (g0, t)| ≥ C1n

−1/2(1 + x) + C2ηn
)
≤ exp(−Lx2), (A.3)

P
(

sup
t∈[0,τ ]

|S(1)
j (gn, t)− s(1)j (g0, t)| ≥ C1n

−1/2(1 + x) + C2ηn
∣∣Ωη) ≤ exp(−Lx2), (A.4)

P
(

sup
t∈[0,τ ]

|S(2)
ij (gn, t)− s(2)ij (g0, t)| ≥ C1n

−1/2(1 + x) + C2ηn
∣∣Ωη) ≤ exp(−Lx2) (A.5)

hold for all x > 0 and i, j = 1, . . . , p, where S(1)
j is the jth component of S(1)(·) and S(2)

ij (·) is
the (i, j)−th entry of the matrix S(2)(·).
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Proof. We only show (A.4). (A.3) and (A.5) can be similarly proved and thus omitted. Since

Rj = sup
t∈[0,τ ]

|S(1)
j (gn, t)− s(1)j (g0, t)|

≤ sup
t∈[0,τ ]

|S(1)
j (gn, t)− s(1)j (gn, t)|+ sup

t∈[0,τ ]
|s(1)j (gn, t)− s(1)j (g0, t)|

= I1 + I2.

To apply a functional Hoeffding-type inequality, we need to control the term ERj . Let m0(t) =
Y (t)gnj(t) and M(η1) = {m0 : ‖gnj − g0j‖ ≤ η1}. Then, similar to Corollary A1 of Huang
(1999), we can get that

logN[](ε,M(η1), L2(P)) ≤ C[qn log(η1/ε) + log(τ/ε)],

and J[](η1,M, L2(P)) ≤ C[q1/2n η1 + η1 log1/2(1/η1)].

Taking η1 = q
−1/2
n in Lemma 3.4.2 of van der Vaart & Wellner (1996), we haveEI1 ≤ C1n

−1/2.
Noting that sup

t∈[0,τ ]
|gnj(t)− g0j(t)| ≤ ηn for any j = 1, . . . , p conditional on Ωη , we immedi-

ately obtain that EI2 ≤ C2ηn. Thus, ERj ≤ C1n
−1/2 + C2ηn. It follows from Theorem 9 of

Massart (2000) that

P (Rj ≥ C1n
−1/2(1 + x) + C2ηn|Ωη) ≤ P (Rj ≤ ERj + C1n

−1/2x|Ωη) ≤ exp(−L2x2)

for some constant L > 0. �

The following Lemmas A.2 and A.3 can be proved by using the similar arguments as used in
the proofs of Lemma A4 and Lemma 1 in Lin & Lv (2013).

Lemma A. 2 (Concentration of V ) We denote

V (gn) =
1

n

n∑
i=1

∫ τ

0

Yi(t)(gni(t)− gn(t))⊗2dt

as an empirical version of the matrix D. Then there exist constants C1, C2, C and L > 0 such
that

P (|Vij(gn)−Dij | ≥ C1n
−1/2(1 + x) + C2ηn|Ωη) ≤ C exp

(
− L(x2 ∧ (n+ η−2n ))

)
.

Lemma A. 3 (Concentration of empirical matrices) If µ > 0 and µ−1 = O((n1/2 + η−1n )/s),
there exist constants C and L > 0 such that

P (Λmin(VAA) ≤ λκ0|Ωη) ≤ Cs2q2n exp
(
− L(n+ η−2n )

(µ2

s2
∧ 1
))
.

Lemma A. 4 (Concentration of Uj(θn)) Under Condition 2, there exist constantsC1, C2, C and
L > 0 such that for j = 1, . . . , pqn,

P (|Uj(θn)| ≥ C1n
−1/2(1 + x) + C2pηn(n−1/2x+ 1)|Ωη) ≤ C exp

(
− L(x2 ∧ (n+ η−2n ))

)
,
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where Uj(θn) is the jth component of U(θn).

Proof. Let Xj(t) and Xj(t) be the jth component of X(t) and X(t), respectively. We
write

Uj(θn) = Pn
∫ τ

0

(Xj(t)−Xj(t))dM(gn, t),

where

dM(gn, t) = dM(g0, t)− Y (t)

p∑
j=1

(gnj(t)− g0j(t))dt

with dM(g0, t) = dN(t)− Y (t)
p∑
j=1

g0j(t)dt. Hence, we have

Uj(θn) =Pn
∫ τ

0

{Xj(t)−Xj(t)}dM0(g0, t)− Pn
∫ τ

0

Y (t){Xj(t)−Xj(t)}
p∑
j=1

(gnj(t)− g0j(t))dt

=Pn
∫ τ

0

Xj(t)dM0(g0, t)− Pn
∫ τ

0

Y (t)Xj(t)

p∑
j=1

(gnj(t)− g0j(t))dt

− Pn
∫ τ

0

Xj(t)dM0(g0, t) + Pn
∫ τ

0

Y (t)Xj(t)

p∑
j=1

(gnj(t)− g0j(t))dt

=I1 − I2 − I3 + I4.

Since term I1 is a sum of i.i.d. zero-mean random variables, applying the Hoeffding’s (1963)
inequality to I1 yields that P (|I1| ≥ C1n

−1/2x|Ωη) ≤ C exp(−Lx2).

To estimate term I2, we note that sup
t∈[0,τ ]

|gnj − g0j | ≤ ηn on set Ωη . Thus, there exists a

constant C2 such that E|I2| ≤ C2pηn. Using Hoeffding’s inequality again yields that

P (|I2| ≥ C2pηn(n−1/2x+ 1)|Ωη) ≤ C exp(−Lx2).

Similar to Lemma A3 of Lin & Lv (2013), we have E|I3| ≤ C1n
−1/2, and then we can get that

P (|I3| ≥ C1n
−1/2(1 + x)|Ωη) ≤ C exp(−Lx2 ∧ (n+ η−2n )).

For term I4, by using the same clues as the term I2, it follows that

P (|I4| ≥ C2pηn(n−1/2x+ 1)|Ωη) ≤ C exp(−Lx2 ∧ (n+ η−2n )).

Thus, the conclusion of the lemma holds. �

Lemma A. 5 Assume that Conditions 1 and 2 hold. Then for any g0j ∈ H, there exist functions
φnj ∈ Sn and gnj(t) defined by (A.6), and a constant L such that for any x > 0,

P
(

sup
t∈[0,τ ]

|gnj(t)− g0j(t)| ≥ C(n−νς + n−(1−ν)/2)(1 + x)
)
≤ exp(−Lx2)

with Pn
∫ τ
0
gnj(t)dt = 0.
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Proof. According to Corollary 6.21 of Schumaker (1981), for any 1 ≤ j ≤ p, there exists
φnj ∈ Sn such that ‖φnj − φ̃0j‖∞ = O(n−νς). Define

gnj(t) = gj(φnj , t)−
1

τ
Pn
∫ τ

0

gj(φnj , t)dt. (A.6)

Then it is easy to see that Pn
∫ τ
0
gnj(t)dt = 0. Furthermore, we note that

‖gnj − g0j‖∞ ≤
1

τ

∥∥∥Pn ∫ τ

0

gj(φnj , t)dt
∥∥∥
∞

+ ‖gj(φnj , t)− g0j(t)‖∞ , I1n + I2n, (A.7)

where

I1n ≤ C
(∥∥∥(Pn − P)

∫ τ

0

gj(φnj , t)dt
∥∥∥
∞

+
∥∥∥P∫ τ

0

(gj(φnj , t)− g0j(t))dt
∥∥∥
∞

)
with C being a constant independent of n. By Lemma 3.4.2 in van der Vaart & Wellner
(1996), we have (Pn − P)

∫ τ
0
gj(φnj , t)dt = Op(n

−(1−ν)/2). And the definition of φnj shows

that
∥∥∥P ∫ τ0 (gj(φnj , t)− g0j(t))dt

∥∥∥
∞

= O(n−νς). Hence we have

I1n = Op(n
−νς + n−(1−ν)/2). (A.8)

In addition,

I2n = ‖Zj(t)φnj(Zj(t))− Zj(t)φ̃0j(Zj(t))‖∞ = Op(n
−νς). (A.9)

Plugging (A.8) and (A.9) into (A.7), we have E sup
t∈[0,τ ]

|gnj − g0j | ≤ C(n−νς + n−(1−ν)/2).

Thus, applying Theorem 9 of Massart (2000) gives that

P
(

sup
t∈[0,τ ]

|gnj − g0j | ≥ C(n−νς + n−(1−ν)/2)(1 + x)
)

≤P
(

sup
t∈[0,τ ]

|gnj − g0j | ≥ E sup
t∈[0,τ ]

|gnj − g0j |+ C(n−νς + n−(1−ν)/2)x
)
≤ exp(−Lx2).

This completes the proof of the lemma. �

Lemma A. 6 Assume that Conditions 1-2 hold. If 0.25/ς < ν < 0.5 and λ = o(sq−1n ), then
‖ĝnA − gnA‖2 = op(s

2q−1n ) for ĝnD = 0 with ĝnA = (ĝnj , j ∈ A), gnA = (gnj , j ∈ A) and
ĝnD = (ĝnj , j ∈ D).

Proof. Let gsn(t) =
∑s
j=1 gj(φnj , t) and hsn(t) =

∑s
j=1 gj(φ

∗
nj , t) with φ∗nj(t) =

θ∗TnjB(Zj(t)) and ‖φ∗nj‖2 = O(q−1n ). Then we have ‖1

s
hsn‖2 = O(q−1n ). Define Hn(α) =

Q(θn + αθ∗n). To prove this lemma, it is sufficient to show that for any α0 > 0, with proba-
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bility tending to one, H ′n(α0) > 0 and H ′n(−α0) < 0. Note that

Hn(α0) =− P
∫ τ

0

(gsn(t)− gsn(t))dN(t)− α0P
∫ τ

0

(hsn(t)− hsn(t))dN(t)

+
1

2
P
∫ τ

0

Y (t)[(gsn(t)− gsn(t)) + α0(hsn(t)− hsn(t))]2dt

+ λ

s∑
j=1

ρ(‖θnj + α0θ
∗
nj‖).

Then

H ′n(α0) =− Pn
[ ∫ τ

0

(hsn(t)− hsn(t))dMs
n(t)

]
+ α0Pn

[ ∫ τ

0

Y (t)(hsn(t)− hsn(t))2dt
]

+ λ

s∑
j=1

ρ′(‖θnj + α0θ
∗
nj‖)

θ∗Tnj (θnj + α0θ
∗
nj)

‖θnj + α0θ∗nj‖

,H1 +H2 +H3,

where dMs
n(t) = dN(t)− Y (t)[gsn(t)− gsn(t)]dt. Let dM0(t) = dN(t)− Y (t)[g0(t)−

g0(t)]dt. It can be seen that

H1 =− Pn
∫ τ

0

(hsn(t)− hsn(t))dM0(t)

+ Pn
∫ τ

0

Y (t)hsn(t)[(gsn(t)− g0(t))− (gsn(t)− g0(t))]dt

,J1 + J2,

with J1 = Op(n
−1/2s2),

J2 ≤Pn
∫ τ

0

hsn(t)Y (t)dt · [‖gsn − g0‖∞ + ‖gsn − g0‖∞]

≤ηnOp(n−1/2s2 + s2q−1/2n )

=Op(s
2(n−(1/2+ς)ν + n−1/2)),

and ηn = n−νς + n−(1−ν)/2 by Lemma A.5. Under the condition that 0.25/ς < ν < 0.5, it fol-
lows that |H1| = op(s

2q−1n ). Next we focus on H2. Note that

H2 =α0(Pn − P)

∫ τ

0

Y (t)hsn
2(t)dt+ α0P

∫ τ

0

Y (t)hsn
2(t)dt− α0Pn

∫ τ

0

Y (t)hsn
2
(t)dt

=Op(n
−1/2s2) + Cα0s

2q−1n + J3,
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where

J3 =α0(Pn − P)

∫ τ

0

Y (t)hsn
2
(t)dt− α0P

∫ τ

0

Y (t)[hsn
2
(t)− e2h(t)]dt− α0P

∫ τ

0

Y (t)e2h(t)dt

=Op(n
−1/2s2) + Cα0s

2q−1n

with e2h(t) = s(1)(hsn, t)/s
(0)(hsn, t). Therefore, H2 ≥ Cs2q−1n for some constant C > 0.

At last, we consider H3. Since ‖θ∗TnjB(Zj(t))‖ = O(q
−1/2
n ) and∫ τ

0
B(Zj(t))B(Zj(t))

T dt = q−1n Iqn , we can get that ‖θ∗nj‖ = O(1). Thus,

|H3| ≤ λ
s∑
j=1

ρ′(‖θnj + α0θ
∗
nj‖)‖θ∗nj‖ ≤ λsρ′(0+)O(1) = o(s2q−1n )

by using the assumption that λ = o(sq−1n ) and ρ′(0+) = C.
Consequently, H ′n(α0) ≥ Cs2n−ν + op(s

2n−ν) > 0 with probability tending to one. Simi-
larly, we can prove that H ′n(−α0) < 0 with probability tending to one. �

Proof of Theorem 1. We denote λρ′(·) = λ1ρ
′
1(·;λ1) + λ2ρ

′
2(·;λ2), and obtain several im-

portant inequalities at first. By Lemma A.4, we have

P (‖UB(θn)‖∞ ≥ λ2ρ′2(0+)|Ωη)

≤
∑
j∈B

P (‖Uj(θn)‖∞ ≥ λ2ρ′2(0+)|Ωη)

≤Cs1qn exp{−L[(λ22n(1 ∧ p−2η−2n )) ∧ (n+ η−2n )]},

and

P (‖UD(θn)‖∞ ≥ λρ′(0+)|Ωη) ≤ C(p− s)qn exp{−L[(λ2n(1 ∧ p−2η−2n )) ∧ (n+ η−2n )]}.

Moreover, Lemma A.5 implies that

P (Ωcη) ≤ p exp(−Lη−2n ).

Thus, the following inequalities hold

‖UB(θn)‖∞ ≤ λ2ρ′2(0+),

‖UD(θn)‖∞ < λρ′(0+), Λmin(VAA) > λκ0
(A.10)

with probability at least

1− Cs1qn exp{−L[(λ22n(1 ∧ p−2η−2n )) ∧ (n+ η−2n )]}

− Cs2q2n exp
(
− L(n+ η−2n )

(µ2

s2
∧ 1
))

− C(p− s)qn exp(−L[(λ2n(1 ∧ p−2η−2n )) ∧ (n+ η−2n )])− p exp(−Lη−2n ).

Note that there exists θ̂ minimizing Q(θ) in the subspace B = {v ∈ Rpqn : vD = 0} by
Lemma A.6. To show that P (θ̂D = 0) = 1, it remains to prove that Q(θ1) > Q(θ̂) for any
θ1 ∈ Rpqn\B that lies in a sufficiently small neighborhood of θ̂. To the end, it suffices to show
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that Q(θ1) > Q(θ2) with θ2 being the projection of θ1 on to B since Q(θ2) > Q(θ̂) by the
definition of θ̂. By the mean value theorem, we have

Q(θ1)−Q(θ2) =
∑

j∈D:‖θ1j‖6=0

(
∂Q(θ∗)

θj

)T
θ1j

≥
∑

j∈D:‖θ1j‖6=0

(
−Uj(θ∗) + λρ′(‖θ∗j ‖)θ∗j /‖θ∗j ‖)

)T
θ1j ,

where θ∗ is a point on the line segment between θ1 and θ2. Thus, with high probability, for θ1
closed enough to θ̂, we can get that

Q(θ1)−Q(θ2) ≥
∑

j∈D:‖θ1j‖6=0

[−‖UD(θ∗)‖∞ + λρ′(‖θ∗j ‖)]‖θ1j‖

≥
∑

j∈D:‖θ1j‖6=0

[−λρ′(0+) + λρ′(0+)]‖θ1j‖ ≥ 0

by using the concentration inequalities (A.10). Thus, result (i) is concluded.
We then show result (ii) using the proofs by contradiction. We assume that ‖θ̂j1−‖ 6= 0 for

some j ∈ B and let

θ̃j =

{
θ̂j , j /∈ B
(θ̂j1,0)T , j ∈ B.

Then similar to the proof of result (i), for some point θ∗ between θ̂ and θ̃, we have

Q(θ̂)−Q(θ̃) ≥
∑

j∈B:‖θ̂j1−‖6=0

[−‖UB(θ∗)‖∞ + λ2ρ
′
2(‖θ∗j1−‖)]‖θ̂j1−‖

≥
∑

j∈B:‖θ̂j1−‖6=0

[−λ2ρ′2(0+) + λ2ρ
′
2(0+)]‖θ̂j1−‖ ≥ 0

by using the concentration inequalities (A.10) again. This contradicts with the fact that θ̂ mini-
mizes Q(θ).

At last, to decide L2 loss of the estimators, we define

m0(g) =
(
−
∫ τ

0

(gs(t)− gs(t))dN(t) +
1

2

∫ τ

0

Y (t)(gs(t)− gs(t))2dt
)
/s

and denote M0 = Pm0 and Mn = Pnm0, where gs(t) =
s∑
j=1

gj(φj , t). Let

W = Mn(g)−Mn(gn)− (M0(g)−M0(gn))

= Pnm0(g)− Pnm0(gn)− (Pm0(g)− Pm0(gn))

= (Pn − P)(m0(g)−m0(gn)).
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By Lemma 3.4.2 of van der Vaart & Wellner (1996), E{ sup
‖ 1

s (g−gn)‖≤ηn
|W |} = n−1/2ηnq

1/2
n .

Then by Theorem 3.4.1 of van der Vaart & Wellner (1996), taking the distance
d(ĝn, gn) = −[Pm0(ĝn)− Pm0(gn)], we have −k21n[Pm0(ĝn)− Pm0(gn)] = O(1), where
k1n = O(n1/2q

−1/2
n ) = O(n(1−ν)/2). Therefore, Pm0(ĝn)− Pm0(gn) = O(n−(1−ν)). Thus,

similar to Lemma A6 in Huang (1999), we can get that ‖(ĝn − gn)/s‖2 = Op(n
−2νς +

n−(1−ν)). Combining this with the result in Lemma A.5 that ‖gn − g0‖2∞ = Op(s
2(n−2νς +

n−(1−ν))), we have ‖ĝn − g0‖2 = Op(s
2(n−2νς + n−(1−ν))). By Condition 2, it follows that

E
∥∥ZC(t)(φ̂n(ZC(t))− φ0(ZC(t)) +ZB(t)(β̂n − β0)

∥∥2 = O(s2(n−2νς + n−(1−ν))).

Denoting the projection of ZB on ZC as Z̃C , we have

E
∥∥(ZB(t)− Z̃C(t))(β̂n − β0) + Z̃C(t)(β̂n − β0) +ZC(t)(φ̂n − φ0)

∥∥2
=E
∥∥(ZB(t)− Z̃C(t))(β̂n − β0)

∥∥2 + E
∥∥Z̃C(t)(β̂n − β0) +ZC(t)(φ̂n − φ0)

∥∥2
=O(s2(n−2νς + n−(1−ν))).

By Condition 3, we obtain ‖β̂n − β0‖2 = Op(s
2(n−(1−ν) + n−2νς)). This in turn im-

plies that E
∥∥ZC(t)(φ̂n − φ0)

∥∥2 = O(s2(n−(1−ν) + n−2νς)). Therefore, ‖φ̂n − φ0‖2 =

Op(s
2(n−(1−ν) + n−2νς)). This completes the proof of Theorem 1. �

Proof of Theorem 2. Define

U(Z, T ;β, φ̂) ,−
∫ τ

0

(ZB(t)−ZB(t))dN(t)

+

∫ τ

0

Y (t)(ZB(t)−ZB(t))
(∑
j∈C

Zj(t)(φ̂j(t)− φ̂j(t)) + βT (ZB(t)−ZB(t))
)
dt,

and

Ûn(β) ,
1

n

n∑
i=1

U(Zi, Ti;β, φ̂n).

Then we have Ûn(β̂) = 0 since β̂ is the root of ∂Q(β, φ̂n)/∂β = 0.

Let Un(β) ,
1

n

n∑
i=1

U(Zi, Ti;β,φ0) and β̃ be the root of Un(β) = 0. We now show that β̂

and β̃ have the same distribution by using Lemma 5.1 of Newey (1994). To the end, we first note
that ‖(φ̂n − φ0)/s‖ = Op(n

−(1−ν)/2 + n−νς) = op(n
−1/4), which ensures that assumption 5.1

in Newey (1994) is satisfied. Then the Fréchet derivative of U(Z, T ;β0,φ) at φ0 in the direction
h is

D(Z, T ;h) = lim
α→0

U(Z, T ;β0,φ0 + αh)− U(Z, T ;β0,φ0)

α

=

∫ τ

0

Y (t)(ZB(t)−ZB(t))(ZC(t)−ZC(t))Th(t)dt
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with h ∈ {h1 + . . .+ hs2 , hj ∈ H, j = 1, . . . , s2}. Thus,
√
n(Pn − P){D(Z, T ; φ̂n −

φ0)} p−→ 0 by Lemma 3.4.2 of van der Vaart & Wellner (1996). It follows that the stochastic
equicontinuity assumption 5.2 in Newey (1994) holds. At last, since a straightforward calcula-
tion yields that ED(Z, T ;φ− φ0) = 0 for φ close enough to φ0, the mean square continuity
assumption 5.3 holds with α(Z, T ) = 0.

Next, we derive the asymptotic distribution of β̃. Let ιn = n−1/2 and V1n(a) = Q(β0 +
ιn(aT ,0T )T ,φ0)−Q(β0,φ0), where a = (a1, . . . , as1)T is a s1-dimensional constant vector
and 0 is a (p− s)-dimensional zero vector. Note that

V1n(a) =Q(β0 + ιn(aT ,0T )T ,φ0)−Q(β0,φ0)

=
(
ιna

TUn(β0) +
ι2n
2
aT∇βUn(β0)a

)
+

s1∑
j=1

(
λ1ρ1(|θ̃j1|;λ1)− λ1ρ1(|θ0j1|;λ1)

)
,A1n(a) +A2n(a).

Since β̃n − β0 = ιna = q
−1/2
n (θ̃B1 − θ0B1), we have

A2n(a) =

s1∑
j=1

λ1
[
ρ′1(|θ0j1|;λ1)sgn(θ0j1) + op(1)

]
q1/2n ιnaj

≤ C
s1∑
j=1

λ1ρ
′
1(0+)q1/2n ιnaj = Op(s1λ1n

−(1−ν)/2) = op(1).

In addition,

nA1n(a) = aT
(√
nUn(β0)

)
+

1

2
aT∇βUn(β0)a

, aTT1 + aTT2a,

where T2
p−→ Σ1 with Σ1 = E

( ∫ τ
0
Y (t)(ZB(t)−ZB(t))⊗2dt

)
, and uΣ

−1/2
2 T1 is asymptot-

ically distributed by N(0, 1) for any u ∈ Rs1 with ‖u‖ = 1 with Σ2 = V ar(
∫ τ
0

(ZB(t)−
ZB(t))dM(g0, t)). Let â = argmin{V1(a) = aTT1 + 1

2a
TΣ1a : a ∈ Rs1}. According to the

continuous mapping theorem of Kim & Pollard (1990),
√
nuΣ−1/2(β̃n − β0) has the same

standard normal distribution asymptotically as uΣ−1/2â for any u ∈ Rs1 with ‖u‖ = 1, where
Σ = Σ−11 Σ2Σ

−1
1 . This completes the proof of Theorem 2. �
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TABLE 1: : Rates of each component being selected as an important variable by the penalized
methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS), and
group MCP (GM) over 200 replications, and the L1 prediction error (PE) of ĝn with the sample
standard deviation of PE for sample size n = 500 and model size p = 15 in Example 1.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 PE

GL 1 1 1 .235 .265 .240 .290 .270 .245 .250 .250 .240 .275 .270 .250 1.04(.32)

AGL 1 1 1 .015 .035 .025 .025 .015 .025 .035 .040 .035 .015 .040 .030 1.03(.33)

GS 1 1 .990 .015 .025 .025 .030 .010 .020 .040 .035 .030 .010 .045 .030 1.03(.32)

GM 1 1 1 .015 .030 .030 .030 .015 .025 .035 .040 .035 .015 .040 .035 1.03(.32)

true 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0(0)

TABLE 2: : Rates of each component being identified as having a nonlinear effect by the penal-
ized methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS),
and group MCP (GM) over 200 replications for sample size n = 500 and model size p = 15 in
Example 1.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

GL .025 .070 .995 .005 .005 0 0 0 0 .005 0 0 .005 .005 0

AGL .015 .050 .995 .005 0 0 0 0 0 0 0 0 .005 0 0

GS .015 .070 .980 .005 0 0 0 0 0 .005 0 0 0 .005 0

GM .025 .050 .995 .005 0 0 0 0 0 0 0 0 .005 0 0

true 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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TABLE 3: : Rates of each component being selected as an important variable by the penalized
methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS), and
group MCP (GM) over 200 replications, and the L1 prediction error (PE) with the sample stan-
dard deviation of ĝn for sample size n = 500 and model size p = 15 in Example 2.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 PE

GL .960 .995 .865 .995 1 .700 .455 .440 .420 .425 .420 .370 .400 .390 .360 1.05(.37)

AGL .960 .995 .865 .995 1 .080 .035 .065 .045 .045 .045 .055 .050 .050 .050 1.05(.37)

GS .960 .995 .850 .995 1 .085 .030 .070 .040 .040 .035 .055 .050 .040 .050 1.05(.38)

GM .960 .995 .860 .995 1 .065 .030 .065 .050 .035 .035 .065 .055 .050 .060 1.05(.38)

true 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0(0)

TABLE 4: : Rates of each component being selected as an important variable by the penalized
methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS), and
group MCP (GM) over 100 replications; the L1 prediction error (PE) for ĝn; the true positive rate
(TPR) representing the rate that the important variables are selected; and the false positive rate
(FPR) representing the rate that the unimportant variables are selected for sample size n = 500
and model sizes p = 500, 1000 in Example 2.

Method p x1 x2 x3 x4 x5 PE TPR FPR

GL 500 .94 .99 .93 1 1 1.51(.21) .972 .092

1000 .96 .99 .93 1 1 1.53(.24) .976 .047

AGL 500 .94 .99 .92 1 1 1.49(.21) .970 .064

1000 .95 .99 .91 1 1 1.53(.25) .970 .035

GS 500 .95 .99 .91 1 1 1.50(.21) .970 .061

1000 .95 .96 .90 1 1 1.54(.24) .962 .031

GM 500 .94 .99 .92 1 1 1.51(.21) .970 .063

1000 .94 .98 .93 1 1 1.53(.26) .970 .033

true 1 1 1 1 1 0(0) 1 0
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TABLE 5: : Rates of each component being identified as having a nonlinear effect by the penal-
ized methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS),
and group MCP (GM) over 200 replications for sample size n = 500 and model size p = 15 in
Example 2.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

GL .025 .045 .050 .970 .940 .020 .010 .005 .005 .010 .005 .020 .010 .020 .005

AGL .005 .025 .020 .980 .940 .015 .015 0 0 .005 .005 .010 .005 .010 .005

GS .030 .050 .035 .970 .975 .010 0 .005 .005 0 0 .010 .010 .010 .005

GM .035 .045 .035 .985 .955 .005 .005 0 0 0 0 .010 .015 .010 .010

true 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

TABLE 6: : Rates of each important component being identified as having a nonlinear effect
by the penalized methods with the group LASSO (GL), adaptive group LASSO (AGL), group
SCAD (GS), and group MCP (GM); TPRN representing the rate that an important variable with a
nonlinear effect is correctly selected; and FPRN representing the rate that an unimportant variable
or an important variable with a linear effect is wrongly detected as having a nonlinear effect over
100 replications for sample size n = 500 and model size p = 500, 1000 in Example 2.

Method p x1 x2 x3 x4 x5 TPRN FPRN

GL 500 .12 .30 .16 1 1 1 .015

1000 .18 .29 .14 .98 1 .990 .008

AGL 500 .09 .22 .13 1 1 1 .013

1000 .16 .25 .12 .99 1 .995 .007

GS 500 .14 .35 .22 1 1 1 .014

1000 .22 .35 .19 .99 1 .995 .008

GM 500 .19 .39 .18 .99 1 .995 .015

1000 .21 .40 .20 .94 1 .985 .008

true 0 0 0 1 1 1 0
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TABLE 7: : Rates of each component being selected as an important variable by the penalized
methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS), and
group MCP (GM) over 200 replications, and the L1 prediction error (PE) with the sample stan-
dard deviation of ĝn for sample size n = 500 and model size p = 15 in Example 3.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 PE

GL 1 1 .995 1 .055 .070 .045 .050 .050 .065 .070 .030 .075 .050 .060 2.60(.14)

AGL 1 1 .995 1 .045 .060 .040 .065 .055 .065 .055 .035 .075 .050 .060 2.60(.13)

GS 1 1 .990 1 .015 .050 .040 .020 .025 .050 .025 .050 .060 .030 .045 2.62(.12)

GM 1 1 .950 1 .030 .055 .045 .035 .035 .055 .040 .060 .065 .050 .065 2.62(.13)

true 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0(0)

TABLE 8: : Rates of each component being identified as having a nonlinear effect by the penal-
ized methods with the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS),
and group MCP (GM) over 200 replications for ĝn for sample size n = 500 and model size
p = 15 in Example 3.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

GL .035 .050 .040 .830 .025 .050 .020 .040 .035 .040 .040 .025 .045 .050 .045

AGL .025 .045 .020 .815 .020 .050 .020 .055 .040 .050 .030 .030 .050 .050 .045

GS .050 .050 .045 .820 .015 .045 .030 .020 .025 .040 .025 .050 .060 .030 .045

GM .070 .070 .080 .830 .030 .055 .045 .035 .035 .055 .040 .060 .065 .050 .065

true 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

TABLE 9: : Estimation results for linear regression coefficients of important covariates by the
adaptive group LASSO, including the estimated bias, the sample standard deviation (SSE), the
estimated standard error (ESE), and the mean squared error (MSE) for sample size n = 500 and
model size p = 15 in Examples 1-3.

β1 β2 β3

Bias(SSE) ESE MSE Bias(SSE) ESE MSE Bias(SSE) ESE MSE

Ex1 .022(.226) .248 .249 −.006(.260) .273 .273

Ex2 −.002(.189) .227 .227 .042(.263) .256 .259 .039(.178) .208 .212

Ex3 −.033(.158) .158 .161 .065(.209) .190 .201 -.026(.154) .160 .162
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TABLE 10: : Variable selection and structure identification results by the penalized methods with
the group LASSO (GL), adaptive group LASSO (AGL), group SCAD (GS), and group MCP
(GM) for the PBC data; 0/1/2 represent unimportant/linear/nonlinear effects for covariates.

Covariate GL AGL GS GM

TRT 1 0 0 0

Age 1 1 1 1

Sex 1 0 0 0

Ascites 1 1 1 1

Hepato 1 0 0 0

Spiders 1 1 1 1

Edema 1 1 1 1

Stage 1 0 0 0

Bili 2 2 2 2

Chol 2 0 2 2

Albumin 2 2 2 2

Copper 2 2 2 2

Alk.phos 2 2 2 2

SGOT 2 2 2 2

Trig 2 2 2 2

Platelet 2 2 2 2

Protime 2 2 2 2
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FIGURE 1: : Estimates of functions by using adaptive group LASSO for the important variables
in Example 1; (a), (b) and (c) show the estimated functional plots of variables z1, z2 and z3,
respectively. The solid line is the pointwise mean estimate from 200 Monte Carlo repetitions,
the dot and dash line is the true function, and the dotted lines are the 95% pointwise confidence
intervals.
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FIGURE 2: : Estimates of important nonlinear effects identified by using adaptive group LASSO
in Example 2; (a) and (b) show the estimated functional plots of variables z4 and z5, respectively.
The solid line is the pointwise mean estimate from 200 Monte Carlo repetitions, the dot and dash
line is the true function, and the dotted lines are the 95% pointwise confidence intervals.
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FIGURE 3: : Estimates of important nonlinear effects identified by using adaptive group LASSO
for PBC data.
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