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1. Introduction

Let Ω ⊂ R2 be a convex polygonal domain with boundary ∂Ω. We consider the time-
dependent Navier–Stokes (NS) equations describing the dynamics of an incompressible,
homogeneous, viscous fluid in the domain Ω up to a given time T > 0, i.e.,

(1.1)


∂tu+ (u · ∇)u−∆u+∇p = 0 in Ω × (0, T ],

∇ · u = 0 in Ω × (0, T ],

u = 0 on ∂Ω × [0, T ],

u = u0 in Ω × {0},

where u = u(x, t) = (u1(x, t), u2(x, t)) and p = p(x, t) denote the fluid velocity and pressure,
respectively, and u0 = u0(x) is a given initial value of the fluid velocity.

As the fundamental mathematical equations to understand and predict the dynamics of
incompressible fluid flow, the numerical solution of the NS equations has attracted much
attention in the community of scientific computing and numerical analysis. In particular,
if the solution of the NS equations is sufficiently smooth (with enough compatibility con-
ditions), then optimal-order convergence of high-order numerical methods can be proved;
see [4, 6, 18,19,26,27].

For H2 initial data, i.e., u0 ∈ H1
0 (Ω)2 ∩H2(Ω)2 and ∇ · u0 = 0 without additional com-

patibility conditions, Heywood & Rannacher [13–15] considered both semidiscrete and fully
discrete finite element methods for the NS equations and proved second-order convergence
in time for the implicit Crank–Nicolson scheme. Shen [20, 21] proved optimal-order con-
vergence of the first-order and second-order projection methods for decoupling velocity and
pressure. He & Sun [12] proved second-order convergence of the Crank–Nicolson/Adams–
Bashforth implicit-explicit scheme. Emmrich [5] proved second-order convergence of the
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two-step backward differentiation formula. Guo & He [8] proved second-order conver-
gence of the linearly extrapolated Crank–Nicolson scheme. Tang & Huang [23] proved
second-order convergence of the Crank–Nicolson leap-frog scheme. For the Crank–Nicolson
methods mentioned above, the convergence of pressure was proved with sub-optimal or-
der. Recently, Sonner & Richter [22] proved second-order convergence of pressure for the
Crank–Nicolson method.

For H1 initial data, i.e., u0 ∈ H1
0 (Ω)2 and ∇ · u0 = 0 without additional compatibility

conditions, only a few results were provided in the literature. As far as we know, Hill and
Süli [16] proved second-order convergence of the semidiscrete finite element method. He
derived first-order convergence of the Euler implicit/explicit scheme in [9] and 1.5th-order
convergence of the Crank–Nicolson/Adams–Bashforth implicit-explicit scheme in [10].

The objective of this paper is to prove that, for H1 initial data without additional com-
patibility conditions, the linearly extrapolated Crank–Nicolson scheme has second-order
convergence by utilizing a class of locally refined stepsizes, with the semi-implicit Euler
scheme at the first two time levels. The total computational cost would be equivalent to
using a uniform stepsize. The proof is based on two technical lemmas (Lemma 3.2 and 3.3)
established in section 3.1 and the consistency error estimate presented in section 3.2. For
simplicity, we focus on the homogeneous NS equations (1.1) (i.e., the right-hand side is zero
in the velocity equation) with a normalised viscosity. All the results can be carried over to
the general case if we assume appropriate smoothness of f .

2. Preliminary results for the semidiscrete finite element method

2.1. Functional setting of the NS equations. For s ≥ 0 and 1 ≤ p ≤ ∞, we denote
by W s,p(Ω) the conventional Sobolev space of functions on Ω, with abbreviations Hs(Ω) =
W s,2(Ω), L2(Ω) = H0(Ω) and Lp(Ω) = W 0,p(Ω). As usual, we denote by H1

0 (Ω) the space
of functions in H1(Ω) with zero trace on the boundary ∂Ω. For simplicity, the norms on
the spaces Hs(Ω), Hs(Ω)m and Hs(Ω)m×m, with any integer m ≥ 1, are all denoted by
‖ · ‖Hs(Ω).

We introduce the following Hilbert spaces associated with the NS equations:

X = H1
0 (Ω)2,

Y = {v ∈ L2(Ω)2; ∇ · v = 0, v · n|∂Ω = 0},
M = L2

0(Ω) = {q ∈ L2(Ω);
∫
Ωq dx = 0}.

Let X̊ be the divergence-free subspace of X, defined by

X̊ = {v ∈ X; ∇ · v = 0}.

In a convex polygon Ω, it is known that the steady-state Stokes equations
−∆v +∇q = g in Ω,

∇ · v = 0 in Ω,

v = 0 on ∂Ω,

with g ∈ L2(Ω)2, have a unique solution (v, q) ∈
(
X̊ ∩H2(Ω)2

)
×H1(Ω)/R satisfying the

following estimate:

(2.1) ‖v‖H2(Ω) + ‖q‖H1(Ω)/R ≤ c1‖g‖L2(Ω),
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where c1 > 0 is some positive constant depending on Ω. This result can be found in [17,
Theorem 2] and [24, p. 33, Proposition 2.2].

Let D(A) = X̊ ∩H2(Ω)2 ⊂ Y and define the Stokes operator

A = −P∆ : D(A)→ Y,

where P is the L2-orthogonal projection of L2(Ω)2 onto Y . As a result of (2.1), the following
inequalities hold; see [1, 13]:

‖v‖L2(Ω) ≤ c2‖∇v‖L2(Ω) v ∈ X,
‖v‖H2(Ω) ≤ c2‖Av‖L2(Ω) v ∈ D(A),

where c2 is some positive constant depending on Ω.
We recall the following result concerning the existence and uniqueness of a global strong

solution to the Navier–Stokes problem (1.1) (cf. [16, Theorem 2.1]).

Theorem 2.1. For any given u0 ∈ X̊ there exists a unique solution to (1.1) such that

u ∈ H1(0, T ;L2(Ω)2) ∩ L2(0, T ;H2(Ω)2) ∩ C([0, T ]; X̊),

p ∈ L2(0, T ;H1(Ω)/R).

The initial condition is satisfied in the sense that

‖u(·, t)− u0‖H1(Ω) → 0 as t→ 0.

We define a trilinear form on X ×X ×X by

b(u, v, w) =
(
(u · ∇)v, w

)
+

1

2

(
(∇ · u)v, w

)
=

1

2

(
(u · ∇)v, w

)
− 1

2

(
(u · ∇)w, v

)
for u, v, w ∈ X.

Then the solution of problem (1.1), as stated in Theorem 2.1, satisfies the following equations
for all (v, q) ∈ X ×M and t ∈ (0, T ]:{

(∂tu, v) + b(u, u, v) + (∇u,∇v)− (p,∇ · v) = 0,

(∇ · u, q) = 0.
(2.2)

2.2. Semidiscrete finite element approximation. Let Xh × Mh be a finite element
subspace of X×M subject to a triangulation of Ω with mesh size h > 0, with the following
three properties.

(1) Inverse inequality: there exists a constant c3 > 0 (independent of h) such that

‖vh‖Wm,q(Ω) ≤ c3h
−(m−l)−( 2

p
− 2
q
)‖vh‖W l,p(Ω) ∀ vh ∈ Xh,(2.3)

for 0 ≤ l ≤ m ≤ 1 and 1 ≤ p ≤ q ≤ ∞.
(2) Inf-sup condition: there exists a constant c4 > 0 (independent of h) such that

‖qh‖L2(Ω) ≤ c4 sup
vh∈Xh\{0}

(∇ · vh, qh)

‖∇vh‖L2(Ω)
∀ qh ∈Mh.(2.4)

(3) Fortin projection: there exists a linear projection Πh : H1
0 (Ω)2 → Xh such that for

v ∈ H1
0 (Ω)2 ∩H2(Ω)2

‖v −Πhv‖Hm(Ω) ≤ c5hs−m‖v‖Hs(Ω) 0 ≤ m ≤ 1, 1 ≤ s ≤ 2,

‖Πhv‖W 1,p(Ω) ≤ c5‖v‖W 1,p(Ω) 1 ≤ p <∞,
(2.5)
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where c5 > 0 is a constant independent of h.

For example, the Taylor–Hood P2-P1 element space [7, 25] has all these properties.
For the simplicity of notation, in the rest of this paper, we denote by c a generic positive

constant that is independent of h.
Let X̊h be the discrete divergence-free subspace of Xh, defined by

X̊h := {vh ∈ Xh; (∇ · vh, qh) = 0 ∀ qh ∈Mh}.

Let Ph : L2(Ω)2 → X̊h be the L2-orthogonal projection defined by

(Phv, vh) = (v, vh) ∀ vh ∈ X̊h.

Equivalently, Phv can be found by solving the following coupled equations:{
(Phv, vh)− (ηh,∇ · vh) = (v, vh) ∀ vh ∈ Xh,

(∇ · Phv, qh) = 0 ∀ qh ∈Mh.

Then the following inequalities are consequences of properties (2.3)–(2.5); see [3]:

‖∇Phv‖L2(Ω) ≤ c‖∇v‖L2(Ω) ∀ v ∈ X̊,(2.6)

‖v − Phv‖L2(Ω) + h‖∇(v − Phv)‖L2(Ω) ≤ ch2‖v‖H2(Ω) ∀ v ∈ X̊ ∩H2(Ω)2.(2.7)

The semidiscrete finite element method for (2.2) reads: Find
(
uh(t), ph(t)

)
∈ Xh ×Mh

such that 
(∂tuh, vh) + b(uh, uh, vh) + (∇uh,∇vh)− (ph,∇ · vh) = 0,

(∇ · uh, qh) = 0,

uh(0) = Phu
0,

(2.8)

holds for all (vh, qh) ∈ Xh ×Mh and t ∈ (0, T ].
It is known that the semidiscrete finite element solution uh(t) satisfies the following

regularity estimates; see [10].

Lemma 2.2 (Regularity of semidiscrete finite element solution). Let u0 ∈ H1
0 (Ω)2 and

∇ · u0 = 0, and assume that the finite element space Xh ×Mh has properties (2.3)–(2.5).
Then the semidiscrete finite element solution uh(t) determined by (2.8) satisfies the following
regularity estimates:

‖∂mt uh(t)‖H1(Ω) ≤ Ct−m ∀ t ∈ (0, T ], m = 1, 2,(2.9)

‖uh(t)‖L2(Ω) + ‖∇uh(t)‖L2(Ω) + t
1
2 ‖Ahuh(t)‖L2(Ω) ≤ C ∀ t ∈ (0, T ],(2.10)

where C is a general positive constant depending on ‖u0‖H1(Ω), Ω and T .

3. The linearly extrapolated Crank–Nicolson scheme

In this section, we present the error estimate for the fully discrete finite element method
with the linearly extrapolated Crank–Nicolson scheme in time. We consider a partition
0 = t0 < t1 < · · · < tN = T of the time interval [0, T ] with the following stepsizes:

τ1 = τ2 = T
( τ
T

) 1
1−α

,

τn = tn − tn−1 ∼
( tn−1
T

)α
τ for n ≥ 3,

(3.1)

where τ is the maximal stepsize and 3
4 < α < 1 is any fixed number.
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Remark 3.1. The computational cost using the stepsizes in (3.1) is equivalent to using

a uniform stepsize τ . For example, for the stepsize choice τn =
( tn−1

T

)α
τ we can estimate

the number of total time levels as follows. We divide the time interval [t1, T ] into dyadic
subintervals [2−j−1T, 2−jT ], with j = 0, 1, . . . , J , where J is the smallest integer satisfying

2−JT ≤ t1. Since t1 = τ1 = T
(
τ
T

) 1
1−α , it follows that J ≤ 1 + 1

(1−α) ln 2 ln
(
T
τ

)
. Any time

interval [tn−1, tn] ⊂ [2−j−1T, 2−jT ] would satisfy

τn =
( tn−1
T

)α
τ ≥ 2−(j+1)ατ.

Hence, the number of time levels in [2−j−1T, 2−jT ] is bounded by

Nj ≤
2−(j+1)T

2−(j+1)ατ
= 2−(j+1)(1−α)T

τ
.

As a result, the number of total time levels in [0, T ] is bounded by

N ≤
J∑
j=0

Nj ≤
J∑
j=0

2−(j+1)(1−α)T

τ
≤ 1

21−α − 1

T

τ
for α ∈ (0, 1).

Therefore, for any fixed α ∈ (0, 1), the number of total time levels is bounded by a constant
multiple of T/τ . The number of total time levels is increasing as α increases and blows up
as α → 1. But in practical computation we only need to choose a fixed α ∈ (0, 1) for a
given problem. For example, in the numerical solution of the NS equations we only need to
choose a fixed constant α ∈ (34 , 1); see Theorem 3.1.

For any sequence of functions unh, n = 0, 1, . . . , N , we adopt the conventional notations:

δτu
n
h :=

unh − u
n−1
h

τn
, u

n− 1
2

h :=
unh + un−1h

2
n ≥ 1,

û
n− 1

2
h :=

(
1 +

rn
2

)
un−1h − rn

2
un−2h with rn =

τn
τn−1

n ≥ 2.

The stepsizes in (3.1) guarantee that rn ≤ c for some positive constant c.

Let u0h = Phu
0 ∈ X̊h. For (unh, p

n
h) ∈ Xh ×Mh, n = 1, 2, we compute the numerical

solutions by the semi-implicit Euler method:{
(δτu

n
h, vh) + b(un−1h , unh, vh) + (∇unh,∇vh)− (pnh,∇ · vh) = 0 ∀ vh ∈ Xh,

(∇ · unh, qh) = 0 ∀ qh ∈Mh.
(3.2)

For n ≥ 3 and given functions

(un−2h , pn−2h ), (un−1h , pn−1h ) ∈ X̊h ×Mh,

we consider the following linearly extrapolated Crank–Nicolson method: Find (unh, p
n
h) ∈

Xh ×Mh such that
(δτu

n
h, vh) + b(û

n− 1
2

h , u
n− 1

2
h , vh) + (∇un−

1
2

h ,∇vh)− (p
n− 1

2
h ,∇ · vh) = 0 ∀ vh ∈ Xh,

(∇ · un−
1
2

h , qh) = 0 ∀ qh ∈Mh.

(3.3)

The main result of this paper is presented in the following theorem.
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Theorem 3.1. Let u0 ∈ H1
0 (Ω)2 and ∇ · u0 = 0, and assume that the finite element space

has properties (2.3)–(2.5) (such as the Taylor–Hood element space). If the temporal stepsizes
are chosen from (3.1) with some fixed α satisfying 3/4 < α < 1, then the fully discrete finite
element solution unh given by (3.2)–(3.3) has the following error bound:

‖u(tn)− unh‖L2(Ω) ≤ Cτ2 + Ct
− 1

2
n h2,(3.4)

where C is a general positive constant depending on ‖u0‖H1(Ω), Ω, T , c3 and c5.

The proof of Theorem 3.1 is presented in the following subsections.

Remark 3.2. The Taylor–Hood P2-P1 elements can achieve at most third-order conver-
gence when the solution is sufficiently smooth, but only have lower-order convergence when
the regularity of the solution is not enough. For example, in (2.5) we only consider the
approximation of the Fortin projection for v ∈ H1

0 (Ω)2 ∩H2(Ω)2. If v ∈ H1
0 (Ω)2 ∩H3(Ω)2

then (2.5) can also hold for s = 3.

3.1. Some technical inequalities. In this subsection, we present two technical lemmas
to be used in the error estimate for the linearly extrapolated Crank–Nicolson method.

In a convex polygon, it is known that the following interpolation inequalities hold
(
cf. [2,

p. 139, Theorem 5.8 and 5.9]
)
:

‖∇v‖L4(Ω) ≤ c‖∇v‖
1
2

L2(Ω)
‖∆v‖

1
2

L2(Ω)
∀v ∈ H1

0 (Ω)2 ∩H2(Ω)2,(3.5)

‖v‖L∞(Ω) ≤ c‖v‖
1
2

L2(Ω)
‖v‖

1
2

H2(Ω)
∀v ∈ H1

0 (Ω)2 ∩H2(Ω)2.(3.6)

For the discrete Stokes operator Ah = −Ph∆h : Xh → X̊h defined by

(Ahvh, wh) = −(∆hvh, wh) = (∇vh,∇wh) ∀ vh ∈ Xh, wh ∈ X̊h.

We shall need the following discrete analogues of (3.5)–(3.6).

Lemma 3.2 (Discrete Sobolev interpolation inequalities).

‖∇vh‖L4(Ω) ≤ c‖∇vh‖
1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
∀vh ∈ X̊h,(3.7)

‖vh‖L∞(Ω) ≤ c‖vh‖
1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
∀vh ∈ X̊h.(3.8)

Proof. To obtain a bound of ‖∇vh‖L4(Ω), we let v ∈ D(A) = X̊ ∩H2(Ω)2 be the solution of

Av = Ahvh vh ∈ X̊h,(3.9)

where (3.9) is equivalent to the linear Stokes equations for (v, q) ∈ X ×M
−∆v +∇q = Ahvh in Ω,

∇ · v = 0 in Ω,

v = 0 on ∂Ω.

(3.10)

According to the estimate (2.1), we know that the solution v ∈ D(A) satisfies that

‖v‖H2(Ω) + ‖q‖H1(Ω) ≤ c‖Ahvh‖L2(Ω).(3.11)

Note that vh is the solution of the following equations:{
(∇vh,∇wh)− (qh,∇ · wh) = (Ahvh, wh) ∀wh ∈ Xh,

(∇ · vh, ηh) = 0 ∀ ηh ∈Mh.
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As a result, vh is the Stokes–Ritz projection of v, i.e., there exists qh ∈Mh such that{
(∇(v − vh),∇wh)− (q − qh,∇ · wh) = 0 ∀wh ∈ Xh,

(∇ · (v − vh), ηh) = 0 ∀ ηh ∈Mh.

It is known that the Stokes–Ritz projection satisfies the following estimate; see [25]:

‖v − vh‖Hm(Ω) ≤ chs−m(‖v‖Hs(Ω) + ‖q‖Hs−1(Ω)) 0 ≤ m ≤ 1, 1 ≤ s ≤ 2.(3.12)

In view of (2.5) and (3.12), we derive that

‖vh −Πhv‖Hm(Ω) ≤ chs−m(‖v‖Hs(Ω) + ‖q‖Hs−1(Ω)) 0 ≤ m ≤ 1, 1 ≤ s ≤ 2.(3.13)

Inequality (3.5) and (3.11) imply that

‖∇v‖L4(Ω) ≤ c‖∇v‖
1
2

L2(Ω)
‖v‖

1
2

H2(Ω)
≤ c‖∇v‖

1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
,

and therefore

(3.14)
‖∇Πhv‖L4(Ω) ≤ c‖∇v‖L4(Ω)

(
(2.5) is used

)
≤ c‖∇v‖

1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
.

Since

‖∇(vh −Πhv)‖L4(Ω)

(3.15)

≤ c‖∇(vh −Πhv)‖
1
2

L2(Ω)
‖∇(vh −Πhv)‖

1
2

L∞(Ω)

≤ c‖∇(vh −Πhv)‖
1
2

L2(Ω)
h−

1
2 ‖∇(vh −Πhv)‖

1
2

L2(Ω)

≤ c
(
‖∇vh‖L2(Ω) + ‖∇v‖L2(Ω)

) 1
2
(
‖v‖H2(Ω) + ‖q‖H1(Ω)

) 1
2
(
(2.5) and (3.13) are used

)
≤ c
(
‖∇vh‖L2(Ω) + ‖∇v‖L2(Ω)

) 1
2 ‖Ahvh‖

1
2

L2(Ω)

(
(3.11) is used

)
,

combining (3.14) and (3.15) yields that

(3.16)
‖∇vh‖L4(Ω) ≤ ‖∇Πhv‖L4(Ω) + ‖∇(vh −Πhv)‖L4(Ω)

≤ c
(
‖∇vh‖L2(Ω) + ‖∇v‖L2(Ω)

) 1
2 ‖Ahvh‖

1
2

L2(Ω)
.

It remains to prove the following inequality

‖∇v‖L2(Ω) ≤ c‖∇vh‖L2(Ω).(3.17)

Then substituting (3.17) into (3.16) yields the desired inequality (3.7). In fact, testing
equation (3.10) by v ∈ D(A) gives

‖∇v‖2L2(Ω) = (Ahvh, v) + (q,∇ · v)

= (Ahvh, Phv) = (∇vh,∇Phv)

≤ c‖∇vh‖L2(Ω)‖∇Phv‖L2(Ω)

≤ c‖∇vh‖L2(Ω)‖∇v‖L2(Ω),

where we have used (2.6) in the last inequality. This proves the first inequality of Lemma
3.2.
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To prove the second inequality of Lemma 3.2, we first test (3.10) by w and obtain

(q,∇ · w) = (∇v,∇w)− (Ahvh, Phw)

= (∇v,∇w)− (∇vh,∇Phw)

≤ c
(
‖∇v‖L2(Ω) + ‖∇vh‖L2(Ω)

)
‖w‖H1(Ω)

≤ c‖∇vh‖L2(Ω)‖w‖H1(Ω) ∀w ∈ X,

where we have used (3.17) in the last inequality. Through the inf-sup condition, we derive
that

‖q‖L2(Ω) ≤ c‖∇vh‖L2(Ω).(3.18)

On the one hand, by using the inverse inequality and (3.13), we have

‖vh −Πhv‖L∞(Ω) ≤ ch−1‖vh −Πhv‖L2(Ω)

= ch−1‖vh −Πhv‖
1
2

L2(Ω)
‖vh −Πhv‖

1
2

L2(Ω)

≤ ch
1
2
(
‖v‖H1(Ω) + ‖q‖L2(Ω)

) 1
2
(
‖v‖H2(Ω) + ‖q‖H1(Ω)

) 1
2(3.19)

≤ ch
1
2 ‖vh‖

1
2

H1(Ω)
‖Ahvh‖

1
2

L2(Ω)

(
(3.17), (3.18) and (3.11) are used

)
≤ c‖vh‖

1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
.

On the other hand, it follows from the fact

‖v‖L2(Ω) ≤ ‖v − vh‖L2(Ω) + ‖vh‖L2(Ω)

≤ ch(‖v‖H1(Ω) + ‖q‖L2(Ω)) + ‖vh‖L2(Ω)

(
(3.12) is used

)
≤ ch‖vh‖H1(Ω) + ‖vh‖L2(Ω)

(
(3.17) and (3.18) are used

)
≤ c‖vh‖L2(Ω),

and therefore

(3.20)

‖Πhv‖L∞(Ω) ≤ ‖v‖L∞(Ω)

≤ c‖v‖
1
2

L2(Ω)
‖v‖

1
2

H2(Ω)

(
(3.6) is used

)
≤ c‖vh‖

1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)

(
(3.11) is used

)
.

Using the triangle inequality and combining (3.19) and (3.20) yield that

‖vh‖L∞(Ω) ≤ ‖Πhv‖L∞(Ω) + ‖vh −Πhv‖L∞(Ω)

≤ c‖vh‖
1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
.

This completes the proof of this Lemma. �

By the definition of the trilinear form, it is easy to see that

b(uh, vh, vh) = 0.(3.21)

For uh, vh, wh ∈ Xh, it is known that
(
cf. [15, p. 360, eq. (3.7)]

)
|b(uh, vh, wh)| ≤ c‖uh‖H1(Ω)‖vh‖H1(Ω)‖wh‖H1(Ω).(3.22)

By using the interpolation inequalities (3.7)–(3.8), we prove the following result.
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Lemma 3.3. For uh, vh, wh ∈ X̊h, there holds

|b(uh, vh, wh)| ≤ c‖uh‖L2(Ω)‖vh‖
1
2

H1(Ω)
‖Ahvh‖

1
2

L2(Ω)
‖wh‖H1(Ω).(3.23)

Proof. According to the definition of the trilinear form and Lemma 3.2, we derive that

|b(uh, vh, wh)|

≤ 1

2

∣∣((uh · ∇)vh, wh
)∣∣+

1

2

∣∣((uh · ∇)wh, vh
)∣∣

≤ c‖uh‖L2(Ω)‖∇vh‖L4(Ω)‖wh‖L4(Ω) + c‖uh‖L2(Ω)‖vh‖L∞(Ω)‖∇wh‖L2(Ω)

≤ c‖uh‖L2(Ω)

(
‖∇vh‖

1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)
+ ‖vh‖

1
2

L2(Ω)
‖Ahvh‖

1
2

L2(Ω)

)
‖wh‖H1(Ω)

≤ c‖uh‖L2(Ω)‖vh‖
1
2

H1(Ω)
‖Ahvh‖

1
2

L2(Ω)
‖wh‖H1(Ω).

This proves the desired result. �

In addition to the two lemmas above, we also need to use the discrete Gronwall inequality,
which is stated in the following lemma; see [11].

Lemma 3.4. Let B and an, bn, dn, τn be nonnegative numbers such that

am +
m∑

n=n0+1

bnτn ≤
m−1∑
n=n0

andnτn +B for m ≥ n0 ≥ 1.

Then

am +
m∑

n=n0+1

bnτn ≤ B exp

(
m−1∑
n=n0

dnτn

)
for m ≥ n0.

3.2. Consistency. Under the assumptions of Theorem 3.1, Hill and Süli [16] proved the
following result for the semidiscrete finite element approximation:

max
t∈(0,T ]

‖u(t)− uh(t)‖L2(Ω) ≤ Ct−1/2h2.(3.24)

Hence, we only need to present the estimate for the temporal discretization error

enh := uh(tn)− unh n ≥ 1.

In this subsection, we consider the consistency error for the linearly extrapolated Crank–
Nicolson scheme (3.2)–(3.3) in the H−1 norm, by comparing the fully discrete scheme (3.2)–
(3.3) with the semidiscrete scheme (2.8). Here and after, we use the following notations:

δτuh(tn) =
uh(tn)− uh(tn−1)

τn
n ≥ 1,

uh(tn− 1
2
) =

uh(tn) + uh(tn−1)

2
n ≥ 1,

ûh(tn− 1
2
) =

(
1 +

rn
2

)
uh(tn−1)−

rn
2
uh(tn−2) n ≥ 2.
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Then the semidiscrete solution uh(tn) given by (2.8) satisfies the following system for n =
1, 2: 

(δτuh(tn), vh) + b(uh(tn−1), uh(tn), vh) + (∇uh(tn),∇vh)

−(ph(tn),∇ · vh) + (εn, vh) = 0 ∀vh ∈ Xh,

(∇ · uh(tn), qh) = 0 ∀qh ∈Mh,

(3.25)

and the following system for n ≥ 3:


(δτuh(tn), vh) + b(ûh(tn− 1

2
), uh(tn− 1

2
), vh) + (∇uh(tn− 1

2
),∇vh

)
−(ph(tn− 1

2
),∇ · vh) + (εn, vh) = 0 ∀vh ∈ Xh,

(∇ · uh(tn− 1
2
), qh) = 0 ∀qh ∈Mh,

(3.26)

where εn ∈ Xh is the consistency error defined by

(εn, vh) =



(∂tuh(tn)− δτuh(tn), vh) + b(uh(tn)− uh(tn−1), uh(tn), vh) for n = 1, 2,(
∂tuh(tn− 1

2
)− δτuh(tn), vh

)
+
(
∇(uh(tn− 1

2
)− uh(tn− 1

2
)),∇vh

)
+ b
(
uh(tn− 1

2
), uh(tn− 1

2
), vh

)
− b
(
ûh(tn− 1

2
), uh(tn− 1

2
), vh

)
=: (εn1 , vh) + (εn2 , vh) + (εn3 , vh) for n ≥ 3.

(3.27)

The following lemma gives a proof that rn ≤ c for n ≥ 2, where c is a positive constant.
It will be used in the consistency error estimate.

Lemma 3.5. For n ≥ 2, there holds rn ≤ c.

Proof. From the stepsizes choice in (3.1) we know that

r2 =
τ2
τ1

= 1 n = 2,

r3 =
τ3
τ2
∼
(
t2
T

)α
τ

τ2
=

(2τ2)
ατ

Tατ2
= 2α < 2 n = 3,

rn =
τn
τn−1

∼
( tn−1

T

)α
τ

( tn−2

T )ατ
=
tαn−1τ

tαn−2τ
=
( tn−2 + τn−1

tn−2

)α
=
(

1 +
τn−1
tn−2

)α
∼
(

1 +
tα−1n−2τ

Tα

)α
≤ 1 +

tα−1n−2τ

Tα
≤ 1 +

tα−11 τ

Tα
= 2 n ≥ 4.

This proves the desired result. �

Lemma 3.6. If u0 ∈ H1
0 (Ω)2 and ∇ · u0 = 0 and the stepsizes in (3.1) are used, then the

consistency error defined in (3.27) satisfies the following estimate:

|(εn, vh)| ≤ Cτ2nt−2n ‖∇vh‖L2(Ω) ∀ vh ∈ X̊h.(3.28)

Proof. For n = 1, 2 we have

|(εn, vh)| = |(∂tuh(tn)− δτuh(tn), vh) + b(uh(tn)− uh(tn−1), uh(tn), vh)|
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≤ c|(∂tuh(tn)− δτuh(tn), vh)|
+ c‖uh(tn)− uh(tn−1)‖H1(Ω)‖uh(tn)‖H1(Ω)‖vh‖H1(Ω)

(
(3.22) is used

)
≤ c|(∂tuh(tn)− δτuh(tn), vh)|(3.29)

+ c‖uh(tn)− uh(tn−1)‖H1(Ω)‖uh(tn)‖H1(Ω)‖∇vh‖L2(Ω)

≤ c max
t∈[0,t2]

|(∂tuh(t), vh)|+ c max
t∈[0,t2]

‖uh(t)‖2H1(Ω)‖∇vh‖L2(Ω)

≤ c max
t∈[0,t2]

|(∂tuh(t), vh)|+ C‖∇vh‖L2(Ω),

where the last inequality uses the boundedness of ‖uh(t)‖H1(Ω) as shown in (2.10). By

choosing vh ∈ X̊h in (2.8), we have (ph,∇ · vh) = 0 and therefore

(∂tuh(t), vh) + b(uh(t), uh(t), vh) + (∇uh(t),∇vh) = 0 ∀ vh ∈ X̊h,(3.30)

which implies that

|(∂tuh(t), vh)| ≤ |b(uh(t), uh(t), vh)|+ |(∇uh(t),∇vh)|
≤ c‖uh(t)‖H1(Ω)‖uh(t)‖H1(Ω)‖vh‖H1(Ω) + c‖∇uh(t)‖L2(Ω)‖∇vh‖L2(Ω)

≤ C‖∇vh‖L2(Ω).

Substituting this into (3.29) yields that

|(εn, vh)| ≤ C‖∇vh‖L2(Ω) ≤ Cτ2nt−2n ‖∇vh‖L2(Ω) for vh ∈ X̊h and n = 1, 2.

In the case n ≥ 3, we present estimates for |(εnj , vh)|, j = 1, 2, 3, respectively. First, we
note that

|(εn1 , vh)| = |(∂tuh(tn− 1
2
)− δτuh(tn), vh)| ≤ cτ2n max

t∈[tn−1,tn]
|(∂3t uh(t), vh)|.(3.31)

By differentiating (3.30) in time twice, we obtain

(∂3t uh(t), vh) + b(∂2t uh(t), uh(t), vh) + 2b(∂tuh(t), ∂tuh(t), vh)

+b(uh(t), ∂2t uh(t), vh) + (∇∂2t uh(t),∇vh) = 0 ∀ vh ∈ X̊h,

which implies that

|(∂3t uh(t), vh)| ≤ c‖∂2t uh(t)‖H1(Ω)‖uh(t)‖H1(Ω)‖vh‖H1(Ω)

+ c‖∂tuh(t)‖2H1(Ω)‖vh‖H1(Ω)

+ c‖∂2t uh(t)‖H1(Ω)‖vh‖H1(Ω)

≤ Ct−2‖∇vh‖L2(Ω),

where we have used (2.9) (with m = 1, 2 therein) and (2.10). Substituting this into (3.31)
yields that

|(εn1 , vh)| ≤ Cτ2nt−2n−1‖∇vh‖L2(Ω) ∀ vh ∈ X̊h.(3.32)

Second, by using the definitions of (εn2 , vh) and (εn3 , vh) for vh ∈ X̊h, we have

(3.33)

|(εn2 , vh)| ≤c‖∇(uh(tn− 1
2
)− uh(tn− 1

2
))‖L2(Ω)‖∇vh‖L2(Ω)

≤cτ2n max
t∈[tn−1,tn]

‖∂2t uh(t)‖H1(Ω)‖∇vh‖L2(Ω)

≤Cτ2nt−2n−1‖∇vh‖L2(Ω),
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and

(3.34)

|(εn3 , vh)| =
∣∣b(uh(tn− 1

2
), uh(tn− 1

2
), vh

)
− b
(
ûh(tn− 1

2
), uh(tn− 1

2
), vh

)∣∣
=
∣∣b(uh(tn− 1

2
)− ûh(tn− 1

2
), uh(tn− 1

2
), vh

)
+ b
(
ûh(tn− 1

2
), uh(tn− 1

2
)− uh(tn− 1

2
), vh

)∣∣
≤ c‖uh(tn− 1

2
)− ûh(tn− 1

2
)‖H1(Ω)‖uh(tn− 1

2
)‖H1(Ω)‖vh‖H1(Ω)

+ c‖ûh(tn− 1
2
)‖H1(Ω)‖uh(tn− 1

2
)− uh(tn− 1

2
)‖H1(Ω)‖vh‖H1(Ω)

≤ cτ2n max
t∈[tn−2,tn]

‖∂2t uh(t)‖H1(Ω)‖uh(tn− 1
2
)‖H1(Ω)‖vh‖H1(Ω)

+ c‖ûh(tn− 1
2
)‖H1(Ω)τ

2
n max
t∈[tn−1,tn]

‖∂2t uh(t)‖H1(Ω)‖vh‖H1(Ω)

≤ Cτ2nt−2n−2‖∇vh‖L2(Ω),

where in the last inequality we have used

‖ûh(tn− 1
2
)‖H1(Ω) ≤

(
1 +

rn
2

)
‖uh(tn−1)‖H1(Ω) +

rn
2
‖uh(tn−2)‖H1(Ω) ≤ C,

which is a result of Lemma 3.5 and (2.10).
Since tn−2 ∼ tn−1 ∼ tn for n ≥ 3, summing up the above three estimates (3.32)–(3.34),

we obtain

|(εn, vh)| ≤ Cτ2nt−2n ‖∇vh‖L2(Ω) for vh ∈ X̊h and n ≥ 3.

This proves the desired estimate in Lemma 3.6. �

3.3. Error estimate. Let enh = uh(tn) − unh and ηnh = ph(tn) − pnh be the error functions.
Then subtracting (3.2) from (3.25) yields the following error equations for n = 1, 2:

(δτe
n
h, vh) + (∇enh,∇vh) + b(uh(tn−1), uh(tn), vh)− b(un−1h , unh, vh)

−(ηnh ,∇ · vh) + (εn, vh) = 0,

(∇ · enh, qh) = 0,

(3.35)

for all (vh, qh) ∈ Xh ×Mh.
In the light of (3.21), we notice that∣∣b(uh(tn−1), uh(tn), enh

)
− b
(
un−1h , unh, e

n
h

)∣∣
=
∣∣b(en−1h , uh(tn), enh

)
+ b
(
un−1h , enh, e

n
h

)∣∣
=
∣∣b(en−1h , uh(tn), enh

)∣∣(3.36)

≤ c‖en−1h ‖L2(Ω)‖uh(tn)‖
1
2

H1(Ω)
‖Ahuh(tn)‖

1
2

L2(Ω)
‖enh‖H1(Ω)

(here we have used Lemma 3.3)

≤ Ct−
1
4

n ‖en−1h ‖L2(Ω)‖∇enh‖L2(Ω),

where we have used (2.10) in the last inequality. Then, substituting (vh, qh) = (enh, η
n
h) ∈

X̊h ×Mh ⊂ Xh ×Mh into the error equations (3.35) and using estimate (3.36), we obtain

1

2τn

(
‖enh‖2L2(Ω) − ‖e

n−1
h ‖2L2(Ω) + ‖enh − en−1h ‖2L2(Ω)

)
+ ‖∇enh‖2L2(Ω)

≤ |(εn, enh)|+ Ct
− 1

4
n ‖en−1h ‖L2(Ω)‖∇enh‖L2(Ω)
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≤ Cτ2nt−2n ‖∇enh‖L2(Ω) + Ct
− 1

4
n ‖en−1h ‖L2(Ω)‖∇enh‖L2(Ω)

≤ Cτ4nt−4n + Ct
− 1

2
n ‖en−1h ‖2L2(Ω) +

1

2
‖∇enh‖2L2(Ω) for n = 1, 2,

where we have used Lemma 3.6 in obtaining the second to last inequality. The last term of
the inequality above can be absorbed by the left-hand side. As a result, we have

‖enh‖2L2(Ω) + τn‖∇enh‖2L2(Ω) ≤ Cτ
5
nt
−4
n + (1 + Cτnt

− 1
2

n )‖en−1h ‖2L2(Ω)

≤ Cτn + (1 + Cτnt
− 1

2
n )‖en−1h ‖2L2(Ω) for n = 1, 2.

Since ‖e0h‖L2(Ω) = 0, it follows that

‖e1h‖2L2(Ω) + τ1‖∇e1h‖2L2(Ω) ≤ Cτ1,

‖e2h‖2L2(Ω) + τ2‖∇e2h‖2L2(Ω) ≤ Cτ2 + (1 + Cτ
1
2
2 )‖e1h‖2L2(Ω).

(3.37)

When 3/4 < α < 1, we have

τ1 = τ2 = T
( τ
T

) 1
1−α ≤ cτ4.

Substituting this into (3.37) yields that

‖e1h‖L2(Ω) + ‖e2h‖L2(Ω) ≤ Cτ2.(3.38)

For n ≥ 3, subtracting (3.3) from (3.26) yields the following error equations:
(δτe

n
h, vh) + (∇en−

1
2

h ,∇vh) + b(ûh(tn− 1
2
), uh(tn− 1

2
), vh)− b(ûn−

1
2

h , u
n− 1

2
h ,vh)

−(η
n− 1

2
h ,∇ · vh) + (εn, vh) = 0,

(∇ · en−
1
2

h , qh) = 0,

(3.39)

for all (vh, qh) ∈ Xh ×Mh.
In view of (3.21), it can easily be seen that∣∣b(ûh(tn− 1

2
), uh(tn− 1

2
), e

n− 1
2

h

)
− b
(
û
n− 1

2
h , u

n− 1
2

h , e
n− 1

2
h

)∣∣
=
∣∣b(ên− 1

2
h , uh(tn− 1

2
), e

n− 1
2

h

)
+ b
(
û
n− 1

2
h , e

n− 1
2

h , e
n− 1

2
h

)∣∣
=
∣∣b(ên− 1

2
h , uh(tn− 1

2
), e

n− 1
2

h

)∣∣(3.40)

≤ c‖ên−
1
2

h ‖L2(Ω)‖uh(tn− 1
2
)‖

1
2

H1(Ω)
‖Ahuh(tn− 1

2
)‖

1
2

L2(Ω)
‖en−

1
2

h ‖H1(Ω)

(here we have used Lemma 3.3)

≤ Ct−
1
4

n−1‖ê
n− 1

2
h ‖L2(Ω)‖∇e

n− 1
2

h ‖L2(Ω),

where in the last inequality we have used

‖Ahuh(tn− 1
2
)‖L2(Ω) ≤

1

2
‖Ahuh(tn−1)‖L2(Ω) +

1

2
‖Ahuh(tn)‖L2(Ω) ≤ Ct

− 1
2

n−1,

‖uh(tn− 1
2
)‖H1(Ω) ≤

1

2
‖uh(tn−1)‖H1 +

1

2
‖uh(tn)‖H1 ≤ C,

which are consequences of (2.10).
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Substituting (vh, qh) = (e
n− 1

2
h , η

n− 1
2

h ) ∈ X̊h ×Mh ⊂ Xh ×Mh into the error equations
(3.39) and using estimate (3.40), we obtain

1

2τn

(
‖enh‖2L2(Ω) − ‖e

n−1
h ‖2L2(Ω)

)
+ ‖∇en−

1
2

h ‖2L2(Ω)

≤ |(εn, en−
1
2

h )|+ Ct
− 1

4
n−1‖ê

n− 1
2

h ‖L2(Ω)‖∇e
n− 1

2
h ‖L2(Ω)

≤ Cτ2nt−2n ‖∇e
n− 1

2
h ‖L2(Ω) + Ct

− 1
4

n−1‖ê
n− 1

2
h ‖L2(Ω)‖∇e

n− 1
2

h ‖L2(Ω)

≤ Cτ4nt−4n + Ct
− 1

2
n−1‖ê

n− 1
2

h ‖2L2(Ω) +
1

2
‖∇en−

1
2

h ‖2L2(Ω).

The last term of the inequality above can be absorbed by the left-hand side. As a result,
we have

1

2τn

(
‖enh‖2L2(Ω) − ‖e

n−1
h ‖2L2(Ω)

)
+

1

2
‖∇en−

1
2

h ‖2L2(Ω)

≤ Cτ4nt−4n + Ct
− 1

2
n−1
(
‖en−1h ‖2L2(Ω) + ‖en−2h ‖2L2(Ω)

)
for n ≥ 3.

(3.41)

When 4α− 4 > −1 (or equivalently α > 3/4), we have

(3.42)
N∑
n=3

τnt
4α−4
n ≤

∫ T

0
t4α−4dt ≤ c.

Hence, summing up (3.41) times 2τn for n = 3, . . . ,m yields

‖emh ‖2L2(Ω) +
m∑
n=3

τn‖∇e
n− 1

2
h ‖2L2(Ω)

≤ ‖e2h‖2L2(Ω) + Cτ4
m∑
n=3

τnt
4α−4
n + C

m∑
n=3

τnt
− 1

2
n−1
(
‖en−1h ‖2L2(Ω) + ‖en−2h ‖2L2(Ω)

)
≤ Cτ4 + C

m∑
n=3

τnt
− 1

2
n−1
(
‖en−1h ‖2L2(Ω) + ‖en−2h ‖2L2(Ω)

)
,

where we have used (3.38) and (3.42) in deriving the last inequality. Since this inequality
holds for all 3 ≤ m ≤ N , by applying Gronwall’s lemma (i.e. Lemma 3.4), we obtain

max
3≤n≤N

‖enh‖2L2(Ω) +
N∑
n=3

τn‖∇e
n− 1

2
h ‖2L2(Ω) ≤ Cτ

4.(3.43)

Combining (3.38) and (3.43), we have

max
1≤n≤N

‖enh‖L2(Ω) ≤ Cτ2.

This result and (3.24) imply the desired error bound in Theorem 3.1.

4. Numerical examples

In this section, we present numerical experiments to support the theoretical analysis in
Theorem 3.1. In Example 4.1 we present numerical results to illustrate that the number of
total time levels N using the variable stepsize in (3.1) is equivalent to the number of total
time levels using a uniform stepsize. In Example 4.2 and 4.3 we present numerical results
to illustrate the convergence rates of numerical method by solving problem (1.1) in the unit



15

Table 4.1. The number of time levels N

α τ
T 0.1 0.5 1.0 10 100 Nτ/T

0.6 1/80 20 101 201 2003 20005 2.6
1/160 40 201 402 4004 40005 2.6

0.7 1/80 26 135 269 2672 26674 3.4
1/160 54 269 536 5339 53342 3.4

0.8 1/80 40 203 404 4009 40013 5.1
1/160 81 404 805 8010 80015 5.1

square Ω = (0, 1) × (0, 1) up to T = 0.1. The Taylor–Hood P2-P1 finite element space is
used for spatial discretization, and the method (3.2)–(3.3) for temporal discretization.

For the stepsizes in (3.1), we simply choose τn =
( tn−1

T

)α
τ for n ≥ 3 in all numerical

simulations. All the computations are performed by FreeFEM++; see www.freefem.org.

Example 4.1. In Table 4.1, we present the number of total time levels N using the
stepsizes (3.1) corresponding to different parameters, including T = 0.1, 0.5, 1.0, 10, 100,
α = 0.6, 0.7, 0.8 and τ = 1/80, 1/160. We can see that when α = 0.6, the total number of
time levels N ≤ 2.6(T/τ); when α = 0.7, N ≤ 3.4(T/τ); when α = 0.8, N ≤ 5.1(T/τ). This
is consistent with the conclusion we proved in Remark 3.1.

In Figures 4.1 and 4.2, we present the evolution of the stepsize τn with different parameters
α = 0.6, 0.7, 0.8, and different maximal stepsizes τ = 1/80, 1/160, for both T = 0.1 and T =

1.0. Figures 4.1 and 4.2 illustrate how the variable stepsize in (3.1) increases from T ( τT )
1

1−α

to τ , while Table 4.1 shows that the number of total time levels satisfies N ≤ C(T/τ).

0 10 20 30 40
0

0.005

0.01

0.015

0.02

(a) T = 0.1, τ = 1/80

0 20 40 60 80
0

2

4

6

8

10-3

(b) T = 0.1, τ = 1/160

Figure 4.1. The evolution of τn at T = 0.1.

www.freefem.org
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(a) T = 1.0, τ = 1/80

0 200 400 600 800
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(b) T = 1.0, τ = 1/160

Figure 4.2. The evolution of τn at T = 1.0.

Example 4.2. We consider an example with initial value in H1
0 (Ω)2 but not in H2(Ω)2,

i.e., u0 = (u01(x, y), u02(x, y)) with

u01(x, y) =
5

2
π sin

5
2 (πx) sin

3
2 (πy) cos(πy),

u02(x, y) = −5

2
π sin

3
2 (πx) cos(πx) sin

5
2 (πy).

The initial value satisfies

u0 ∈ H2−ε(Ω)2 ∩H1
0 (Ω)2 ∀ ε ∈ (0, 1), ∇ · u0 = 0 in Ω and u0 = 0 on ∂Ω.

The temporal discretization errors ‖uNh,ref−uNh ‖L2(Ω) and convergence rates are presented

in Table 4.2, where the reference solution uNh,ref is computed by using a sufficiently small

stepsize with τ = 1/10240. The spatial discretization errors ‖uNh,ref − uNh ‖L2(Ω) and con-

vergence rates are presented in Table 4.3, where the reference solution uNh,ref is computed

by using a sufficiently small spatial mesh size with h = 1/128. The parameter in (3.1) is
selected as α = 0.8. From Table 4.2 and 4.3, we see that the convergence rates in space and
time are consistent with the theoretical result proved in Theorem 3.1.

Table 4.2. Temporal discretization errors using variable stepsize with α = 0.8.

h
τ 1/320 1/640 1/1280 1/2560 convergence rate

1/16 5.494E-05 1.102E-05 2.805E-06 6.783E-07 ≈ 2.05

1/32 5.496E-05 1.099E-05 2.807E-06 6.785E-07 ≈ 2.05

1/64 5.496E-05 1.099E-05 2.806E-06 6.785E-07 ≈ 2.05

Example 4.3. We present numerical results for an initial value u0 = (u01(x, y), u02(x, y))
given by

u01(x, y) =
3

2
π sin

3
2 (πx) sin

1
2 (πy) cos(πy),
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Table 4.3. Spatial discretization errors using variable stepsize with α = 0.8.

τ
h 1/4 1/8 1/16 1/32 convergence rate

1/80 8.406E-03 1.626E-03 3.105E-04 6.834E-05 ≈ 2.18

1/160 8.651E-03 1.679E-03 3.226E-04 7.122E-05 ≈ 2.18

1/320 8.724E-03 1.696E-03 3.264E-04 7.219E-05 ≈ 2.18

u02(x, y) = −3

2
π sin

1
2 (πx) cos(πx) sin

3
2 (πy).

The initial value satisfies that

u0 ∈ H1−ε(Ω)2 ∀ ε ∈ (0, 1), ∇ · u0 = 0 in Ω and u0 = 0 on ∂Ω,

but u0 /∈ H1(Ω)2. Hence, the initial value in this example is in the critical space that our
assumption of Theorem 3.1 does not hold.

The temporal discretization errors ‖uNh,ref−uNh ‖L2(Ω) and convergence rates are presented

in Table 4.4, where the reference solution uNh,ref is computed by using a sufficiently small

stepsize with τ = 1/10240. The spatial discretization errors ‖uNh,ref − uNh ‖L2(Ω) and con-

vergence rates are presented in Table 4.5, where the reference solution uNh,ref is computed

by using a sufficiently small spatial mesh size with h = 1/128. The parameter in (3.1)
is also selected as α = 0.8. From Table 4.4 and 4.5, we see that the numerical solutions
have second-order convergence in time and space. This shows that the theoretical result in
Theorem 3.1 not only holds for H1 initial data but also may be extended to rougher initial
data.

Table 4.4. Temporal discretization errors using variable stepsize with α = 0.8.

h
τ 1/320 1/640 1/1280 1/2560 convergence rate

1/64 5.841E-05 1.187E-05 3.215E-06 7.210E-07 ≈ 2.16

1/128 5.840E-05 1.170E-05 3.001E-06 7.212E-07 ≈ 2.06

1/256 5.840E-05 1.168E-05 2.984E-06 7.245E-07 ≈ 2.04

Table 4.5. Spatial discretization errors using variable stepsize with α = 0.8.

τ
h 1/4 1/8 1/16 1/32 convergence rate

1/2560 8.8477E-03 1.6699E-03 3.1670E-04 7.2398E-05 ≈ 2.13

1/5120 8.8480E-03 1.6700E-03 3.1666E-04 7.2390E-05 ≈ 2.13

1/10240 8.8480E-03 1.6700E-03 3.1667E-04 7.2391E-05 ≈ 2.13
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5. Conclusion

We have presented error analysis for the linearly extrapolated Crank–Nicolson method
for the NS equations with a specific locally refined temporal grid. We have proved second-
order temporal convergence of the numerical method for H1 initial data by utilizing the
property of locally refined stepsizes in the consistency analysis and utilizing a technical
lemma (Lemma 3.3) in the stability analysis. The numerical results are consistent with the
theoretical analysis and indicate that the error analysis may be furthermore extended to
rougher initial data.
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