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Abstract

This paper is concerned with the linear-quadratic optimal control problem for networked systems simultaneously with input
delay and Markovian packet losses under hold-input compensation strategy, which is different from the literature. Necessary
and sufficient conditions for the solvability of optimal control problem over a finite horizon are given by coupled difference
Riccati-type equations. Moreover, the networked control system is mean-square stability if and only if coupled algebraic
Riccati-type equations have a particular solution. Due to input delay and Markovian packet dropout, it leads to the failure of
the separation principle, which is a fundamental obstacle. The key technique in this paper is to resolve forward and backward
difference equations by decoupling to overcome the difficulty.
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1 Introduction

A network control system (NCS, for short), known as a
communication and control system, is a fully distributed
and networked real-time feedback control system. Since
the concept of NCSs was proposed in the early 1990s,
it has attracted attention. For example, Guo et al [3]
discussed the networked control problems for discrete
linear systems whose network mediums for the actu-
ators are constrained. Using the Lyapunov-Krasovskii
functional method, Yue et al [17] considered the distur-
bance attenuation problem for NCSs. At the same time,
it raised new challenges to traditional control theory
and applications. In an NCS, multiple network nodes
share a network channel. Due to the limited network
bandwidth and irregular changes in data traffic in the
network, data collisions and network congestion often
occur when multiple nodes exchange data through the
network. Therefore, packet losses and time delay will
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inevitably occur.

Generally, there are two kinds of packet losses. When
the process of packet transmission is mutually indepen-
dent, the packet loss is modeled as a Bernoulli process.
Liang and Xu [8] focused on the optimal control prob-
lems for NCSs, which are simultaneously controlled by
the remote controller and the local controller. Lu et al
[10] considered the NCSs with Bernoulli packet losses
using an improved switching hold compensation strat-
egy in which the too old held signal is deleted. Based on
the characteristic of independent and identical distribu-
tion, as said in [19], it is easy to verify that NCSs with
Bernoulli packet losses can be regarded as a special case
of system with multiplicative white noise. However, if
the current packet cases affect future packet cases, a
Markov process can represent such effect rather than
a Bernoulli process. In fact, it is more involved to be
dealt with than Bernoulli packet losses due to the tem-
poral correlation caused by Markovian characteristics.
Wang et al [13] considered the H∞-controller design for
NCSs with Markovian packet losses. Xie and Xie [15]
presented the necessary and sufficient condition for the
mean-square stability of sampled-data networked linear
systems with Markovian packet losses.

For the packet loss case, some strategies are usually
adopted to compensate in NCSs. The zero-input (i.e.,
zero value is directly adopted by the actuator input) and
the hold-input (i.e., the latest available control signal
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stored in the actuator buffer is used) are two common
compensation strategies. For zero-input case, Imer et
al [5] discussed the optimal control problem for the
linear system with packet losses under TCP and UDP
protocols. Sufficient conditions for stability of network
communication models with packet losses were studied
by Montestruque and Antsaklis [11]. It must be pointed
out that, as said in [3] and [10], the zero-input strategy
is mainly for mathematical convenience as it gives sim-
pler equations than hold-input strategy, rather than for
performance considerations. However, in most practical
applications, it is necessary to consider the performance.
Moreover, using the latest control input stored in the
actuator buffer provides better performance than using
zero input, especially during transients, because the
true current optimal control input is likely to be close to
the previous value. Indeed, the hold-input strategy was
studied in many previous works due to its universality
in the practical field. For example, Hristu-Varsakelis
[4] analyzed the structure properties (e.g., observability
and controllability) of the NCSs in which a zero-order
hold is included.

Note that most of the aforementioned work only consid-
ered packet losses in NCSs [8,10,13,15,18]. Few works
focus on the simultaneous occurrence of time-delay.
Actually, when transmission delay occurs in NCSs with
packet losses, the current controller will be designed
with past information, leading to the controller’s adapt-
ability problem. Therefore, some of the previous meth-
ods (e.g., the Smith predictor method [14] which is only
useful for the determinate or additional system) are no
longer applicable. Although the time-delay system can
be converted to a delay-free system by state augmen-
tation [2], it leads to the design of optimal controller
feedback by a high-dimensional gain matrix and a large
amount of calculation. What’s more, it cannot reflect
the influence of time delay on the optimal control prob-
lem in essence.

From the above-mentioned analysis, it is not easy to
deal with the optimal control problem for NCSs with
both input delay and Markovian packet losses. The fun-
damental difficulty of this problem can be attributed to
the failure of the separation principle caused by simul-
taneous input delay and Markovian packet dropout. In
this case, state prediction is required to design a con-
troller, and the feedback gain matrix cannot be given
by general Riccati equations. It is a fundamental chal-
lenge problem. Indeed, some studies have focused on
the stabilization problem in the presence of both data
packet dropout and delay due to its theoretical value
and practical background. However, methods proposed
in previous literature (e.g., predictive control method
[9] and Lyapunov-Krasivskii functional approach [17]
etc.) are mainly based on linear matrix inequalities.
Only sufficient stabilizing conditions are available. The
complete solution (i.e., sufficient and necessary condi-
tions for the stabilization problem) are not derived at
present. Hence, it is a fundamental challenge problem

and has not been solved thoroughly.

In this paper, we consider the optimal control prob-
lem for NCSs with both input delay and Markovian
packet losses under hold-input strategy. To reduce the
computational complexity, the system under hold-input
strategy is firstly converted to the linear system with
Markovian jump (MJLS), which is another important
topic [1,6,7,12,16]. For example, Li and Zhou [6] and
Li et al. [7] considered the indefinite stochastic opti-
mal control problems for the MJLS over a finite time
horizon and an infinite time horizon, respectively. Also,
Costa et al. [1] studied discrete-time Markovian jump
linear systems and their applications. In view of these,
the key point in this paper is how to deal with the
forward and backward stochastic difference equations
(FBSDEs), which are derived by the stochastic maxi-
mum principle. Inspired by [19] and [20] in which the
FBSDEs have made substantial progress in optimal LQ
control problem for linear systems, the main results in
this paper are derived and can be summarized as fol-
lows. First, the necessary and sufficient conditions for
the solvability of optimal control problem over a finite
horizon are presented by the coupled difference Riccati-
type equations (CDREs). Second, the existence of the
solution to the coupled algebraic Riccati-type equations
(CAREs) is proved. Moreover, the optimal controller
and optimal cost functional over an infinite horizon are
derived. Finally, the necessary and sufficient conditions
for the stabilization of the NCSs are established using
the CAREs.

The rest of this article is structured as follows. Section
2 gives the problem statement. Section 3 solves the
optimal control problem over a finite horizon and the
stabilization problems for the infinite horizon case. A
numerical example is presented to verify the obtained
results in Section 4. A summary is presented in Section
5. Proofs for some results can be found in the Appendix.

Notation : Rn is the n-dimensional Euclidean space
and Rm×n the norm bounded linear space of all m × n
matrices. Y ′ is the transposition of Y and Y ≥ 0(Y > 0)
means that Y ∈ Rn×n is symmetric positive semi-
definite (positive definite). Let (Ω,F ,Fk,P) be a
complete probability space with the natural filtration
{Fk}k≥0 generated by {θ0, · · · , θk}. E[·|Fk] means the
conditional expectation with respect to Fk and F−1 is
understood as {∅,Ω}.

2 Problem Statement and Preliminaries

Consider the following discrete-time system:

xk+1 = Axk +Buak−d, (1){
uak−d = θku

c
k−d + (1− θk)uak−d−1, k ≥ 0,

uai = uci , i = −d, · · · ,−1,
(2)
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where xk ∈ Rn is the state. uak ∈ Rm denotes the con-
trol input to the actuator and uck ∈ Rm is the desired
control input computed by the controller. The stochas-
tic variable θk is the packet loss modeled as a two state
Markov chain θk ∈ {0, 1} with transition probability
ξij = P(θk+1 = j|θk = i)(i, j = 0, 1) between the con-
troller and the actuator: Take uak = uck, if the packet
is correctly delivered; otherwise, take uak = uak−1, if the
packet is lost. The initial values are x0, u

c
−d, · · · , uc−1. In

addition, A ∈ Rn×n, B ∈ Rn×m are constant matrices.
By state augmentation, we have xk+1

uak−d

=

A (1− θk)B

0 (1− θk)I

 xk

uak−d−1

+

 θkB
θkI

uck−d. (3)

Let zk+1 =

[
xk+1

uak−d

]
, Āθk =

[
A (1− θk)B

0 (1− θk)I

]
, B̄θk =[

θkB

θkI

]
, then (3) can be rewritten as

zk+1 = Āθkzk + B̄θku
c
k−d. (4)

Define the following cost functional over an infinite hori-
zon as

J = E

[
∞∑
k=0

(
z′kQzk + (uck−d)

′Ruck−d

)]
, (5)

where weighting matrices Q ∈ R(n+m)×(n+m), R ∈
Rm×m.

Problem 1 Find a Fk−1-measurable controller uck to
stabilize system (1)-(2) and minimize cost functional (5).

3 Main Results

For discussion, this section will follow two steps. The LQ
optimal control problem over a finite horizon will be first
considered. On this basis, Problem 1 will be resolved.

3.1 LQ Optimal Control in Finite Horizon Case

Consider the following cost functional:

JN = E

[
N∑
k=0

(
z′kQzk + (uck−d)

′Ruck−d

)
+z′N+1P̄N+1zN+1

]
, (6)

where weighting matrices Q ∈ R(n+m)×(n+m), R ∈
Rm×m and terminal value P̄N+1 are positive semi-
definite.

Problem 2 Find a Fk−d−1-measurable controller uck−d
such that cost functional (6) is minimized subject to (4).

Applying the maximum principle to Problem 2, the fol-
lowing FBSDEs are obtained

0 = Ek−d−1

[
B̄′θkλk

]
+Ruck−d,

λk−1 = Qzk + Ek−1

[
Ā′θkλk

]
,

λN = P̄N+1zN+1,

zk+1 = Āθkzk + B̄θku
c
k−d.

(7)

Remark 3 Due to the Markovian jump and input delay,
which gives rise to the fundamental difficulty about the
adaptability of the controller and the temporal correla-
tion, our problem is important and challenging compared
with [19] and [20]. The key technique in this paper is to
tackle FBSDEs (7).

For any d ≤ k ≤ N , define the following recursive se-
quence,

P̄θk−1(k) =Q+ Ek−1

[
(Āθk )′P̄θk (k + 1)Āθk

−(M0
θk−1

)′Γ−1
θk−1

M0
θk−1

]
, (8)

where

Γθk−d−1=R+Ek−d−1

[
(B̄θk )′P̄θk (k + 1)B̄θk

−
d−1∑
i=0

(M i+1
θk−d+i

)′Γ−1
θk−d+i

M i+1
θk−d+i

]
, (9)

M0
θk−d−1

=Ek−d−1

[
(S̃1
θk−1

)′
d∏
j=1

Āθk−j−
d−1∑
i=0

(
(M i+1

θk−d+i
)′

×Γ−1
θk−d+i

M0
θk−d+i

i∏
s=0

Āθk−d+s

)]
, (10)

M i
θk−d−1

=Ek−d−1

[
(S̃1
θk−1

)′
i−1∏
j=1

Āθk−j B̄θk−i−
d−1∑
s=0

(Ms+1
θk−d+s

)′

×Γ−1
θk−d+s

M i+s+1
θk−d+s

]
, i = 1, · · · , d, (11)

M i
θk−d−1

=M0
θk−d−1

Ek−d−1

[
i−d−1∏
j=1

Āθk−d−j B̄θk−i

]
, (12)

i ≥ d+ 1,

M i
θN−s−1

=0, i ≥ 0, s ≤ d− 1, (13)

S̃1
θk−1

=Ek−1

[
(Āθk )′P̄θk (k + 1)B̄θk

]
, (14)

S̃jθk−1
=Ek−1

[
(S̃j−1
θk

)′Āθk
]
, (15)

with terminal value P̄θN (N + 1) = P̄N+1. And equa-
tions (8)-(15) are termed the CDREs.

Remark 4 According to Markov property (that is, the
evolution of the Markov process in the future depends
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only on the present state and does not depend on past
history), the conditional expectation of the sequence fθk
can be expressed as

Ek−j [fθk ]=

1∑
θk−j+1=0

ξθk−j+1θk−j

{
1∑

θk−j+2=0

ξθk−j+2θk−j+1 · · ·

×

[
1∑

θk−1=0

ξθk−1θk−2(

1∑
θk=0

ξθkθk−1)fθk

]}
. (16)

Remark 5 For convenience, set Γθk−d−1
(k) , Γθk−d−1

,

P̄θk(k + 1) , P̄θk ,M
i
θk−d−1

(k) , M i
θk−d−1

, S̃1
θk−1

(k) ,

S̃1
θk−1

.

Lemma 6 From CDREs (8)-(15), the following rela-
tionships can be given

M0
θk−d−1

=Ek−d−1

[
(F 1
θk−1

)′
d∏
j=1

Āθk−j

]
, (17)

M i
θk−d−1

=Ek−d−1

[
(F iθk−i

)′B̄θk−i

]
, i ≥ 1, (18)

F iθk−1
=Ek−1

[
i−2∏
j=0

(Āθk+j )′F 1
θk+i−2

]
, i ≥ 2, (19)

with

F 1
θk−1

=S̃1
θk−1

−
d∑
i=0

F i+2
θk−1

Γ−1
θk−d+i

M i+1
θk−d+i

, (20)

F iθk−1
=Ek−1[Ā′θkF

i−1
θk

], (21)

FN−k+1
θk−1

= (S̃N−k+1
θk−1

)′. (22)

Proof. From (9)-(15) and via mathematical induction,
(17)-(19) can be simply calculated, here, we omit the
proof.
Based on the preliminaries, the results of Problem 2 can
be obtained in this section.

Theorem 7 There exists a unique solution to Problem
2 if and only if Γθk−d−1

in (8) is positive definite. In this
case, the optimal controller can be given as

uck−d=−Γ−1
θk−d−1

(
M0
θk−d−1

zk−d+

d∑
i=1

M i
θk−d−1

uck−d−i

)
, (23)

and the optimal cost functional is

JN=E

{
d−1∑
k=0

[
z′kQzk + (uck−d)

′Ruck−d
]

+ z′dP̄θd−1zd

−z′d
d−1∑
s=0

(
F s+1
θd−1

Γ−1
θs−1

M0
θs−1

zs
)

−z′d
d∑
s=0

(
F s+1
θd−1

Γ−1
θs−1

d∑
i=s+1

M i
θs−1

ucs−i

)}
. (24)

Moreover, the solution of the FBSDEs can be given

λk−1=P̄θk−1zk−
d−1∑
s=0

(
F s+1
θk−1

Γ−1
θk−d−1+s

M0
θk−d−1+s

zk−d+s
)

−
d−1∑
s=0

(
F s+1
θk−1

Γ−1
θk−d−1+s

d∑
i=s+1

M i
θk−d−1+s

uck−d−i+s

)
. (25)

Proof. See Appendix A.

Remark 8 For convenience, the notation has been writ-
ten for short, i.e., F iθk−1

(k) , F iθk−1
.

Remark 9 For the delay-free case, i.e., d=0 in systems
(1)-(2), then the result of Theorem 7 can be rewritten as
follows. The optimal controller (23) and the solution of
the FBSDEs (25) can be re-expressed as

uck =−Γ−1
θk−1

M0
θk−1

zk, (26)

λk−1 = P̄θk−1zk, (27)

where

P̄θk−1 =Q+ Ek−1

[
(Āθk )′P̄θk Āθk

−(M0
θk−1

)′Γ−1
θk−1

M0
θk−1

]
, (28)

Γθk−1 =R+ Ek−1[(B̄θk )′P̄θk B̄θk ], (29)

M0
θk−1

= Ek−1[(B̄θk )′P̄θk Āθk ], (30)

which are parallel to the results of standard case for
MJLSs [1].

3.2 Optimal Control in Infinite Horizon Case

Definition 10 The following stochastic system:

zk+1 = Āθkzk, yk = Q1/2zk, θk = 0, 1

is said to be exact observable (or (Ā,Q1/2) is called exact
observable where Ā = (Ā0, Ā1), for short), if for any
N ≥ 0

yk ≡ 0, a.s. ∀0 ≤ k ≤ N =⇒ z0 = 0.

In the sequence, the following assumptions will be made.

Assumption 11 The state weighting matrix Q is posi-
tive semi-definite and the control weighting matrix R is
strictly positive definite.

Assumption 12 (Ā,Q
1
2 ) is exactly observable.
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Define the following CAREs for lj = 0, 1, 0 ≤ j ≤ d,

P̄ld=Q+ Eld
[
(Āld+1)′P̄ld+1Āld+1 − (M0

ld)′Γ−1
ld
M0
ld

]
, (31)

where

Γl0=R+El0

[
(B̄ld+1)′P̄ld+1B̄ld+1−

d−1∑
i=0

(M i+1
li+1

)′Γ−1
li+1
M i+1
li+1

]
, (32)

M0
l0=El0

[
(S̃1
ld)′

d∏
j=1

Āld+1−j−
d−1∑
i=0

[
(M i+1

li+1
)′Γ−1

li+1
M0
li+1

×
i∏

s=0

Āls+1

]]
, (33)

M i
l0=El0

[
(S̃1
ld)′

i−1∏
j=1

Āld+1−j B̄ld+1−i−
d−1∑
s=0

(Ms+1
ls+1

)′Γ−1
ls+1

×M i+s+1
ls+1

]
, i = 1, · · · , d, (34)

Ms
l1=M

0
l1El1

[
s−d−1∏
j=1

Ālj B̄ls−d

]
, s ≥ d+ 1, (35)

S̃1
ld=Eld

[
(Āld+1)′P̄ld+1B̄ld+1

]
, (36)

S̃jld=Eld
[
(Āld+1)′S̃j−1

ld+1

]
. (37)

The main result will be presented next.

Theorem 13 Under Assumption 11 and 12, the system
(1) is stabilizable in the mean-square sense if and only if
CAREs (31)-(36) have a solution such that

P̄ld −
d−1∑
s=0

[
(F s+1
ld

)′Γ−1
ls−1

F s+1
ld

]
> 0, (38)

in which

F 1
ld = S̃1

ld −
d∑
i=0

F i+2
ld

Γ−1
li+1

M i+1
li+1

, (39)

F ild = Eld
[
(Āld+1)′F i−1

ld+1

]
, F dld = (S̃dld)′, (40)

li ∈ {0, 1}, i = 0, 1, · · · , d+ 1. Moreover, for k ≥ d the
optimal controller can be given as

uck−d =−Γ−1
l0

(
M0
l0zk−d +

d∑
i=1

M i
l0u

c
k−d−i

)
. (41)

The corresponding cost index is presented by

J∗=E

[
z′0P̄ldz0+

d−1∑
k=0

(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

d∑
s=1

(Ms
i u

c
k−d−s)

)′
×Γi

(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

d∑
s=1

(Ms
i u

c
k−d−s)

)]
, (42)

where P̄i,Γi,M
s
i , i = 0, 1 satisfy CAREs (31)-(36).

Proof. See Appendix B.

Remark 14 The optimal control for the MJLS with-
out delay has been well studied in the literature and us-
ing the state augmentation method. We resolve the pre-
sented problem in this paper. However, it will bring a large
amount of calculation, especially for the high dimension
system or the large delay.

Remark 15 Compared with the previous works only
considered either delay or packet loss or under zero-input
strategy in NCSs ([5], [10] and so on), the necessary and
sufficient conditions for the stabilization of the NCSs
including both input delay and Markovian dropout under
hold-input strategy are established. To the best of our
knowledge, the above necessary and sufficient conditions
are firstly presented.

Remark 16 Consider delay-free case, i.e., d = 0, then
Theorem 13 can be degenerated as:
Under Assumption 11 and 12, the system (1) is stabiliz-
able in the mean-square sense if and only if

P̄i > 0, i = 0, 1, (43)

in which

P̄i = Q+

1∑
j=0

(ξijĀ
′
jP̄jĀj)− (M0

i )′Γ−1
i M0

i , (44)

with

M0
i =

1∑
j=0

(ξijB̄
′
jP̄jĀj), Γi = R+

1∑
j=0

(ξijB̄
′
jP̄jB̄j). (45)

Moreover, for k ≥ 0 the optimal controller can be given
as uck = −Γ−1i M0

i zk. The corresponding cost index is
presented by J∗ = E[z′0P̄iz0]. Thus, it can be seen that
equation (38) is a standard assumption and consistent
with Lyapunov criterion.

4 Numerical Examples

4.1 Example 1

Consider system (1) with A = 1, B = 15, and the initial
values x0 = 0.001, uc−1 = −0.2, let the transition prob-
ability ξ00 = 0.9, ξ11 = 0.7 and cost functional (6) with

Q =

[
1 0

0 1

]
, R = 10. Therefore, Ā0 =

[
1 15

0 1

]
, Ā1 =[

1 0

0 0

]
, B̄0 =

[
0

0

]
, B̄1 =

[
15

1

]
. In this case, a sample

path of the Markov chain θk is shown in Fig. 1.
When d=1:
In view of (31)-(36), the following results can be ob-
tained:
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P0 =

 3.7383 251.49

251.49 69116.31

 , P1 =

 3.8049 88.0818

88.0818 23233.77

 ,
Γ0 = 3006.02,Γ1 = 11877.83,

M0
0 =

[
55.01 1383.48

]
,M0

1 =
[

107.89 461.16
]
,

M1
0 =−1834.41,M1

1 = −5058.20.

Hence, (38) can be calculated

P̄0 − (F 1
0 )′Γ−1

i F 1
0 =

 4 251

251 69116

 > 0, i = 0, 1, (46)

P̄1 − (F 1
1 )′Γ−1

0 F 1
1 =

 0.37 88

88 23234

 > 0, (47)

P̄1 − (F 1
1 )′Γ−1

1 F 1
1 =

 3 88

88 23234

 > 0. (48)

According to Theorem 13, the optimal controller can be
expressed as

uck =−
[

0.0183 0.4602
]
zk + 0.6102uck−1, l0 = 0,

uck =−
[

0.0091 0.0388
]
zk + 0.4259uck−1, l0 = 1.

When d=0:
In view of (44)-(45), the following results can be ob-
tained:

P0 =

 19.1924 2590.97

2590.97 738437

 , P1 =

 13.3152 865.513

865.513 246174

 ,
Γ0 = 27524,Γ1 = 192600,

M0
0 =

[
106.5241 0

]
,M0

1 =
[

745.6687 0
]
.

It is easy to check that Pi > 0, i = 0, 1. Hence, the
optimal controller can be expressed as

uck =−
[

0.003870 0
]
zk, l0 = 0,

uck =−
[

0.003872 0
]
zk, l0 = 1.

Simulations of optimal controller uck with d = 1 and
d = 0 are shown in Fig. 2 (a) and (b), respectively.
It is easy to see that system (1)-(2) is mean-square sta-
bilizable with d = 1 and d = 0 from Fig. 3 (a) and (b),
respectively.
Meanwhile, it can be seen the influence of time-delay
from simulations.

Fig. 1. A sample path with q=0.9 and p=0.7

(a) d=1 (b) d=0

Fig. 2. Optimal Controller

(a) d=1 (b) d=0

Fig. 3. Dynamic Behavior of E[x′kxk]

4.2 Example 2

In this section, we will discuss the case for d = 10. Con-
sider system (1) with A = 1, B = 0.1, and the initial
values x0 = 0.001, uc−1 = −0.2, the transition proba-
bility ξ00 = 0.9, ξ11 = 0.7 and cost functional (6) with

Q =

[
1 0

0 1

]
, R = 10. Therefore, Ā0 =

[
1 0.1

0 1

]
, Ā1 =[

1 0

0 0

]
, B̄0 =

[
0

0

]
, B̄1 =

[
0.1

1

]
. In view of (31)-(36),

the following results can be obtained:
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P0 =

 41.4159 30.9107

30.9107 66.0722

 , P1 =

 43.7072 10.4716

10.4716 22.7943

 ,
Γ0 = 9.9961,Γ1 = 35.2531,

M0
0 =

[
3.5052 1.8147

]
,M0

1 =
[

3.3197 0.4685
]

and values of (34) can be shown in the following table,
i.e., Table 1.

Table 1 Values of M
j
i .

M1
0 -0.0096 M1

1 0.9392

M2
0 0.0720 M2

1 0.4717

M3
0 0.0626 M3

1 0.4062

M4
0 0.0606 M4

1 0.3922

M5
0 0.0627 M5

1 0.4065

M6
0 0.0668 M6

1 0.4356

M7
0 0.0720 M7

1 0.4714

M8
0 0.0774 M8

1 0.5094

M9
0 0.0828 M9

1 0.5472

M10
0 0.0879 M10

1 0.5833

Hence, (38) can be calculated and the positiveness can
be judged by the function ’chol()’ in MATLAB.

According to Table 1 and Theorem 13, the optimal con-
troller can be expressed, either. Simulation of optimal
controller uck with d = 10 is shown in Fig. 4 (a). More-
over, it can be seen that system (1)-(2) is mean-square
stabilizable with d = 10 from Fig. 4 (b).

(a) optimal controller (b) stabilization

Fig. 4. Simulation for d=10.

Compared with the state augmentation approach which
needs to calculate (d + 2)-dimensional matrices, only
2-dimensional matrices needs to be computed by the
proposed algorithm for any larger delay. In view of this,
the proposed algorithm avoids the calculation of high-
dimensional matrices.

5 Conclusion

In this paper, the optimal LQ control problem for
NCSs simultaneously with input delay and Markovian
dropout is discussed. Compared with the literature re-
sults, we mainly consider the hold-input strategy, which

is much more computationally complicated than zero-
input strategy. Necessary and sufficient conditions for
the solvability of optimal control problem over a finite
horizon are presented by the CDREs. Moreover, the
NCS is mean-square stability if and only if the CAREs
have a particular solution. The key technique in this pa-
per is to tackle the FBSDEs, which are more difficult to
be dealt with, due to the adaptability of the controller
and the temporal correlation caused by simultaneous
input delay and Markovian jump.

A Proof of Theorem 7

Proof. (=⇒) Γθk−d−1
> 0 will be proved by mathematical

induction. Denote

J̃k=E

{
N∑
i=k

(
z′iQzi+(uci−d)

′Ruci−d
)
+z′N+1P̄N+1zN+1

}
. (49)

Let k = N in (49), according to Assumption 11, we

know that J̃N ≥ 0 for any zN , u
c
N−d. For considering

Γθk−d−1
, let zN = 0. We have

J̃N = E
[
(ucN−d)

′(R+ B̄′θN P̄N+1B̄θN )ucN−d
]

= E
[
(ucN−d)

′ΓθN−d−1u
c
N−d

]
. (50)

Obviously, ucN−d = 0 can minimize J̃N , i.e., J̃N = 0.
Thus, due to the uniqueness of the solution to Problem 2,
we have J̃N > 0 for any nonzero ucN−d. Therefore, from
(50) and the arbitrariness of nonzero ucN−d, ΓθN−d−1

> 0
is derived. In this case, it follows from (7) that ucN−d and
λN−1 can be calculated as follows

0=EN−d−1
[
B̄′θN P̄N+1(ĀθN zN + B̄θNu

c
N−d)+Ru

c
N−d)

]
=EN−d−1

[
B̄′θN P̄N+1ĀθN zN+(R+ B̄′θN P̄N+1B̄θN )ucN−d

]
=EN−d−1

[
(S̃1
θN−1

)′
d∏
j=1

ĀθN−j

]
zN−d+

d∑
i=1

EN−d−1

[
(S̃1
θN−1

)′

×
i−1∏
j=1

ĀθN−j B̄θN−i

]
ucN−d−i +ΓθN−d−1u

c
N−d, (51)

and

λN−1=EN−1

[
Q+Ā′θN P̄N+1ĀθN

]
zN+S̃1

θN−1
ucN−d

=P̄θN−1zN−S̃
1
θN−1

Γ−1
θN−d−1

(
M0
θN−d−1

zN−d

+

d∑
i=1

M i
θN−d−1

ucN−d−i

)
, (52)

which hold for (23) and (25) in case of k = N . Taking
d ≤ l ≤ N , assume that Γθk−d−1

(k) > 0, we have (23)
and (25) for k ≥ l + 1. Finally, we prove Γθl−d−1

(l) > 0.
From (7), we have
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E
[
z′kλk−1 − z′k+1λk

]
=E
[
z′kQzk + (uck−d)

′Ruck−d
]
. (53)

Adding from k = l + 1 to k = N on both sides of (53),
and taking zl = 0, we have

J̃l=E

{
(ucl−d)

′Rucl−d+(ucl−d)
′B̄′θl

[
P̄θlB̄θlu

c
l−d

−
d∑
s=0

(
F s+1
θl

Γ−1
θl−d+s

M0
θl−d+s

s−1∏
i=0

Āθl−d+i+1

)
zl−d+1

−
d∑
i=1

(
d∑
s=0

F s+1
θl

Γ−1
θl−d+s

M i+s
θl−d+s

)
ucl−d−i+1

]}

=E

{
(ucl−d)

′El−d−1

[
R+B̄′θl P̄θlB̄θl−

d∑
s=0

(Ms+1
θl−d+s

)′

×Γ−1
θl−d+s

Ms+1
θl−d+s

]
ucl−d

}
=E
[
(ucl−d)

′Γθl−d−1u
c
l−d

]
. (54)

Due to the uniqueness of the optimal control, for any
nonzero u(l − d), we have Γθl−d−1

> 0.
It follows from (7) that we have

0=El−d−1

{
B̄′θl

[
P̄θl(Āθlzl+B̄θlu

c
l−d)−

d∑
s=0

(
F s+1θl

Γ−1
θl−d+s

×M0
θl−d+s

s−1∏
i=0

Āθl−d+i+1

)
(Āθl−dzl−d+B̄θl−du

c
l−2d)

−
d∑
i=1

(
d∑
s=0

F s+1θl
Γ−1
θl−d+s

M i+s
θl−d+s

)
ucl−d−i+1

]
+Rucl−d

}

=El−d−1

{
Γθl−d−1u

c
l−d+Γθl−d−1u

c
l−d+(S̃1

θl)
′zl

−
d∑
s=0

[
(Ms+1

θl−d+s
)′Γ−1

θl−d+s
M0
θl−d+s

s∏
i=0

Āθl−d+i

]
zl−d

−
d∑
i=1

(
d∑
s=0

(Ms+1
θl−d+s

)′Γ−1
θl−d+s

M i+s+1
θl−d+s

)
ucl−d−i

}

=Γθl−d−1u
c
l−d+El−d−1

[
(S̃1
θl−1

)′
d∏
j=1

Āθl−j−
d∑
i=0

(
(M i+1

θl−d+i
)′

×Γ−1
θl−d+i

M0
θl−d+i

i∏
s=0

Āθl−d+s

)]
zl−d−El−d−1

[
(S̃1
θl−1

)′

×
i−1∏
j=1

Āθl−j B̄θl−i−
d∑
s=0

(
(Ms+1

θl−d+s
)′Γ−1

θl−d+s
M i+s+1
θl−d+s

)]
ucl−d−i, (55)

and

λl−1=El−1

{
Qzl+Ā

′
θl

[
P̄θl(Āθlzl+B̄θlu

c
l−d)−

d∑
s=0

(
F s+1θl

Γ−1
θl−d+s

×M0
θl−d+s

s−1∏
i=0

Āθl−d+i+1

)
(Āθl−dzl−d+B̄θl−du

c
l−2d)

−
d∑
i=1

(
d∑
s=0

F s+1θl
Γ−1
θl−d+s

M i+s
θl−d+s

)
ucl−d−i+1

]}

=P̄θl−1zl+

{
S̃1
θl−1
−

d∑
s=0

[
El−1Ā′θlF

s+1
θl

Γ−1
θl−d+s

Ms+1
θl−d+s

]}
ucl−d

−El−1

{
d∑
s=0

(
Ā′θlF

s+1
θl

Γ−1
θl−d+s

M0
θl−d+s

s∏
i=0

Āθl−d+i

)
zl−d

+

d∑
i=1

(
d∑
s=0

Ā′θlF
s+1
θl

Γ−1
θl−d+s

M i+s+1
θl−d+s

)
ucl−d−i

]}

=P̄θl−1zl+

[
S̃1
θl−1
−

d∑
s=0

(
F s+2θl−1

Γ−1
θl−d+s

Ms+1
θl−d+s

)]

−

{
d∑
s=0

(
F s+2θl−1

Γ−1
θl−d+s

M0
θl−d+s

s∏
i=0

Āθl−d+i

)
zl−d

+

d∑
i=1

(
d∑
s=0

F s+2θl−1
Γ−1
θl−d+s

M i+s+1
θl−d+s

)
ucl−d−i

]}
, (56)

i.e., ucl−d and λl−1 are as (23) and (25) with k = l, re-
spectively.
(⇐=) When Γθk−d−1

(k) > 0, we will investigate the
unique solvability of Problem 2. Define

VN (k)

=E

{
z′kP̄θk−1zk−z

′
k

d∑
s=0

(
F s+1θk−1

Γ−1
θk−d−1+s

M0
θk−d−1+s

s−1∏
i=0

Āθk−d+i

)
×zk−d−z′k

d∑
i=1

( d∑
s=0

F s+1θk−1
Γ−1
θk−d−1+s

M i+s
θk−d−1+s

)
uck−d−i

}
. (57)

From Remark 4, we have

VN (k)− VN (k + 1)

=E

{
z′k[P̄θk−1−Ā

′
θk P̄θk Āθk ]zk−z′k

d∑
s=0

[
Ā′θk P̄θk B̄θk−F

s+2
θk−1

×Γ−1
θk−d+s

Ms+1
θk−d+s

]
uck−d −(uck−d)

′B̄′θk P̄θk Āθkzk

−z′k

[
d∑
s=0

(F s+1θk−1
Γ−1
θk−d−1+s

M0
θk−d−1+s

s−1∏
i=0

Āθk−d+i)

−
d∑
s=0

(F s+2θk−1
Γ−1
θk−d+s

M0
θk−d+s

s∏
i=0

Āθk−d+i)

]
zk−d−(uck−d)

′

×

[
B̄′θk P̄θk B̄θk−

d∑
s=0

(Ms+1
θk−d+s

)′Γ−1
θk−d+s

Ms+1
θk−d+s

]
uck−d

(58)
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+(uck−d)
′
d∑
s=0

(
(Ms+1

θk−d+s
)′Γ−1

θk−d+s
M0
θk−d+s

s∏
i=0

Āθk−d+i

)
zk−d

−z′k
d∑
i=1

(
F s+1θk−1

Γ−1
θk−d+s−1

M i+s
θk−d+s−1

− F s+2θk−1
Γ−1
θk−d+s

M i+s+1
θk−d+s

)
uck−d−i

+(uck−d)
′
d∑
i=1

(
d∑
s=0

(Ms+1
θk−d+s

)′Γ−1
θk−d+s

M i+s+1
θk−d+s

)
uck−d−i

}

=E

{
z′kQzk + (uck−d)

′Ruck−d − (uck−d)
′Γθk−d−1u

c
k−d

−(uck−d)′M0
θk−d−1

zk−d − (uck−d)
′
d∑
i=1

M i
θk−d−1

uck−d−i

−z′k−d(M0
θk−d−1

)′uck−d−z′k−d(M0
θk−d−1

)′Γ−1
θk−d−1

M0
θk−d−1

zk−d

−z′k−d
d∑
i=1

(M0
θk−d−1

)′Γ−1
θk−d−1

M i
θk−d−1

uck−d−i−
d∑
i=1

(uck−d−i)
′

×(M i
θk−d−1

)′uck−d−
d∑
i=1

(uck−d−i)
′(M i

θk−d−1
)′Γ−1

θk−d−1

×
d∑
i=1

M i
θk−d−1

uck−d−i

}

=E

{
z′kQzk + (uck−d)

′Ruck−d

(
uck−d+Γ−1

θk−d1
M0
θk−d−1

zk−d

+Γ−1
θk−d−1

d∑
i=1

M i
θk−d−1

uck−d−i

)′
Γθk−d−1

(
uck−d+Γ−1

θk−d−1

×M0
θk−d−1

zk−d + Γ−1
θk−d−1

d∑
i=1

M i
θk−d−1

uck−d−i

)}
. (59)

Summing up from k = d to k = N on both sides of (59),
and in view of Γθk−d−1

> 0 for k ≥ d, the optimal con-
troller and the optimal cost functional can be obtained
as (23) and (24), respectively. The proof is completed.

B Proof of Theorem 13

Proof. (=⇒) The existence of solution to CAREs (31)-
(36) will be shown. Consider the following delay-free
MJLS:

Yk+1 = CθkYk +Duck, (60)

where

Yk =


zk

uck−1

...

uck−d

 , Cθk =



Āθk 0 · · · 0 B̄θk

0 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0


, D =



0

I

0

...

0


.

Also, the cost functional over an infinite horizon is as
follows

J =

∞∑
k=0

E[Y ′kQYk + (uck)′Ruck], (61)

whereQ =


Q

0

. . .

0

 . The corresponding cost func-

tional over a finite horizon is

JN=E

{
N∑
k=0

[Y ′kQYk+(uck)′Ruck]+Y ′N+1PN+1YN+1

}
. (62)

By maximum principle, the following forward and back-
ward difference equations can be given as

0 = Ek−1[Ruck +D′ξk],

ξk−1 = Ek−1[QYk + Cθkξk],

ξN = PN+1YN+1.

(63)

It follows from Theorem 7 that we have
(1) the following recursive sequence

P(N)
N+1=P̄

(N)
N+1, (64)

P(N)
θk−1

=Ek−1[Q+C′θkP
(N)
θk

Cθk−(M(N)
θk−1

)′(Υ
(N)
θk−1

)−1M(N)
θk−1

],(65)

in which

M(N)
θk−1

=Ek−1[D′P(N)
θk

Cθk ]

=Ek−1[(P(N)
θk

(2, 1)Āθk ,P
(N)
θk

(2, 3),· · · ,P(N)
θk

(2, d+ 1),

P(N)
θk

(2, 1)B̄θk )], (66)

Υ
(N)
θk−1

= Ek−1[R+D′P(N)
θk−1

D]=Ek−1[R+P(N)
θk−1

(2, 2)]; (67)

(2) the costate

ξk−1 = P(N)
θk−1

Yk; (68)

(3) the optimal control

uck=−(Υ
(N)
θk−1

)−1M(N)
θk−1

Yk

=−(R+ P(N)
θk−1

(2, 2))−1[(P(N)
θk

(2, 1)Āθk )zk+P(N)
θk

(2, 3)

×uck−1+ · · ·+P
(N)
θk

(2, d+1)uck−d+1+P
(N)
θk

(2, 1)B̄θku
c
k−d
]

=−Γ−1
θk−1

(k,N)M0
θk−1

(k,N)zk−Γ−1
θk−1

(k,N)

×
d∑
i=1

M i
θk−1

(k,N)uck−i, (69)

where P(N)
θk

(i, j) represents block matrix with suitable
dimension.
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The following relationship can be obtained in view of
(23) and (69).

(R+ P(N)
θk−1

(2, 2))−1Ek−1[P(N)
θk

(2, 1)Āθk ]

= Γ−1
θk−1

(k,N)M0
θk−1

(k,N)

(R+ P(N)
θk−1

(2, 2))−1Ek−1[P(N)
θk

(2, 3)]

= Γ−1
θk−1

(k,N)M1
θk−1

(k,N)

...

(R+ P(N)
θk−1

(2, 2))−1Ek−1[P(N)
θk

(2, d+ 1)]

= Γ−1
θk−1

(k,N)Md−1
θk−1

(k,N)

(R+ P(N)
θk−1

(2, 2))−1Ek−1[P(N)
θk

(2, 1)B̄θk ]

= Γ−1
θk−1

(k,N)Md
θk−1

(k,N).

The convergence of P(N)
θk−1

can be obtained in a sim-

ilar manner with [1]. On this basis, from (70), P(N)
θk−1

Γ−1θk−1
(k,N)M j

θk−1
(k,N), j = 0, 1, · · · , d are convergent.

Let ξk−1 =
[
ξ0k−1 ξ

1
k−1 · · · ξdk−1

]′
, and from (68) we

know

ξ0k−1 = P(N)
θk−1

(1, 1)zk + P(N)
θk−1

(1, 2)uck−1 + · · ·

+P(N)
θk−1

(1, d+ 1)uck−d. (70)

Further, from (63), we have

ξ0k−1 = Ek−1[Qzk + Āθkξ
0
k], (71)

comparing with (4) and (71), it is obvious that, if ξ0N =
P̄N+1, the following relationship holds

ξ0k−1 = λk−1. (72)

Consider (23), (25), (70) and (72), and we can find the
following relationship using a direct calculation

P(N)
θk−1

(1, 1) = P̄θk−1 . (73)

Therefore, we have

lim
N→∞

P̄θk−1(k,N) , P̄ld−1 , (74)

where θk−1 = ld−1, k ≥ d, ld−1 = 0, 1. In view of (8),
we know that (M0

θk−1
)′Γ−1θk−1

M0
θk−1

is convergent.

On this basis, it is esay to verify that Γθk−1
(k,N),

M i
θk−1

(k,N), i = 0, · · · , d, F d−j+1
θk−j−1

(k − j,N) and

S̃jθk−1
(k,N), j = 1, · · · , d are also convergent and

CAREs (31)-(36) have a solution.
(2) Now, we will prove inequality (38).

Let Ĵd(m) represent cost functional (6) which starts at
d and ends at m,m ≥ N . In view of Lemma 6, we can
obtain the optimal cost value Ĵ∗d (m) as follows

Ĵ∗d (m)

=E

{
z′dP̄θd−1(d,m)zd−z′d

d−1∑
s=0

[F s+1θd−1
(d,m)Γ−1

θs−1
(d+ s,m)

×M0
θs−1

(d+s)zs]−z′d
d−1∑
s=0

[
F s+1θd−1

(d,m)Γ−1
θs−1

(d+s,m)

×
d∑

i=s+1

M i
θs−1

(d+s)ucs−i

]}

=E

{
z′d

[
P̄θd−1(d,m)−

d−1∑
s=0

[
F s+1θd−1

(d,m)Γ−1
θs−1

(d+s,m)

×(F s+1θd−1
(d,m))′

]]
zd

}

=z′d

[
P̄θd−1(d,m)−

d−1∑
s=0

[
F s+1θd−1

(d,m)Γ−1
θs−1

(d+s,m)

×(F s+1θd−1
(d,m))′

]]
zd

≥0. (75)

Since zd is arbitrary, we have

P̄θd−1(d,m)−
d−1∑
s=0

[
F s+1θd−1

(d,m)Γ−1
θs−1

(d+s,m)

×(F s+1θd−1
(d,m))′

]
≥ 0. (76)

For k ≥ d, let m = N − k + d. In view of the time-
variance, it yields that

P̄θk−1(k,N)−
d−1∑
s=0

[
F s+1θk−1

(k,N)Γ−1
θk−d+s−1

(k+s,N)

×(F s+1θk−1
(k,N))′

]
≥ 0. (77)

By virtue of the convergence, it is easy to derive (38).
From Lemma 3 in [19], we can find an integer G such
that

P̄θd(d,G)−
d−1∑
s=0

[F s+1
θd

(d,G)Γ−1
θs−1

(d+ s,G)

×(F s+1
θd

(d,G))′] > 0. (78)

Also, the monotonicity with respect roN of (77) deduces
that
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P̄ld−
d−1∑
s=0

[F s+1
ld

Γ−1
ls−1

(F s+1
ld

)′]

= lim
N→∞

[
P̄θd(d,N)−

d−1∑
s=0

(
F s+1
θd

(d,N)Γ−1
θs−1

(d+ s,N)

×(F s+1
θd

(d,N))′
)]

≥P̄θd(d,G)−
d−1∑
s=0

[
F s+1
θd

(d,G)Γ−1
θs−1

(d+ s,G)

×(F s+1
θd

(d,G))′
]
> 0.

The proof is completed.
(⇐=) The mean-square stabilization of system (1) will
be illustrated. Define

L(k)=E

{
z′kP̄θk−1zk−z

′
k

d−1∑
s=0

(
F s+1θk−1

Γ−1
θk−d−1+s

M0
θk−d−1+s

zk−d+s
)

−z′k
d−1∑
s=0

(
F s+1θk−1

Γ−1
θk−d−1+s

d∑
i=s+1

M i
θk−d−1+s

uck−d−i+s

)}
. (79)

In view of (55), we have

L(k)− L(k + 1)

=E

{
z′kQzk+(uck−d)

′Ruck−d −

(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

×
d∑
s=1

(Ms
i u

c
k−d−s)

)′
Γi

(
uck−d+ Γ−1

i M0
i zk−d

+Γ−1
i

d∑
s=1

(Ms
i u

c
k−d−s)

)}
(80)

=E
[
z′kQzk+(uck−d)

′Ruck−d

]
≥ 0, k ≥ d, (81)

with uck−d = −Γ−1i

(
M0
i zk−d +

∑d
s=1M

s
i u

c
k−d−s

)
.

Therefore, L(k) decreases with respect to k. From (19)-
(18), L(k) can be expressed as

L(k)=E

{
z′k

[
P̄θk−1−

d−1∑
s=0

(
F s+1
θk−1

Γ−1
θk−d+s−1

(F s+1
θk−1

)′
)]
zk

+

d−1∑
s=0

(
F s+1
θk−1

zk−E[F s+1
θk−1

zk|Fk−s−1]
)′

Γ−1
θk−s−1

×
(
F s+1
θk−1

zk − E[F s+1
θk−1

zk|Fk−s−1]
)}

≥E

{
z′k

[
P̄θk−1−

d−1∑
s=0

[F s+1
θk−1

Γ−1
θk−d+s−1

(F s+1
θk−1

)′]

]
zk

}
≥0, k ≥ d, (82)

i.e., L(k) is bounded. Therefore, L(k) is convergent.

For any l ≥ 0, summing up from k = l+ d to k = l+N
on both sides of (81), when l→∞, we can derive that

lim
l→∞

l+N∑
k=l+d

E[z′kQzk + (uck−d)
′Ruck−d]

= lim
l→∞

[L(l + d)− L(l +N + 1)] = 0. (83)

Recall that

N∑
k=d

E[z′kQzk + (uck−d)
′Ruck−d]

≥ E

{
z′dP̄θd−1zd − z

′
d

d−1∑
s=0

(
F s+1
θd−1

Γ−1
θs−1

M0
θs−1

zs
)

−z′d
d∑
s=0

(
F s+1
θd−1

Γ−1
θs−1

d∑
i=s+1

M i
θs−1

ucs−i

)}
.

Therefore, the following relationship can be deduced
that

l+N∑
k=l+d

E
[
z′kQzk+(uck−d)

′Ruck−d

]
≥E

{
z′l+d

[
P̄θl+d−1(l+d, l+N)−

d−1∑
s=0

[F s+1θl+d−1
(l+d, l+N)

×Γ−1
θl+s−1

(l+s, l+N)(F s+1θl+d−1
(l+d, l+N))′]

]
zl+d

}

=E

{
z′l+d

[
P̄θd−1(d,N)−

d−1∑
s=0

[F s+1θd−1
(d,N)Γ−1

θs−1
(s,N)

×(F s+1θd−1
(d,N))′]

]
zl+d

}
≥0.

Using (83), we have

lim
l→∞

E

{
z′l+d

[
P̄θd−1(d,N)−

d−1∑
s=0

[F s+1θd−1
(d,N)

×Γ−1
θs−1

(s,N)(F s+1θd−1
(d,N))′]

]
zl+d

}
=0, ∀N ≥ d. (84)

From (78) and (84), it deduces that lim
l→∞

E[z′l+dzl+d] =

0. Therefore, system (6) is mean-square stabilizable with
controller (41).

Finally, the optimal cost functional will be calculated.

Summing up from k = 0 to k = N on both sides of (80),
it yields that
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E

{
N∑
k=0

[z′kQzk+(uck−d)
′Ruck−d]

}

=L(0)−L(N + 1)+

N∑
k=0

E
{(

uck−d+Γ−1
i M0

i zk−d

+Γ−1
i

d∑
s=1

(Ms
i u

c
k−d−s)

)′
Γi
(
uck−d+Γ−1

i M0
i zk−d

+Γ−1
i

d∑
s=1

(Ms
i u

c
k−d−s)

)}
. (85)

Since 0 ≤ L(k) ≤ E[zkP̄θk−1
zk] and the system

(4) is stabilized in the mean-square sense, we have
lim
k→∞

E[zkP̄θk−1
zk] = 0, i.e., lim

k→∞
L(k) = 0.

Let N →∞ on both sides of (85), then

J=L(0)+

∞∑
k=d

E

{(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

d∑
s=1

(Ms
i u

c
k−d−s)

)′
×Γi
(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

d∑
s=1

(Ms
i u

c
k−d−s)

)}

+

d−1∑
k=0

E
[(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

d∑
s=1

(Ms
i u

c
k−d−s)

)′
×Γi
(
uck−d+Γ−1

i M0
i zk−d+Γ−1

i

d∑
s=1

(Ms
i u

c
k−d−s)

)]}
. (86)

In view of the positive definiteness of Γi, in order to
minimize (86), we take (41) as the optimal controller.
Then, the corresponding optimal cost functional can be
expressed as (42). The desired sufficiency is proved.
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