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Abstract 28 

One of the key epidemiological characteristics that shape the transmission of coronavirus 29 
disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following 30 
a probability distribution at a population scale, recent studies reported slight shrinkage (or 31 
contraction) of the mean of effective SI across transmission generations or over time. Here, we 32 
develop a likelihood-based statistical inference framework with truncation to explore the change in 33 
SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 34 
contact tracing surveillance data in Hong Kong are used for exemplification. We find that for 35 
COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 36 
0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower 37 
boundary of this shrinking process. We speculate that one of the probable explanations for the 38 
shrinkage in SI might be an outcome due to the competition among multiple candidate infectors 39 
within a cluster of cases. Thus, the nonpharmaceutical interventive strategies are crucially important 40 
to block the transmission chains, and mitigate the COVID-19 epidemic.  41 

 42 

Keywords: COVID-19; serial interval; transmission generation; contact tracing; statistical modelling.  43 
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1 Introduction 45 

The transmission dynamics of an infectious disease are partially determined by the 46 
 of the transmission (He et al., 2020b; Kutter et al., 2018; 47 

Riou and Althaus, 2020; Tuite and Fisman, 2020; Wallinga and Lipsitch, 2007; Xu et al., 2020; Yan, 48 
2008; Zhao, 2020a; Zhao et al., 2020e). The serial interval (SI), which is defined as the time interval 49 
between the symptoms onset dates of an infector and of the associated infectee (Fine, 2003; Milwid 50 
et al., 2016; Vink et al., 2014; White et al., 2009), is widely used to measure the duration of the 51 
transmission generation. As the most efficient proxy of the generation time (GT) (Wallinga and 52 
Teunis, 2004), SI is one of the crucial epidemiological parameters in describing the transmission 53 
process as well as the growth patterns of an outbreak (Champredon and Dushoff, 2015a; Kenah et al., 54 
2008; Wallinga and Lipsitch, 2007; Yan, 2008).  55 

As a contagious disease, the coronavirus disease 2019 (COVID-19), caused by the severe 56 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was firstly reported in 2019 (Huang et al., 57 
2020; Leung et al., 2020; Li et al., 2020b; Parry, 2020; Zhao et al., 2020c), and rapidly spread to over 58 
200 countries and territories, which poses a serious threat to global health. In response to the large-59 
scale COVID-19 outbreaks, the World Health Organization (WHO) declared a public health 60 
emergency of international concern on January 30, 2020 (World Health Organization, 2020), which 61 
soon became a pandemic. As of February 14, 2021, there have been over 100 million confirmed 62 
COVID-19 cases worldwide with over 2 million associated deaths (2021).  63 

To date, the transmission process of COVID-19 has been characterized and reconstructed 64 
both empirically and theoretically (Adam et al., 2020; He et al., 2020b; Kwok et al., 2020; Li et al., 65 
2020b; Luo et al., 2020; Ren et al., 2021; Tindale et al., 2020; Wu et al., 2020a; Xu et al., 2020). In a 66 
number of existing literature, SI is commonly considered following a universal distribution at the 67 
population (or herd) scale for many well-known respiratory infectious diseases (Assiri et al., 2013; 68 
Cowling et al., 2009; Leung et al., 2004; Vink et al., 2014), which also occurs for COVID-19 (He et 69 
al., 2020b; Li et al., 2020b; Nishiura et al., 2020; Wang et al., 2020). In other words, SI was 70 
considered as a fixed distribution across transmission generations. However, two recent studies 71 
reported that SI appears with slight discrepancies across different transmission generations according 72 
to the summary statistics at populational scale (Li et al., 2020a; Ma et al., 2020). Inspiring by their 73 
findings, we suspect there may exist a solid difference in the mean SI in consecutive generations in a 74 
transmission chain.  75 

In this study, we develop a statistical framework to explore the change in the SI across 76 
transmission generations after adjusting the impacts of case isolation. For exemplification, we 77 
quantify the change in SI by using the COVID-19 contact tracing surveillance data in Hong Kong. 78 
We explore the mechanism that drives the change in SI, and we also demonstrate its effects on 79 
shaping the transmission of COVID-19.  80 

2 Methods  81 

2.1 Conceptualization and statistical parameterization  82 

 We denote the SI of an infected individual, i.e., infector, by  that follows a probability 83 
density function (PDF) h( ) with mean  and standard deviation (SD) . A transmission chain is 84 
composed by two consecutive transmission pairs, in which the infectee in the former transmission 85 
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pair acts as the infector in the latter transmission pair, see Fig 1. Regarding each case, we name the 86 
transmission pair between the infector of this case and , and 87 
name the transmission pair between this case and his latter transmission pair . As such, 88 
for convenience, we name the SI in the former transmission pair by former SI  and denoted by (F), 89 
and the SI in the latter transmission pair by latter SI  and denoted by (L). Here, we note that the 90 
superscript, i.e., or is used merely as a label instead of as a power.  91 

 We explore the changing patterns in SI across transmission generations. In the same 92 
transmission chain, an intuitive statistical relation between (F) and (L) in Eqn (1),  93 

E[ (L)] = E[ (F)],  (1) 

is considered, where E function. The parameter  is the change ratio 94 
between the means of two consecutive SIs, which is a positive constant to be determined. 95 
Straightforwardly, there exist iterative changes in mean SI across transmission generations, if   96 
while the mean SI may be a constant, if  = 1. Hence, the relation in Eqn (1) can be examined by 97 
checking whether  = 1 holds under the null hypothesis.  98 

2.2 Likelihood-based inference framework  99 

 With the PDF h( ) for the individual SI, the (baseline) likelihood framework, denoted by L0, 100 
can be formulated in Eqn (2). That is  101 

,  (2) 

where the subscript i denotes the i-th transmission chain. For h(L) , (F)), the mean of h(L) is given as 102 
(L) = (F)  according to the relation in Eqn (1). By contrast, for h(F) , (L)), the mean of h(F) is given 103 

as (F) = (L)/ . The SD of h , i.e., , is modelled as a function of . Due to the lack of information 104 
about the dispersion of the individual SI, as well as small sample size, we consider three scenarios of 105 
 that cover a wide range of the possible situations. For a given individual infector, they include  106 

 scenario (I), a large SD:  = | |, which refers to the scale of the coefficient of variation (CV) 107 
estimated in previous studies (Adam et al., 2020; Ali et al., 2020; Du et al., 2020; He et al., 108 
2020b; Kwok et al., 2020; Nishiura et al., 2020; Tindale et al., 2020; Xu et al., 2020; You et 109 
al., 2020; Zhao et al., 2020f) and considered as an upper bound of SD;  110 

 scenario (II), a moderate SD: 2 = | |, which is assumed having a Poisson-like feature; and  111 
 scenario (III), a small SD:  = 1, which is assumed and considered as a lower bound of SD.  112 

(L) (F)  is omitted here for simply convenience. We remark that, on one hand, for 113 
scenarios (I) and (II), the SD is depended on the mean SI of the generation, which indicates SD is 114 
not same between generations. Since the mean SI shrinks across transmission generations, the SD 115 
under these two scenarios will also change. On the other hand, the scenarios (III) reflected a 116 
condition that SD is fixed across transmission generation. The three scenarios here covered a wide 117 
range of SD of SI for COVID-19, which should include the most realistic situation. We acknowledge 118 
that the information about the SD of individual SI may improve the analysis. As our research target 119 
is focusing on the mean SI ( ), the settings in SD will not affect our conclusions. 120 

With the mean and SD, the function h  can be formulated by some widely adopted PDFs. 121 
We consider three different PDFs. They are  122 
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 Normal distribution as a representative of symmetric distributions defined on all real numbers 123 
(Ali et al., 2020; Du et al., 2020; Forsberg White and Pagano, 2008; Ma et al., 2020; Xu et al., 124 
2020; Yang et al., 2020; You et al., 2020);  125 

 Gumbel distribution as a representative of asymmetric distributions defined on all real 126 
numbers (Ali et al., 2020; Xu et al., 2020); and  127 

 Gamma distribution as a representative of asymmetric distributions defined on positive 128 
numbers (Ali et al., 2020; Cowling et al., 2009; Du et al., 2020; Ferretti et al., 2020; Ganyani 129 
et al., 2020; He et al., 2020b; Li et al., 2020b; Ma et al., 2020; Nishiura et al., 2020; Ren et al., 130 
2021; Tindale et al., 2020; Vink et al., 2014; Wang et al., 2020; Xu et al., 2020; Zhao, 2020b; 131 
Zhao et al., 2020f).  132 

 We select the scenario of SD and distribution of h133 
the Akaike information criterion with a correction for small sample sizes (AICc).  134 

  In addition, as pointed out in (Nishiura et al., 2020), the baseline likelihood in Eqn (2) might 135 
lead to an underestimation of SI due to the interval-censoring issue. Hence, according to the 136 
truncation scheme previously developed in (Zhao et al., 2020f), which accounts for the effects of 137 

isolation, we adjust for the truncation bias by an improved likelihood function, L, in 138 
Eqn (3). We have  139 

,  (3) 

where H( ) is the cumulative distribution function (CDF) of h( ), and the letter d denotes the duration 140 
from the onset date of an infector to  isolation date. All other notations are the same as 141 
those in Eqn (2).  142 

 The parameter  is estimated under both truncated and non-truncated schemes by using the 143 
maximum likelihood estimation (MLE). The AICc is employed for model selection. The 95% 144 
confidence interval (95%CI) is calculated by using the profile likelihood estimation framework with 145 
the cutoff threshold of a Chi-square quantile (Cai et al., 2021; Fan and Huang, 2005; He et al., 2020a; 146 
Lin et al., 2018; Zhao et al., 2020a).  147 

All analyses are conducted in the R statistical software (version 3.5.1), and no specific 148 
package is used.  149 

2.3 COVID-19 surveillance data in Hong Kong  150 

The COVID-19 surveillance data are originally released by the Centre for Health Protection 151 
(CHP) of Hong Kong (Centre for Health Protection, 2020), and used in (Adam et al., 2020) 152 
previously. According to the data description in (Adam et al., 2020), a total of 1038 laboratory-153 
confirmed SARS-CoV-2 infections as of May 7, 2020, were initially screened. In Hong Kong, each 154 
contact of a confirmed COVID-19 case, defined as who has prolonged face-to-face interaction with a 155 
case, is traced and mandatorily quarantined for 14 days, regardless of symptom appearance. Then, 156 
each transmission pair, i.e., the -and-  can be reconstructed from the contact 157 
tracing records. A total of 169 transmission pairs including 27 asymptomatic transmission pairs for 158 
either infector or infectee, which are directly collected via https://github.com/dcadam/covid-19-159 
sse/blob/master/data/transmission_pairs.csv, are identified for further screening.  160 
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In this study, we focus on the (169  27 =) 142 symptomatic transmission pairs in Hong Kong. 161 
We identify the infectee who acts as an infector in other transmission pairs, i.e., the secondary 162 
in Fig 1, by matching all combinations of the 142 transmission pairs. We reconstructed the 163 
transmission chain with 3 generations including primary case, secondary case, and tertiary case, 164 
which is i . A total of 21 transmission chains are extracted, 165 
and presented in Fig 2.  166 

Since the isolation period of each infector is unavailable, we consider the case confirmation 167 
date as a proxy of the isolation starting time with the presumption that the isolation starts 168 
immediately after confirmation. Hence, the change ratio of SI, , can be estimated from these 169 
transmission chain data in Hong Kong by using the analytical framework in Section 2.2.  170 

2.4 Sensitivity analysis  171 

To evaluate the estimating sensitivity, an alternative formulation, similar to the relationship in 172 
Eqn (1), is adopted to repeat the estimation with the dataset from Hong Kong. The alternative 173 
relationship between the former and latter SIs is formulated in Eqn (4).  174 

E[ (L)] = [E[ (F)] c] + c,  (4) 

where the term c indicates the lower bound of the SI as generation increases. Other terms have 175 
the same meanings as those in Eqn (1). Straightforwardly, Eqn (1) and Eqn (4) will be equivalent, if 176 

c = 0. Thus, the intuition of Eqn (4) is of the same fashion as that of the Eqn (1).  177 

 We estimate both c and  simultaneously with the likelihood profiles and estimation 178 
procedures in Section 2.2. The model selection is conducted referring to the lowest AICc. We check 179 
the consistency of the  estimates, and whether c is significantly larger than 0.  180 

2.5 Exploratory explanation of the mechanisms behind the change in SI  181 

 In this section, we develop statistical models to explore two possible, but not verified, 182 
mechanisms behind the change in SI, their effects in shaping the transmission process, and their 183 
reasonability.  184 

2.5.1 Exploration #1: changes in latent period and infectious period  185 

In exploration #1, we consider a hypothetical scenario that the change in mean GT (= mean 186 
SI) is an intrinsic feature of the pathogen, which is due to change in latent period and infectious 187 
period across cluster generations. Then, according to -exposed-infectious-188 

, where exponential distributions are assumed for most of the 189 
epidemiological parameters (Gatto et al., 2020; Lipsitch et al., 2003; Svensson, 2007; Wu et al., 190 
2020b; Zhao et al., 2020b), we have  191 

X(k) + Y(k) = E[ (k)], and X(k+1) + Y(k+1) = E[ (k+1)],  (5) 

where X (unit: day) denotes the mean latent period, and Y (unit: day) denotes the mean infectious 192 
period. Note that Eqn (5) originally holds for the relationship among latent period, incubation period 193 
and GT (Svensson, 2007). It can be extended to the situation of SI with the assumption that the 194 
infector and infectee have the same distribution for the incubation period, such that GT and SI have 195 
the same expectation. The superscript (k) is the label of transmission generation rather than a power. 196 
This relationship is derived in (Svensson, 2007) theoretically, and adopted in (Champredon and 197 
Dushoff, 2015a; Gatto et al., 2020; Lipsitch et al., 2003; Wu et al., 2020b; Zhao et al., 2020b). When 198 
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 < 1, we assume 0  X(k+1)  X(k), and  Y(k+1) Y(k) for Eqn (5). We define 199 

 as the percentage of SI reduction due to the reduction in infectious period.  200 

We explore the potential effects of the change in SI on the individual reproduction number, R, 201 
across transmission generations. Referring to the SEIR framework, the individual reproduction 202 
number can be modelled as the product of the mean effective contact rate and the mean infectious 203 
period, i.e., R(k) = (k) Y(k) for the infector in the k-th generation in a transmission chain. Here,  (unit: 204 
per day) denotes the effective contact rate.  205 

By fixing  as a constant, we explore the effects of the change in  on R in the k-th 206 
transmission generation. To set up, we fix the mean SI of the infector, E[ (k=0)], at 7.5 days referring 207 
to the estimates from the earliest COVID-19 data (Li et al., 2020b), and the mean latent period, X(k=0), 208 
at 3.3 days (Li et al., 2020c; Zhao, 2020b; Zhao et al., 2021b) for the initial, i.e., 0-th, generation. 209 
Thus, the mean infectious period, Y(k=0), is derived at 2 days by using Eqn (5), which is 210 
in line with the results in literatures (Kucharski et al., 2020; Li et al., 2020c; Wu et al., 2020b). We 211 
further fix the initial individual reproduction number, R(k=0), at 2.2, which is generally consistent with 212 
previous estimates (Ali et al., 2020; Chinazzi et al., 2020; Gatto et al., 2020; He et al., 2020b; Jung et 213 
al., 2020; Li et al., 2020b; Musa et al., 2020; Ran et al., 2020; Riou and Althaus, 2020; Wu et al., 214 
2020b; Xu et al., 2020; Zhao et al., 2020c; Zhao et al., 2020f), and also for the situation in Hong 215 
Kong (Cowling et al., 2020). Then, we fix  = 2.2 / 4.2 . Thus, the 216 
relationship among k, , and R can be solved numerically.  217 

2.5.2 Exploration #2: competition among multiple candidate infectors 218 

 In exploration #2, we consider a statistical mechanism that the shrinkage in SI may be an 219 
outcome of a competition among multiple candidate infectors, which was previously pointed out in 220 
(Kenah et al., 2008). The SI is recorded pairwisely as the duration between onset dates of an infectee 221 
and the infector who triggers the infection. In a cluster of cases, contacts are likely to occur in most 222 
pairs of infected and susceptible individuals simultaneously. Here, a cluster is defined as a group of 223 
cases who are seeded to the same (traceable) source of infection. The size of the cluster is determined 224 
by the number of cases within the same cluster. For example, 1 seed case without causing further 225 
infection would be a cluster of size 1, and 1 seed case transmits to 3 cases in the first generation, who 226 
further transmit to 5 cases in the second generation, would be a cluster of size (1 + 3 + 5 =) 9. The 227 
candidate infector is defined as those cases who contribute to the exposure of an infectee but may or 228 
may not trigger the infection eventually. We speculate the competitions among multiple candidate 229 
infectors may shorten the SI.  230 

For the competition among a total of J candidate infectors for one infectee, the onset time, t, 231 
of the infectee who is triggered by the j-th candidate infector follows a PDF denoted by g(t = tj + j). 232 
Here, tj denotes onset date of the j-th candidate infector, and j denotes the candidate SI, if occurs, 233 
between the j-th candidate infector and the infectee. The parameter tj is observable from the 234 
surveillance data, and thus is considered as a constant. The parameter j is modelled as independent 235 
and identically distributed (IID) random variable following the PDF h( ) as defined in Section 2.1. 236 
Hence, the g(t) appears a shifted version of h( ) with a shift term of tj. The candidate infector who 237 
triggers the infectee is recognized as the infector. Thus, the observed SI of the infectee is j that 238 
associates with the smallest (tj + j) for all indexes j.  239 
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We simulate this candidate infector competition framework stochastically. To set up, we 240 
consider a cluster starting with one seed case whose onset date is day (or time) 0. The PDF h( ) is 241 
modelled as a Gamma distribution with mean 5.5 and standard deviation (SD) 3.3 days, which is in 242 
line with many existing estimates (Ferretti et al., 2020; Ganyani et al., 2020; Tindale et al., 2020; 243 
Zhao, 2020b). With h, the PDF g can also be determined by shifting. For the reproducibility, we 244 
restrict the number of offsprings generated by each infector following a Poisson distribution with rate 245 
parameter fixed at 2.2, which is consistent to the predefined value of reproduction number (R) in 246 
Section 2.5.1. Alternatively, the Poisson distribution adopted here can be extended to a Negative 247 
Binomial distribution to further account for the overdispersion feature in the individual reproduction 248 
number, i.e., superspreading potential (Adam et al., 2020; Lloyd-Smith et al., 2005; Zhao et al., 249 
2021a). The number of offsprings from the initial seed case, namely number of primary offsprings, is 250 
a criterion to identify the superspreading events, and thus is importance to explore its effect in 251 
shaping SI across transmission generation. For simplicity, we neglect the isolation in the simulation 252 
framework, such that the Poisson rate is fixed at 2.2. Namely, we investigate the theoretical 253 
outcomes under an intervention-free scenario. More realistic scenarios can be explored with time-254 
varying values of reproduction number, which can be calculated by using the approach in previous 255 
studies empirically (Ma et al., 2014; Park et al., 2019; Wallinga and Lipsitch, 2007; Zhao et al., 256 
2019).  257 

In the model simulation, we record the cluster size in terms of the cumulative number of 258 
cases, onset dates of each case, infector of each infectee (except the initial seed case), SI, generation 259 
of cases, and number of offsprings for each infector. The generation of cases is traced by the 260 
transmission chain linked to the initial seed case, and we defined the generation of initial seed case as 261 
generation 0. For convenience, the transmission generation between a case in generation 0 and 262 
another case in generation 1 as the first transmission generation, and thus the index of transmission 263 
generation can be ranked subsequently.  264 

For each simulation, we extract the SIs from first and second transmission generations, and 265 
treat these consecutive SIs as pairs of former and latter SIs that is illustrated in Fig 1. We generate 30 266 
pairs of former and latter SIs, and conduct the estimation of  using the framework in Eqn (2). We 267 
explore the effects of cluster size, number of primary offsprings and generation numbers in changing 268 
the scale of SI.  269 

3 Results and discussion  270 

For the 21 identified COVID-19 transmission chains in Hong Kong, the pairs of former and 271 
latter SIs are presented in Fig 2. We report the descriptive statistics as follows. For the former SI, we 272 
report a mean of 5.4 days, median of 6.0 days, interquartile range (IQR) between 3.0 and 7.0 days, 273 
95% centile from 1.5 to 10.5 days, 95% percentile of 8.0 days, and a range from 1.0 to 13.0 days. For 274 
the latter SI, we report a mean of 4.8 days, median of 4.0 days, IQR between 3.0 and 7.0 days, 95% 275 
centile from 1.0 to 9.5 days, 95% percentile of 9.0 days, and a range from 1.0 to 10.0 days. We 276 
observe that the mean (and median) SI decreases when generation increases, and this finding was 277 
reported previously in (Li et al., 2020a; Ma et al., 2020). With the sample means, we calculate the 278 
ratio of latter SI over former SI at (4.8 / 5.4 =) 0.89, which is roughly the same scale as 0.73 in (Ma 279 
et al., 2020) and 0.94 or 0.75 in (Li et al., 2020a). Empirically, the pairwise difference of latter SI 280 
minus former SI has a mean of 0.7 days, median of 0.0 day, and IQR . 281 
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The pairwise ratio of latter SI over former SI has a mean of 1.1, median of 1.0, and IQR between 0.5 282 
and 1.5. By using the nonparametric bootstrapping approach, the crude change ratio of SI across 283 
generations is calculated at 1.00 with 95%CI: (0.57, 1.43).  284 

Considering the theorical probability profile of individual SI in Eqn (2), we estimate the  at 285 
0.77 and 95%CI: (0.51, 1.16) selected with the lowest AICc among all non-truncated scenarios, see 286 
Table 1. For all scenarios in Table 1, we find that the Gamma distribution with 2 = | | outperformed 287 
against other scenarios in terms of the lowest AICc. As such, we estimate the  at 0.72 and 95%CI: 288 
(0.54, 0.96), which are considered as the main results. Besides the fitting performance, we also 289 
consider the biological feasibility of probability profile in governing the real-world observations of 290 
the SI of COVID-19. Referring to the previous literatures (Adam et al., 2020; Ali et al., 2020; Du et 291 
al., 2020; Ganyani et al., 2020; Tindale et al., 2020; Xu et al., 2020; You et al., 2020; Zhao, 2020b), 292 
the SI of COVID-19 might be negative, i.e.,  < 0. Although the Gamma distribution outperforms, 293 
the negative SI observations cannot be governed by a Gamma-distributed h( ). In this case, the 294 
scenario with the second lowest AICc is considered as another main results. As such, we estimate the 295 
 at 0.74 and 95%CI: (0.61, 0.91) with a Gumbel distribution, which is also highlighted in Table 1. 296 

The best fitting performance from Gamma distribution is probably because all our SI observations 297 
appear positive, see Fig 2. We remark that with negative SI observations, Gumbel distribution is 298 
likely to yield a better fitting performance than Gamma distribution.  299 

Consistently, the estimates of  using Gamma and Gumbel distributions are almost the same, 300 
and significantly less than 1. Thus, the individual intrinsic SI is likely to shrink when the 301 
transmission generation increases with rate at 0.72 per generation. Remarkably, we distinguish 302 
effective SI and intrinsic SI. The intrinsic SI measure the SI when the effect of control measure is not 303 
in place, while the effective SI emphases the SI under the control measure. It is important to reveal 304 
the fundamental change of the parameter and associated external factors. According to our truncated 305 
likelihood framework in Eqn (3), the estimated shrinkage can be understood in regarding the intrinsic 306 
SI (Champredon and Dushoff, 2015b; Nishiura et al., 2020; Zhao et al., 2020f), of which the 307 
distribution depends only on the average infectiousness of an individual  and the incubation period 308 

of secondary case as defined in (Champredon and Dushoff, 2015a). We have adjusted the impacts of 309 
case isolation in SI estimating, and thus the shrinkage in intrinsic SI is interpreted as an across-310 
generation feature. The shrinkage in SI is also unlikely due to the effects of other types of 311 
nonpharmaceutical interventions (e.g., social distancing, facemask, sterilization, suspension of 312 
gathering, and city lockdown), which may shorten the realized SI as pointed out in (Ali et al., 2020; 313 
Nishiura, 2010; Park et al., 2020; Zhao et al., 2020d), because the decrease in effective transmission 314 
rate of each source case is unlikely to affect the mean intrinsic SI estimate. The effective SI is 315 
inferred in (Ali et al., 2020; Ma et al., 2020). Furthermore, the issue that right censoring due to 316 
sampling bias may lead to estimation bias in SI, which is pointed out in recent study (Park et al., 317 
2021), may not affect our conclusion because our dataset covers a complete epidemic wave before 318 
May 2020 in Hong Kong. We also ignore the possible difference in the incubation periods of infector 319 
and infectee, which are considered following the same distribution in (Ganyani et al., 2020; Tindale 320 
et al., 2020). However, slight changes could occur due to several factors including case definitions, 321 
cohort assumptions, and changes in contact tracing strategies, which might impact the SI estimates 322 
and need further investigations.  323 
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Regardless of the number of direct offspring in each generation, the shrinkage in SI implies 324 
that the transmission is likely to occur more rapidly since the exposure of each infector. Then, the 325 
infectee is more likely exposed before the symptom onset of the infector in the late generations, 326 
comparing to the situation in the early generations. In other words, pre-symptomatic transmission 327 
may occur more frequently in the late generations. In addition, we find both main estimates of  are 328 
under the scenario (II) of ). Since the SIs from a population may have an SD as 329 
in scenario (I), this finding indicates that the SI of a population is more dispersive than the individual 330 
SI.  331 

For the sensitivity analysis, the relationship in Eqn (4) is examined. We find that, consistent 332 
with the main results, the Gamma-distributed h scenario (II) of  and likelihood truncation 333 
outperforms among other scenarios, see Fig 3. The SI lower bound, c, is estimated at 0.0 exactly, 334 
which means Eqn (4) becomes equivalent to Eqn (1), and implies relationship in Eqn (1) holds 335 
consistently.     336 

We explore the impacts of the shrinkage in SI in shaping the individual reproduction number 337 
modelled as exploration #1 in Section 2.5.1. We find that the R decreases when the transmission 338 
generations increase, see Fig 4. With a higher percentage of the reduction in SI due to the reduction 339 
in infectious period ( ), the R may decrease more rapidly. As a geometric sequence, if the absolute 340 
value of the common ratio, i.e., , is less than one, the sequence defined in Eqn (1) will converge. 341 
Thus, the mean GT will decrease and approach 0 theoretically, when the number of transmission 342 
generations becomes sufficiently large. As such, under exploration #1, a discrepancy between the 343 
theoretical outcome and the real-world fact occurs as follows.  344 

When the GT decreases, the individual R of each infector will also decrease, which leads to 345 
an outcome that the transmission of COVID-19 may vanish after several generations. In 346 
contradiction, as a matter of fact, the pandemic of COVID-19 continuous in many places 347 
(2021).  348 

We note that this discrepancy may imply a restriction of exploration #1 in explaining the real-world 349 
observation. Thus, exploration #1 is less in favored comparing to exploration #2, which will be 350 
discussed next.  351 

For the suspected candidate infector competition mechanism proposed as exploration #2 in 352 
Section 2.5.2, we find the shrinkage in SI is likely occur when the cluster size increases, see Fig 5, 353 
and when the number of offsprings increases, see Fig 6. Under the mechanism in exploration #2, the 354 
mean individual reproduction number holds as a constant. In other words, the outbreak maintains 355 
with substantial offspring cases in each transmission generation, and thus the discrepancy under 356 
exploration #1 vanishes. Therefore, we consider exploration #2 as the main discussion, which may 357 
be more reasonable than exploration #1. The mechanism of competition among multiple potential 358 
infectors is supported by previous study, and the findings of the shrinkage in the individual SI in this 359 
study provide a real-world evidence, which validates the theoretical framework in (Kenah et al., 360 
2008). Furthermore, the scenario under exploration #2 would become evident only when there is 361 
sufficient number of seed cases serving as sources of infections, e.g., an outbreak is near to or has 362 
passed its peak, and within a cluster of cases and their close contacts. By contrast, under intensive 363 
nonpharmaceutical interventions, the infectors are typically isolated and close contact are 364 
quarantined timely, the competition among candidate infectors would be difficult to happen. 365 
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We observe the SI shrinks as generation increases, and approaches a boundary level in the 366 
late generations, see Fig 7. As such, we argue that the alternative relation in Eqn (4) may be more 367 
biologically reasonable, even though the simpler formulation in Eqn (1) slightly outperforms. We 368 
speculate the outperformance of Eqn (1) is possibly because most transmission chains (16 out of 21) 369 

-first- ons in each cluster of COVID-19 cases. This 370 
character of our COVID-19 dataset makes the simple geometric relation in Eqn (1) an optimal fit to 371 
the observations from early generations. In other words, if more SI observations from late 372 
generations would be included, Eqn (4) may replace Eqn (1) as the optimal relationship. To verify, 373 
we repeat the estimation in Section 2.4 by merely using the (21  16 =) 5 transmission chains that are 374 
from late generations, i.e., secondary, tertiary, or quaternary. In this case, we estimate the c at 1.4 375 
days (data not shown), which indicates Eqn (4) appears more feasible than Eqn (1). Hence, The 376 
estimate can be benefit from a larger sample size. We remark that the data with more generations 377 
observed from each transmission chain will probably improve the estimation of the change in SI 378 
across generations. In addition, the simulation results in Fig 7 are considerably limited to several 379 
simplified (but unrealistic) modelling assumptions, and they include 380 
everyone contacts all others constantly, the absence of nonpharmaceutical interventions, and SARS-381 
CoV-2 transmits for infinitely many generations. Under these restrictions, the results in Fig 7 can 382 
merely be considered as an ideal scenario, which seldom occurs in the real-world setting.  383 

We note the following limitation of our analysis. Although the effects of isolation time were 384 
adjusted in the inference framework in Eqn (3), the shrinkage of SI might also arise from other 385 
artificial factors, e.g., self-isolation, change in social activities or behaviors due to the awareness of 386 
virus circulation, and recalling bias such that short-term events are more precisely memorized, which 387 
occurred in the backward contact tracing exercise (Du et al., 2020). These potential confounders 388 
cannot be fully ruled out in the current analytical framework mainly due to lack of data. Therefore, 389 
although exploration #2 outperforms exploration #1, and is supported theoretically (Kenah et al., 390 
2008), it cannot guarantee either true causality or a full causal effect even the causality is verified, 391 
i.e., a partial contribution.  392 

The nonpharmaceutical interventive strategies (Fraser et al., 2004), which can cut off the 393 
transmission chain, e.g., case isolation, quarantine, social distancing, and personal protective 394 
equipment (PPE), are thus crucially important to mitigate the cluster size and flattening the epidemic 395 
curve. The statistical mechanism in exploration #2 may be applicable to study the transmission 396 
dynamics of other infectious diseases. Future studies on verifying the exploration #2, or on exploring 397 
other clinical or biological mechanisms that affects the individual SI across transmission generations 398 
are desired.  399 

4 Conclusions 400 

The mean of individual SI of COVID-19 is likely to shrink as the transmission generation 401 
increases with a threshold as the lower boundary. We speculate that the shrinkage in SI is an 402 
outcome of the competition among multiple candidate infectors within the same cluster of cases. The 403 
shrinkage in SI may speed up the transmission process, and thus the nonpharmaceutical interventive 404 
strategies are crucially important to mitigate the epidemic.  405 

 406 

  407 
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Figures661

662

Figure 1. 663

The illustration diagram of the timeline of a typical transmission chain. The former SI is denoted by 664
(F), and the latter SI and denoted by (L).665

666

667



19 
 

 668 

Figure 2.  669 

The timeline of the transmission chains included in this study. The dot indicates the symptoms onset 670 
date of each case. The horizontal solid line represents the duration of each serial interval (SI). The 671 
transmission chains are indexed in the sequence of the onset dates of primary, secondary, and tertiary 672 
cases, which is merely for visualization purposed and will not affect the analytical procedures.  673 
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 676 

Figure 3.  677 

The Gamma-distributed log-likelihood profile of the lower abound of the serial interval c (unit: day) 678 
and the scale of change in serial interval across generations , in Eqn (4), under scenario (II), which 679 
has the best fitting performance in terms of the (corrected Akaike information criterion) AICc = 680 
202.8. The color scheme of the log-likelihood values is shown in the right column.  681 
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 684 

Figure 4.  685 

The changing patterns of individual reproduction number (R) across the increasing transmission 686 
generations and the percentage of the reduction in serial interval (SI) due to the reduction in 687 
infectious period ( ), see Section 2.5.1. For the initial (i.e., 0-th) transmission generation, the SI for 688 
the initial generation is fixed at 7.5 days, the latent period is fixed at 3.3 days, and the individual 689 
basic reproduction number (R0) is fixed at 2.2.  690 
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 693 
Figure 5.  694 

The likelihood profiles of the scale of change in serial interval across generations ( ) when the 695 
cluster size is 3 (A), 6 (B), 10 (C), or 30 (D). In each panel, the green curves are the likelihood 696 
profiles of 100 set of samples (sample size of 30 for each set), and the green dots are the maximum 697 
likelihood estimates of . This simulation results are under the setting of exploration #2, see Section 698 
2.5.2.   699 
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 702 
Figure 6.  703 

The likelihood profiles of the scale of change in serial interval across generations ( ) when the 704 
number of primary offsprings is 1 (A), 3 (B), 6 (C), or 10 (D). In each panel, the green curves are the 705 
likelihood profiles of 100 set of samples (sample size of 30 for each set), and the green dots are the 706 
maximum likelihood estimates of . This simulation results are under the setting of exploration #2, 707 
see Section 2.5.2.   708 
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 711 

Figure 7.  712 

The distribution of serial interval (SI) of infector in each (cluster) generations. The gold area 713 
indicates the distribution, the bold bars are the interquartile ranges (IQR), and the thin bars are the 95% 714 
centiles.  715 
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Table  718 

Table 1. 719 

Summary of the scale of change in serial interval across generations ( ) estimates (unit: per 720 
transmission generation). The shaded estimates are considered as the main results.  721 

SD of SI ( ) Truncation Distribution scale of change in SI ( ) AICc 

scenario (I):  
large, i.e.,  
SD = mean 

No 

Normal 0.66 (0.53, 0.82) 259.8 

Gumbel 0.78 (0.55, 1.11) 242.3 

Gamma 0.77 (0.51, 1.16) 237.7 

Yes 

Normal 0.65 (0.53, 0.82) 224.7 

Gumbel 0.76 (0.52, 1.11) 212.5 

Gamma 0.72 (0.45, 1.16) 212.1 

scenario (II):  
moderate, i.e.,  
SD2 = mean 

No 

Normal 0.79 (0.66, 0.95) 275.2 

Gumbel 0.86 (0.74, 0.99) 252.2 

Gamma 0.87 (0.72, 1.05) 242.5 

Yes 

Normal 0.69 (0.55, 0.87) 228.3 

Gumbel 0.74 (0.61, 0.91) 206.9 

Gamma 0.72 (0.54, 0.96) 200.6 

scenario (III):  
small, i.e.,  
SD = 1 

No 

Normal 0.92 (0.86, 1.00) 552.6 

Gumbel 0.82 (0.81, 0.83) 6825.6 

Gamma 0.88 (0.83, 0.92) 634.0 

Yes 

Normal 0.82 (0.73, 0.92) 452.2 

Gumbel 0.81 (0.80, 0.82) 5357.1 

Gamma 0.78 (0.73, 0.85) 494.8 

crude estimate (bootstrapping without truncation) 1.00 (0.57, 1.43) none 
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