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Abstract. A painful lesson got from pandemic COVID-19 is that preventive
healthcare service is of utmost importance to governments since it can make

massive savings on healthcare expenditure and promote the welfare of the soci-
ety. Recognizing the importance of preventive healthcare, this research aims to

present a methodology for designing a network of preventive healthcare facili-

ties in order to prevent diseases early. The problem is formulated as a bilevel
non-linear integer programming model. The upper level is a facility location

and capacity planning problem under a limited budget, while the lower level

is a user choice problem that determines the allocation of clients to facilities.
A genetic algorithm (GA) is developed to solve the upper level problem and a

method of successive averages (MSA) is adopted to solve the lower level prob-

lem. The model and algorithm is applied to analyze an illustrative case in the
Sioux Falls transport network and a number of interesting results and manage-
rial insights are provided. It shows that solutions to medium-scale instances

can be obtained in a reasonable time and the marginal benefit of investment
is decreasing.

1. Introduction. This research is motivated by the impacts of COVID-19. The
pandemic and its variants have disrupted our normal life and caused significant loss
of property and life to society. It is obvious that the current healthcare system
does not prepare well for serious diseases. A painful lesson got from the pandemic
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is that preventive healthcare is of utmost importance to governments since it can
reduce the likelihood and severity of potentially life-threatening diseases by early
detection. The preventive healthcare includes many services such as flu shots, vacci-
nations, cancer screenings, hepatitis screenings, and certainly epidemic screenings.
Prevention is always better than treatment. It can save massive amounts of money
for any government and improve the well-being of the people in a society. However,
their uptake is not satisfying in many countries across the world.

This research concentrates on preventive healthcare network design in terms of
facility location and associated capacity planning. Different from classical facility
location studies where users are assigned to the closest facility, users here are recog-
nized to choose a healthcare facility based on facility attractiveness in a competitive
environment. Therefore, it is critical to understand how users make their choices.
Previous studies might be divided into two types in terms of user choice behavior:
(i) system optimal models, in which a central decision-maker directs where users
go; (ii) user choice models, in which users are free to choose a facility. Classical
facility location studies often take system optimal models with distance as the ma-
jor determinant of the attractiveness of the facilities. The system optimal models
still dominate the facility location studies up to date. Vidyarthi and Kuzgunkaya
[17] formulated a system optimal model for the design of a preventive healthcare
facility network considering waiting time at a facility. Davari et al. [2] not only
took queuing limit as a constraint but also incorporated demand equity and fuzzy
attractiveness by using multi-objective optimization technique. Risanger et al. [14]
proposed a system optimal model to select pharmacies for COVID-19 testing where
demand is an exponentially decaying function of distance. In fact, in the healthcare
service industries and many other service sectors, users typically have the freedom
to choose a facility to patronize, and it is more appropriate to take a user choice
model (see [18]).

User choice models depicts how clients choose a facility. They can be further clas-
sified into two categories: (i) Non-equilibrium allocations, where the competition
between users is not considered; (ii) Equilibrium allocations, where the competi-
tion between clients is incorporated. To be more specific, there are three ways for
non-equilibrium allocation. The most popular one is all-or-nothing allocation, also
known as, winner-take-all allocation, where the travel time (or distance) between
user and facility is regarded as the major determinant, and clients are assumed to
seek services of the closest healthcare facility in [16, 13, 4]. In addition, the effect of
congestion at a facility is also recognized in recent all-or-nothing allocation. For ex-
ample, Zhang et al. [21] included facility waiting time as part of total time. Davari
et al. [3] and Dogan et al. [4] took waiting time as a constraint. However, these
studies assumed that all users from the same node request service from the same
facility with minimum time, which is not realistic. In fact, users could have more
flexibility to choose facilities in practice. The second one is Huff-type allocation
(see [6]), which allocates a portion of demands to a facility based on the facility’s
attractiveness and its travel time to the user. Note that the well-known gravity
model is a special case of Huff-type allocation. The Huff-type allocation will reduce
to a gravity model with a pre-specified parameter. The third one is multinomial
logit allocation (see [20, 1, 5, 7] ), where clients’ characteristics and unobserved
attributes could be included in the utility function. Although waiting time usually
works as a constraint, it is not considered in facility choice decision which is not
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realistic. In summary, the non-equilibrium allocations dominate the facility studies
as they avoid the complexity of equilibrium issues.

In contrast, more recent models adopt equilibrium allocations to incorporate the
congestion effect at a facility. It has been shown by empirical analysis that the
waiting time is important to users in healthcare service context [20]. However, the
service waiting time is not exogenous like path travel time but endogenous. To be
more specific, a shorter waiting time attracts users, but this in turn extends wait-
ing time at a capacitated facility as more users result in congestion. This means
that equilibrium issues between waiting time and user volume must be considered.
Generally speaking, there are two ways for equilibrium allocations: (i) Determin-
istic user equilibrium allocation (see [19, 9]), where waiting time at a facility is
included as an indispensable component of a deterministic utility; (ii) Stochastic
user equilibrium allocation (see [18, 8, 12]), where a random component is fur-
ther included to accommodate unobserved utilities. The facility with the highest
(random) utility will be chosen to visit by users. These models are typically for-
mulated as a mathematical programming with equilibrium constraints (MPEC) or
a bi-level programming which is a common methodology for equilibrium problems.
At equilibrium state, everyone is content with the facility they patronize, i.e., peo-
ple from the same population node will have the identical utility even if they go
to different facilities. The description of user choice behavior is further improved
recently. For example, Kucukyazici et al. [11] adopted a latent class analysis to
incorporate heterogenous user preferences in the design of cancer screening facil-
ity networks. Krohn et al. [10] further introduced the quality of healthcare into
the utility function, which is defined as a dummy variable whether satisfying the
minimum practitioner’s quantity required. It can be expected that researches will
continue towards more realistic user choice behavior.

This research makes four main theoretical and practical contributions. (i) The
facility network design problem for preventive healthcare services is formulated as
a bilevel programming structure. (ii) An efficient and effective heuristic solution
method is proposed, which is adaptable for the analogous bilevel programming
problems. (iii) The stand-alone use of the deterministic user equilibrium model
to predict facility demand volumes. In particular, queuing theory is incorporated
to estimate the waiting time as congestion at a facility. (iv) Several findings and
managerial insights are provided based on our computational experiments.

The remainder of this article is organized as follows. Section 2 describes the
problem and formulates it as a bilevel integer programming model. Section 3 pro-
poses a heuristic algorithm to solve the bilevel programming problem. Section 4
presents computational results for the model with managerial insights. In the final
section, conclusions and future research directions are presented.

2. Problem description and model formulation. Consider a road network
G = (N,L) with a set of nodes N and a set of links L. The nodes indicate popu-
lation zones or facility locations, and the links denote main transportation arteries.
We assume that the number of users requiring preventive healthcare service at pop-
ulation node i(i ∈ N) per unit of time is denoted by hi. The set of candidate
locations for healthcare facilities is M ⊂ N, and S ⊂ M is the set of chosen facility
locations. The shortest path travel time from demand node i to facility location
j is denoted as tij . The government has an available investment budget B, with
which one or multiple servers can be established at each chosen facility location.
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We assume that servers are homogenous, and service time is distributed exponen-
tially, providing an average number of µ clients per unit of time. We also assume
that clients are homogenous, their arrivals to each facility follow Poisson distribu-
tion and the queuing discipline is first-come first-served (FCFS). These assumptions
are reasonable for walk-in facilities, which apply to most routine preventive health-
care services in many countries or regions. Thus, each facility here is an M/M/s
queuing system, where M denotes Markovian (or Poisson) arrivals or departures
distribution, or equivalently exponential interarrival or service time distribution,
and s denotes the number of servers at a facility.

The goal of this study is to determine the facility location and associated capacity
in order to optimize system total utility while staying within the investment budget
B. First of all, three sets of decision variables are defined here:

yj =

{
1 if a facility is located at location j, ∀j ∈ M
0 otherwise;

sj= number of servers at location j, ∀j ∈ M;
xij= number of clients from population node i to location j, ∀i ∈ N, j ∈ M.
Therefore, we have S = {j : j ∈ M, yj = 1} and∑

j∈S

xij=hi, ∀i ∈ N. (1)

Denote the arrival rate of clients at facility j by λj , ∀j ∈ M, and we have

λj =
∑
i∈N

xij , ∀j ∈ M. (2)

2.1. The user utility function. Let us now present the user choice modeling,
which essentially constructs a user utility function based on the attractiveness of
facilities that they are aware of. Let the observed utility of users from population
node i(i ∈ N) receiving the service at location j by Uij . It mainly comprises three
components. (i) uj , a constant attraction of facility location j. This might include
intrinsic factors such as parking convenience, facility appearance, practitioner rep-
utation, etc. (ii) tij , the shortest path travel time from origin node i to destination
facility j. (iii) W̄ (λj , sj), the expected waiting time at facility location j(j ∈ M)
including queuing time and service time, which is a function of arrival rate λj and
server number sj . As it is an M/M/sj queuing system at location j, for any sj ≥ 1,
W̄ (λj , sj) could be given by a set of equations according to the classical queuing
theory in [15]:

W̄ (λj , sj) =
Lj

λj
+

1

µ
, ∀j ∈ S, (3)

Lj =
ρ
sj+1
j

(sj − 1)!(sj − ρj)
2 p0, ∀j ∈ S, (4)

p0 = [

sj−1∑
n=0

ρnj
n!

+
ρ
sj
j

(sj − 1)!(sj − ρj)
]

−1

, ∀j ∈ S, (5)

ρj=
λj

µ
, ∀j ∈ S, (6)

where Lj is the expected queuing length in terms of client number, p0 is the proba-
bility of no client, and ρj is the intensity of service. Note that the stability condition
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of the queue is assumed to be satisfied, that is, λj < sjµ,∀j ∈ S. Otherwise, the
waiting time will be unlimited.

We adopt a conventional linear additive functional form for Uij to integrate these
three utility components. The other functional forms could be possible and deserved
to be explored further according to latest behavior theories. It is also intuitive to
assume that Uij is positively associated with benefits uj while negatively associated
with costs tij and W̄ (λj , sj). That is, Uij is formulated as

Uij=uj − β1tij − β2W̄ (λj , sj), ∀i ∈ N, j ∈ S, (7)

where β1 and β2 denote the coefficients of the travel time and the waiting time,
respectively, and can be estimated empirically using actual flow data. Note that
besides these specific times, the utility function can also be extended to incorporate
other observed attributes, such as parking time and service quality, depending on
available data.

The specific user utility is not constant but depends on the choice of other users.
It is critical to note the interdependency between the arrival rate λj and the service
waiting time W̄ (λj , sj). According to our modelling, λj is the summary of xij ,
which depends on Uij , which further depends on W̄ (λj , sj) in turn. That is, the
value of λj depends on W̄ (λj , sj) indirectly. The user competition will reach to an
equilibrium state. It implies that we have to address a user equilibrium problem so
as to determine xij and λj with given facility location pattern.

2.2. The user equilibrium model. According to utility maximization decision
rule, rational clients will choose a facility with the highest observed utility. Denote
Ūi to be the highest utility of clients at population node i, i.e.,

Ūi=max
j∈S

Uij , ∀i ∈ N. (8)

Given location set S and capacities sj , ∀j ∈ S, at user equilibrium state, each
client achieves his/her highest utility and he/she cannot increase his/her utility
further by changing his/her choice. Therefore, the equilibrium condition can be
expressed mathematically by

U∗
ij = uj − β1tij − β2W̄ (λ∗

j , sj)

{
= Ū∗

i , if x∗
ij > 0

≤ Ū∗
i , if x∗

ij = 0
, ∀i ∈ N, j ∈ S, (9)

where U∗
ij and Ū∗

i represent the utility of clients at population node i that visit
healthcare facility at location j and the highest utility of clients at population node
i at user equilibrium state, respectively. In addition, it should be noted that

λ∗
j =

∑
i∈N

x∗
ij
, ∀j ∈ S,

where λ∗
j denotes the arrival rate of clients at facility location j at user equilibrium

sate, and x∗
ij

denotes the number of clients from demand node i to facility location
j at user equilibrium state.

This equilibrium condition (9) implies that if there is a client flow from demand
node i to facility location j, then U∗

ij , the utility of clients at demand node i for

facility location j, must be equal to the highest utility Ū∗
i that can be achieved;

otherwise, it is no more than the highest. This modelling here states that each
client patronizes the facility location with the highest observable attractiveness.
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To find λ∗
j and implicit x∗

ij
in Eq (9) given chosen location set S and associated

capacities sj(∀j ∈ S), we can solve the following equivalent nonlinear mathematical
programming:

max Z(x|S) =
∑
i∈N

∑
j∈S

∫ λj

0

Uij(ω, sj)dω (10)

subject to ∑
j∈M

xij = hi, ∀j ∈ S (11)

xij ≥ 0, ∀i ∈ N, j ∈ S (12)

where
λj =

∑
i∈N

xij , ∀i ∈ N, j ∈ S. (13)

Theorem 2.1. Given S and sj, j ∈ S, the mathematical programming (10)-(13) is
equivalent to condition (9).

Proof. In order to prove the mathematical programming is equivalent to Eq. (9), we
reformulate it into a Lagrange function with nonnegative constraints only, i.e.,

F = Z(x|S)−
∑
i∈N

wi(
∑
j∈M

xij − hi)

s.t. xij ≥ 0, ∀i ∈ N, j ∈ S,
(14)

where wi in the objective function is a Lagrange multiplier to constraint (11).
According to Karush–Kuhn–Tucker (KKT) conditions, the optimal conditions of

this Lagrange function are

xij
∂F

∂xij
= 0, ∀i ∈ N, j ∈ S, (15)

∂F

∂xij
≤ 0 , ∀i ∈ N, j ∈ S, (16)

∂F

∂wi
= 0, ∀i ∈ N, (17)

xij ≥ 0, ∀i ∈ N, j ∈ S. (18)

It is straightforward that Eq. (17) is equivalent to Eq. (11). Eqs (15) and (16)
means

if xij > 0, ∂F
∂xij

= 0,∀i ∈ N, j ∈ S,

if xij = 0, ∂F
∂xij

≤ 0,∀i ∈ N, j ∈ S.
(19)

Note that,

∂F
∂xij

= ∂
∂λj

[
∑
i∈N

∑
j∈S

∫ λj

0
Uij(ω, sj)dω]

∂λj

∂xij
− ∂

∂xij
[
∑
i∈N

wi(
∑
j∈S

xij − hi)]

=Uij − wi.
(20)

Thus, Eq. (19) can be further rewritten with Eq. (20) as follows,

if xij > 0, Uij − wi = 0, ∀i ∈ N, j ∈ S,
if xij = 0, Uij − wi ≤ 0, ∀i ∈ N, j ∈ S.

(21)

It can be also reformulated in a complementary form as follows:

(Uij − wi)xij = 0, ∀i ∈ N, j ∈ S (22)

Uij − wi ≤ 0, ∀i ∈ N, j ∈ S (23)
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xij ≥ 0, ∀i ∈ N, j ∈ S. (24)

Eq. (21) means that if there is demand flow xij > 0, the utility Uij is equal
to wi; and if there is no flow, i.e., xij = 0, the utility Uij is no more than wi.
Therefore, the Lagrange multiplier wi can be interpreted as the highest utility Ū∗

i

incurred by clients at population node i. Hence, Eq. (21) is the same as Eq.
(9). Therefore, the solution of the mathematical programming (10)-(13) satisfy
the equilibrium condition (9). In other words, we can get the equilibrium flow by
solving the mathematical programming problem in Eqs. (10)-(13).

2.3. The bilevel programming model. The entire problem considered here is
a bilevel decision structure where the upper level decision is the determination
of facility locations and associated capacities, and the lower level decision is the
determination of equilibrium flows of clients from demand nodes to facility locations
given the upper level decisions.

There usually is a limited budget to support the establishment and operation of
the preventive healthcare facilities in practice. This budget constraint can be used
to incorporate the cost differences between establishing and operating facilities at

different locations of an urban area. Let cfj be the fixed establishment cost for a

facility j (j ∈ M) and cv be the unit cost of adding a server that is identical for each
location. In addition, for cost effective, we assume that facilities cannot be opened
unless the number of their clients exceeds a minimum workload requirement Rmin.
Moreover, the number of servers at facility j cannot exceed a finite size ŝj .

We consider the objective of maximizing the system total utility, which is the
overall observed utility of clients. The upper level model of healthcare facility
network design is given by,

max
s

E(S) =
∑
i∈N

∑
j∈M

xij [uj − β1t
′
ij − β2W̄ (λj , sj)] (25)

subject to

sj ≥ yj , j ∈ M (26)

sj ≤ ŝjyj , j ∈ M (27)

∑
i∈N

xij = λj , j ∈ M (28)

λj < sjµ, j ∈ M (29)

λj ≥ Rminyj , j ∈ M (30)

t′ij = tij + T (1− yj), i ∈ N, j ∈ M (31)

∑
j∈M

cfj yj + cv
∑
j∈M

sj ≤ B (32)

yj ∈ {0, 1}, sj ∈ Integer, j ∈ M (33)
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where xij is determined by the following lower level model given the upper level
decision S,

max Z(x|S) =
∑
i∈N

∑
j∈S

∫ λj

0

Uij(ω, sj)dω (34)

subject to ∑
j∈M

xij = hi,∀j ∈ S (35)

xij ≥ 0,∀i ∈ N, j ∈ S. (36)

Objective function (25) is to maximize the total system utility. Constraint (26)
ensures the assignment of at least one server to each open facility. It also ensures the
nonnegativity of decision variable sj . Constraint (27) limits the capable number of
servers. Constraint (28) defines the arrival rate λj . Constraint (29) is the stability
condition of the queues. Constraint (30) stipulates that the arrival rate at an open
facility must satisfy the minimum workload requirement. Constraint (31), where T
denotes a big enough number, ensures that clients only obtain the health service
from open facilities. Constraint (32) is the budget and Constraints (33) define the
feasible region of decision variables.

3. Solution method. Since the bilevel programming model is highly nonlinear and
contains integer decision variables, it is hard to solve exactly. Thus, we focus on
efficient and effective heuristic algorithms which have many successful applications
for preventive healthcare network design (see[18, 5]). The bilevel decision framework
is closely followed by our proposed solution strategy. For the lower level problem,
we adopt the method of successive averages (MSA) to solve the user equilibrium
model. This allocation algorithm determines the equilibrium flows of clients to
facilities. For the upper level problem, a meta-heuristic, generic algorithm with
elitist strategy, is proposed to find the optimal locations and associated capacities.
In this way, the allocation algorithm serves as an embedded module for the location
algorithm. Therefore, we present the allocation algorithm first.

3.1. Allocation algorithm for the lower level model. Given the upper level
decisions S and sj , ∀j ∈ S, the lower level problem is to determine the equilibrium
client flows. The adopted algorithm is a kind of iterative method, known as the
method of successive averages (MSA). Let k be the iteration number and K be
the maximum iteration number. In addition, let ε be an error tolerance parameter
predetermined, and θk, k = 1, . . . ,K, be a step-size parameter at iteration k with
a value between zero and one. The specific computation steps are listed below.

Step 0 (Initialization): Set appropriate values for ε and K; set k = 0; set

x0
ij =

hi

|S|
,∀i ∈ N, j ∈ S.

Step 1 (Calculation of utility): Set k := k + 1; calculate λj , ∀j ∈ S,
from Eq. (2); calculate the shortest path travel time tij , i ∈ N, j ∈ S, using
Dijkstra’s algorithm; calculate service waiting time W̄ (λj , sj), j ∈ S, from Eqs.
(3)-(6); calculate Uij , i ∈ N, j ∈ S, according to Eq. (7); find Ūi, i ∈ N, from Eq.
(8).
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Step 2 (All-or-nothing allocation): Set flow x′
ij by all-or-nothing rule as

follows, i.e., allocate all clients from the same population node to the most attractive
facility,

x′
ij =

{
hi, if Uij = Ūi

0, if Uij < Ūi
,∀i ∈ N, j ∈ S.

Step 3 (Generation of search direction): Define dij = x′
ij−xk−1

ij , ∀i ∈ N,
j ∈ S, as a search direction.

Step 4 (Flow update): Update client flow xk
ij = xk−1

ij +θkdij , ∀i ∈ N, j ∈ S,
where θk is the step-size parameter given by,

θk=
1

k + 1
.

Step 5 (Stopping criteria): If the relative error of successive xk
ij and xk−1

ij

is reached, or k ≥ K, set xij := xk
ij and stop; otherwise, go to Step 1. The relative

error is defined as,

||xk
ij − xk−1

ij ||
||xk−1

ij ||
≤ ε, ∀i ∈ N, j ∈ S.

The suggested method in each iteration determines a new search direction in
Step 3 and then updates at a step-size in Step 4. The procedure continues until one
of the stopping conditions in Step 5 is met. The step size θk in each iteration is set
in advance. There could be many ways to set θk. In general, θk should decrease
with k to ensure convergence. We set θk as the reciprocal of the iteration number
(k + 1). Note that there are chances that the xk

ij updated in Step 4 results in a
facility’s arrival rate exceeding the limit allowed, which violates stability conditions
(29). There usually are two ways to solve this problem: one way is to reduce the
step size, and the other way is to set a large punishment time for waiting.

3.2. Location algorithm for the upper level model. We develop a genetic
algorithm with the elitist strategy to solve the upper level problem because it is
one of the most effective meta-heuristics for addressing combinatorial optimization
problems, with capabilities of exploring other parts of the feasible space and avoiding
local optima.

It is well-known that each chromosome represents a solution in genetic algo-
rithms, and the quality of a solution is represented by a fitness value. In this study,
an integer coding technique is employed to construct a chromosome. Each chro-
mosome is made up of several integer numbers as genes. Each gene represents a
candidate location in M, and its value denotes the number of allocated servers. If
there is no allocable server at any given location, the facility is not opened at that
location. The following is how we implement the genetic algorithm with an elitist
strategy:

Step 0 (Initialization): Set the used parameters, including the population
size Npop, the maximum number of generations Gen, the crossover probability pc,
the mutation probability pm, the label of generation gen = 1, and the fraction of
elitist pe.

Step 1 (Generation of initial population): Randomly generate Npop fea-
sible solutions as an initial population of chromosomes, scattering the entire range
of possible solutions. If one is not feasible according to the constraints, generate
another one until a feasible solution is found.
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Step 2 (Calculation of fitness function): For each chromosome in the
population, the value of fitness is calculated as the objective function value. It is
used to evaluate the performance of each chromosome in the population.

Step 3 (Generation of a new population):
Step 3.1 (Selection): According to the values of fitness evaluated in Step 2,

the best fraction pe is labeled for elitists, and the worst fraction pe is discarded.
Step 3.2 (Crossover): The remaining (1 − pe)Npop chromosomes are used

for crossover operation. These chromosomes are matched in pairs randomly. The
probability of carrying out the crossover is pc. If the two parent chromosomes
are chosen for crossover, a gene location is randomly identified to across over to
generate two off-springs as new chromosomes. If newborn chromosomes are not
feasible according to constraints in the upper level model, try another gene location
until they are feasible.

Step 3.3 (Mutation): A chromosome is determined for mutation with prob-
ability pm. Randomly choose two genes with at least one positive, and interchange
their values. If the new chromosome is not feasible, try another two gene locations
until a feasible off-spring is generated.

Step 3.4 (Elitism): Generate a new population. After genetic operations,
there are still (1 − pe)Npop feasible chromosomes. The labeled peNpop elitists are
added to ensure the population size Npop. This allows the best chromosomes from
the current generation to carry over the next generation unaltered. It guarantees
that the solution quality will not decrease from one generation to the next. Update
the notation of generation gen := gen+ 1.

Step 4 (Stopping criterion): If the maximum number of generations is
achieved, i.e., gen ≥ Gen, terminate the iteration process and output the results.
Otherwise, turn to Step 2.

4. Computational experiments.

4.1. An illustrative case. We conduct computational experiments to assess the
performance of proposed model and algorithm. The Sioux Falls transport network
is widely used for validation in network design studies. It is a medium-sized net-
work, as depicted in Fig.1. The network consists of 24 nodes and 76 links. In the
computational experiments, it is assumed that there are 8 population nodes and
8 potential locations. Therefore, there are a total number of 64 origin-destination
(O-D) pairs. The travel time and length of link a, a ∈ L, denoted as ta and la,
respectively, are given in Table 1. The link length can be converted to the link
travel time by assuming a constant link travel speed of 30 miles/hr. The healthcare
demand data, in terms of the number of clients per hour (clients/hr), are listed in
Table 2.
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Figure 1. The Sioux Falls transport network

Link a la(mile) ta(h) Link a la(mile) ta(h)
1,3 3.6 0.12 33,36 3.6 0.12
2,5 2.4 0.08 34,40 2.4 0.08
4,14 3 0.1 37,38 1.8 0.06
6,8 2.4 0.08 39,74 2.4 0.08
7,35 2.4 0.08 41,44 3 0.1
9,11 1.2 0.04 42,71 2.4 0.08
10,31 3.6 0.12 45,57 2.4 0.08
12,15 2.4 0.08 46,67 2.4 0.08
13,23 3 0.1 49,52 1.2 0.04
16,19 1.2 0.04 50,55 1.8 0.06
17,20 1.8 0.06 53,58 1.2 0.04
18,54 1.2 0.04 56,60 2.4 0.08
21,24 6 0.2 59,61 2.4 0.08
22,47 3 0.1 62,64 3.6 0.12
25,26 1.8 0.06 63,68 3 0.1
27,32 3 0.1 65,69 1.2 0.04
28,43 3.6 0.12 66,75 1.8 0.06
29,48 3 0.1 70,72 2.4 0.08
30,51 4.8 0.16 73,76 1.2 0.04

Table 1. Network characteristics for the Sioux Falls network
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Population node (i) Demandhi(clients/hr)
1 37
2 30
4 21
5 26
13 37
14 32
15 39
20 24

Table 2. Healthcare demand data for the Sioux Falls network

Based on the proposed model and solution method, the following parameter
values are used in the case study.

Problem parameters
the service rate of each server µ = 6 client/hr;
the constant facility attraction uj = 0;
the sensitivity to travel time β1 = 1 and that to waiting time β2 = 1;
the maximum number of servers ŝj = 20;

the fixed establishment cost cfj = 0;
the unit cost of a server cv = 1;
the budget B = 50;
the minimum workload Rmin = 10 clients/hr;

Method of successive averages parameters
the maximum iteration number K = 100;
the error tolerance ε = 0.01;

Genetic algorithm parameters
the population size Npop = 200;
the maximum number of generations Gen = 20;
the crossover probability pc = 0.5;
the mutation probability pm = 0.2;
the fraction of elitist pe = 0.1.

The algorithms are coded using a free open-source language R 3.6.3. All runs
are performed at a personal computer with 3.6 gigahertz Intel i7-4790 CPU and 16
gigabytes RAM. The genetic algorithm ends after 1.61 hours for this case study.
The evolutionary process becomes stable after 11 generations, as shown in Fig.2. It
can be concluded that the final results are satisfactory solutions. Table 3 reports
the optimal results. There are four potential locations selected to set up preventive
healthcare facilities, which are nodes 3, 7, 21, and 23 with associated capacities 20,
5, 13, and 12, respectively. The clients at a population node can be assigned to
more than one facility such as population nodes 13 and 20. However, it also shows
that clients from the same node usually patronize the same facility such as the other
population nodes. Table 4 shows that the facility with the highest utility is chosen.
The clients from the same population node expect to have the identical utility even
if they head for different facilities. The results suggest that the utilities of visited
facilities for a population node are quasi-equal.
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Figure 2. The evolutionary process of genetic algorithm

Selected facility location (associated capacity)
Population node 3 (20) 7 (5) 21 (13) 23 (12)

1 36.01 0.33 0.33 0.33
2 19.55 9.91 0.27 0.27
4 20.44 0.19 0.19 0.19
5 25.3 0.23 0.23 0.23
13 1.65 0.33 6.94 28.08
14 0.29 0.29 0.29 31.14
15 0.35 0.35 37.96 0.35
20 0.21 7.07 16.5 0.21

Table 3. Optimal network design with client flows at equilibrium state

Selected facility location
Population node 3 7 21 23

1 -0.272 -0.515 -0.550 -0.547
2 -0.392 -0.395 -0.630 -0.667
4 -0.272 -0.415 -0.550 -0.487
5 -0.312 -0.375 -0.590 -0.527
13 -0.332 -0.575 -0.330 -0.327
14 -0.472 -0.555 -0.370 -0.287
15 -0.572 -0.455 -0.310 -0.367
20 -0.592 -0.315 -0.310 -0.387

Table 4. Utility matrix between population node and selected
facility location
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4.2. Sensitivity analysis. It is always beneficial to do a sensitivity analysis which
could provide valuable managerial insights. Specifically, a sensitivity analysis with
varying budget control is conducted here, which is also a cost-benefit analysis. The
budget is increased from 45 to 75 at step size 5. The results are shown in Fig.3,
where the horizontal axis is budget, and the vertical axis is system total utility. As
only travel time and waiting time are used to define utility function, the individual
utility is a negative value, so as the total system utility. It is obvious that the
marginal benefit is decreasing. The policymakers cannot get same benefits with
same additional investments. There is an optimal budget where the marginal cost
is equal to the marginal benefit.

Figure 3. A sensitivity analysis with varying budget

As shown in Fig.3, the relationship between utility (benefit) and budget (cost)
can be modeled by polynomial regression. Let f denotes the total system utility
and B denotes the budget. The polynomial regression can be formulated as,

f(B) = α0 + α1B + α2B
2, (37)

where α0 is the intercept, α1 is the coefficient of B, and α2 is the coefficient of B2.
The values of these coefficients can be estimated based on the results of sensitivity
analysis. The optimal budget B∗ can be reached at which the marginal benefit is
equal to marginal cost. That is,

∂f
∂B = 1,
α1 + 2α2B

∗ = 1,
B∗ = 1−α1

2α2
.

(38)

Take this sensitivity analysis as an example. The estimated parameters of Eq.
(37) are shown in Table 5. The hypothesis tests show that these parameters are all
significant at level 0.05. Therefore, we can reject the null hypothesis. The adjusted
R-squared is 0.884, which indicates that the polynomial regression fits the data
well. According to Eq. (38), the optimal budget should be 57.9. It is worthy to
increase investment before the optimal budget. However, it is not wise to continue
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to increase investment after the optimal budget as the benefit will be less than the
cost.

Coefficients Estimate Standard Error t value Pr(> |t|))
α0 -308.431 51.678 -5.968 0.004
α1 7.253 1.757 4.129 0.015
α2 -0.054 0.015 -3.718 0.021

Table 5. The estimated parameters for the polynomial regression

5. Conclusion. Preventive healthcare services can improve the quality of life and
make a lot of savings by diagnosing serious diseases in early stage. Governments
can also utilize their healthcare expenditures more effectively, as well. This re-
search proposes a bilevel programming model and a solution method for designing
a network of preventive healthcare facilities. In the upper level model, a central
decision-maker optimizes the facility location and associated capacity so as to max-
imize the total system utility, subject to an investment budget. In the lower level
model, a user choice model addressing how clients choose a facility is adopted, where
utility is defined by path travel time and service waiting time for simplicity, and
the clients interact with each other to reach user equilibrium in a competitive en-
vironment. We propose a heuristic algorithm in line with the bilevel structure. A
genetic algorithm with elitist strategy is proposed for the upper level model, and
the method of successive averages is used for the lower level model.

To evaluate the model and the solution algorithm, we conduct a computational
experiment and come up with a few noteworthy managerial insights into network
design and budget control strategies. We find that the methods can reach a near-
optimal solution at a reasonable time. The clients from the same node may visit
more than one facility, they usually visit the same facility. A sensitivity analysis
with varying budget control shows that the marginal benefit is decreasing. There is
an optimal budget beyond which further increment of cost will not offset its benefit.

This research can be improved in several ways. First, since we could not find a
more realistic case with available data, the well-known Sioux Falls transport network
is used here as an illustrative example to show how our method and algorithm can
be applied. In the future, real-life cases will be adopted to obtain more convincing
results. Second, we restrict our attention to travel time and waiting time in the
formulation of utility here for simplicity, but our methods could be extended directly
to include other factors in the future, such as the parking time, the quality of service,
the service pricing, etc. Last but not the least, the deterministic user equilibrium
is adopted in this research. Future efforts could be devoted to the stochastic user
equilibrium considering unobserved random utility.
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