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Abstract. This paper describes the optimal fish-feeding in a three-dimensional

calm freshwater pond based on the concentrations of seven water quality vari-

ables. A certain number of baby fishes are inserted into the pond simultane-
ously. They are then taken out of the pond simultaneously for harvest after

having gone through a feeding program. This feeding program creates ad-

ditional loads of water quality variables in the pond, which becomes pollu-
tants. Thus, an optimal fish-feeding problem is formulated to maximize the

final weight of the fishes, subject to the restrictions that the fishes are not

under-fed and over-fed and the concentrations of the pollutants created by the
fish-feeding program are not too large. A computational scheme using the fi-

nite element Galerkin scheme for the three-dimensional cubic domain and the
control parameterization method is developed for solving the problem. Finally,

a numerical example is solved.

1. Introduction. The environmental impacts of aqua-cultures, such as fish-feeding,
have been widely studied in [1], [2], [3], [4], [6], [7], [12], [19], [18], and [23]. Mathe-
matical models on the interactions between aqua-cultures and water pollution have
been developed in [4] and [12]. A mathematical model for predicting tidal current
and nitrogen levels for a fish-farm configuration in a bay off the Eire coastline in
the United Kingdom was developed in [4]. A two-dimensional hydrodynamic model
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involving tidal flows, and salt transport flows was developed in [19] to calculate the
water level, velocity, and salinity in each grid cell within the culture area. A bio-
geochemical model that accounts for the effects of sediment-nutrient interactions on
multiple components of phytoplankton metabolism dynamics, carbonate speciation,
dissolved oxygen, and biochemical oxygen demands was developed in [23]. The eco-
logical effects of coastal aquaculture wastes from the perspective of environmental
protection were studied in [6]. The environmental impact of marine fish farming
was studied in [18]. More recently, the environmental sustainability via the mainte-
nance of an ecosystem characteristic diversity, productivity, and biochemical cycling
in salmon aquaculture was considered in [1] in 2018. The production of fish feed in
an inline recirculating system for urban sites which efficiently combines waste and
environmental service concepts in one production system was developed in [7] in
2021. The environmental impacts of the aquaculture farm activities were assessed
in [2] in 2021; these assessments are almost based on physical-chemical measures
and/or sediment characteristics. Lastly, an overview of the main factors of ecologi-
cal concern within marine fin-fish aquaculture together with their interactions with
the environment was provided in [3] in 2021.

Research work in [19] shows that the deteriorating effect of water pollution cre-
ated by aquaculture can cause a lot of damages, such as physical obstruction and
modification of water movement and sedimentation. Thus, to sustain the future de-
velopment of aqua-cultures, it is necessary to reduce the number of pollution load-
ing and stock density below environmental capacity, while still producing enough
aquatic products for commercial purposes. However, no optimal fish-feeding pro-
gram has so far been developed to minimize the deteriorating effect of water pollu-
tion.

A three-dimensional integrated mathematical model consisting of two main sub-
models was used in [12] to evaluate the environmental effects on coastal waters due
to mainly the non-utilized fish food originating from the aqua-cultures. Based on the
concentrations of seven different water quality variables (i.e., Phytoplankton (PHY),
Organic Nitrogen (NOR), Ammonia (NAM), Nitrates (NIT), Organic Phosphorous
(POR), Inorganic Phosphorous (PIN), and Suspended Solid (SS)), the fish growth
and nitrogen and phosphorus transformation (FG-NPT) sub-model in [12] uses a
system of time-dependent algebraic equations to calculate the effect of the fish-
feeding program on the fishes’ weight and the concentrations of pollutants due
to nitrogen and phosphorus transformation, whereas the water quality (QUAL-
3DL) sub-model incorporates the source terms (the terms arising from the chemical
processes) and the pollution terms (the terms arsing from the generated pollution
load of the FG-NPT sub-model) into the system of basic diffusion-convention partial
differential equations to calculate the concentration of the water quality variables
in the enclosed three-dimensional coastal region.

The freshwater pond model considered in this paper is similar to the three-
dimensional integrated mathematical model of [12] such that the region of the
aquaculture in this paper is a calm water pond, instead of a windy pond. How-
ever, we modify the mathematical model of [12] by introducing optimal control of
fish-feeding into the model and develop a concrete method for solving the optimal
control problem.

The optimal fish-feeding problem that we formula is to maximize the final weight
of the fishes, subject to the restrictions that the fishes are not under-fed and over-fed
and the concentrations of the pollutants created by the fish-feeding program are not
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too large. (In this way, both the fishes’ health requirement and the environmental
protection requirement are not violated.) The formulation of the objective function
(i.e., the final weight of the fishes) of the problem simply requires setting up an
ordinary differential equation connecting the instantaneous weight of the fishes (i.e.
the state variable) and the fish feeding rate (i.e., the control variable). The formula-
tion of the fish-feeding rate constraints (i.e., fishes’ health requirement constraints)
simply requires setting up a lower bound and an upper bound for the fishes’ feeding
rate. However, the formulation of the environmental protection requirement con-
straints requires setting up a Fish-Feeding Water Pollution (FFWP) sub-model and
a No-Fish-Feeding Water Pollution (NFFWP) sub-model so that the instantaneous
differences in concentrations of the water quality variable between these two models
can be calculated.

A Galerkin scheme for the three-dimensional cubic domain is used to convert all
the partial differential equations into ordinary differential equations of the above
optimal control problem. Hence, an approximated constrained optimal control prob-
lem involving lumped systems only is obtained. This constrained optimal control
problem is then solved by the well-known control parameterization method. (See
[9], [11], [13], [14], [17], [21], and [22] for details.) Thus, based on the parameters
given in [12], the optimal fishes’ feeding rate and the optimal fishes’ weight for har-
vest are obtained. The corresponding instantaneous concentration of each water
quality variable at each grid point of the pond is also obtained.

The contribution of this paper is twofold. From the practical point of view, based
on seven water quality variables, this paper analysis the optimal fish-feeding process
in a pond at rest, by coupling a system of algebraic equations for fish growth and
nitrogen and phosphorus transformation with a standard diffusion (no convection)
water quality model from the existing literature. In this way, we optimize the
economic benefits of fish feeding, without violating the environmental protection
requirement. From a mathematical point of view, this paper develops a concrete
Galerkin scheme for solving partial differential equations with three-dimensional
cubic domains.

The organization of this paper is as follows. In Section 2, by setting a differen-
tial equation relating the instantaneous fishes’ weight and the instantaneous fishes’
feeding rate, we modified the FG-NPT sub-model of [12] to a new model, called
the Fish-Feeding (FF) sub-model, in such a way that all the static forms of the
Nitrogen and Phosphorous pollution loads are converted into dynamic forms. In
Section 3, we use the chemical processes given in [12] and the various dynamic
forms of Nitrogen and Phosphorous loads obtained in Section 2 to explicitly express
all the source terms and the input pollution loads as functions of their respective
arguments, respectively, and then insert them into the basic diffusion equations to
obtain a Fish-Feeding Water Pollution (FFWP) sub-model. In Section 4, we first de-
scribe a No-Fish-Feeding Water Pollution (NFFWP) sub-model, which is obtained
by deleting the pollution terms from the FFWP sub-model. We then formulate the
objective function, the fishes’ health requirement constraint (i.e., the fish-feeding
rate constraint), and the environmental protection constraints to obtain an optimal
control fish-feeding problem involving distributed parameter systems. In Section
5, we use the Galerkin scheme to convert the distributed parameter systems into
lumped parameter systems to obtain an approximated optimal control problem. In
Section 6, we modify the state equations to handle the non-negativity requirements
of the instantaneous concentrations of the water quality variables. Hence we obtain
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a transformed approximated optimal control problem. In Section 7, we solve the
transformed approximated optimal control problem described in Section 6 to obtain
the optimal instantaneous fishes’ feeding rate, the optimal fishes’ weight for harvest,
and the corresponding instantaneous concentration of each water quality variable
at each grid point of the pond. Concluding remarks are given in Section 8.

2. The fish-feeding sub-model. In this section, we describe the fish-feeding (FF)
sub-model, which is modified from that of the FG-NPT sub-model of [12]. More
precisely, by setting a differential equation involving the instantaneous fishes’ weight
xweight(t), and the instantaneous fishes’ feeding rate ufeed(t), we can convert all the
static forms of the Nitrogen and Phosphorous pollution loads in [12] into dynamic
forms which are functions of xweight(t), ufeed(t), and time t only. The FF sub-model
can be described as follows:

Similar to the NPT sub-model of [12], the FF sub-model also consists of 7 wa-
ter quality variables in the pond, namely, Phytoplankton (PHY), Organic Nitro-
gen (NOR), Ammonia (NAM), Nitrates (NIT), Organic Phosphorous (POR), In-
organic Phosphorous (PIN) and Suspended Solid (SS), which are denoted by Wi

(i = 1, ..., 7).
The fish-feeding program lasts for about one year. Within this year, the fishes

mature from baby fishes to young adults in such a way that there is no reproduction
and no mortality occurs. Thus, the number of fishes in the pond remains unchanged
throughout the entire time horizon of the fish-feeding program.

Let nfish be the number of fishes in the pond. Let t0 be the initial time of the
fish-feeding program. Let the instantaneous fishes’ weight, xweight(t), be expressed
in kg and the instantaneous fishes’ feeding rate, ufeed(t), be expressed in % kg
food/kg fish day. Then, from [5], whenever ufeed(t) ≥ 0.9, the differential equation
for xweight(t) can be written as follows:

ẋweight(t) = SGR(ufeed(t))× xweight(t), (1)

xweight(t0) = x̂weight(t), (2)

where

SGR(ufeed(t)) =
(
−0.1268× (ufeed(t))

2 + 1.4390× ufeed(t)− 1.1270
)
× 0.65 (3)

is the specific growth rate of the fishes (expressed in kg increase in fish weight
per kg increase in fish food) corresponding to the fish-feeding rate ufeed(t) in the
freshwater pond.

Let Temp(t) be the temperature of the water in ◦C at time t as defined in the
Photosynthesis process in Table A1 in the Appendix. Then, from the data given in
[12] and (1) - (2), all the static forms of the Nitrogen and Phosphorous pollution
loads in [12] are converted into dynamic forms as follows:

Various Forms of Nitrogen Pollution load

In Food: Nfood = 7.68× 10−4nfishxweight(t)ufeed(t). (4)

In Fishes: Nfish = 1.77× 10−5nfish. (5)

In Feces particulate: Nfep = 7.68× 10−5nfishxweight(t)ufeed(t). (6)

In Feces diluted: Nfed = 5.38× 10−5nfishxweight(t)ufeed(t). (7)

In Wastes: Nwaste = 3.84× 10−5nfishxweight(t)ufeed(t). (8)
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In Excretion: Nex = Nfood −Nfish −Nfed −Nfep −Nwaste

= 5.99× 10−4nfishxweight(t)ufeed(t)− 1.77× 10−5nfish. (9)

In Excretion Organic: Nexon = 1.2× 10−5nfishxweight(t)ufeed(t)− 3.5× 10−7nfish.
(10)

In Excretion Urea: Nexur = (10−3Temp(t)2 − 4× 10−2Temp(t) + 0.49)

× (5.99× 10−4nfishxweight(t)ufeed(t)− 1.77× 10−5nfish).
(11)

In Excretion Ammonia: Nexam = Nex −Nexon −Nexur

= 5.87× 10−4nfishxweight(t)ufeed(t)− 1.77× 10−5nfish

− (10−3Temp(t)2 − 4× 10−2Temp(t) + 0.49)

× (5.99× 10−4nfishxweight(t)ufeed(t)− 1.77× 10−5nfish).
(12)

Various Forms of Phosphorous Pollution load:

In Food: Phfood = 1.5× 10−4nfishxweight(t)ufeed(t). (13)

In Fishes: Phfish = 4.2× 10−6nfish. (14)

In Feces particulate: Phfep = 6.6× 10−5nfishxweight(t)ufeed(t). (15)

In Feces diluted: Phfed = 1.05× 10−5nfishxweight(t)ufeed(t). (16)

In Waste: Phwaste = 7.5× 10−6nfishxweight(t)ufeed(t). (17)

In Excretion: Phex = Phfood − Phfish − Phfep − Phfed − Phwaste
= 6.6× 10−5nfishxweight(t)ufeed(t)− 4.2× 10−6nfish.

(18)

After we have converted all the static forms of the Nitrogen and Phosphorous pol-
lution loads into dynamic forms, we can explicitly express the pollution term of
each of the ith water quality variables (i.e., PWi

(X1, ..., X7, t)) as a function of its
arguments, which will then inputted into the basic diffusion-convection model to
form the Fish-Feeding Water Pollution (FFWP) sub-model in the next section. This
completes the description of the FF sub-model.

3. Three-dimensional fish-feeding water pollution sub-model. Suppose the
three-dimensional FFWP sub-model is located on the cubic pond:
{(x, y, z) : x ∈ [0, x̂], y ∈ [0, ŷ], z ∈ [0, ẑ]},
where x̂, ŷ are, respectively, the x and y coordinates of the pond, ẑ is the depth
of the water. Let t0 and tf be, respectively, the initial time and the final time of
the fish-feeding program. Let nfish, xweight(t), ufeed(t), and Wi (i = 1, ..., 7) be
defined in the same way as in the fish-feeding model. Then the partial differential
equation governing this model is as follows:

∂Xi

∂t
= Nh

∂2Xi

∂x2
+Nh

∂2Xi

∂y2
+Nv

∂2Xi

∂z2
+ SWi

+ PWi
,

x ∈ [0, x̂], y ∈ [0, ŷ], z ∈ [0, ẑ], t ∈ [t0, tf ], (19)

where Xi = Xi(x, y, z, t) stands for the concentration of the ith water quality vari-
ables in the pond; Nh and Nv are given constants; Wi stands for the ith water
quality variable; SWi = SWi(X1, ..., X7, t) stands for the source term of the ith

water quality variable, which can be obtained from the chemical process given in [12]
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(See Tables A1 and A2 for details.); PWi = PWi(xweight(t), ufeed(t), t) stands for
the instantaneous input pollution term of ith water quality variable Wi , which can
be calculated from the dynamic forms of the Nitrogen and Phosphorous pollution
loads in Section 2.

We first describe the source terms of the water quality variables which are gen-
erated from 8 chemical processes given in Tables A1 and A2 in the Appendix. For
the sake of ease of understanding of these chemical processes, we need to modify
the notation of the concentrations of the water quality variables as follows:
XPHY = X1 =concentration of Phytoplankton (PHY) ;
XNOR = X2 =concentration of Organic Nitrogen (NOR);
XNAM = X3 =concentration of Ammonia (NAM);
XNIT = X4 =concentration of Nitrates (NIT);
XPOR = X5 =concentration of Organic Phosphorous (POR);
XPIN = X6 =concentration of Inorganic Phosphorous (PIN);
XSS = X7 =concentration of Suspended Solid (SS).

Using the same notation as those given in Tables A1 and A2 for these chemical
processes, we can explicitly express all the source terms SWi

(X1, ..., X7, t) as func-
tions of their respective arguments. The detail is as follows:
Source term of each water quality variable:

1. SPHY (XPHY , t) = (kg1(t) + kr1(t) + kd1 + kSet1)XPHY

⇔ SW1
(X1, t) = (kg1(t) + kr1(t) + kd1 + kSet1)X1, (20)

2. SNOR (XPHY , XNOR, t) = (kr2(t) + kd2)XPHY + (kSet2 + kAm2(t))XNOR

⇔ SW2
(X1, X2, t) = (kr2(t) + kd2)X1 + (kSet2 + kAm2(t))X2, (21)

3. SNAM (XPHY , XNOR, XNAM , XSS , t)

= (kg3(t) + kr3(t))XPHY + kA3XSS + kAm3(t)XNOR + kNit3(t)XNAM

⇔ SW3
(X1, X2, X3, X7, t)

= (kg3(t) + kr3(t))X1 + kA3X7 + kAm3(t)X2 + kNit3(t)X3, (22)

4. SNIT (XPHY , XNAM , t) = kg4(t)XPHY + kNit4(t)XNAM

⇔ SW4 (X1, X3, t) = kg4(t)X1 + kNit4(t)X3 (23)

5. SPOR (XPHY , XPOR, t) = (kr5(t) + kd5)XPHY + (kSet5 + kMin5(t))XPOR

⇔ SW5
(X1, X5, t) (kr5(t) + kd5)X1 + (kset5 + kMin5(t))X5, (24)

6. SPIN (XPHY , XSS , t) = (kg6(t) + kr6(t))XPHY + kA6XSS + kMin6XPOR

⇔ SW6 (X1, X5X7, t) = (kg6(t) + kr6(t))X1 + kA6X7 + kMin6X5, (25)

7. SSS (XPHY , XSS) = kd7XPHY + kSet7XSS

⇔ SW7
(X1, X7) = kd7X1 + kSet7X7, (26)

where in (20)− (26), the constants kg,i (i = 1, 3, 4, 6), kr,i (i = 1, 2, 3, 5, 6), kd,i (i =
1, 2, 5, 7), kSet,i (i = 1, 2, 5, 7), kA,i (i = 3, 6), kAm,i (i = 2, 3), kNit,i (i = 3, 4),
kMin,i (i = 5, 6), represent the growth or decay constant of the ith water quality
variable due to the chemical processes Photosynthesis, Endogenous Respiration,
Decay, Settling, Adsorption, Ammonification, Nitrification, Mineralization of Phos-
phorous, respectively.

We now use the dynamic forms of the Nitrogen and Phosphorous pollution loads
in Section 2 to calculate the pollution terms PWi

(xweight(t), ufeed(t), t) as functions
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of their respective arguments as follows: (There is no input pollution load for the
first water quality variable PHY and the fourth water quality variable NAM.)
Input Pollution Load for each water quality
1. Organic Nitrogen
From (7), (10), and (11),

PNOR(xweight(t), ufeed(t), t) = Nfed +Nexon +Nexur

=
(
6.57× 10−5nfishxweight(t)ufeed(t)− 3.54× 10−7nfish

)
+
(
10−3Temp(t)2 − 4× 10−2Temp(t) + 0.49

)
×
(
5.99× 10−4nfishxweight(t)ufeed(t)− 1.77× 10−5nfish

)
. (27)

2. Ammonia
From (12),

PNAM (xfish(t), ufeed(t), t) = Nexam

= (5.87× 10−4nfishxweight(t)ufeed(t)− 1.73× 10−5nfish)

−
(
10−3Temp(t)2 − 4× 10−2Temp(t) + 0.49

)
×
(
5.99× 10−4nfishxweight (t)ufeed(t)− 1.77× 10−5nfish

)
. (28)

3. Organic Phosphorous
From (16),

PPOR(xweight(t), ufeed(t)) = Phfeed = 1.05× 10−5nfishxweight(t)ufeed(t). (29)

4. Inorganic Phosphorous
From (18),

PPIN (xweight(t), ufeed(t)) = Phex

= 6.6× 10−5nfishxweight(t)ufeed(t)− 4.2× 10−6nfish. (30)

5. Suspended Solids
From equation (29) given in [12],

PSS(xweight(t), ufeed(t)) = (1.82× 10−4nfishxweight(t)ufeed(t) + 1.9× 10−3ufeed(t)).
(31)

Now, we state the boundary conditions and the initial condition for the three-
dimensional FFWP sub-model as follows:
For each Wi, i = 1, ...7, we have

∂Xi(0, y, z, t)

∂x
= 0, ∀y ∈ [0, ŷ],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ], (32)

∂Xi(x̂, y, z, t)

∂x
= 0, ∀y ∈ [0, ŷ],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ], (33)

∂Xi(x, 0, z, t)

∂y
= 0, ∀x ∈ [0, x̂],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ], (34)

∂Xi(x, ŷ, z, t)

∂y
= 0, ∀x ∈ [0, x̂],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ], (35)

∂Xi(x, y, 0, t)

∂z
= 0, ∀x ∈ [0, x̂],∀y ∈ [0, ŷ], and ∀t ∈ [t0, tf ], (36)

∂Xi(x, y, ẑ, t)

∂z
= −k̄Xi(x, y, ẑ, t), ∀x ∈ [0, x̂],∀y ∈ [0, ŷ], and ∀t ∈ [t0, tf ], (37)

Xi(x, y, z, t0) = Xi,0(x, y, z), ∀x ∈ [0, x̂],∀y ∈ [0, ŷ], and ∀z ∈ [0, ẑ], (38)



8 H.W.J. LEE, KAR HUNG WONG AND Y.C.E. LEE

where k̄ is a given constant and Xi,0 is a given function. Inequality (37) implies
that the gradient of the outlet concentration of each water variable at the water
surface is proportional to the concentration itself but is decreasing. The situation
for the boundary conditions is plotted in Figure 1.

Figure 1. Boundary conditions of the water pollution model

Plane ABFE : ∂Xi(0,y,z,t)
∂x = 0

Plane DCGH : ∂Xi(x̂,y,z,t)
∂x = 0

Plane ADHE : ∂Xi(x,0,z,t)
∂y = 0

Plane BCGF : ∂Xi(x,ŷ,z,t)
∂y = 0

Plane FGHE : ∂Xi(x,y,0,t)
∂z = 0

Plane BCDA : ∂Xi(x,y,ẑ,t)
∂z = −k̄Xi(x, y, 0, t)

Lastly, we are in a position to provide a theorem concerning the existence and
uniqueness of the solution of each water quality variable of the FFWP model, which
can be stated as follows:
Theorem 3.1. For any piecewise control ufeed(t), there exists a unique classical
solution for each water qualify variable Xi(x, y, z, t) (i=1,...,7) ∈ L∞(Q) satisfying
the partial differential equations and the boundary conditions given by the FFWP
sub-model, where Q =[0,x̂]×[0,ŷ]×[0,ẑ]×[t0, tf ], and

‖Xi‖L∞(Q) = sup{Xi(x, y, z, t) : (x, y, z, t) ∈ Q}. (39)

Proof. From (20) – (26), it is clear that for any time t ∈ [t0, tf ], SW1
, SW2

, SW3
,

SW4
, SW5

, SW6
, SW7

in (19) are, respectively, linear functions of X1, X1 and X2, X1

and X2 and X3 and X7, X1 and X3, X1 and X5, X1 and X5 and X7, X1 and X7.
Moreover, from Table A2 in the Appendix, it is clear that all the time functions
or constants (i.e., kg,i (i = 1, 3, 4, 6), kr,i (i = 1, 2, 3, 5, 6), kd,i (i = 1, 2, 5, 7),
kSet,i (i = 1, 2, 5, 7), kA,i (i = 3, 6), kAm,i (i = 2, 3), kNit,i (i = 3, 4), kMin,i (i = 5, 6)
associated with X1, X2, X3, X4, X5, X6, X7 are bounded on [t0, tf ].

Furthermore, for any piecewise control ufeed(t), it is clear from (27) − (31) and
(1) − (3) that PWi(xweight(t), ufeed(t), t), (i = 2, 3, 5, 6, 7) in (19) are bounded for
all t ∈[t0, tf ].
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Thus, for any piecewise control ufeed(t), the distributed parameter system (1)
together with the boundary conditions (32) – (38) constitute a linear parabola
system with mixed linear Dirichlet and Neumann boundary conditions. Thus, the
proof of this theorem follows easily from the theory of linear parabola systems with
linear boundary conditions. (See [10] for details.)

This completes the description of the NFFWP sub-model.

4. The optimal control fish-feeding problem with distributed parameter
system. Before we can formulate the optimal control fish-feeding problem with
distributed parameter system, we first need to formulate the three-dimensional NF-
FWP sub-model.

4.1. Three-dimensional no-fish-feeding water pollution sub-model. The
three-dimensional NFFWP sub-model is similar to the three-dimensional FFWP
sub-model described in Section 3, except that there is no fish-feeding in the pond.
Thus, the partial differential equations of this NFFWP sub-model are obtained by
deleting the pollution term PWi from the partial differential equations (19) of the
FFWP sub-model. The full details of this NFFWP sub-model are as follows:

Let the initial time, the final time, the dimensions of the pond be the same as
those given in Section 3. In view of (19), the partial differential equation governing
this NFFWP sub-model is

∂X̄i

∂t
= Nh

∂2X̄i

∂x2
+Nh

∂2X̄i

∂y2
+Nv

∂2X̄i

∂z2
+ SWi ,

∀x ∈ [0, x̂],∀y ∈ [0, ŷ],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ] , (40)

where X̄i = X̄i(x, y, z, t) stands for the concentration of the various water quality
variables in the pond of this NFFWP sub-model; Nh, Nv,Wi, and SWi are as defined
in (19) of the FFWP sub-model. In view of (32)− (38), the boundary conditions of
this sub-model and the initial condition of this sub-model, which are the same as
those in the FFWP sub-model, can be stated as follows:

∂X̄i(0, y, z, t)

∂x
= 0,∀y ∈ [0, ŷ],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ] , (41)

∂X̄i(x̂, y, z, t)

∂x
= 0,∀y ∈ [0, ŷ],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ] , (42)

∂X̄i(x, 0, z, t)

∂y
= 0,∀x ∈ [0, x̂],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ] , (43)

∂X̄i(x, ŷ, z, t)

∂y
= 0,∀x ∈ [0, x̂],∀z ∈ [0, ẑ], and ∀t ∈ [t0, tf ] , (44)

∂X̄i(x, y, 0, t)

∂z
= 0,∀x ∈ [0, x̂],∀y ∈ [0, ŷ], and ∀t ∈ [t0, tf ] , (45)

∂X̄i(x, y, ẑ, t)

∂z
= −k̄X̄i(x, y, ẑ, t),∀x ∈ [0, x̂],∀y ∈ [0, ŷ], and ∀t ∈ [t0, tf ] , (46)

X̄i (x, y, z, t0) = X̄i,0(x, y, z) = Xi,0(x, y, z),∀x ∈ [0, x̂],∀y ∈ [0, ŷ], and ∀z ∈ [0, ẑ].
(47)

We are in a position to provide a theorem concerning the existence and uniqueness
of the solution of each water quality variable of the NFFWP model, which can be
stated as follows:
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Theorem 4.1. There exists a unique classical solution for each water quality vari-
able X̄i(x, y, z, t) (i=1,...,7) ∈ L∞(Q) satisfying the partial differential equations
and the boundary conditions given by the NFFWP model, where Q = [0,x̂]×[0,ŷ]×[0,ẑ]
× [t0, tf ],and ‖X̄i‖L∞(Q) is as defined as in (39).

Proof. Since the system of the partial differential equation (40) with boundary
conditions (41) – (47) of the NFFWP model is obtained from that of the FFWP
model (i.e, equation (19) and (32) – (38)) by replacing the input pollution term
PWi

in equation (19) of the FFWP model by zero, the proof of this theory is the
same as that given for Theorem 3.1.

4.2. Formation of the optimal control problem with distributed param-
eter system. After having formulated the three-dimensional FFWP sub-model
and the three-dimensional NFFWP sub-model, we can formulate an optimal con-
trol fish-feeding problem. For this purpose, let t be the time in days measured from
midnight of 1st January of any year. Let t0, tf , ufeed(t), X̄i(x, y, z, t) be as defined
in Section 2 and Section 3 of this paper, where ufeed(t) is now the control function
of our problem. Then, ufeed(t) is chosen to be a piecewise continuous function.
For each i = 1, ..., 7, let xweight(t|ufeed) and Xi(x, y, z, t|ufeed) be, respectively, the
instantaneous weight of the fishes and the instantaneous concentration of Wi of the
NFFWP model at time t, when the control function is equal to ufeed(t). Then,
our objective, which is to find an optimal control ufeed(t) that maximizes the final
weight of the fishes, is given as follows:

Max J(ufeed) = xweight(tf |ufeed). (48)

Due to the health requirement of the fishes, we need to impose the upper bound and
the lower bound on the fishes’ feeding rate (i.e., the fishes’ feeding rate constraint)
as follows:

ufeed ≤ ufeed(t) ≤ ufeed, t ∈ [t0, tf ], (49)

where ufeed(t) and ufeed(t) are given constants. Furthermore, due to the require-
ment for environmental concern, we need to ensure that the increase in the average
concentration of each water quality variable Wi (i = 2, ..., 7) created by the feeding
program at any time t, t ∈ [t0, tf ] should not exceed Mi, where Mi is a given num-
ber. (i.e, the differences in average concentrations of Wi between the FFWP model
and the NFFWP model should not exceed Mi.) Thus, we need to introduce the
following all-time water quality variable concentration constraints (i.e. environment
protection requirement constraints).∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Xi (x, y, z, t | ufeed(t)) dxdydz −
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

X̄i(x, y, z, t)dxdydz ≤Mi,

∀i = 1, ..7, t ∈ [t0, tf ] . (50)

(Note that any fish-feeding program does not create an additional load of W1 (Phy-
toplankton) in the pond. In other words, irrespective of the control variable ufeed(t),
the first constraint of (50)∫ ẑ

0

∫ ŷ

0

∫ x̂

0

X1 (x, y, z, t | ufeed(t)) dxdydz −
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

X̄1(x, y, z, t)dxdydz ≤M1,

∀t ∈ [t0, tf ] ,

is always satisfied.)
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Now, our optimal control problem (P1) can be stated as follows:

Problem (P1): Subject to the distributed system (19) – (38) for the FFWP
model, the distributed system (40) – (47) for the NFFWP model, the fishes’ weight
equations (1) – (2), the feeding rate constraint (49) and the all-time water quality
variable concentration constraints (50), find a piecewise continuous function ufeed(t)
which maximizes J(ufeed) given by (48).

We are in a position to provide a theorem concerning the existence of optimal
control of the problem (P1), which can be stated as follows:

Theorem 4.2. The optimal control problem (P1) has an optimal control.

Proof. Let (P1) be the optimal control problem obtained from (P1) by deleting
the all-time water quality variable concentration constraints (50) from (P1). Then
(P1) is a simplified version of the optimal control problem described in [20] such
that all the smoothness assumptions imposed in [20] are well satisfied by the given
functions in (P1). Thus, from Theorem 6.1 of [20], we know that optimal control
(P1) has an optimal solution. From the fact that (P1) has an optimal control and
(P1) has at least one control which satisfies constraints (50), (When ufeed(t) = 0
for all t ∈ [t0, tf ], then constraints (50) becomes 0 ≤ Mi, ∀i = 1, ..., 7, t ∈ [t0, tf ],
which is obviously true) we conclude that (P1) also has an optimal control.

5. Formulation of an approximated optimal control problem with lumped
parameter system by using the galerkin scheme.

5.1. Converting the system of partial differential equations in the fish-
feeding water pollution model into ordinary differential equations. In this
sub-section, we first convert the system of partial differential equations (19) and
(32) – (38) of the FFWP model into ordinary differential equations by using the
Galerkin Scheme. The method is as follows: We first divide the domain Ω =
[0, x̂]×[0, ŷ]×[0, ẑ] into a finite number of sub-regions, which are cubic tanks. Points
at the corner of each sub-region are called grid points. For the sake of constructing
root functions, we denote the grid points by (xi, yj , zk), for i = 0, 1, 2, 3, j = 0, 1, 2,
and k = 0, 1, 2. For illustrative purposes, we divide the domain into 12 equal cubic
sub-regions Si,j,k for i = 1, 2, 3, j = 1, 2, and k = 1, 2, where

Si,j,k = {(x, y, z) : xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj , zk−1 ≤ z ≤ zk},

with

xi−xi−1 =
x̂

3
for i = 1, 2, 3, yj − yj−1 =

ŷ

2
for j = 1, 2, zk− zk−1 =

ẑ

2
for k = 1, 2,

and

(x0, y0, z0) = (0, 0, 0).
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Then the root function corresponding to the grid point (xi, yj , zk), for i =
0, 1, 2, 3, j = 0, 1, 2, and k = 0, 1, 2, can be constructed as follows:

Ri,j,k(x, y, z) =



12(x−xi)(y−yj)(z−zk)

x̂ŷẑ
, if (x, y, z) ∈ closure of Si+1,j+1,k+1,

12(x−xi−1)(y−yj)(z−zk)

x̂ŷẑ
, if (x, y, z) ∈ closure of Si,j+1,k+1,

12(x−xi)(y−yj−1)(z−zk)

x̂ŷẑ
, if (x, y, z) ∈ closure of Si+1,j,k+1,

12(x−xi)(y−yj)(z−zk−1)
x̂ŷẑ

, if (x, y, z) ∈ closure of Si+1,j+1,k,
12(x−xi−1)(y−yj−1)(z−zk)

x̂ŷẑ
, if (x, y, z) ∈ closure of Si,j,k+1,

12(x−xi−1)(y−yj)(z−zk−1)
x̂ŷẑ

, if (x, y, z) ∈ closure of Si,j+1,k,
12(x−xi)(y−yj−1)(z−zk−1)

x̂ŷẑ
, if (x, y, z) ∈ closure of Si+1,j,k,

12(x−xi−1)(y−yj−1)(z−zk−1)
x̂ŷẑ

, if (x, y, z) ∈ closure of Si,j,k,

0, otherwise.
(51)

The situation is depicted in Figure 2.

Figure 2. The Front Part of the Fish Pond

Remark 5.1. From (51), it is clear that

Ri,j,k(x, y, z) =

{
1, at grid point (xi, yj , zk) ,
0, at the other grid points .

(52)

Next, to simplify our notation, we replace Ri,j,k(x, y, z) by Rl(x, y, z), where l =
i+ 4j+ 12k+ 1 for i = 1, 2, 3, j = 0, 1, 2 and k = 0, 1, 2. Then Rl(x, y, z) represents
the lth global grid point of the whole domain, where all the global grid points are
as depicted in Figure 3.
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Figure 3. The global node point of the fish pond

Now, we approximate the concentration of the ith water quality variable (i =
1, ..., 7) by

X36
i (x, y, z, t) =

36∑
l=1

Ti,l(t)Rl(x, y, z). (53)

From (53), the initial condition (38) becomes

Ti,l(t0) = Xi,l,0, i = 1, ..., 7, l = 1, ..., 36, (54)

where Xi,l,0 is the initial concentration of the ith water quality variable at the lth

global net-point.
To convert the system of partial differential (19) into a system of ordinary dif-

ferential equations, we first let β(x, y, z) be an arbitrary function in C1(Ω) almost
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everywhere. Multiply (19) by β(z, y, z) and integrate over the region Ω, we get

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)
∂Xi(x, y, z, t)

∂t
dxdydz

=

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβ(x, y, z)
∂2Xi(x, y, z, t)

∂x2
dxdydz

+

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβ(x, y, z)
∂2Xi(x, y, z, t)

∂y2
dxdydz

+

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nvβ(x, y, z)
∂2Xi(x, y, z, t)

∂z2
dxdydz

+

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)SXi
(X1, . . . , X7, t) dxdydz

+ PXi (xweight(t), ufeed(t), t)×
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)dxdydz. (55)

In view of (32) and (33), we have

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβ(x, y, z)
∂X2

i (x, y, z, t)

∂x2
dxdydz

=

∫ ẑ

0

∫ ŷ

0

Nh

[
β(x̂, y, z)

∂Xi(x̂, y, z, t)

∂x
− β(0, y, z)

∂Xi(0, y, z, t)

∂x

]
dydz

−
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβx(x, y, z)
∂Xi(x, y, z, t)

∂x
dxdydz

= −
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβx(x, y, z)
∂Xi(x, y, z, t)

∂x
dxdydz. (56)

Similarly, in view of (34) and (35), we have

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβ(x, y, z)
∂X2

i (x, y, z, t)

∂y2
dxdydz

= −
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβy(x, y, z)
∂Xi(x, y, z, t)

∂y
dxdydz. (57)

Similarly, in view of (36) and (37), we have

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nvβ(x, y, z)
∂X2

i (x, y, z, t)

∂z2
dxdydz

= −
∫ ŷ

0

∫ x̂

0

k̄Nvβ(x, y, ẑ)Xi(x, y, ẑ, t)dxdy

−
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nvβz(x, y, z)
∂Xi(x, y, z, t)

∂z
dxdydz

+ PXi (xweight(t), ufeed(t), t)×
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)dxdydz. (58)
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Thus, from (55) – (58), we have

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)
∂Xi(x, y, z, t)

∂t
dxdydz

= −
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβx(x, y, z)
∂Xi(x, y, z, t)

∂x
dxdydz

−
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nhβy(x, y, z)
∂Xi(x, y, z, t)

∂y
dxdydz

−
∫ ŷ

0

∫ x̂

0

k̄Nvβ(x, y, ẑ)Xi(x, y, ẑ, t)dxdy

−
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Nvβz(x, y, z)
∂Xi(x, y, z, t)

∂z
dxdydz

+

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)SXi (X1, . . . , X7, t) dxdydz

+ PXi
(xweight(t), ufeed(t), t)×

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

β(x, y, z)dxdydz. (59)

Substituting X36
i and Rm(x, y, z) for Xi and β in (59) for all m ∈ {1, ..., 36}, we

obtain from (59), (53) and (20) – (26) that

36∑
i=1

Ṫi,lAl,m = −
36∑
l=1

Ti,i

(
NhĀl,m +NhÃl,m + k̄NvBl,m +NvÂl,m

)
+

7∑
l̄=1

(
fi,l̄(t)

36∑
l=1

Tl̄,lAl,m

)
+ PXi

(xweight(t), ufeed(t), t)× B̄m, (60)

where

Al,m =

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Rl(x, y, z)Rm(x, y, z)dxdydz, (61)

Āl,m =

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

∂Rl(x, y, z)

∂x

∂Rm(x, y, z)

∂x
dxdydz, (62)

Ãl,m =

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

∂Rl(x, y, z)

∂y

∂Rm(x, y, z)

∂y
dxdydz, (63)

Âl,m =

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

∂Rl(x, y, z)

∂z

∂Rm(x, y, z)

∂z
dxdydz, (64)

Bl,m =

∫ ŷ

0

∫ x̂

0

Rl(x, y, ẑ)Rm(x, y, ẑ)dxdy, (65)

B̄m =

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Rm(x, y, z)dxdydz, (66)
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fi,l(t) =



(kg1(t) + kr1(t) + kd1 + kSet1) , when i = 1, l̄ = 1,
(kr2(t) + kd2) , when i = 2, l̄ = 1,
(kSet2 + kAm2(t)) , when i = 2, l̄ = 2,
(kg3(t) + kr3(t)) , when i = 3, l̄ = 1,
(kAm3(t)) , when i = 3, l̄ = 2,
(kNit3(t)) , when i = 3, l̄ = 3,
(kA3) , when i = 3, l̄ = 7,
(kg4(t)) , when i = 4, l̄ = 1,
(kNit4(t)) , when i = 4, l̄ = 3,
(kr5(t) + kd5) , when i = 5, l̄ = 1,
(kSet5 + kMin5(t)) , when i = 5, l̄ = 5,
(kg6(t) + kr6(t)) , when i = 6, l̄ = 1,
(kMin6(t)) , when i = 6, l̄ = 5,
(kA6) , when i = 6, l̄ = 7,
(kd7) , when i = 7, l̄ = 1,
(kSet7) , when i = 7, l̄ = 7,
0, otherwise.

(67)

From (60), we obtain the state equations of the FFWP by the Galerkin scheme as
follows:

Ṫi(t) = A−1ψTi(t) +

7∑
l̄=1

fi,l̄(t)Tl̄(t) +A−1B × PXi (xweigh(t), ufeed(t), t) , i = 1, . . . , 7,

(68)

where Ti = (Ti,1, . . . ., Ti,36)
T
, A = (Al,m) l=1,...,36

m=1,...,36
, ψ = (ψl,m) l=1,...,36

m=1,...,36
,

B =
(
B̄1, . . . ., B̄36

)T
and

ψl,m = −
(
NhĀl,m +NhÃl,m + k̄NvBl,m +NvÂl,m

)
, (69)

and the initial condition for the above state equation is given by (54).

5.2. Converting the system of the partial differential equations in the no-
fish-feeding water pollution model into ordinary differential equations.
In this sub-section, we first convert the system of partial differential equations
(40)− (47) in the NFFWP model into ordinary differential equations by using the
Galerkin Scheme. Similar to the FFWP model, we can approximate the instanta-
neous concentration of the ith water quality variable, X̄i(x, y, z, t) (i = 1, ..., 7), by
X̄36
i (x, y, z, t), where

X
36

i (x, y, z, t) =

36∑
l=1

T i,l(t)Rl(x, y, z), (70)

and Ri(x, y, z) is as defined after equation (52). From (68), we obtain the state
equations of the NFFWP model by the Galerkin scheme as follows:

Ṫi(t) = A−1ψT i(t) +

7∑
l=1

fi,l(t)T l(t), (71)

where A, ψ and fi,l̄(t) are as defined in (61), (69), and (67) respectively. From (54),
the initial condition for the state variables of the NFFWP sub-model is

T i,l(t0) = Xi,l,0, i = 1, ..., 7, l = 1, ..., 36, (72)
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where Xi,l,0 is the initial concentration of the ith water quality variable at the lth

global net-point.

5.3. Formulation of an approximated optimal control problem with lumped
parameter system. After having converted the systems of partial differential
equations of the FFWP model and the NFFWP model into ordinary differential
equations, we can formulate the all-time water quality constraints of the approxi-
mated optimal control problem. From (50), (53) and (70), the all-time water quality
variable concentration constraints are

36∑
l=1

Ti,l(t|ufeed(t))Dl −
36∑
l=1

T i,l(t)Dl ≤Mi, i = 1, ..., 7, (73)

where

Dl =

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Rl(x, y, z)dxdydz. (74)

Thus, we can now transform the problem (P1) into an approximated problem (Q1),
where (Q1) can be stated as follows:
Problem (Q1): Subject to the differential equation for fishes’ weight given by
equations (1) and (2), the system (68) and (54) for the FFWP sub-model, the
system (71) and (72) for the NFFWP sub-model, the fishes’ feeding rate constraint
(49), and the water quality variable concentration constraint (73), find a piecewise
continuous function ufeed(t) which maximizes J(ufeed) given by (48).

Note that the problem (Q1) consists of 1 control variable, namely, ufeed(t) and
14 × 36 + 1 state variables, namely, Ti,j(t), T̄i,j(t) (i = 1, ..., 7, j = 1, ..., 36) and
xweight(t).

6. Modifying the state equations to handle the non-negativity require-
ment of the instantaneous water quality variable concentrations. In the
section, we use a technique similar to those used in [8], [15], and [16] to handle the
non-negativity requirement of the instantaneous water quality variable concentra-
tions.

During the process of solving the problem (Q1) by the control parameterization
method, we may encounter a situation where some state variables Ti,l(t) generated
by the evolution of the state equations (68) and (54) of the FFWP sub-model
(respectively, T̄i,l(t) generated by the evolution of the state equations (71) and (72)
of the NFFWP sub-model) have negative values. This implies from the properties
of the linear spines that the concentration Xi(x, y, z, t) of the FFWP sub-model
(respectively X̄i(x, y, z, t) of the NFFWP sub-model) also takes on negative values,
which is physically impossible. In fact, the system governed by (68) and (54) for
the FFWP sub-model (respectively, the system governed by (71) and (72) for the
NFFWP sub-model) is valid provided that all Ti,l(t) (respectively, all T̄i,l(t)) remain
non-negative all the time.

To handle the non-negativity requirement of Ti,l(t), we amend the state equations
(68) and (64) of the FFWP sub-model as follows:



18 H.W.J. LEE, KAR HUNG WONG AND Y.C.E. LEE

By letting

f̂(Ti(t), ufeed(t), t) = A−1ψTi(t) +

7∑
l=1

fi,l(t)Tl(t)

+A−1B × PXi(xweight(t), ufeed(t), t) (75)

in the right-hand sided of (68), we obtain the smooth state equations reflecting the
real-life situation of the FFWP sub-model as follows:

Ṫi,l(t) = ξε(Ti,l(t), (f̂(Ti(t), ufeed(t), t)l), i = 1, ..., 7, l = 1, ..., 36, (76)

Ti,l(t0) = Xx,l,0, i = 1, ...7, l = 1, ..., 36, (77)

where ε is a small given number and the function ξε : R2 → R is defined by

ξε(y, ȳ) =


ȳ, if y > 0,

Iε(y)× ȳ + (1− Iε(y))×maxε(ȳ), if − ε ≤ y ≤ 0,

maxε(ȳ), if y < −ε,
(78)

and maxε(ȳ) is the function used for smoothing max(ȳ, 0) defined by

maxε(ȳ) =


0, if ȳ ≤ −ε
(ȳ+ε)2

4ε , if − ε ≤ ȳ ≤ ε
ȳ, if ȳ > ε

, (79)

and

Iε(ȳ) = −2
( ȳ
ε

)3

− 3
( ȳ
ε

)2

+ 1, −ε ≤ y ≤ 0 (80)

is a real number between 0 and 1.
Similarly, to handle the non-negativity requirement of T̄i,l(t), we need to amend

the state equations (71)− (72) of the NFFWP as follows:

˙̄Ti,l(t) = ξε

(
T̄i,l(t),

(
ˆ̂
f
(
T̄i(t)

))
l

)
, i = 1, ..., 7, l = 1, . . . , 36 (81)

T̄i,l (t0) = Xi,l,0, i = 1, . . . , 7, l = 1, . . . , 36, (82)

where

ˆ̂
f
(
T̄i(t)

)
= A−1ψT̄i(t) +

7∑
l̄=1

fi,l̄(t)T̄l̄(t). (83)

Thus, by using systems (76) and (77) for finding the concentration of the water
quality variables of the FFWP sub-model, and systems (81) and (82) for finding
those of the NFFWP sub-model, we obtain the problem (Q1(ε)) as follows:
Problem (Q1(ε)): Subject to the differential equation for fishes’ weight given by
equations (1) and (2), systems (81) and (82) of the FFWP sub-model, system (76)
and (77) of the NFFWP sub-model, the fishes’ feeding rate constraint (49), and
the all-time water quality variable concentration constraint (73), find a piecewise
continuous function ufeed(t) which maximizes J(ufeed) given by (48).

Problem (Q1(ε)) is a standard constrained optimal control problem which can
be solved by the control parametrization method.
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7. Numerical result. In the following numerical example (Example 7.1), the
dimensions of the pond are expressed in meter; the concentrations are expressed in
kg per cubic meter (or mg per liter); the time t is expressed in the number of days
measured from the first of January of a particular year; the weight of the fishes is
expressed in kg. Using the above units of measurement, we can describe Example
7.1 as follows:

Example 7.1. Consider the optimal fish-feeding program with the following data:
Place where the fish-feeding program takes place: calm freshwater pond. (In other
words, the specific growth rate of the fishes is given by equation (3).

Location of the pond = {(x, y, z) : x ∈ [0, x̂], y ∈ [0, ŷ], z ∈ [0, ẑ]}, where x̂ = 30,
ŷ = 20, ẑ = 10.
Number of Fishes in the pond = 50000.
The initial time of the fish-feeding program: t0 = 180. (i.e., at the end of June)
The final time of the fish-feeding program: tf = 550 (i.e., at the beginning of July
of the next year)
The initial weight of each fish: x̂weight = 0.065.
The initial concentration of each water quality variable Wi (i = 1, ..., 7) at any
location (x, y, z) = 0.5.
k̄ for each water quality variable (i.e., amount of outlet concentration at sea
surface/amount of actual concentration at sea level) = 0.02.
The diffusion coefficient Nh in (19) along the Ox and Oy axis = 0.05.
The diffusion coefficient Nv in (19) along the Oz axis = 0.05.

kg increase in fish weight/kg food: k̂ = 0.3.
Upper bound of the feeding rate: ufeed(t) = 1.5.
Lower bound of the feeding rate: ufeed(t) = 0.9.
The all-time water quality variable concentration constraints are as follows:
Increase in the average concentration of W3(Ammonia),W4(Nitrate) andW6(Inorganic

Phosphorous) at any time t during the fish-feeding program is not greater than M3,
M4 and M6 respectively, i.e.

∫ ẑ

0

∫ ŷ

0

∫ x̂

0

Xi (x, y, z, t | ufeed(t)) dxdydz −
∫ ẑ

0

∫ ŷ

0

∫ x̂

0

X̄i(x, y, z, t)dxdydz ≤Mi,

i = 3, 4, 6, t ∈ [180, 550], (84)

where M3 = 3,M4 = 9, and M6 = 1.

Remark 7.1. In the above example, we do not need to impose the all-time average
concentration constraints for the other water quality variables
(i.e., W1(Phytoplankton), W2(Organic Nitrogen), W5 (Organic Phosphorus), and
W7(Suspended Solid) for the following reasons:

(i) Any fish-feeding program does not create an additional load of W1 in the pond.
(ii) The differences in the average concentrations of W2, W5 and W7 between the
FFWP sub-model and the NFFWP sub-model will be very small, even if the control
used is at the upper bound of the fish-feeding rate for all time. (See Figure 5(a),
5(d) and 5(f) given later in this section.)
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Figure 4. Instantaneous average concentration in the No-Fish-
Feeding Water Pollution (NFFWP) sub-model

(a) Phytoplankton (PHY) (b) Organic Nitrogen (NOR) (c) Ammonia (NAM)
(d) Nitrates (NIT) (e) Organic Phosphorous (POR) (f) Inorganic Phosphorous
(PIN) (g) Suspended Solid (SS)

Remark 7.2. From the given data of this numerical example, the initial concen-
tration of each water quality variable is uniformly distributed throughout the pond.
This implies that for each t ∈ [t0, tf ], the concentration of each water quality vari-
able will be symmetric about the plane x = 0.5x̂ and the plane y = 0.5ŷ. However,
the concentrations will not be symmetric about the plane z = 0.5ẑ because the
boundary condition for the concentration of each water variable at the sea level
given by (45) is different from that at the bottom of the pond given by (46). Hence,
if we divide the whole domain into 12 sub-regions as that described in Section 4,
we can easily reduce the number of state variables in the Galerkin scheme for both
the FFWP sub-model and the NFFWP sub-model from 7× 36 to 7× 12. Thus, the
total number of state variables in the optimal fish-feeding problem will be reduced
from 14 × 36 + 1 to 14 × 12 + 1 and the total number of state variables in each of
the constraint functions (73) will be reduced from 2× 36 to 2× 12. Therefore, the
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computational time required for the execution of one iteration of any optimization
routine (such as NLPQL provided by the software Visual MISER in [21]) will be
tremendously reduced.
Remark 7.3. When the size of the pond is equal to 30 meter×20 meter×10 meter as
given in this example, the partition of cubic domain into 12 sub-domain is sufficient
to ensure that the solutions obtained by Galerkin scheme approximation have high
degrees of accuracy.

Thus, by dividing the domain into 12 sub-regions as those described in Section
4, we solve the transformed problem (Q1(ε)) with ε = 0.00001 by the combined
Galerkin scheme and the control parametrization method. The layouts of the results
are given in Figures 4(a) – Figure 4(g), Figure 5(a) – Figure 5(f), Figure 6, Figures
7(a) – 7(f) and Tables 1 – 2.

Figure 5. Comparison of the instantaneous average concentration
between the NFFWP sub-model, the FFWP sub-model with u(t) =
1.25 for all t ∈ [180, 550], and the FFWP sub-model with u(t) = 1.5
for all t ∈ [180, 550]

(a) Organic Nitrogen (NOR) (b) Ammonia (NAM) (c) Nitrates (NIT)
(d)Organic Phosphorous(POR) (e)Inorganic Phosphorous(PIN) (f)Suspended Solid(SS)

(The purple and the brown curve in Figure 5(e) almost coincide with each other.)

In Figure 5(a) - Figure 5(f), the black curves represent the instantaneous con-
centrations of the water quality variables of the No-Fish-Feeding Water Pollution
(NFFWP) sub-model, the purple curves represent those of the water quality vari-
ables of the Fish-Feeding Water Pollution (NFFWP) sub-model with u(t) = 1.25
for all t ∈ [180, 550], the brown curves represent those of the Fish-Feeding Water
Pollution (FFWP) sub-model with u(t) = 1.5 for all t ∈ [180, 550].
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Figure 6. The instantaneous optimal control (i.e. the instanta-
neous optimal fishes’ feeding rate)

Figure 7. Comparison of the instantaneous average concentra-
tion between the NFFWP sub-model and the FFWP sub-model
obtained by using the optimal control u∗(t).

(a) Ammonia (NAM) (b) Nitrates (NIT) (c) Inorganic Phosphorous (PIN)
(In Figure 7(a)-Figure 7(c), the black curves represent the instantaneous concen-
trations of the water quality variables of the No-Fish-Feeding Water Pollution
(NFFWP) sub-model, and the brown curves represent the instantaneous Fish-
Feeding Water Pollution (FFWP) sub-model obtained by using the optimal control
u∗(t) .)

TABLE 1. Weight of the fishes at the final time.
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TABLE 2. Maximum concentration at various places of the pond in the
fish-feeding water pollution (FFWP) model obtained by using optimal

fish-feeding rate

(Note that the concentration of each of the water quality variables is symmetric
along the plane x = 0.5x̂ and the plane y = 0.5ŷ.) (Also note that the maximum
concentrations of PHY, NOR, POR, and SS are attained at about t = 330, i.e.
near the end of November, whereas the maximum concentrations of NAM, NIT are
attained at t = 550, i.e. at the final day of the feeding program and the maximum
concentration of PIT is attained at t = 180, i.e. at the beginning of the feeding
program.)

From the above graphs and tables, we observe the following:
1. Comparison of the graphs of the different water quality variables versus time

From Figures 4(a), 4(b), 4(e), 4(g), 5(a), 5(d), 5(f), 7(a), 7(d), and 7(f), the
graphs of the average concentrations of Phytoplankton (PHY), Organic Nitrogen
(NOR), Organic Phosphorus (POR), and Suspended Solid (SS) in the NFFWP sub-
model and the FFWP sub-model due to any fish-feeding program resemble that of a
normal distribution graph, whose maximum concentration occurs at day 330, which
is about the end of November. Thus, the average concentrations of these water
quality variables at the final time are almost the same as those at the initial time.
Moreover, the black, the purple and the brown curves of Figures 5(a), 5(d), and 5(f)
have very small separations, which implies that there are no significant differences in
the average concentrations of NOR, POR, and SS between the NFFWP sub-model
and the FWWP sub-model due to any fish-feeding programs. (As mentioned earlier,
any fish-feeding program does not create an additional load of Phytoplankton in the
pond.)

On the other hand, from Figures 4(c), 4(d), and 4(f), the concentrations of
Ammonia (NAM), Nitrates (NIT), and Inorganic Phosphorus (PIN) in the NFFWP
model become zero after a certain period, which occurs at about 160 days, 30 days,
and 60 days from the initial time, respectively. (i.e. about the middle of December,
the end of July, and the end of August, respectively.) Moreover, the black, the
purple, and the brown curves of Figures 5(b), 5(c) have very large separations, which
implies that there are large percentage differences in the average concentrations of
NAM and NIT between the NFFWP sub-model, the FWWP sub-model with u(t) =
1.25, and the FWWP sub-model with u(t) = 1.5. Furthermore, the black and the
purple curves of Figure 5(e) also have very large separation, but the purple and the
brown curves of this figure almost coincide with each other; this implies that there
is also a large percentage difference in the average concentration of PIT between
the NFFWP sub-model and the FFWP sub-model with u(t) = 1.25, but almost no
difference in that between the FFWP sub-model with u(t) = 1.25, and the FFWP
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sub-model with u(t) = 1.5. Thus, if uncontrolled, the fish-feeding program can
create a huge increase in NAM, NIT, and PIN, especially NIT. (More significantly,
Figure 5(c) shows that by using the maximum fishes’ feeding rate u(t) = 1.5, the
average concentration of NIT in the pond rises from almost zero at the beginning of
the fishes’ feeding period to more than 300 at the end of the fishes’ feeding program.)

2. Comparison of the optimal feeding rate with the maximum allowable feeding
rate; comparison of the optimal fishes’ weight at harvest with fishes’ weight at
harvest obtained by using the maximum allowable feeding rate

From Figure 6, the optimal fishes’ feeding rate u∗(t) of this example is between
1.11 and 1.21, which is between 74% and 80% of the maximum allowable fishes’
feeding rate u(t) = 1.5. From Table 1, the optimal fishes’ weight at harvest is about
56.76% less than that at harvest obtained by using the maximum allowable fishes’
feeding rate.

3. Comparing the tendency of violating the environmental protection require-
ment of each water quality variable

From Remark 7.1, Figures 5(a), 5(d), and 5(f), the differences in the average
concentration of each of these water quality variables PHY, NOR, POR, SS be-
tween the FFWP sub-model and the NFFWP sub-model are either zero or very
small. Thus, these water quality variables can satisfy the environmental protection
requirement very easily. From Figures 7(a), 7(b), and 7(c), the constraints for the
average concentrations of NAM and PIN (Constraints (7.1) and (7.3)) are unbind-
ing at the optimal solution, whereas the constraint for the average concentration
of NIT (Constraint (7.2)) is binding at the optimal solution when t = tf (i.e., at
the final time of the fishes’ feeding program.) This implies that the water quality
variables NAM and PIN can also satisfy the environmental protection requirement
constraints easily, whereas the water quality variable NIT can barely satisfy the
environmental protection requirement.

4. Comparing the concentration of the water quality variables at various places
of the pond

From Table 2, for each water quality variable Wi, the average concentration of
the FFWP model obtained by using optimal control is largest at z = 0 (i.e. at the
bottom of the pond), which is slightly larger than that at z = 0.5ẑ (i.e. at midway
between the bottom of the pond and the sea level). The average concentration at
z = ẑ (i.e. at the sea level) is much smaller than those at z = 0.5ẑ and at z = 0.
This phenomenon is due to the boundary condition (37), which states that the
gradient of the outlet concentration at sea level is proportional to the concentration
itself but is decreasing. At each depth z = 0, z = 0.5ẑ and z = ẑ of the pond, the
concentration of each water quality variable Wi is not uniformly distributed in the
x-y plane. However, as mentioned in Remark 7.2, since the initial concentration
of each water quality variable is uniformly distributed throughout the pond, the
concentration of each water quality is always symmetric about the plane x = 0.5x̂
and the plane y = 0.5ŷ .

8. Conclusion. Based on seven water quality variables, the optimal fish-feeding
process in a pond at rest has been analyzed by coupling an algebraic equations sys-
tem for fish growth and nitrogen and phosphorus transformation with a standard
diffusion (no convection) water quality model from the existing literature. A compu-
tational scheme using the finite element Galerkin scheme for the three-dimensional
cubic domain and the control parameterization method has been developed for
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finding the optimal control of fish-feeding in this calm water pond considering en-
vironmental concern.

The optimal fishes’ feeding rate and the optimal fishes’ weight at harvest are
obtained. The instantaneous concentration of each water quality variable of the
no-fish-feeding water pollution (NFFWP) sub-model, as well as those obtained by
using optimal control of the fish-feeding water pollution (FFWP) sub-model at
each grid point of the pond, are also calculated. Intuitive explanations have been
given, justifying all the computational results concerning the optimal fishes’ feeding
rate, the optimal fishes’ weight at harvest, and the corresponding instantaneous
concentration of each water quality variable at each grid point of the pond. The
extension of our method to finding the optimal control of fish-feeding in a windy
pond (instead of a calm water pond ) will be very challenging research because it
requires incorporating a hydrodynamic sub-model to calculate the velocities flow
into our water pollution model, which generates more state variables.
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APPENDIX

TABLE A1. Processes described in the Three-Dimensional Water Pollution
Model and their equations

D. Decay of PHY (D1) with releases of NOR (D2), POR (D5), and SS
(D7) .
D1 = kd1×XPHY , D2 = kd2×XPHY , D5 = kd5×XPHY , D7 = kd7×XPHY ,
where
(i) kd1 = −kd, kd2 = 0.1761× kd, kd5 = 0.1761× kd, kd7 = 0.379× kd,
(ii) kd is a parameter whose value is given in Table 2 .
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G. Photosynthesis (Growth of PHY, G1), with uptakes of NAM (G3),
NIT(G4), and PIN(G6).
G1 = kg1(t)×XPHY , G3 = kg3(t)×XPHY , G4 = kg4(t)×XPHY ,
G6 = kg6(t)×XPHY ,
where
(i) kg1(t) = kgmax(t)× ef(L(t))× [ ef(N) + ef(P )]
is the growth rate of PHY;
kgmax(t) = kgmax 20 × 1.047Tenp(t)−20

is the effect of the temperature on the growth of PHY at temperature
Temp(t)◦C, where Temp(t) is the water temperature in at time t given by

Temp(t) = Tempmin + (Tempmax−Tempmin)
2

(
1− cos 360(t−76)

365 × π
180

)
,

with Tempmin = 13.7 and Tempmax = 25.9;

ef(L(t)) = L(t)
LS

exp
(

1− L(t)
LS

)
is the effect of light on the growth rate of

PHY, where L(t) is the incident solar radiation (expressed in cal/cm2 )
given by

L(t) = Lmin +
(Lmax − Lmin)

2

(
1− cos

(t− 15)× 360

365
× π

180

)
with Lmin = 120cal/cm2, and Lmax = 192cal/cm2;
ef(N) is the effect of nutrients due to the uptake of NAM and NIT,
ef(P ) is the effect of nutrients due to the uptake of PIN; their average
values are given in Table A2; kgmax 20 and LS are parameters, whose values
are given in Table A2,
(ii) kg3(t) = −0.1761× PNAM × kg1(t),
kg4(t) = −0.1761× (1− PNAM ) kg1(t), kg6(t) = −0.1761× kg1(t),
PNAM is the preference term for NAM whose approximated value is also
given in Table A2.

A. Adsorption of NAM (A3) and PIN (A6).

A3 = kA3 ×XSS , A6 = kA6 ×XSS ,

where
(i) kA3 = −SVSS

H × aNAM , kA6 = −SVSS

H × aPIN ,
(ii) SVSS , aNAM , H, aPIN are parameters whose values are given in Table 2.

Set. Settling of PHY (S1), NOR (S2), POR (S5), and SS (S7)

Set1 = kSet1 ×XPHY , Set2 = kSet2 ×XNOR, Set5 = kSet5 ×XPOR,

Set7 = kSet7 ×XSS ,

where
(i) kSet1 = −SVPHY

H , kSet2 = −SVNOR

H (1− CNOR),

kSet5 = −SVPOR

H (1− CPOR) , kSet7 = −SVSS

H ,
(ii) SVPHY , SVSS , SVNOR, SVPOR, CNOR, CPOR and H are parameters
whose values are given in Table 2.
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Am. Ammonification - Mineralization of NOR
Am2 = kAm2(t)×XNOR, Am3 = kAm3(t)×XNOR where
(i) kAm2(t) = −kNmin(t)× cNOR, kAm3(t) = kNmin(t)× cNOR,
(ii) kNmin(t) = kNmin × 1.047Temp(t)−20

is the saturation constant for Nitrogen mineralization at Temp(t)oC, where
the formula for Temp(t) is as given in the Photosynthesis process,
(iii) cNOR is a parameter whose value is given in Table 2.

N. Nitrification (Nit3 and Nit4).

Nit3 = kNit3(t)×XNAM , Nit4 = kNit4(t)×XNAM ,

where
(i) kNit3(t) = −kNit(t), kNit4(t) = kNit(t),
(ii) kNit(t) = kNit20 × 1.047Temp(t)−20 is the nitrification rate at
Temp(t)oC, where the formula for Temp(t) is as given in the
Photosynthesis process.
(iii) kNit20 is a parameter whose value is given in Table A2.

R. Endogenous respiration of PHY (R1) with the release of NOR (R2),
NAM (R3), POR (R5) and PIN (R6).

R1 = kr1(t)×XPHY , R2 = kr2(t)×XPHY , R3 = kr3(t)×XPHY ,

R5 = kr5(t)×XPHY , R6 = kr6(t)×XPHY ,

where

(i) kr1(t) = −kr(t),
kr2(t) = 0.1761× fNOR × kr(t),
kr3(t) = 0.1761× (1− fNOR)× kr(t)
kr5(t) = 0.1761× fPOR × kr(t),
kr6(t) = 0.1761× (1− fPOR)× kr(t),

(ii) kr(t) = kr20 × 1.047Temp(t)−20 is the respiration rate at Temp(t)oC,

where the formula for Temp(t) is as given in the Photosynthesis process,

(iii) kr20, fNOR are parameters whose values are given in Table 2.

P. Mineralization of POR (P5 and P6).

Min5 = kMin5(t)×XPOR,Min6 = kMin6(t)×XPOR

where
(i) kmin5(t) = −kPmin(t)× cPOR, kMin6(t) = kPmin(t)× cPOR,
(ii) kPmin = kPmin20 × 1.047Temp(t)−20

is the mineralization rate of NOR at Temp(t)oC, where the formula for
Temp(t) is as given in the Photosynthesis process,
(iii) cPOR is a parameter whose value is given in Table A2.
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TABLE A2. Parameters of the three-dimensional water pollution model and
their values
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