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Abstract. This paper investigates the mean-field stochastic linear quadratic

optimal control problem of Markov regime switching system (M-MF-SLQ, for
short). The representation of the cost functional for the M-MF-SLQ is derived

using the technique of operators. It is shown that the convexity of the cost

functional is necessary for the finiteness of the M-MF-SLQ problem, whereas
uniform convexity of the cost functional is sufficient for the open-loop solv-

ability of the problem. By considering a family of uniformly convex cost func-

tionals, a characterization of the finiteness of the problem is derived and a
minimizing sequence, whose convergence is equivalent to the open-loop solv-

ability of the problem, is constructed. We demonstrate with a few examples

that our results can be employed for tackling some financial problems such as
mean-variance portfolio selection problem.

Linear-quadratic (LQ, for short) optimal control problem plays important roles
in control theory. It is a classical and fundamental problem in the field of control
theory. In the past few decades, both deterministic and stochastic linear qua-
dratic control problems are widely studied. Stochastic linear quadratic (SLQ, for
short) optimal control problem was first considered by Kushner [12] using dynamic
programming method. Later, Wonham [23] studied the generalized version of the
matrix Riccati equation arose in the problems of stochastic control and filtering.
Using functional analysis techniques, Bismut [2] proved the existence of the Riccati
equation and derived the existence of the optimal control in a random feedback
form for stochastic LQ optimal control with random coefficients.

One extension to SLQ problems is to involve the mean-field term in the state sys-
tem and the cost functional, which is called mean-field stochastic linear-quadratic
optimal control problem (MF-SLQ, for short). The theory of the mean-field sto-
chastic differential equation (MF-SDE, for short) can be traced back to Kac [11],
who proposed the McKean-Vlasov stochastic differential equation motivated by a
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stochastic toy model for the Vlasov kinetic equation of plasma. Since then, research
on related topics and their applications has been extensively studied in the areas
of applied probability and stochastic controls, particularly in financial engineering.
For instance, Buckdahn-Djehiche-Li-Peng [4] formulated mean-field backward sto-
chastic differential equations, Andersson-Djehiche [1], and Buckdahn-Djehiche-Li
[3] established stochastic maximum principles for a class of mean-field stochastic
controls, Huang-Li-Yong [10] and Yong [28] studied MF-SLQ controls by decoupled
Riccati equations, Cui-Li-Li [5] applied mean-field formulations to study optimal
multi-period mean-variance portfolio selection, Elliott-Li-Ni [9] established neces-
sary and sufficient conditions for the solvability of discrete-time MF-SLQ problems.

Another extension to SLQ problems is to involve random jumps in the state
systems, such as Poisson jumps or the regime switching jumps. Wu and Wang
[24] was the first to consider the SLQ problems with Poisson jumps and obtain
the existence and uniqueness of the deterministic Riccati equation. Existence and
uniqueness of the stochastic Riccati equation with jumps and connections between
the stochastic Riccati equation with jumps and the associated Hamilton systems
of stochastic LQ optimal control problem were also presented. Yu [29] investigated
a kind of infinite horizon backward stochastic LQ optimal control problems and
differential game problems under the jump-diffusion model state system. Li et al.
[15] solved the indefinite SLQ problem with Poisson jumps.

The stochastic control problems involving regime switching jumps are of interest
and of practical importance in various fields such as science, engineering, finan-
cial management and economics. The regime-switching models and related topics
have been extensively studied in the areas of applied probability and stochastic
controls. More recently, there has been dramatically increasing interest in studying
this family of stochastic control problems as well as their financial applications.
For instance, Li-Zhou [13] and Li-Zhou-Ait Rami [15] introduced indefinite stochas-
tic LQ controls with Markovian jumps, Liu-Yin-Zhou [17] considered near optimal
controls of regime-switching LQ problems with indefinite control weight costs, Don-
nelly [6] analyzed the stochastic maximum principle for the optimal control of a
regime-switching diffusion model, Tao-Wu [22] investigated the stochastic maxi-
mum principle for optimal control problems of forward-backward regime-switching
systems. In the finance field, investors could face two market regimes, one of which
represents a bull market with price increase, while the other regime represents a
bear market with price drop. Therefore, the regime-switching type portfolio selec-
tion problem is of great interest and importance in financial investment. Typical
examples that are applicable include, but are not limited to, those presented in
Yiu-Liu-Siu-Ching [26], Donnelly-Heunis [7] and etc.

Recently, Sun [21] investigated the open-loop solvability for MF-SLQ problem. It
was shown in [21] that the open-loop solvability is equivalence to the existence of an
adapted solution to a forward-backward stochastic differential equation (FBSDE,
for short) with constraint. As a continuation work of [21], Li et al. [14] studied the
closed-loop solvability for MF-SLQ problems. Moreover, the equivalence between
the strongly regular solvability of the Riccati equation and the uniform convexity
of the cost functional is established.

In this paper, we extend the mean-field results of Andersson-Djehiche [1],
Buckdahn-Djehiche-Li [3] and Yong [28] to the cases involving random coefficients
with regime-switching. To the best of our knowledge, such a problem has never
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been studied. This can be regarded as an extension of Sun [21] to the case of MF-
SLQ problems with regime switching jumps. In particular, we develop the sufficient
and necessary condition for the open-loop solution. The solvability and uniqueness
of the problem is also discussed. In addition, we derive the minimizing sequence
that can converge to the solution of the problem. Meanwhile, our results can be
applied to real-world financial investment problems. We illustrate the results with 3
examples in which the mean-variance portfolio selection problem can be considered
as a special case of our problem.

The rest of the paper is organized as follows. In Section 2, we introduce some
useful notations, summarize some preliminary results and state the M-MF-SLQ
problem. In Section 3, we study Problem (M-MF-SLQ) in a Hilbert space and derive
necessary and sufficient conditions for the finiteness and open-loop solvability of the
problem by considering a family of uniformly convex cost functionals. In Section 4,
some examples are considered. We investigate the mean-variance portfolio selection
problem and derive the solution. In Section 5, we conclude the results of the paper
and suggest some future research extensions.

1. Preliminaries and model formulation. Let (Ω,F ,F,P) be a complete fil-
tered probability space on which a standard one-dimensional Brownian motion
W = {W (t); 0 ≤ t < ∞} and a continuous time, finite-state, Markov chain
α = {α(t); 0 ≤ t < ∞} are defined, where F = {Ft}t≥0 is the natural filtration
of W and α augmented by all the P-null sets in F . For the rest of our paper, we
will use the following notations:

N : the set of natural numbers;
R+,R+ : the sets [0,∞) and [0,+∞] respectively;
Rn : the n-dimensional Euclidean space;
M⊤ : the transpose of any vector or matrix M ;
tr [M ] : the trace of a square matrix M ;
R(M) : the range of the matrix M ;
⟨· , ·⟩ : the inner products in possibly different Hilbert spaces;
M† : the Moore-Penrose pseudo-inverse of the matrix M ;
Rn×m : the space of all n×m matrices endowed with the inner product

⟨M,N⟩ 7→ tr [M⊤N ] and the norm |M | =
√
tr [M⊤M ];

Sn : the set of all n× n symmetric matrices;
Sn+ : the set of all n× n positive semi-definite matrices;
Sn+ : the set of all n× n positive-definite matrices.

Next, let T > 0 be a fixed time horizon. For any t ∈ [0, T ) and Euclidean space H,
let

C([t, T ];H) =
{
φ : [t, T ] → H

∣∣ φ(·) is continuous},
Lp(t, T ;H) =

{
φ : [t, T ] → H

∣∣∣∣ ∫ T

t

|φ(s)|pds < ∞

}
, 1 ≤ p < ∞,

L∞(t, T ;H) =

{
φ : [t, T ] → H

∣∣∣∣ esssup
s∈[t,T ]

|φ(s)| < ∞

}
.
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We denote

L2
FT

(Ω;H) =
{
ξ : Ω → H

∣∣ ξ is FT -measurable, E|ξ|2 < ∞
}
,

L2
F(t, T ;H) =

{
φ : [t, T ]× Ω → H

∣∣ φ(·) is F-progressively measurable,

E
∫ T

t

|φ(s)|2ds < ∞

}
,

L2
F(Ω;C([t, T ];H)) =

{
φ : [t, T ]× Ω → H

∣∣ φ(·) is F-adapted, continuous,
E

[
sup

s∈[t,T ]

|φ(s)|2
]
< ∞

}
,

L2
F(Ω;L

1(t, T ;H)) =

{
φ : [t, T ]× Ω → H

∣∣ φ(·) is F-progressively measurable,

E

(∫ T

t

|φ(s)|ds

)2

< ∞

}
.

For an Sn-valued function F (·) on [t, T ], we use the notation F (·) ≫ 0 to indicate
that F (·) is uniformly positive definite on [t, T ], i.e., there exists a constant δ > 0
such that

F (s) ≥ δI, a.e. s ∈ [t, T ].

To formulate our system, we identify the state space of the chain α with a finite
set S := {1, 2 . . . , D}, where D ∈ N and suppose that the chain is homogeneous
and irreducible. To specify statistical or probabilistic properties of the chain α, we
define the generator λ(t) := [λij(t)]i,j=1,2,...,D of the chain under P. This is also
called the rate matrix, or the Q-matrix. Here, for each i, j = 1, 2, . . . , D, λij(t) is
the constant transition intensity of the chain from state i to state j at time t. Note

that λij(t) ≥ 0, for i ̸= j and
∑D

j=1 λij(t) = 0, so λii(t) ≤ 0. In what follows, for

each i, j = 1, 2, . . . , D with i ̸= j, we suppose that λij(t) > 0, so λii(t) < 0. For
each fixed j = 1, 2, · · · , D, let Nj(t) be the number of jumps into state j up to time
t and set

λj(t) :=

∫ t

0

λα(s−) jI{α(s−) ̸=j}ds =

D∑
i=1,i̸=j

∫ t

0

λij(s)I{α(s−)=i}ds.

Following Elliott et al. [8], we have that for each j = 1, 2, · · · , D,

Ñj(t) := Nj(t)− λj(t) (1)

is an (F,P)-martingale.
Consider the following controlled Markov regime switching linear stochastic dif-

ferential equation (SDE, for short) on a finite horizon [t, T ]:
dXu(s; t, x, i) =

{
A(s, α(s))Xu(s; t, x, i) +B(s, α(s))u(s) + b(s, α(s))

}
ds

+
{
C(s, α(s))Xu(s; t, x, i) +D(s, α(s))u(s) + σ(s, α(s))

}
dW (s),

Xu(t; t, x, i) = x, α(t) = i, s ∈ [t, T ],

(2)
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where A(·, ·), B(·, ·), C(·, ·), D(·, ·) are given deterministic matrix-valued functions
of proper dimensions, and b(·, ·), σ(·, ·) are vector-valued F-progressively measurable
processes. In the above, Xu(· ; t, x, i), valued in Rn, is the state process, and u(·),
valued in Rm, is the control process. Any u(·) is called an admissible control on
[t, T ], if it belongs to the following Hilbert space:

U [t, T ] =

{
u : [t, T ]× Ω → Rm

∣∣ u(·) is F-progressively measurable, E
∫ T

t
|u(s)|2ds < ∞

}
.

For any admissible control u(·), we consider the following general quadratic cost
functional:

J(t, x, i;u(·)) := E

{〈
G(α(T ))Xu(T ; t, x, i), Xu(T ; t, x, i)

〉
+ 2
〈
g(α(T )), Xu(T ; t, x, i)

〉
+
〈
Ḡ(α(T ))E[Xu(T ; t, x, i)],E[Xu(T ; t, x, i)]

〉
+ 2
〈
ḡ(α(T )),E[Xu(T ; t, x, i)]

〉
+

∫ T

t

[〈(
Q(s, α(s)) S(s, α(s))⊤

S(s, α(s)) R(s, α(s))

)(
Xu(s; t, x, i)

u(s)

)
,

(
Xu(s; t, x, i)

u(s)

)〉]
ds

+

∫ T

t

[〈(
Q̄(s, α(s)) S̄(s, α(s))⊤

S̄(s, α(s)) R̄(s, α(s))

)(
E[Xu(s; t, x, i)]

E[u(s)]

)
,

(
E[Xu(s; t, x, i)]

E[u(s)]

)〉]
ds

+2

∫ T

t

[〈(
q(s, α(s))
ρ(s, α(s))

)
,

(
Xu(s; t, x, i)

u(s)

)〉
+

〈(
q̄(s, α(s))
ρ̄(s, α(s))

)
,

(
E[Xu(s; t, x, i)]

E[u(s)]

)〉]
ds

}
,

(3)

where G(i), Ḡ(i) are symmetric matrices, Q(·, i), Q̄(·, i), S(·, i), S̄(·, i), R(·, i),
R̄(·, i), i = 1, · · · , D are deterministic matrix-valued functions of proper dimen-
sions with Q(·, i)⊤ = Q(·, i), Q̄(·, i)⊤ = Q̄(·, i), R(·, i)⊤ = R(·, i), R̄(·, i)⊤ = R̄(·, i);
g(·) is allowed to be an FT -measurable random variable and ḡ(·) is a determinis-
tic vector; q(·, ·), ρ(·, ·) are allowed to be vector-valued F-progressively measurable
processes and q̄(·, ·), ρ̄(·, ·) are vector-valued deterministic functions.

The following standard assumptions will be in force throughout this paper.

(H1) The coefficients of the state equation satisfy the following: for each i ∈ S,{
A(·, i) ∈ L1(0, T ;Rn×n), B(·, i) ∈ L2(0, T ;Rn×m), b(·, i) ∈ L2

F(Ω;L
1(0, T ;Rn)),

C(·, i) ∈ L2(0, T ;Rn×n), D(·, i) ∈ L∞(0, T ;Rn×m), σ(·, i) ∈ L2
F(0, T ;Rn).

(H2) The weighting coefficients in the cost functional satisfy the following: for
each i ∈ S,

Q(·, i), Q̄(·, i) ∈ L1(0, T ;Sn), S(·, i), S̄(·, i) ∈ L2(0, T ;Rm×n),

g(i) ∈ L2
FT

(Ω;Rn), ḡ(i) ∈ Rn, R(·, i), R̄(·, i) ∈ L∞(0, T ;Sm),

q(·, i) ∈ L2
F(Ω;L

1(0, T ;Rn)), q̄(·, i) ∈ L1(0, T ;Rn),

ρ(·, i) ∈ L2
F(0, T ;Rm), ρ̄(·, i) ∈ L2(0, T ;Rm), G(i), Ḡ(i) ∈ Sn.

We can state the mean-field stochastic LQ optimal control problem for the
Markov regime switching system as follows.

Problem. (M-MF-SLQ) For any given initial pair (t, x, i) ∈ [0, T )×Rn×S, find
a u∗(·) ∈ U [t, T ], such that

J(t, x, i;u∗(·)) = inf
u(·)∈U [t,T ]

J(t, x, i;u(·)) := V (t, x, i). (4)
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Any u∗(·) ∈ U [t, T ] satisfying (4) is called an optimal control of Problem (M-MF-
SLQ) for the initial pair (t, x, i), and the corresponding path X∗(·) ≡ Xu∗

(· ; t, x, i)
is called an optimal state process; the pair (X∗(·), u∗(·)) is called an optimal pair.
The function V (· , · , ·) is called the value function of Problem (M-MF-SLQ). When
b(·, ·), σ(·, ·), g(·), ḡ(·), q(·, ·), q̄(·, ·), ρ(·, ·), ρ̄(·, ·) = 0, we denote the corresponding

Problem (M-MF-SLQ) by Problem (M-MF-SLQ)
0
. The corresponding cost func-

tional and value function are denoted by J0(t, x, i;u(·)) and V 0(t, x, i), respectively.
We now introduce the following definition.

Definition 1.1. (i) Problem (M-MF-SLQ) is said to be finite at initial pair (t, x, i) ∈
[0, T ]× Rn × S if

V (t, x, i) > −∞. (5)

Problem (M-MF-SLQ) is said to be finite at t ∈ [0, T ] if (5) holds for all (x, i) ∈
Rn × S, and Problem (M-MF-SLQ) is said to be finite if (5) holds for all (t, x, i) ∈
[0, T ]× Rn × S.

(ii) An element u∗(·) ∈ U [t, T ] is called an open-loop optimal control of Problem
(M-MF-SLQ) for the initial pair (t, x, i) ∈ [0, T ]× Rn × S if

J(t, x, i;u∗(·)) ≤ J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ]. (6)

If an open-loop optimal control (uniquely) exists for (t, x, i) ∈ [0, T ] × Rn × S,
Problem (M-MF-SLQ) is said to be (uniquely) open-loop solvable at (t, x, i) ∈
[0, T ]× Rn × S. Problem (M-MF-SLQ) is said to be (uniquely) open-loop solvable
at t ∈ [0, T ) if for the given t, (6) holds for all (x, i) ∈ Rn×S. Problem (M-MF-SLQ)
is said to be (uniquely) open-loop solvable (on [0, T ) × Rn × S) if it is (uniquely)
open-loop solvable at all (t, x, i) ∈ [0, T )× Rn × S.

To simplify notation of our further analysis, we introduce the following mean-
field forward-backward stochastic differential equation (MF-FBSDE for short) on a
finite horizon [t, T ]:

dXu(s; t, x, i) =
{
A(s, α(s))Xu(s; t, x, i) +B(s, α(s))u(s) + b(s, α(s))

}
ds

+
{
C(s, α(s))Xu(s; t, x, i) +D(s, α(s))u(s) + σ(s, α(s))

}
dW (s),

dY u(s; t, x, i) = −
{
A(s, α(s))⊤Y u(s; t, x, i) + C(s, α(s))⊤Zu(s; t, x, i)

+ E[Q̄(s, α(s))]E[Xu(s; t, x, i)] + S(s, α(s))⊤u(s) + E[S̄(s, α(s))]⊤E[u(s)]

+ q(s, α(s)) + E[q̄(s, α(s)) +Q(s, α(s))Xu(s; t, x, i)]
}
ds

+ Zu(s; t, x, i)dW (s) +
∑D

k=1
Γu
k(s; t, x, i)dÑk(s),

Xu(t; t, x, i) = x, α(t) = i,

Y u(T ; t, x, i) = G(α(T ))Xu(T ; t, x, i) + E[Ḡ(α(T ))]E[Xu(T ; t, x, i)]

+ g(α(T )) + E[ḡ(α(T ))].
(7)

The solution of the above MF-FBSDE is denoted by (Xu(· ; t, x, i), Y u(· ; t, x, i),
Zu(· ; t, x, i), Γu(· ; t, x, i)), where Γu(· ; t, x, i) := (Γu

1 (· ; t, x, i), · · · ,Γu
D(· ; t, x, i)).

The following result is concerned with the differentiability of the map u(·) 7→
J(t, x, i;u(·)).
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Proposition 1. Let (H1)–(H2) hold and (t, i) ∈ [0, T )×S be given. For any x ∈ Rn,
λ ∈ R and u(·), v(·) ∈ U [t, T ], the following holds:

J(t, x, i;u(·) + λv(·))− J(t, x, i;u(·))

= λ2J0(t, 0, i; v(·)) + 2λE
∫ T

t

〈
M̄(t, i)(x, u)(s), v(s)

〉
ds,

(8)

where

M̄(t, i)(x, u)(s) := B(s, α(s))⊤Y u(s; t, x, i) +D(s, α(s))⊤Zu(s; t, x, i) s ∈ [t, T ]

+S(s, α(s))Xu(s; t, x, i) + E[S̄(s, α(s))]E[Xu(s; t, x, i)]

+R(s, α(s))u(s) + E[R̄(s, α(s))]E[u(s)] + ρ(s, α(s)) + E[ρ̄(s, α(s))].
(9)

Consequently, the map u(·) 7→ J(t, x, i;u(·)) is Fréchet differentiable with the Fréchet
derivative given by

DJ(t, x, i;u(·))(s) = 2M̄(t, i)(x, u)(s), s ∈ [t, T ], (10)

and (8) can also be written as

J(t, x, i;u(·) + λv(·))− J(t, x, i;u(·))

= λ2J0(t, 0, i; v(·)) + λE
∫ T

t

〈
DJ(t, x, i;u(·))(s), v(s)

〉
ds.

(11)

Proof. By the linearity of the state equation, Xu+λv(·; t, x, i) = Xu(·; t, x, i) +
λXv

0 (·; t, 0, i). Hence,

J(t, x, i;u(·) + λv(·))− J(t, x, i;u(·))

= λE

{〈
G(α(T ))[2Xu(T ; t, x, i) + λXv

0 (T ; t, 0, i)], Xv
0 (T ; t, 0, i)

〉
+
〈
Ḡ(α(T ))

(
2E[Xu(T ; t, x, i)] + λE[Xv

0 (T ; t, 0, i)]
)
,E[Xv

0 (T ; t, 0, i)]
〉

+2
〈
g(α(T )), Xv

0 (T ; t, 0, i)
〉
+ 2

〈
ḡ(α(T )),E[Xv

0 (T ; t, 0, i)]
〉

+

∫ T

t

[〈(
Q S⊤

S R

)(
2Xu(s; t, x, i) + λXv

0 (s; t, 0, i)

2u(s) + λv(s)

)
,

(
Xv

0 (s; t, 0, i)

v(s)

)〉]
ds

+

∫ T

t

[〈(
Q̄ S̄⊤

S̄ R̄

)(
2E[Xu(s; t, x, i)] + λE[Xv

0 (s; t, 0, i)]

2E[u(s)] + λE[v(s)]

)
,

(
E[Xv

0 (s; t, 0, i)]

E[v(s)]

)〉]
ds

+2

∫ T

t

[〈(
q(s, α(s))
ρ(s, α(s))

)
,

(
Xv

0 (s; t, 0, i)
v(s)

)〉
+

〈(
q̄(s, α(s))
ρ̄(s, α(s))

)
,

(
E[Xv

0 (s; t, 0, i)]
E[v(s)]

)〉]
ds

}
,

= 2λE

{〈
G(α(T ))Xu(T ; t, x, i) + E[Ḡ(α(T ))]E[Xu(T ; t, x, i)]

+g(α(T )) + E[ḡ(α(T ))], Xv
0 (T ; t, 0, i)

〉
+

∫ T

t

[〈
Q(s, α(s))Xu(s; t, x, i) + E[Q̄(s, α(s))]E[Xu(s; t, x, i)] + S(s, α(s))⊤u(s)

+E[S̄(s, α(s))]⊤E[u(s)] + q(s, α(s)) + E[q̄(s, α(s))], Xv
0 (s; t, 0, i)

〉
+
〈
S(s, α(s))Xu(s; t, x, i) + E[S̄(s, α(s))]E[Xu(s; t, x, i)] +R(s, α(s))⊤u(s)

+E[R̄(s, α(s))]⊤E[u(s)] + ρ(s, α(s)) + E[ρ̄(s, α(s))], v(s)
〉]

ds

}
+ λ2J0(t, 0, i; v(·)).
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Now applying Itô’s formula to s 7→ ⟨Y u(s; t, x, i), Xv
0 (s; t, 0, i) ⟩, we have

E
〈
G(α(T ))Xu(T ; t, x, i) + E[Ḡ(α(T ))]E[Xu(T ; t, x, i)] + g(α(T )) + E[ḡ(α(T ))], Xv

0 (T ; t, 0, i)
〉

= E
∫ T

t

{
−

〈
A(s, α(s))⊤Y u(s; t, x, i) + C(s, α(s))⊤Zu(s; t, x, i) +Q(s, α(s))Xu(s; t, x, i)

+q(s, α(s)) + E[Q̄(s, α(s))]E[Xu(s; t, x, i)] + S(s, α(s))⊤u(s) + E[S̄(s, α(s))]⊤E[u(s)]

+E[q̄(s, α(s))], Xv
0 (s; t, 0, i)

〉
+

〈
A(s, α(s))Xv

0 (s; t, 0, i) +B(s, α(s))v(s), Y u(s; t, x, i)
〉

+
〈
C(s, α(s))Xv

0 (s; t, 0, i) +D(s, α(s))v(s), Zu(s; t, x, i)
〉}

ds,

= E
∫ T

t

{〈
B(s, α(s))⊤Y u(s; t, x, i) +D(s, α(s))⊤Zu(s; t, x, i), v(s)

〉
−
〈
Q(s, α(s))Xu(s; t, x, i) + q(s, α(s)) + E[Q̄(s, α(s))]E[Xu(s; t, x, i)] + S(s, α(s))⊤u(s)

+E[S̄(s, α(s))]⊤E[u(s)] + E[q̄(s, α(s))], Xv
0 (s; t, 0, i)

〉}
ds.

Combining the above equalities, we obtain (8).

From the above, we have the following result, which gives a characterization for
the optimal controls of Problem (M-MF-SLQ).

Theorem 1.2. Let (H1)–(H2) hold and (t, x, i) ∈ [0, T )×Rn×S be given. Let u(·) ∈
U [t, T ] and (Xu(· ; t, x, i), Y u(· ; t, x, i), Zu(· ; t, x, i), Γu(· ; t, x, i)) be the adapted
solution to (7). Then u(·) is an optimal control of Problem (M-MF-SLQ) for the
initial pair (t, x, i) if and only if

J0(t, 0, i;u(·)) ≥ 0, ∀u(·) ∈ U [t, T ], (12)

and the following stationary condition holds:

DJ(t, x, i;u(·))(s) = 2
{
B(s, α(s))⊤Y u(s; t, x, i) +D(s, α(s))⊤Zu(s; t, x, i)

+S(s, α(s))Xu(s; t, x, i) + E[S̄(s, α(s))]E[Xu(s; t, x, i)]

+R(s, α(s))u(s) + E[R̄(s, α(s))]E[u(s)]

+ρ(s, α(s)) + E[ρ̄(s, α(s))]
}
= 0, 1a.e. 2a.s.

(13)

Proof. By (8), it is clear that u(·) is an optimal control of Problem (M-MF-SLQ)
for the initial pair (t, x, i) if and only if

λ2J0(t, 0, i; v(·)) + λE
∫ T

t

〈
DJ(t, x, i;u(·))(s), v(s)

〉
ds

= J(t, x, i;u(·) + λv(·))− J(t, x, i;u(·)) ≥ 0, ∀λ ∈ R,∀v(·) ∈ U [t, T ],

which is equivalent to (12) and the following:

E
∫ T

t

〈
DJ(t, x, i;u(·))(s), v(s)

〉
ds = 0, ∀v(·) ∈ U [t, T ].

Note that the above equality holds for all v(·) ∈ U [t, T ] if and only if DJ(t, x, i;u(·))
= 0. The result therefore follows.

1a.e. means that (13) holds almost everywhere s ∈ [t, T ].
2a.s. means that (13) holds almost surely ω ∈ Ω.
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Remark 1. Note that if u(·) happens to be an open-loop optimal control of Prob-
lem (M-MF-SLQ), then the stationary condition (13) holds, which brings a coupling
into the FBSDE (7). We call (7), together with the stationary condition (13), the
optimality system for the open-loop optimal control of Problem (M-MF-SLQ).

2. Finiteness and open-loop solvability of problem (M-MF-SLQ). We be-
gin with a representation of the cost functional. By the argument in [27], we can

define bounded linear operators Lt : U [t, T ] → L2
F(t, T ;Rn) and L̂t : U [t, T ] →

L2
FT

(Ω;Rn) by u(·) 7→ Xu
0 (·; t, 0, i) and u(·) 7→ Xu

0 (T ; t, 0, i), respectively, via the
SDE corresponding to the Xu

0 (·; t, 0, i). Then

J0(t, 0, i;u(·)) = E

{〈
G(α(T ))Xu

0 (T ; t, 0, i), Xu
0 (T ; t, 0, i)

〉
+
〈
Ḡ(α(T ))E[Xu

0 (T ; t, 0, i)],E[Xu
0 (T ; t, 0, i)]

〉
+

∫ T

t

[〈(
Q S⊤

S R

)(
Xu

0 (s; t, 0, i)

u(s)

)
,

(
Xu

0 (s; t, 0, i)

u(s)

)〉]
ds

+

∫ T

t

[〈(
Q̄ S̄⊤

S̄ R̄

)(
E[Xu

0 (s; t, 0, i)]

E[u(s)]

)
,

(
E[Xu

0 (s; t, 0, i)]

E[u(s)]

)〉]
ds

}
= ⟨G(α(T ))L̂tu, L̂tu ⟩+ ⟨ Ḡ(α(T ))E[L̂tu],E[L̂tu] ⟩+ ⟨Q(·, α(·))Ltu(·),Ltu(·) ⟩

+2 ⟨S(·, α(·))Ltu(·), u(·) ⟩+ ⟨R(·, α(·))u(·), u(·) ⟩+ ⟨ Q̄(·, α(·))E[Ltu(·)],E[Ltu(·)] ⟩
+2 ⟨ S̄(·, α(·))E[Ltu(·)],E[u(·)] ⟩+ ⟨ R̄(·, α(·))E[u(·)],E[u(·)] ⟩

=
〈[

L̂∗
t

(
G(α(T )) + E∗Ḡ(α(T ))E

)
L̂t + L∗

t

(
Q(·, α(·)) + E∗Q̄(·, α(·))E

)
Lt

+
(
R(·, α(·)) + E∗R̄(·, α(·))E

)
+

(
S(·, α(·)) + E∗S̄(·, α(·))E

)
Lt

+L∗
t

(
S(·, α(·))⊤ + E∗S̄(·, α(·))⊤E

)]
u(·), u(·)

〉
.

Denote

Mt := L̂∗
t

(
G(α(T )) + E∗Ḡ(α(T ))E

)
L̂t + L∗

t

(
Q(·, α(·)) + E∗Q̄(·, α(·))E

)
Lt

+
(
R(·, α(·)) + E∗R̄(·, α(·))E

)
+
(
S(·, α(·)) + E∗S̄(·, α(·))E

)
Lt

+L∗
t

(
S(·, α(·))⊤ + E∗S̄(·, α(·))⊤E

)
,

(14)
which is a bounded self-adjoint linear operator on U [t, T ]. Then by Proposition 1,
the cost functional J(t, x, i;u(·)) can be written as

J(t, x, i;u(·)) = ⟨Mtu(·), u(·) ⟩+ ⟨DJ(t, x, i; 0), u(·) ⟩+J(t, x, i; 0),

∀(t, x, i) ∈ [0, T ]× Rn × S, ∀u(·) ∈ U [t, T ].
(15)

Remark 2. It is important to point out that the general inner product nota-
tion ⟨ ·, · ⟩ is also used to denote the inner product under different Hilbert spaces.
However, it will not cause any trouble to understand the main idea of this paper.
L∗
t is the adjoint operator of Lt and E∗ is the adjoint operator of E such that

⟨ Lt[a], b ⟩ = ⟨ a,L∗
t [b] ⟩ and ⟨E[a], b ⟩ = ⟨ a,E∗[b] ⟩, ∀a, b ∈ H, where H represents a

general Hilbert space.

Now let us introduce the following conditions:

(H3) The following holds:

J0(t, 0, i;u(·)) ≥ 0, ∀u(·) ∈ U [t, T ].
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(H4) There exists a constant δ > 0 such that

J0(t, 0, i;u(·)) ≥ δE
∫ T

t

|u(s)|2ds, ∀u(·) ∈ U [t, T ].

From (15), we see that the map u(·) 7→ J(t, x, i;u(·)) is convex if and only if

Mt ≥ 0,

which is equivalent to (H3), when we let u = 0, v = u and λ = 1 in (11). And
u(·) 7→ J(t, x, i;u(·)) is uniformly convex if and only if

Mt ≥ δI, for some δ > 0,

which is equivalent to (H4), when we let u = 0, v = u and λ = 1 in (11). The
following result tells us that (H3) is necessary for the finiteness (and open-loop
solvability) of Problem (M-MF-SLQ) at t, and (H4) is sufficient for the open-loop
solvability of Problem (M-MF-SLQ) at t.

Proposition 2. Let (H1)–(H2) hold and t ∈ [0, T ) be given. We have the following:

(i) If Problem (M-MF-SLQ) is finite at t, then (H3) must hold.
(ii) Suppose (H4) holds. Then Problem (M-MF-SLQ) is uniquely open-loop solv-

able at t, and the unique optimal control for the initial pair (t, x, i) is given
by

u∗(·) = −1

2
M−1

t DJ(t, x, i; 0)(·). (16)

Moreover,

V (t, x, i) = J(t, x, i; 0)− 1

4

∣∣∣M− 1
2

t DJ(t, x, i; 0)
∣∣∣2. (17)

Proof.

(i) We prove the result by contradiction. Suppose that J0(t, 0, i;u(·)) < 0 for
some u(·) ∈ U [t, T ]. By Proposition 1, we have

J(t, x, i;λu(·))
= J(t, x, i; 0) + λ2J0(t, 0, i;u(·)) + λE

∫ T

t
⟨DJ(t, x, i; 0)(s), u(s) ⟩ ds,

∀λ ∈ R.

Letting λ → ∞, we obtain that

V (t, x, i) ≤ lim
λ→∞

J(t, x, i;λu(·)) = −∞,

which is a contradiction.
(ii) Suppose (H4) holds. Then the operator Mt is invertible, and

J(t, x, i;u(·)) =
∣∣∣M 1

2
t u+

1

2
M− 1

2
t DJ(t, x, i; 0)

∣∣∣2+J(t, x, i; 0)− 1

4

∣∣∣M− 1
2

t DJ(t, x, i; 0)
∣∣∣2,

≥ J(t, x, i; 0)− 1

4

∣∣∣M− 1
2

t DJ(t, x, i; 0)
∣∣∣2, ∀x ∈ Rn,∀u(·) ∈ U [t, T ].

Note that the equality in the above holds if and only if

u = −1

2
M−1

t DJ(t, x, i; 0).

The result therefore follows.
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Due to the necessity of (H3) for the finiteness of Problem (M-MF-SLQ), we will
assume (H3) holds for the rest of this paper. Now for any ε > 0, we consider state
equation (2) and the following cost functional:

Jε(t, x, i;u(·)) := J(t, x, i;u(·)) + εE
∫ T

t

|u(s)|2ds

= ⟨(Mt + εI)u, u ⟩+ ⟨DJ(t, x, i; 0), u ⟩+J(t, x, i; 0).

(18)

Denote the corresponding optimal control problem and value function by Problem
(M-MF-SLQ)ε and Vε(·, ·, ·), respectively. By Proposition 2, part (ii), for any x ∈
Rn, Problem (M-MF-SLQ)ε admits a unique optimal control

u∗
ε(·) = −1

2
(Mt + εI)−1DJ(t, x, i; 0)(·), (19)

and the value function is given by

Vε(t, x, i) = J(t, x, i; 0)− 1

4

∣∣∣(Mt + εI)−
1
2DJ(t, x, i; 0)

∣∣∣2. (20)

Before we give the main result of this section, we first present the following lemma.

Lemma 2.1. Let H be a Hilbert space with norm | · | and θ, θn ∈ H, n = 1, 2, · · · .
(i) If θn → θ weakly, then |θ| ≤ lim

n→∞
|θn|.

(ii) θn → θ strongly if and only if

|θn| → |θ| and θn → θ weakly.

Now we are ready to state the main result of this section.

Theorem 2.2. Let (H1)–(H3) hold and the initial pair (t, x, i) ∈ [0, T )×Rn ×S is
given. We have the following:

(i) limε→∞ Vε(t, x, i) = V (t, x, i). In particular, Problem (M-MF-SLQ) is finite
at (t, x, i) if and only if {Vε(t, x, i)}ε>0 is bounded from below.

(ii) The sequence {u∗
ε(·)}ε>0 defined by (19) is a minimizing sequence of u(·) 7→

J(t, x, i;u(·)), i.e.
lim
ε→∞

J(t, s, i;u∗
ε(·)) = inf

u(·)∈U [t,T ]
J(t, x, i;u(·)) = V (t, x, i). (21)

(iii) The following statements are equivalent:
(a) Problem (M-MF-SLQ) is open-loop solvable at (t, x, i);
(b) The sequence {u∗

ε(·)}ε>0 is bounded in U [t, T ];
(c) The sequence {u∗

ε(·)}ε>0 admits a weakly convergent subsequence;
(d) The sequence {u∗

ε(·)}ε>0 admits a strongly convergent subsequence;
In this case, the weak (strong) limit of any weakly (strongly) convergent subse-
quence of {u∗

ε(·)}ε>0 is an optimal control of Problem (M-MF-SLQ) at (t, x, i).

Proof.

(i) For any ε2 > ε1 > 0, we have

Jε2(t, x, i;u(·)) ≥ Jε1(t, x, i;u(·)) ≥ J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ],
which implies that

Vε2(t, x, i) ≥ Vε1(t, x, i) ≥ V (t, x, i), ∀ε2 > ε1 > 0.

So, the limit limε→0 Vε(t, x, i) exists and

V̄ (t, x, i) ≡ lim
ε→0

Vε(t, x, i) ≥ V (t, x, i). (22)
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On the other hand, for any K, δ > 0, we can find a uδ(·) ∈ U [t, T ], such that

Vε(t, x, i) ≤ J(t, x, i;uδ(·)) + εE
∫ T

t
|uδ(s)|2ds

≤ max{V (t, x, i),−K}+ δ + εE
∫ T

t
|uδ(s)|2ds.

Letting ε → 0, we obtain

V̄ (t, x, i) ≤ max{V (t, x, i),−K}+ δ. ∀K, δ > 0,

from which we see

V̄ (t, x, i) ≤ V (t, x, i). (23)

Combining (22)–(23), we get the desired result.
(ii) If V (t, x, i) > −∞, then by (i), we have

εE
∫ T

t
|u∗

ε(s)|2ds
= Jε(t, x, i;u

∗
ε(·))− J(t, x, i;u∗

ε(·)) = Vε(t, x, i)− J(t, x, i;u∗
ε(·))

≤ Vε(t, x, i)− V (t, x, i) → 0 as ε → 0.

Therefore,

lim
ε→0

J(t, x, i;u∗
ε(·)) = lim

ε→0

[
Vε(t, x, i)− εE

∫ T

t

|u∗
ε(s)|2ds

]
= V (t, x, i).

If V (t, x, i) = −∞, then by (i), we have

J(t, x, i;u∗
ε(·)) ≤ Jε(t, x, i;u

∗
ε(·)) = Vε(t, x, i) → −∞ as ε → 0,

and (21) still holds.
(iii) (b)⇒ (c) and (d)⇒ (c) are obvious. We next prove (c)⇒ (a). Let {u∗

εk
(·)}k≥1

be a weakly convergent subsequence of {u∗
ε(·)}ε>0 with weak limit u∗(·). Then

{u∗
εk
(·)}k≥1 is bounded in U [t, T ]. For any u(·) ∈ U [t, T ], we have

J(t, x, i;u∗
εk (s)) + εkE

∫ T

t

|u∗
εk (s)|

2ds = Vεk (t, x, i) ≤ J(t, x, i;u(·)) + εkE
∫ T

t

|u(s)|2ds.

(24)

Note that u(·) 7→ J(t, x, i;u(·)) is sequentially weakly lower semi-continuous.
Letting k → ∞ in (24), we get

J(t, x, i;u∗(·)) ≤ lim
k→∞

J(t, x, i;u∗
εk
(s)) ≤ J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ].

Therefore, u∗(·) is an optimal control of Problem (M-MF-SLQ) at (t, x, i).
Now it remains to show (a) ⇒ (b) and (a) ⇒ (d). Suppose v∗(·) is an optimal
control of Problem (M-MF-SLQ) at (t, x, i). Then for any ε > 0, we have

Vε(t, x, i) = Jε(t, x, i;u
∗
ε(·)) ≥ V (t, x, i) + εE

∫ T

t

|u∗
ε(s)|2ds,

Vε(t, x, i) ≤ Jε(t, x, i; v
∗(·)) = V (t, x, i) + εE

∫ T

t

|v∗(s)|2ds,

from which we see that

E
∫ T

t

|u∗
ε(s)|2ds ≤

Vε(t, x, i)− V (t, x, i)

ε
≤ E

∫ T

t

|v∗(s)|2ds, ∀ε > 0. (25)

Therefore, {u∗
ε(·)}ε>0 is bounded in Hilbert space U [t, T ] and hence admits

a weakly convergent subsequence {u∗
εk
(·)}k≥1. Let u∗(·) be the weak limit of

{u∗
εk
(·)}k≥1. By the proof of (c) ⇒ (a), we see that u∗(·) is also an optimal
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control of Problem (M-MF-SLQ) at (t, x, i). Replacing v∗(·) with u∗(·) in (25),
we have

E
∫ T

t

|u∗
ε(s)|2ds ≤ E

∫ T

t

|u∗(s)|2ds, ∀ε > 0. (26)

Also, by Lemma 2.1, part (i),

E
∫ T

t

|u∗(s)|2ds ≤ lim
k→∞

E
∫ T

t

|u∗
εk
(s)|2ds. (27)

Combining (26)–(27), we have

E
∫ T

t

|u∗(s)|2ds = lim
k→∞

E
∫ T

t

|u∗
εk
(s)|2ds.

Then it follows from Lemma 2.1, part (ii), that {u∗
εk
(·)}k≥1 converges to u∗(·)

strongly.

3. Some examples. In this section, we give some examples to demonstrate our
results more clearly. As a start, our model can degenerate to the usual mean-field
problem and regime switching problem. Meanwhile, the classical mean-variance
portfolio selection problem can be regarded as an application of our proposed prob-
lem.

3.1. Example 1. In this example, we take off the regime-switching in the system
(2) and cost functional (3). Then our state equation is

dXu(s; t, x) =
{
A(s)Xu(s; t, x) +B(s)u(s) + b(s)

}
ds

+
{
C(s)Xu(s; t, x) +D(s)u(s) + σ(s)

}
dW (s),

Xu(t; t, x) = x, s ∈ [t, T ],

(28)

and cost functional is

J(t, x;u(·)) :=E

{〈
GXu(T ; t, x), Xu(T ; t, x)

〉
+ 2
〈
g,Xu(T ; t, x)

〉
+
〈
ḠE[Xu(T ; t, x)],E[Xu(T ; t, x)]

〉
+ 2
〈
ḡ,E[Xu(T ; t, x)]

〉
+

∫ T

t

[〈(
Q(s) S(s)⊤

S(s) R(s)

)(
Xu(s; t, x)
u(s)

)
,

(
Xu(s; t, x)
u(s)

)〉]
ds

+

∫ T

t

[〈(
Q̄(s) S̄(s)⊤

S̄(s) R̄(s)

)(
E[Xu(s; t, x)]
E[u(s)]

)
,

(
E[Xu(s; t, x)]
E[u(s)]

)〉]
ds

+ 2

∫ T

t

[〈(
q(s)
ρ(s)

)
,

(
Xu(s; t, x)
u(s)

)〉

+

〈(
q̄(s)
ρ̄(s)

)
,

(
E[Xu(s; t, x)]
E[u(s)]

)〉]
ds

}
.

(29)

This problem has been well studied by Sun [21]. By the results of this paper, we
have Proposition 2 which is consistent with Proposition 3.1 in [21]. And for such
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mean-field SLQ problem (MF-SLQ, for short), we are able to introduce the following
Riccati equations

Ṗ + PA+A⊤P + C⊤PC +Q− (PB + C⊤PD + S⊤)

× (R+D⊤PD)†(B⊤P +D⊤PC + S) = 0, a.e. s ∈ [t, T ],

P (T ) = G,

(30)

and
Π̇ + ΠA+A⊤Π+ C⊤ΠC +Q+ Q̄+ C⊤PC − (ΠB + C⊤PD + S⊤ + S̄⊤)

× (R+ R̄+D⊤PD)†(B⊤Π+D⊤PC + S + S̄) = 0, a.e. s ∈ [t, T ],

Π(T ) = G+ Ḡ.

(31)
Then we can deduce the feedback form of the open-loop solution of such mean-
field SLQ problems like [21]. By our results, this problem is open-loop solvability
and has feedback form when its cost functional is uniformly convex and Riccati
equations have a strongly regular solution. The open-loop solution of such Problem
(MF-SLQ)0 has a feedback form:

u∗ = Θ(X∗ − E[X∗]) + Θ̄E[X∗],

where Θ = −(R+D⊤PD)−1(B⊤P +D⊤PC + S),

Θ̄ = −(R+ R̄+D⊤PD)−1(B⊤Π+D⊤PC + S + S̄).

For instance, we consider the following Problem (MF-SLQ)0 with one-dimensional
state equation {

dX(s) = X(s)ds+ u(s)dW (s), s ∈ [0, T ],

X(0) = 1,

and cost functional

J(0, 1;u(·)) =E

{
2|X(T )|2 − 2|E[X(T )]|2

+

∫ T

0

(
− 4|X(s)|2 − |u(s)|2 + 4|E[X(s)]|2 + |E[u(s)]|2

)
ds

}
.

In this example,{
A = 1, B = 0, C = 0, D = 1, G = 2, Ḡ = −2,

Q = −4, Q̄ = 4, S = S̄ = 0, R = −1, R̄ = 1.

Obviously, the related Riccati equations (30), (31) are{
Ṗ + 2P − 4 = 0, s ∈ [0, T ],

P (T ) = 2,
and

{
Π̇ + 2Π = 0, s ∈ [0, T ],

Π(T ) = 0.

It is easy to see that P ≡ 2 and Π ≡ 0 is the unique solution of Riccati equation,
respectively. So we get u∗ = 0, which implies V 0(0, 1) = 0. Clearly, it is really
optimal control because V 0(0, 1) ≥ 0 and u∗ = 0 obtains the minimum.
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3.2. Example 2. In this example, we take off the mean-field terms in the system
(2) and cost functional (3). Then our state equation is
dXu(s; t, x, i) =

{
A(s, α(s))Xu(s; t, x, i) +B(s, α(s))u(s) + b(s, α(s))

}
ds

+
{
C(s, α(s))Xu(s; t, x, i) +D(s, α(s))u(s) + σ(s, α(s))

}
dW (s),

Xu(t; t, x, i) = x, α(t) = i, s ∈ [t, T ],

(32)
and cost functional is

J(t, x, i;u(·)) :=E

{〈
G(α(T ))Xu(T ; t, x, i), Xu(T ; t, x, i)

〉
+ 2
〈
g(α(T )), Xu(T ; t, x, i)

〉

+

∫ T

t

[〈(
Q S⊤

S R

)(
Xu(s; t, x, i)
u(s)

)
,

(
Xu(s; t, x, i)
u(s)

)〉]
ds

+ 2

∫ T

t

〈(
q(s, α(s))
ρ(s, α(s))

)
,

(
Xu(s; t, x, i)
u(s)

)〉
ds

}
.

(33)

This problem has been studied by Zhang [31]. By the results of this paper, we have
Theorem 1.2 which is consistent with Theorem 4.1 in [31]. And for such Markov
SLQ problem (M-SLQ, for short), we are also able to introduce the following Riccati
equation

Ṗ (s, α(s)) + P (s, α(s))A(s, α(s)) +A(s, α(s))⊤P (s, α(s)) +Q(s, α(s))

+ C(s, α(s))⊤P (s, α(s))C(s, α(s))− Ŝ(s, α(s))⊤R̂(s, α(s))†Ŝ(s, α(s))

+

D∑
k=1

λα(s−)k(s)P (s, k) = 0, a.e. s ∈ [t, T ],

P (T, α(T )) = G(α(T )),

(34)

whereŜ(s, α(s)) := B(s, α(s))⊤P (s, α(s)) +D(s, α(s))⊤P (s, α(s))C(s, α(s)) + S(s, α(s)),

R̂(s, α(s)) := R(s, α(s)) +D(s, α(s))⊤P (s, α(s))D(s, α(s)).

Then we can deduce the feedback form of the open-loop solution of such Markov
SLQ problems like [31]. By our results, this problem is open-loop solvability and has
feedback form when its cost functional is uniformly convex and Riccati equations
have a strongly regular solution. The open-loop solution of such Problem (M-SLQ)0

has a feedback form:

u∗(s) = Θ(s, α(s))X∗(s),

where

Θ(s, α(s)) = −R̂(s, α(s))−1Ŝ(s, α(s)).

For an instance, consider the following Problem (M-SLQ)0 with one-dimensional
state equation{

dX(s) = A(α(s))X(s)ds+ u(s)dW (s), s ∈ [0, T ],

X(0) = 1, α(0) = 1,



2430 KEHAN SI, ZHENDA XU, KA FAI CEDRIC YIU AND XUN LI

and cost functional

J(0, 1;u(·)) = E

{
G(α(T ))|X(T )|2 +

∫ T

0

(
− 4|X(s)|2 − |u(s)|2

)
ds

}
.

In this example,{
A(1) = 1, A(2) = 2, B = C = 0, D = 1, Q = −4,

G(1) = 2, G(2) = 1, S = S̄ = 0, R = −1, S = 1, 2.

Obviously, the related Riccati equation (34) is (noticing
∑D

k=1 λik = 0, ∀i ∈ S){
Ṗ (s, 1) + 2P (s, 1)− 4 = 0, s ∈ [0, T ],

P (T, 1) = 2,

and {
Ṗ (s, 2) + 4P (s, 2)− 4 = 0, s ∈ [0, T ],

P (T, 2) = 1.

It is easy to see that

P (s, i) =

{
2, i = 1,

1, i = 2,

is the unique solution of the Riccati equation. So we get u∗ = 0, which implies
V 0(0, 1) = P (0, 1) = 2.

3.3. Example 3: Mean-Variance portfolio selection. For financial applica-
tions, we can regard the mean-variance portfolio selection problem as a special case
of the M-MF-SLQ problem. We will give a specific case to show this and we will
apply the settings in [33]. For simplicity, we consider a market in which two assets
are traded continuously. One of the assets is a bank account whose price P0(t) is
subject to the following stochastic ordinary differential equation:{

dP0(t) = r(t)P0(t)dt, t ∈ [0, T ],
P0(0) = p0 > 0,

(35)

where r(t) ≥ 0 is given as the interest rate process and is independent with the
different market modes. The other asset is stock whose price process P (t) satisfies
the following system of stochastic differential equation:{

dP (t) = P (t)
[
bp(t, α(t))dt+ σp(t, α(t))dW (t)

]
, t ∈ [0, T ],

P (0) = p > 0,
(36)

where, for each i = 1, 2, . . . , D, bp(t, i) is the appreciation rate process and σp(t, i) is
the volatility or the dispersion rate of the stock corresponding to α(t) = i. Setting
Bp(t, i) := bp(t, i)− r(t), we can write the wealth equation as{

dX(t) = [r(t)X(t) +Bp(t, α(t))u(t)]dt+ σp(t, α(t))u(t)dW (t),
X(0) = x0, α(0) = i0.

(37)

It is clear that we can get (37) by setting the coefficientsA(s, α(s)) = r(s), B(s, α(s))
= Bp(s, α(s)), D(s, α(s)) = σp(s, α(s)), C(s, α(s)) = b(s, α(s)) = σ(s, α(s)) = 0,
and initial pair (t, x, i) = (0, x0, i0) in (2). Our objective is to find an admissible
portfolio u(·) to minimize the variance of the terminal wealth and, meanwhile, to
maximize the expectation of the terminal wealth. The problem can be stated as
follows, which is an equivalent statement.
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Problem. (MV) For given initial wealth x0, initial market mode i0 and trade-off
λ, find a u∗(·) ∈ U [t, T ] minimizing

JMV (x0, i0;u(·)) := E
[
(X(T )− E[X(T )])2

]
− λE[X(T )]. (38)

Comparing (3) and (38), we can set G(α(T )) = 1, Ḡ(α(T )) = −1, ḡ(α(T )) = −λ
2 ,

and all of the rest coefficients are zero. Then the Problem (MV) becomes a special
case of Problem (M-MF-SLQ). By the Proposition 2, we know the optimal portfolio
selection is given by (16), i.e.

u∗(·) = −1

2
M−1

t DJMV (x0, i0; 0)(·).

By (13), we have

DJMV (x0, i0; 0)(·) = 2
[
B(s, α(s))Y 0(s; 0, x0, i0) +D(s, α(s))Z0(s; 0, x0, i0)

]
.

And it is easy to compute out the solution to the FBSDE (7) when u(·) = 0 with
initial pair (t, x, i) = (0, x0, i0). So we have

X0(s; 0, x0, i0) = x0e
r(s)s,

Y 0(s; 0, x0, i0) = −λ

2
er(s)(s−T ),

Z0(s; 0, x0, i0) = Γ0
k(s; 0, x0, i0) = 0.

(39)

Now, it remains to calculate the representation of the functional M−1
t . It is difficult

to deduce the explicit form of M−1
t but we have already get

Mtu
∗(s) =

λ

2
(bp(s, α(s))− r(s))er(s)(s−T ).

By the definition of Mt in (14), we have

Mt = L̂∗
t

(
1− E∗E

)
L̂t,

i.e.

⟨Mtu
∗(s), u∗(s) ⟩ = ⟨ L̂tu

∗(s), L̂tu
∗(s) ⟩− ⟨E[L̂tu

∗(s)],E[L̂tu
∗(s)] ⟩,

= ⟨Xu∗
(T ; 0, 0, i0), X

u∗
(T ; 0, 0, i0) ⟩

− ⟨E[Xu∗
(T ; 0, 0, i0)],E[Xu∗

(T ; 0, 0, i0)] ⟩ .
(40)

Due to the linearity of the state equation, we can figure out that

Xu∗
(T ; 0, 0, i0) = er(T )T

[ ∫ T

0

e−r(t)tBp(t, α(t))u
∗(t)dt+

∫ T

0

e−r(t)tσp(t, α(t))u
∗(t)dW (t)

]
.

(41)

Replacing Xu∗
(T ; 0, 0, i0) in (40) by (41), we can get the optimal portfolio selection

u∗(·).

4. Conclusion. In this paper, we have studied the mean-field stochastic linear
quadratic optimal control problem of Markov regime switching system. We have
derived the characteristics of the solution. In particular, based on the cost function
defined by (14), and in Proposition 2 we proved that the convexity of the cost func-
tional (H3) is necessary for the finiteness of the Problem (M-MF-SLQ), whereas
uniform convexity of the cost functional (H4) is sufficient for the open-loop solv-
ability of the problem. Finally, in Theorem 2.2 by considering a family of uniformly
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convex cost functionals, a characterization of the finiteness of the problem is de-
rived and a minimizing sequence, whose convergence is equivalent to the open-loop
solvability of the problem, is constructed.

There are a few possible extension to our work. For instance, we can introduce
some Riccati equations to decouple the MF-FBSDE (7) and investigate the rela-
tionship between the solvability of the Riccati equations and the convexity of the
cost functionals. Besides, we can further investigate the closed-loop solvability of
the Problem (M-MF-SLQ) and the solvability of the related Riccati equations.
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