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Abstract. We develop a power penalty approach to a finite-dimensional dou-

ble obstacle problem. This problem is first approximated by a system of non-

linear equations containing two penalty terms. We show that the solution to
this penalized equation converges to that of the original obstacle problem at

an exponential rate when the coefficient matrices are M -matrices. Numerical

examples are presented to confirm the theoretical findings and illustrate the
efficiency and effectiveness of the new method.

1. Introduction. In this paper, we consider the following discrete double obstacle
problem:

Problem 1. Find x ∈ RN such that

max {min {Ax− b, x− f} , x− g} = 0,

where b = (b1, b2, · · · , bN )>, f = (f1, f2, · · · , fN )> and g = (g1, g2, · · · , gN )> are
given vectors in RN , A = (aij) is an N × N system matrix, and the operators
min {·, ·} and max {·, ·} are operated componentwisely. We assume that f < g.

The above problem arises in several practical fields, such as the bilateral contact
problem [6], financial derivatives pricing problem [4, 10], transportation equilibrium
problem [3] and differential game [11], etc. It is well known that an exact solution
to Problem 1 can hardly be obtained. Therefore, numerical methods to find an
approximate solution to this problem are widely applied in the literature. For

2020 Mathematics Subject Classification. Primary: 90C33, 90-08; Secondary: 65K15.
Key words and phrases. Double obstacle problem, penalty method, convergence rate, comple-

mentarity problem, numerical optimization.
c© 2021 The Author(s). Published by AIMS, LLC. This is an Open Access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
∗ Corresponding author: Kai Zhang.

1261

http://dx.doi.org/10.3934/jimo.2021018
http://creativecommons.org/licenses/by/4.0/


1262 KAI ZHANG, XIAOQI YANG AND SONG WANG

instance, the projected Gauss-Seidel method is applied in [9]. This method is very
easy to implement, but it suffers from the expensive computational cost. Policy
iteration method is another popular method to solve the discrete double obstacle
problems [2]. Owing to its equivalence to the generalized Newton method, the policy
iteration method performs well in most cases. However, as stated in [7], there exist
some cases where the policy iteration method loses its efficiency. For instance, in
our numerical example 2 the policy iteration method fails to compute a solution.
Active set method is proposed to solve Problem 1 as well in [8], where the method is
verified to be very fast, when the scale of the problem is large enough. Despite of its
fastness, the active set method requires much more computer memory comparing
with other methods, which makes it less attractive.

It is easy to see that Problem 1 can also be stated as the following equivalent
complementarity form:

Ax− b ≥ 0, if x = f,

Ax− b = 0, if f < x < g, (1)

Ax− b ≤ 0, if x = g.

The above complementarity form inspires us to apply the power penalty method
to solve Problem 1, since the method has been demonstrated to be a very successful
means to solve general complementarity problems, see, for example [12, 14, 15, 17].
The advantages of the power penalty method lie in several aspects. First, it is easy
to implement and robust to the scale of the problem. Second, it can be applied
to more complicated problems, such as nonlinear complementarity problem [13],
Hamilton-Jacobi-Bellman problem [16], etc. Third, the accuracy of the penalty
method can be simply controlled by the penalty parameters with an exponential
convergence rate.

Despite of its popularity in approximating standard complementarity problems,
the power penalty approach to double obstacle problems has drawn little attention.
There are only few works are contributed to this area in the literature. In [10], a
higher order penalty method is proposed to solve the continuous double obstacle
problems arising from the convertible bond pricing. Zhou et al. [19] present a power
penalty approximation for a semilinear parabolic double obstacle problem in an
infinite dimensional space. In the finite dimensional space, Wang et al. [13] propose
a power penalty approach to a discrete bounded variational inequalities. Under some
conditions a discrete double obstacle problem can be equivalently transformed into a
bounded variational inequality. Hence, the power penalty method can be indirectly
applied to solve the double obstacle problem. However, this transformation makes
the power penalization less intuitive and inconvenient to implementation.

This work mainly contributes to the direct application of the power penalty
method to the discrete double obstacle problem. By penalizing the upper obstacle
g and the lower obstacle f simultaneously, we develop a power penalty method,
especially the lower order penalty method, to the discrete double obstacle problem
(1). More importantly, an exponentially convergence rate of the power penalty
method with respect to (w.r.t.) the penalty parameter is established. Another
contribution of this paper is to design an efficient computational method to solve
the discrete double obstacle problem, based on the lower order penalty approach.
The computational efficiency of the new method is verified by numerical comparison
with the widely-used policy iteration method.
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We comment that in [16] we propose a power penalty approach to the dis-
crete Hamilton-Jacobi-Bellman equation. However, the discrete double obstacle
problem (1) is an Hamilton-Jacobi-Bellman-Issac equation, or an Hamilton-Jacobi-
Bellman complementarity problem, rather than an Hamilton-Jacobi-Bellman equa-
tion. Thus, the results developed in [16] do not apply to Problem 1 any longer.
As can be seen below, both the formulation and analysis for the discrete double
obstacle problem (1) are different from that in [16]. We also comment that the inte-
rior penalty approach to the discrete mixed complementarity problem, developed in
[18], is a promising method to solve (1). However, to guarantee its convergence, this
method usually requires much stronger conditions than the power penalty method.
This limits the application of the interior penalty method to more general double
obstacle problems.

The reminder of this paper is organized as follows. We will first develop a power
penalty approach to Problem 1 in Section 2. The solvability of the penalized prob-
lem is also given therein. In Section 3, the exponential convergence rate of the
power penalty method w.r.t. the penalty parameter is established. Section 4 gives
a solution algorithm for the penalized problem. In Section 5, three numerical ex-
amples are presented to illustrate the convergence rate, efficiency and effectiveness
of the new method. Finally, conclusions are given in Section 6.

Before further discussion, we first make the following assumption on the matrix
A:

(A): A is an irreducibly diagonally dominant matrix.

The above assumption means that aij ≤ 0, aii ≥
∑
i6=j |aij | and for at least one i,

aii >
∑
i6=j |aij |. This implies that A is an M -matrix. It is also worth noting that

the above assumption is normally guaranteed by a proper discretization method
such as the upwind finite/difference/finite element or a fitted finite volume method
for the differential equations in the continuous problem associated with Problem 1
(see, for example, [17]).

In the rest of our discussion, we assume that the assumption (A) is fulfilled.
Under this assumption, the unique solvability of Problem 1 is a direct consequence
of Theorem 5.1 of [2].

2. Penalty approach. The penalization of Problem 1 is defined as the following
problem:

Problem 2. Find xλ ∈ RN , such that

Axλ − b− λ [xλ − f ]
1/k
− + λ[xλ − g]

1/k
+ = 0, (2)

where λ > 1 is a penalty parameter, k > 0 is the power of the penalty term, [u]+ :=
max{u, 0}, [u]− := max{−u, 0} for any u, and for any y = (y1, · · · , yN )> ∈ RN ,
yα := (yα1 , ..., y

α
N )>.

Problem 2 is the penalization corresponding to Problem 1.1, in which the first
penalty term penalizes the violation of lower obstacle constraint while the second
term penalizes the violation of the upper obstacle constraint. The essence of this
penalization is to force all of the constraints to be satisfied when λ → ∞. We
expect that any solution xλ to Problem 2 converges to that of Problem 1 when
λ → ∞. Clearly, the rate of convergence depends on the parameter in the penalty
equation. In the following sections we will establish the convergence rate for the
penalty approach (2) w.r.t. the penalty parameter λ.
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Before considering the convergence of this power penalty approach, we first show
that there exists a solution to Problem 2. We start this discussion with the following
lemma.

Lemma 2.1. Let xλ be the solution to Problem 2. Then there exists a positive
constant C, independent of λ, such that

‖xλ‖∞ ≤ C, (3)

where ‖ · ‖∞ denotes the usual `∞ norm on a finite dimensional space.

Proof. Rearranging (2), we get

Axλ − b = λ [xλ − f ]
1/k
− − λ[xλ − g]

1/k
+ .

By defining three disjoint nonempty index subsets of I := {1, 2, · · · , N}:
I1 = {j|(xλ)j > gj}, I2 = {j|fj ≤ (xλ)j ≤ gj}, I3 = {j|(xλ)j < fj}, (4)

we consider the components of the above equation in the following three cases.

• In the case of j ∈ I1, we have [Axλ − b]j = −λ [xλ − g]
1/k
j ≤ 0. Hence,

(xλ)j > gj and [Axλ]j ≤ bj .

• In the case of j ∈ I2, we have [Axλ]j = bj . Hence,

fj ≤ (xλ)j ≤ gj and [Axλ]j = bj .

• In the case of j ∈ I3, we have [Axλ − b]j = λ [f − xλ]j ≥ 0. Hence,

(xλ)j < fj and [Axλ]j ≥ bj .

Now, we construct an N ×N matrix A∗1 and an N × 1 matrix b∗1 such that their
jth rows satisfy

(A∗1)j =

{
Aj , j ∈ I1,
Ij , j ∈ I2 ∪ I3,

and (b∗1)j =


bj , j ∈ I1,
gj , j ∈ I2,
fj , j ∈ I3,

respectively, for any j ∈ I, where I denotes the N × N identity matrix. From the
above three cases we have the following inequality.

A∗1xλ ≤ b∗1. (5)

Similarly, we introduce matrix A∗2 and b∗2 such that their jth rows satisfy

(A∗2)j =

{
Ij , j ∈ I1 ∪ I2,
Aj , j ∈ I3

and (b∗2)j =


gj , j ∈ I1,
fj , j ∈ I2,
bj , j ∈ I3.

Obviously, we have

A∗2xλ ≥ b∗2. (6)

From the constructions of A∗1 and A∗2, it follows that these two new matrices

are also irreducibly diagonally dominant M -matrices. Hence, (A∗1)
−1

> 0 and

(A∗2)
−1

> 0. Thus, from (5) and (6) we get

(A∗1)
−1
b∗1 ≤ xλ ≤ (A∗2)

−1
b∗2.

Thus, xλ is bounded both below and above, and so there exists a positive constant
C, independent of λ, and xλ, such that (3) holds.
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With the above lemma, we are now ready to establish the unique solvability
results of Problem 2 in the following Proposition.

Proposition 1. For any λ > 0, there exists a unique solution xλ to Problem 2.

Proof. For notation-simplicity, we omit the subscript λ of xλ in this proof. We
show that Problem 2 has a solution in the bounded region S := {x ∈ RN : −ε−1e <
x < δ−1e}, where e = (1, ..., 1)> ∈ RN and ε and δ are (sufficiently small) positive
constants.

Let

F (x) := Ax− b− λ [x− f ]
1/k
− + λ[x− g]

1/k
+ .

Clearly, F = (f1, · · · , fn) : RN 7→ RN is continuous. To prove this theorem, it
suffices to verify the conditions of Miranda’s theorem 1. We first show that F (x) 6= 0
for x on the boundary ∂S of S. More specifically, we will show that 0 /∈ F (∂S)
when both ε > 0 and δ > 0 are sufficiently small. To prove this, we assume that
0 ∈ F (∂S), that is, there exists an x ∈ ∂S such that F (x) = 0. Then, we show this
is not possible when both δ and ε are sufficiently small in the following two cases:

Case 1. Suppose there exits l ∈ I such that xl = δ−1. Then, we have

fl(x) =
[
Ax− b− λ [x− f ]

1/k
− + λ[x− g]

1/k
+

]
l

= [Ax− b]l + λ(δ−1 − gl)1/k.

It follows from fl(x) = 0 that [Ax]l =
∑
j 6=l aljxj + allxl = bl − λ(δ−1 − gl)1/k,

which implies

xl =
1

all

bl − λ(δ−1 − gl)1/k −
∑
j 6=l

aljxj

 .

From Assumption (A), we know that A is an irreducibly diagonally dominant M -
matrix. Hence, all > 0 and al,j ≤ 0 for l 6= j. Thus, combining ‖xλ‖∞ ≤ C, we
have xl ≤ 0 as δ → +0. This is contradicted to the assumption xl = δ−1 > 0 as
δ → +0, and thus we conclude that when δ > 0 is sufficiently small, 0 /∈ F (∂S)
with xl = δ−1 for a feasible index l.

Case 2. We now consider the case xλ on ∂S such that at least one component of
xλ is equal to O(−ε−1), say xl = −ε−1 for a feasible index l. In this case we have

fl(x) =
[
Ax− b− λ [x− f ]

1/k
− + λ[x− g]

1/k
+

]
l

= [Ax− b]l − λ(fl + ε−1)1/k.

Using the similar argument as in Case 1, we also have that xl ≥ 0 as ε→ +0, which
is contradicted to the assumption xl = −ε−1 ≤ 0 as ε→ +0,

Combining the above two cases we see that when ε > 0 and δ > 0 are both
sufficiently small, 0 /∈ F (∂S).

Now, we will check whether the conditions fi(x1, · · · , xi−1,−C, xi+1, · · · , xn) ≤ 0
and fi(x1, · · · , xi−1, C, xi+1, · · · , xn) ≥ 0 are satisfied for any i ∈ I, where C is the
constant defined in (3). In fact, since A is an irreducibly diagonally dominant M -
matrix, we have aii > 0, al,j ≤ 0 for l 6= j, and aii −

∑
i6=j |aij | > 0, for i, j ∈ I.

1Let G = {x ∈ Rn : |xi| < L, for 1 ≤ i ≤ n} and suppose the mapping F = (f1, · · · , fn) : Ḡ→
Rn is continuous on the closure Ḡ of G such that F (x) 6= 0 for x on the boundary ∂G of G, and

1. fi(x1, · · · , xi−1,−L, xi+1, · · · , xn) ≤ 0, for 1 ≤ i ≤ n,
2. fi(x1, · · · , xi−1, L, xi+1, · · · , xn) ≥ 0, for 1 ≤ i ≤ n.

Then, F (x) = 0 has a solution in G. See [1].
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Hence, combing this property and ‖x‖∞ ≤ C, we have for 1 ≤ i ≤ n

fi(x1, · · · , xi−1,−C, xi+1, · · · , xn) = (Ax− b)i − λ [−C − fi]1/k− + λ[−C − gi]1/k+

=
∑
i6=j

aijxi − ai,iC − bi − λ [fi + C]
1/k ≤ 0,

when C is sufficiently large. In the same way, we also have that when C is sufficiently
large, for 1 ≤ i ≤ n

fi(x1, · · · , xi−1, C, xi+1, · · · , xn) = (Ax− b)i − λ [C − fi]1/k− + λ[C − gi]1/k+

=
∑
i 6=j

aijxi + ai,iC − bi + λ [C − gi]1/k ≥ 0.

From the above analysis, we see that all the conditions of Miranda’s theorem
are satisfied. Hence, the existence of the solution to the penalized Problem 2 is
proved.

3. Convergence analysis. In what follows, we show that the solution to (2) sat-
isfies Problem 1 as λ→∞, and establish the rate of the convergence of the power
penalty approach.

3.1. Convergence. For the penalty approach (2), we have the following error es-
timate.

Theorem 3.1. Let xλ be the solution to Problem 2 for λ > 1. There exists a
constant C > 0, independent of λ, such that

‖max {min {Axλ − b, xλ − f} , xλ − g}‖∞ ≤
C

λk
.

Proof. We continue to use the set I1, I2 and I3 defined in (4). Now, we consider the
following three cases.

• ∀i ∈ I1, it follows from the penalty equation (2) and the definition I1 that

[Axλ − b]i = −λ [xλ − g]
1/k
i ,

[xλ − f ]i ≥ [xλ − g]i ≥ 0 ≥ [Axλ − b]i.
Hence,

[max {min {Axλ − b, xλ − f} , xλ − g}]i = [xλ − g]i =
[b−Axλ]ki

λk
. (7)

• ∀i ∈ I2, it follows from the penalty equation (2) and the definition I2 that

[Axλ − b]i = 0, [xλ − f ]i ≥ 0, [xλ − g]i ≤ 0.

Hence,

[max {min {Axλ − b, xλ − f} , xλ − g}]i = [Axλ − b]i = 0. (8)

• ∀i ∈ I3, it follows from the penalty equation (2) and the definition I3 that

[Axλ − b]i = λ [f − xλ]
1/k
i ,

[Axλ − b]i ≥ 0 ≥ [xλ − f ]i ≥ [xλ − g]i.

Hence,

[max {min {Axλ − b, xλ − f} , xλ − g}]i = [xλ − f ]i = − [Axλ − b]ki
λk

. (9)
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Combining (7)–(9), we obtain

‖max {min {Axλ − b, xλ − f} , xλ − g}‖∞ ≤
‖Axλ − b‖k∞

λk
.

From Lemma 2.1, we see that xλ is bounded for any λ > 0. Thus, the above
inequality implies

‖max {min {Axλ − b, xλ − f} , xλ − g}‖∞ ≤
C

λk
,

where C > 0 is a constant, independent of λ.

3.2. Rate of convergence. With the above error estimation, we are now ready to
show that the solution of Problem 2 converges to that of Problem 1 exponentially
w.r.t. the penalty parameter. This is given in the following theorem.

Theorem 3.2. Let x∗λ and x∗ be the solutions to Problems 2 and 1 respectively.
When λ is sufficiently large, we have

‖x∗ − x∗λ‖∞ ≤
C

λk
, (10)

where C is a positive constant, independent of λ.

Proof. Since x∗λ and x∗ are the solutions to Problems 2 and 1, respectively, they
satisfy

max{min{(Ax∗ − b)i, (x∗ − f)i}, (x∗ − g)i} = 0, (11)

and

(Ax∗λ − b)i − λ[(x∗λ − f)i]
1/k
− + λ[(x∗λ − g)i]

1/k
+ = 0. (12)

It follows from (11) and f < g that for each i ∈ I

fi ≤ (x∗)i ≤ gi. (13)

Then for each i ∈ I, we consider i in the following three situations.
1. When i ∈ J1 := {i ∈ I : (x∗λ)i < fi}, (13) implies that

(x∗λ − x∗)i ≤ (x∗λ − f)i < 0 ≤ C

λk
.

2. When i ∈ J2 := {i ∈ I : (x∗λ)i ≥ fi, (x∗)i = gi}, it follows from Theorem 3.1
that

(x∗λ − x∗)i = (x∗λ − g)i ≤ max{min{(Ax∗λ − b)i, (x∗λ − f)i}, (x∗λ − g)i} ≤
C

λk
.

3. When i ∈ J3 := {i ∈ I : (x∗λ)i ≥ fi, (x∗)i < gi}, it follows from (11) and (12)
that

(Ax∗ − b)i ≥ 0 and (Ax∗λ − b)i ≤ 0,

which implies (
A(x∗λ − x∗)

)
i

= (Ax∗λ − b)i − (Ax∗ − b)i ≤ 0 ≤ C

λk
.

Now, we again introduce a matrix, denoted as A∗1, so that (A∗1)i = (I)i when
i ∈ J1 ∪ J2, and (A∗1)i = (A)i when i ∈ J3, where I denotes the N × N identity
matrix. From the above three cases we see that

A∗1(x∗λ − x∗) ≤
C

λk
e,
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where e = (1, . . . , 1)>. From its construction and the fact that A is an M -matrix
we see that A∗1 is also an M -matrix. Therefore, from the above estimate we have

x∗λ − x∗ ≤
C

λk
A∗−1

1 e ≤ C‖A∗−1
1 ‖∞
λk

e. (14)

The above inequality defines an upper bound for x∗λ−x∗. To define a lower bound
for it, such as above proof, we divide I into following three sets: J′1 = {x ∈ I : (x∗λ)i ≥
gi}, J′2 = {i ∈ I : (x∗λ)i < gi, (x∗)i = fi}, J′3 = {i ∈ I : (x∗λ)i < gi, (x∗)i > fi} and
we construct A∗2 as (A∗2)i = (I)i when i ∈ J′1 ∪ J′2 and (A∗2)i = (A)i when i ∈ J′3.
Similar to the proof of (14), we obtain that

x∗ − x∗λ ≤
C

λk
A∗−1

2 e ≤ C‖A∗−1
2 ‖∞
λk

e. (15)

Combining (14) and (15), we obtain (10) for some constant C > 0 independent
of λ.

Remark 1. It is worth noting that a monotonic convergence property for the
solution sequence {xλm

} w.r.t. the penalty parameter λm is usually held when
the power penalty method is used to approach to the one-side/unilateral obstacle
problems, see [12, 14, 15, 17], etc. However, for the double obstacle problems, due
to the existence of two-side/bilateral obstacles, the monotonic convergence property
is not held any longer. This conclusion is numerically illustrated in Example 1.

4. Solution of the penalty equation. In this section we will develop an iterative
method to numerically solve (2). Clearly, when k ≥ 1, the power penalty equation
(2) becomes nonlinear and nonsmooth, which make the classic Newton method inap-
plicable. To overcome this difficulty, we utilize the smoothing technique, developed

in [14], to smoothing out the non-smooth function [z]
1/k
+ with

W (z) =

{
z1/k, z ≥ ε,
(3− 1/k) ε1/k−2[z]2+ + (1/k − 2) ε1/k−3[z]3+, z < ε,

where 0 < ε � 1 is a regularization parameter. Likewise, the same technique can

be used for the penalty term [z]
1/k
− since [z]

1/k
− =[−z]1/k+ .

With this smoothing technique, the equation (2) becomes

Axλ − b− P (xλ) +Q(xλ) = 0, (16)

where P (x) and Q(x) are two vectors defined by

[P (xλ)]i = λW (fi − [xλ]i), [Q(x)]i = λW ([xλ]i − gi),

for i = 1, · · · , N . We then apply the classic Newton method to solve (16), which
yields the following algorithm. For clarity, we omit the subscript λ of xλ in the
algorithm.

Algorithm 1.

Step 1.: Choose ε, ε > 0 sufficiently small; Set l = 0 and an initial guess x0

such that f ≤ x0 ≤ g.
Step 2.: Solve the following linear system for pl+1:[

A− JP (xl) + JQ(xl)
]
pl+1 = b−Axl + P (xl)−Q(xl),
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where JP (xl) and JQ(xl) are the Jacobian matrices of P (x) and Q(x), respec-
tively, defined by

[JP (x)]ij =

{
−λW ′(fi − xi), i = j,

0, i 6= j,
[JQ(x)]ij =

{
λW ′(xi − gi), i = j,

0, i 6= j.

Step 3.: Set xl+1 = xl + νpl+1, where 0 < ν < 1 is a damping parameter
determined by the Armijo linear search method [5].

Step 4.: If maxi∈I
|xl+1

i −xl
i|

max(1,|xl+1
i |)

< ε, then stop. Otherwise, set l := l + 1 and go

to Step 2.

5. Numerical experiments. In this section, we test our power penalty method
developed above using three numerical examples to demonstrate the convergence
property, effectiveness and efficiency of the method. These examples also partially
show that the assumption (A) is not a necessary condition.

The first example is chosen to verify the theoretical convergence rate of the power
penalty method w.r.t. the penalty parameter.

Example 1. Consider the following discrete double obstacle problem

max {min {Ax− b, x− f} , x− g} = 0,

with

A =


1 2 2 2
2 5 6 6
2 6 9 10
2 6 10 13

 , b =


11
30
50
100

 , f =


0
0
0
0

 , g =


5
5
5
5

 .
The exact solution is x∗ = (1, 0, 0, 5)>. The power penalty approach to this

example is

Axλ − b− λ [xλ − f ]
1/k
− + λ[xλ − g]

1/k
+ = 0.

To compute the rate of convergence of the power penalty method, we find approx-
imations to the solution to this discrete double obstacle problem by solving the
above nonlinear system with k = 1 and 2 using Algorithm 1. To calculate the
rates of convergence, we choose λi = 10i for i = 2, 3, 4, 5, and the l∞-norms of the
errors between the numerical solutions and the exact solution are calculated. The
computed errors, along with the ratios of errors from two consecutive values of λ,
are listed in Table 1.

Table 1. Results computed by the power penalty method. Toler-
ance ε = 10−6 is chosen for the Newton iteration. The smoothing
parameter ε = 10−3. ‘Ra’ stands for ratio.

k = 1 k = 2
λi [xλi

]1 [xλi
]4 ‖x− xλi

‖∞ Ra λi [xλi
]1 [xλi

]4 ‖x− xλi
‖∞ Ra

102 0.5119 5.3052 6.25× 10−1 102 0.9985 5.0011 2.81× 10−1

103 0.9430 5.0327 6.49× 10−2 0.98 103 0.9998 5.0002 2.85× 10−3 1.99
104 0.9942 5.0033 6.59× 10−3 0.99 104 0.9999 5.0001 4.93× 10−5 1.76
105 0.9994 5.0003 6.60× 10−4 1.00 105 1.0000 5.0000 6.90× 10−6 1.69

From the table we see that the numerical rates of convergence are close toO(λ−k),
in consistence with the theoretical result in (10), though some in k = 2 are less than
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2. These reduced rates of convergence may due to the relatively large value of ε.
From the error ‖x−xλi‖∞ in Table 1 we see that to achieve the same accuracy, the
lower order penalty method (k = 2) requires a much smaller value of λ than linear
penalty method (k = 1) needs. This verifies the advantage of lower order penalty
method. Interestingly, though the system matrix A is not an M -matrix, the rates
of convergence are still close to the theoretical one in Theorem 3.2.

As stated in Remark 1, the monotonic convergence property for the whole so-
lution sequence {xλi} w.r.t. the penalty parameter λ is not held any longer. This
is clearly observed in Table 1 by comparing the convergence behaviors of the first
component [xλi

]1 and last component [xλi
]4 of xλi

, where the subsequence {[xλi
]1}

is monotonically increasing while {[xλi
]4} monotonically decreasing.

We then use the following example to explore the advantages of the power penalty
method over the policy iteration method.

Example 2. Consider the discrete double-obstacle problem: find (Ui)1≤i≤N in RN
such that, for i = 1, · · · , N,

max

{
min

{
−Ui−1 − 2Ui + Ui+1

∆s2
, Ui − f(si)

}
, Ui − g(si)

}
= 0,

with U0 = 1 and UN+1 = 0.8, ∆s = 1/(N + 1), si = i∆s, f(s) := max{0, 1.2− ((s−
0.6)/0.1)2}, and g(s) := min{2, 0.3 + ((s− 0.2)/0.1)2}.

This example is from [2], where it has been shown that the classic policy iteration
method failed to solve this problem. Though a modified version of the policy itera-
tion method is proposed to overcome this difficulty therein, the computational cost
in terms of total number of iterations is very high. We list all the results computed
by the power penalty method (in both cases of k = 1 and k = 2), and the modified
policy iteration method in Table 2. The results demonstrate that the power penalty
methods can solve this problem effectively and possesses advantages over the modi-
fied policy iteration method, since the modified policy iteration method need much
more computational costs than the power penalty method.

Table 2. Total number of iterations for the linear penalty (k = 1),
lower order penalty (k = 2), and modified policy methods with
N = 99. Tolerance is set to be 10−6. ε = 10−3. λ is set to be 106

and 103 for k = 1 and k = 2, respectively.

k = 1 k = 2 Modified policy iter.
Iterations 9 12 88

To illustrate the usefulness of the power penalty method, we plot the computed
solution in Figure 1. For reference, the the upper bound (obstacle g) and the lower
bound (obstacle f) are also plotted. From this figure, we see that both the upper
and lower bounds are satisfied by our solution.

To further explore the computational efficiency of the power penalty approach, in
the following Example 3, we carry out a numerical performance comparison study
for the penalty methods, the Gauss-Seidel method and the active set method, since
the latter two methods are commonly used to solve the discrete obstacle problem.
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Figure 1. Solution U(s) with N = 99. The solution is obtained
with the lower order penalty method (k = 2). Tolerance ε = 10−6 is
chosen for the Newton iteration. The smoothing interval is chosen
to be (0, 10−3). λ = 103.

Example 3. Consider the following two-dimensional bilateral obstacle problem:

−∆u = b, f < u < g,

−∆u > b, u = f,

−∆u < b, u = g,

where ∆ denotes the Laplace operator, u = u(x, y) is defined on Ω = [0, 1] × [0, 1]
with u|∂Ω = 0, f(x, y) = 0.2, g(x, y) = −dist((x, y), ∂Ω), and

b(x, y) =


300, if (x, y) ∈ S = {(x, y) ∈ Ω : |x− y| ≤ 0.1 and x ≤ 0.3} ,
−70 exp(y)p(x), x ≤ 1− y and (x, y) /∈ S,

15 exp(y)p(x), x > 1− y and (x, y) /∈ S,

with

p(x) =



6x, 0 < x ≤ 1
6 ,

2(1− 3x), 1
6 < x ≤ 1

3 ,

6
(
x− 1

3

)
, 1

3 < x ≤ 1
2 ,

2
(
1− 3

(
x− 1

3

))
, 1

2 < x ≤ 2
3 ,

6
(
x− 2

3

)
, 2

3 < x ≤ 5
6 ,

2
(
1− 3

(
x− 2

3

))
, 5

6 < x < 1.

This example had been carefully examined in the literature (cf. [8]). With the
same level of accuracy (ε = 10−6), we list all the average numbers of iterations and
computation times on two different mesh grids: 50×50 and 60×60 in Table 3. The
table clearly shows that the computational efficiency of the power penalty methods
are rather superior to that of the Gauss-Seidel method, and comparable to that of
the active set method. We also note that when the discretization of the continuous
problem is not fine enough, i.e. the mesh grid is coarse, the active set method fails.
This is a main drawback of the active set method, which has been verified in [8].
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Nevertheless, the power penalty method is very robust to the dscretization, which
is another advantage of the power penalty method, as we stated in the introduction.

Finally, we plot the solution u(x, y) and active sets in Figures 2 and 3, respec-
tively. These results are computed with the lower penalty method (k = 2) on mesh
grid 60 × 60. In Figure 3 the lower and upper coincidence sets are marked with
dot ‘·’ and star ‘∗’ on the mesh grid, respectively. These figures are consistent with
those in [8], which again illustrates that the power penalty method is an effective
method.

Table 3. Comparison of computational efficiency among power
penalty methods, Gauss-Seidel iteration method and active set
method. Tolerance is set to be 10−6. ε = 10−3. λ is set to be
106 and 103 for k = 1 and k = 2, respectively.

k = 1 k = 2 Gauss-Seidel Active set

N = 49
Iterations 11 16 426 Failed
Time (s) 1.26 1.89 32.81 Failed

N = 59
Iterations 15 17 740 17
Time (s) 7.78 8.96 198.7 6.43

Figure 2. Solution u(x, y) with the mesh grid 60 × 60, obtained
with the lower order penalty method (k = 2). Tolerance is set to
be 10−6. ε = 10−3. λ = 103.

6. Conclusions. In this work we developed a penalty-based method to the so-
lution of the discrete double obstacle problem. By penalizing the two obstacles
we transform the obstacle problem into a nonlinear system containing two penalty
terms. After showing the unique solvability of the nonlinear system, an exponential
convergence rate of the power penalty approach w.r.t. the penalty parameter was
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Figure 3. The lower coincidence sets (dot ‘·’ ) and the upper
coincidence sets (star ‘∗’) of solution u(x, y) on the mesh grid 60×
60. The solution is obtained with the lower order penalty method
(k = 2). Tolerance ε = 10−6 is chosen for the Newton iteration.
The smoothing interval is chosen to be (0, 10−3). λ = 103.
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established. To solve the nonlinear penalized system, we proposed an Newton-based
solution method with a smoothing technique. Three numerical experiments are car-
ried out to demonstrate the rates of convergence, effectiveness and efficiency of the
power penalty method.
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[8] T. Kärkkäinen, K. Kunisch and P. Tarvainen, Augmented Lagrangian active set methods for
obstacle problems, J. Optim. Theory Appl., 119 (2003), 499–533.

[9] R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer.

Math., 69 (1994), 167–184.
[10] P. Kovalov and V. Linetsky, Valuing convertible bonds with stock price, volatility, interest

rate, and default risk, FDIC Center for Financial Research Working Paper Series, 2008.
[11] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,

J. Amer. Math. Soc., 22 (2009), 167–210.

[12] Z. Sun, Z. Liu and X. Yang, On power penalty methods for linear complementarity problems
arising from American option pricing, J. Glob. Optim., 63 (2015), 165–180.

[13] S. Wang and X. Yang, A power penalty method for a bounded nonlinear complementarity

problem, Optimization, 64 (2015), 2377–2394.
[14] S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity

problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227–

254.
[15] J. H. Witte and C. Reisinger, A penalty method for the numerical solution of Hamilton-

Jacobi-Bellman (HJB) equations in finance, SIAM J. Numer. Anal., 49 (2011), 213–231.

[16] K. Zhang and X. Yang, A power penalty method for discrete HJB equations, Optim. Lett.,
14 (2020), 1419–1433.

[17] K. Zhang, X. Q. Yang, S. Wang and K. L. Teo, Numerical performance of penalty method
for American option pricing, Optim. Methods Softw., 25 (2010), 737–752.

[18] J.-X. Zhao and S. Wang, An interior penalty approach to a large-scale discretized obstacle

problem with nonlinear constraints, Numer. Algorithms, 85 (2020), 571–589.
[19] Y. Y. Zhou, S. Wang and X. Q. Yang, A penalty approximation method for a semilinear

parabolic double obstacle problem, J. Glob. Optim., 60 (2014), 531–550.

Received July 2020; revised October 2020.

E-mail address: kaizhang@szu.edu.cn

E-mail address: mayangxq@polyu.edu.hk

E-mail address: Song.Wang@curtin.edu.au

http://www.ams.org/mathscinet-getitem?mr=MR2026461&return=pdf
http://dx.doi.org/10.1023/B:JOTA.0000006687.57272.b6
http://dx.doi.org/10.1023/B:JOTA.0000006687.57272.b6
http://www.ams.org/mathscinet-getitem?mr=MR1310316&return=pdf
http://dx.doi.org/10.1007/BF03325426
http://www.ams.org/mathscinet-getitem?mr=MR2449057&return=pdf
http://dx.doi.org/10.1090/S0894-0347-08-00606-1
http://www.ams.org/mathscinet-getitem?mr=MR3386107&return=pdf
http://dx.doi.org/10.1007/s10898-015-0291-6
http://dx.doi.org/10.1007/s10898-015-0291-6
http://www.ams.org/mathscinet-getitem?mr=MR3391225&return=pdf
http://dx.doi.org/10.1080/02331934.2014.967236
http://dx.doi.org/10.1080/02331934.2014.967236
http://www.ams.org/mathscinet-getitem?mr=MR2281387&return=pdf
http://dx.doi.org/10.1007/s10957-006-9062-3
http://dx.doi.org/10.1007/s10957-006-9062-3
http://www.ams.org/mathscinet-getitem?mr=MR2783223&return=pdf
http://dx.doi.org/10.1137/100797606
http://dx.doi.org/10.1137/100797606
http://www.ams.org/mathscinet-getitem?mr=MR4130565&return=pdf
http://dx.doi.org/10.1007/s11590-019-01517-7
http://www.ams.org/mathscinet-getitem?mr=MR2724165&return=pdf
http://dx.doi.org/10.1080/10556780903051930
http://dx.doi.org/10.1080/10556780903051930
http://www.ams.org/mathscinet-getitem?mr=MR4146525&return=pdf
http://dx.doi.org/10.1007/s11075-019-00827-2
http://dx.doi.org/10.1007/s11075-019-00827-2
http://www.ams.org/mathscinet-getitem?mr=MR3265244&return=pdf
http://dx.doi.org/10.1007/s10898-013-0122-6
http://dx.doi.org/10.1007/s10898-013-0122-6
mailto:kaizhang@szu.edu.cn
mailto:mayangxq@polyu.edu.hk
mailto:Song.Wang@curtin.edu.au

	1. Introduction
	2. Penalty approach
	3. Convergence analysis
	3.1. Convergence
	3.2. Rate of convergence

	4. Solution of the penalty equation
	5. Numerical experiments
	6. Conclusions
	Acknowledgments
	REFERENCES

