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Abstract. We consider integrated scheduling of production and distribution

operations associated with two customers (agents). Each customer has a set

of orders to be processed on the single production line at a supplier on a
competitive basis. The finished orders of the same customer are then packed

and delivered to the customer by a third-party logistics (3PL) provider with

a limited number of delivery transporters. The number of orders carried
in a delivery transporter cannot exceed its delivery capacity. Each trans-

porter incurs a fixed delivery cost regardless of the number of orders it car-
ries, and departs from the 3PL provider to a customer at fixed times. Each

customer desires to minimise a certain optimality criterion involving simulta-

neously the customer service level and the total delivery cost for its orders only.
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The customer service level for a customer is related to the times when its
orders are delivered to it. The problem is to determine a joint schedule of

production and distribution to minimise the objective of one customer, while

keeping the objective of the other customer at or below a predefined level.
Using several optimality criteria to measure the customer service level, we

obtain different scenarios that depend on optimality criterion of each customer.

For each scenario, we either devise an efficient solution procedure to solve it or
demonstrate that such a solution procedure is impossible to exist.

1. Introduction. Consider a make-to-order supply chain involving one supplier
producing time-sensitive products, e.g., fashion apparel, or drugs (see, e.g., Johnson
[11]), and two customers, e.g., a group of closely located retailers or consumers.

At the beginning of the planning horizon, the supplier receives a set of orders
from two customers with service requirements for the timely delivery their orders.
The orders are first processed on a single dedicated production line at the supplier,
after which they are packed into batches and delivered to their respective customers
by a third-party logistics (3PL) provider with a limited number of delivery trans-
porters. Each transporter has a limited delivery capacity, can take up a delivery
assignment at a fixed departure time and delivers the finished orders of the same
customer directly from the 3PL provider to the customer. The delivery cost of each
transporter is fixed regardless of the number of orders it carries.

In the make-to-order setting, the customer service level, which depends the deliv-
ery times of the finished jobs of each customer, is the major concern of the customers.
Since only limited production time is available, the two customers’ orders have to
compete for the use of the production line. Each customer desires to minimise a
certain optimality criterion, which depends on its orders only and is measured by
the sum of the customer service level and total delivery cost for its orders only. The
optimality criteria to measure the customer service level are the maximum value of
a regular optimality criterion, the total weighted order lead time, and the weighted
number of late orders. The goal is to determine jointly a production schedule at
the supplier, i.e., the order sequence scheduled on the single production line, and
a distribution schedule, i.e., the number of delivery transporters to use, the orders
carried by each delivery transporter, and the departure time of each delivery trans-
porter from the supplier, to minimise the objective of one customer subject to a
restriction on the objective of the other customer.

The goal of this study is twofold. One is to introduce a novel model that ad-
dresses the practically relevant and theoretically important integrated scheduling of
production and distribution operations in the multi-agent setting. The other is to
ascertain the computational complexity of different cases of the model under study
by either proving that the case is NP-hard, i.e., intractable, or devising an exact
solution procedure based on the derived structural properties to solve the case in
pseudo-polynomial time.

We organize the remaining part of this paper as follows: In the second section we
provide a brief review of the related studies. In the third section we present the basic
definitions and notation, derive some results about the structures of the problems
under study, and provide an overview of our results. We analyze the problems in the
fourth to seventh sections by providing proofs of their NP-hardness or designing
efficient solution procedures. In the last section we conclude the paper and suggest
possible extensions for future research.

2. Literature review. Many integrated production and distribution models have
been presented in the literature on supply chain management (see, e.g., Chen [4],
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Fathollahi-Fard et al. [6], Hall and Potts [8], Potts and Kovalyov [21], Safaeian et
al. [22], Tian et al. [25, 26], Wang et al. [30], and Wang et al. [31]). However, our
model differs from most of these models in the following ways.

First, most of the existing models assume that a delivery transporter (or an
order) is dispatched to a customer at the instant when all the orders it carries
complete their processing without any transport delay (or the order’s processing
is finished). This assumption neglects the issue in real practice that delivery is a
costly operation that can only be performed within a fixed time interval (Hall et
al. [7]). In such situations, a set of departure times are usually stipulated before
any orders are processed. In our model, we rely on a 3PL provider to perform the
delivery function, which has a set of delivery transporters that deliver the finished
orders to the customers at fixed departure times. Chen [4] reported that over 70% of
the companies worldwide now rely on 3PL providers for their daily distribution and
other logistics needs, and many 3PL providers have daily departure times. Second,
in most of the existing models, there is only one optimality criterion. In the model
we consider, however, there are two competing customers, each with an optimality
criterion depending on its orders only to optimise. Accordingly, the supplier needs
to identify an integrated optimal schedule that takes each customer’s optimality
criterion into account, which renders the model more intractable to solve. Table 1
summarizes the recent studies on integrate production and distribution in terms of
the corresponding problem characteristics.

3. Problem and preliminary analysis. This section introduces the problems
under study mathematically and provides some optimality properties that simplify
the subsequent analysis.

3.1. Problem description. The supplier receives from two customers, to which we
refer as customers A and B, a set of orders to be processed on a single production
line (machine). The machine and orders all are available at time zero, and the
machine can process at most one order at a time, and order preemption is not
permitted. Throughout the paper, we let X ∈ {A,B}. Customer X wants to
process the order set JX = {JX

1 , · · · , JX
nX
}, the orders in which are referred to

as the X-orders. Each order JX
j ∈ JX has a processing time pXj , a weight wX

j

denoting the importance of order JX
j relative to other X-orders, and a due date

dXj before or at which order JX
j is expected to leave the supplier for its customer.

The finished orders from the same customer need to be packed to form batches and
delivered to the customer by a 3PL provider with a limited number of transporters,
each of which departs at a predefined time point. Specifically, let T1, · · · , Ts denote
the fixed departure times with 0 = T0 < T1 < · · · < Ts. At each time point
Tk, k = 1, · · · , s, there are vXk transporters available for delivering the X-orders to
customer X. The transporters for delivering the X-orders are referred to as the
X-transporters, and each X-transporter owns a capacity limit, i.e., it can carry up
to qX X-orders per delivery. A fixed delivery cost cX per delivery for the X-orders
is incurred regardless of the number of orders it carries, since the distances from
the supplier to the two customers are different.

For a given schedule, we define the following variables:
DX

j : the delivery time of order JX
j equal to the time when the transporter

containing order JX
j departs from the 3PL provider to customer X;

UX
j : a lateness indictor equal to 1 iff order JX

j is late, i.e., DX
j > dXj .
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Since all the orders are available at time 0, DX
j also denotes the lead time of order

JX
j . Each customer has a certain optimality criterion consisting of the customer

service level and total delivery cost desired to optimize, which depends on its orders
only. We use HX(DX

1 , · · · , DX
nX

) to measure the customer service level related to
customer X, which is a nondecreasing function and depends on the lead time of the
X-orders only, and use TCX to denote the total delivery cost for delivering the X-
orders. Thus, customer X desires to minimize HX(DX

1 , · · · , DX
nX

) + TCX . In this
study, we address the following particular forms of the customer service function:
fXmax = max

JX
j ∈JX

{fXj (DX
j )}: the maximum value of a regular optimality criterion,

where each fXj (.) is a nondecreasing function of the lead time of order JX
j ;∑

(wX
j )DX

j =
∑

JX
j ∈JX

(wX
j )DX

j : the total (weighted) lead time of the X-orders;∑
wX

j U
X
j =

∑
JX
j ∈JX

wjU
X
j : the weighted number of late X-orders.

Note that all these optimality criteria are regular, so any two optimality criteria,
in which one corresponds to customer A and another corresponds to customer B,
are conflicting. To address the two optimality criteria, we adopt the constrained
optimization approach. The problem is thus to identify jointly a production schedule
and a distribution schedule to minimise the objective of one customer, while keeping
the objective of the other customer at or below a predefined level.

Following the five-field notation system for integrated scheduling of produc-
tion and distribution operations by Chen [4], and the notation for multi-agent
scheduling by Agnetis et al. [2], we denote the problems under consideration
by 1||V (vX , cX), fedp|1|(γA, γB ≤ V B), where in the third field, V (vX , cX) in-
dicates that the number of the X-transporters and the delivery capacity of each
X-transporter are both limited, and fedp indicates that the departure times are
fixed and specified, and in the fifth field, γA and γB are the optimality criteria of
customers A and B, respectively, and V B is a predefined upper limit on the optimal-
ity criterion γB . However, since we only investigate this kind of problems, for ease of
presentation, we denote this problem by (γA, γB ≤ V B). In addition, if the equality
s = s appears in the bottom right corner of (γA, γB ≤ V B), i.e, (γA, γB ≤ V B)s=s,
we mean that the number of fixed departure times is a constant; otherwise, the
number of fixed departure times is arbitrary.

For notational convenience, we let n = nA + nB , PX =
nX∑
j=1

pXj , P = PA +

PB , vX =
s∑

r=1
vXr , and nXmax d = min{nX ,maxs

r=1{qXvXr }}. We assume that the

parameters are all integer valued, and Ds ≥ P since otherwise not all the orders
can be delivered to their customers.

Table 2 summarizes the computational complexity results of the problems we ob-
tain, where “ONP”, “SNP”, and “PS” represent that a problem is binary NP-hard,
strongly NP-hard, and polynomially solvable, respectively, and “Open” indicates
that the computational complexity of a problem is still unknown.

3.2. Preliminary analysis. This section provides some preliminary results about
the structure of the problems, which will be used in the remaining part of this study.

In the sequel, we briefly review research on integrated scheduling of production
and distribution operations with fixed departure times or competing agents.
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Table 1. Computational complexity results

Problem Complexity
(
∑
wA

j D
A
j + TCA, γB ≤ V B) SNP, even if there is no capacity constraint on the delivery

transporters, Theorems 5.1 and 7.2
(
∑
DA

j + TCA, fBmax + TCB ≤ V B) PS, O(s2nAn
2
Bn

A
max dn

B
max d min{vB , nB}), Theorem 4.4

(fBmax + TCB ,
∑
DA

j + TCA ≤ V A) PS, O(s2nAn
2
Bn

A
max dn

B
max d min{vB , nB} log(QB

u − QB
l )),

Theorem 4.5
(
∑
wA

j D
A
j +TCA, fBmax +TCB ≤ V B)s=s ONP, O(nAn

2
B(nAmax d)s−1nBmax dP

s−1 min{vB , nB}), The-
orem 7.2

(fBmax +TCB ,
∑
wA

j D
A
j +TCA ≤ V A)s=s ONP,O(nAn

2
B(nAmax d)s−1nBmax dP

s−1 min{vB , nB} log(QB
u−

QB
l )), Theorem 7.2

(
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤
V B)s=s

ONP, O(nAnB(nAmax d)s−1 nBmax dP
s−1V B), Theorem 5.6

(
∑
wA

j D
A
j + TCA,

∑
wB

k U
B
k + TCB ≤

V B)s=s

ONP, O(nAnB(nAmax d)s−1 nBmax dP
s−1PBV B), Theorem

7.2

(
∑
DA

j + TCA,
∑
DB

k + TCB ≤ V B) Open, O(s2nAnB(nAmax d)nBmax dV
B), Theorem 7.2

(
∑
DA

j + TCA,
∑
wB

k U
B
k + TCB ≤ V B) ONP, O(s2nAnB(nAmax d)nBmax dP

BV B), Theorem 6.5
(
∑
wA

j U
A
j + TCA,

∑
wB

k U
B
k + TCB ≤

V B)

ONP, O(s2nAnB(nAmax d)nBmax dPV
B), Theorem 7.1

Table 2. Overview of the problem characteristics in recent recent
studies on integrate production and distribution

Article Number of
agents

Delivery capac-
ity

Delivery cost Delivery
mode

Departure
times

Agnetis et al. [1] One Bounded Yes Non-
splittable

Fixed

Hall et al. [7] One Unbounded No Non-
splittable

Fixed

Han et al. [9] One Bounded Yes Non-
splittable

Fixed

Kovalyov et al. [12] Two Unbounded No Non-
splittable

Fixed

Leung and Chen [14] One Bounded No Non-
splittable

Fixed

Li et al. [15] One Bounded No Splittable
or Non-
splittable

Fixed

Melo and Wolsey
[18]

One Bounded Yes Non-
splittable

Fixed

Mor and Mosheiov
[19]

Two Unbounded No Non-
splittable

Fixed

Seddik et al. [23] One Not involve No Not involve Fixed
Stecke and Zhao [24] One Bounded Yes Splittable

or Non-
splittable

Fixed

Yin et al. [35] Two Unbounded Yes Non-
splittable

Fixed

Yin et al. [37, 34] Two Unbounded Yes Non-
splittable

No

Our paper Multiple Bounded Yes Non-
splittable

Yes

The pioneering work on models that integrate production and distribution with
fixed delivery times can be traced to Matsuo [17], who pointed out that the num-
ber of departure times is far less than that of orders in many practical settings.
Considering the problem of determining an optimal schedule that leads to a good
trade-off between the late delivery penalty and the overtime cost with fixed deliv-
ery times, the author developed a heuristic solution procedure for it. Hall et al. [7]
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considered a different set of models that depend on the optimality criteria, and on
the structure of the processing system, i.e., the single-machine, parallel-machine,
and shop system, where the number of fixed departure times is either constant or
arbitrary. However, in their problems, the delivery capacity of each transporter is
unlimited. For each of problems considered, The authors either provided an efficient
solution procedure or proved that the problem is intractable. Leung and Chen [13]
considered the problems with the following objectives: (i) minimizing the maximum
lateness of the orders; (2) minimizing the number of delivery transporters used un-
der the condition that the maximum lateness is minimum; and (iii) minimizing the
weighted sum of the maximum lateness and number of delivery transporters used,
and the authors showed that they are all polynomial time solvable. Seddik et al. [23]
considered a model with unequal release dates to maximize the cumulative number
of orders scheduled before each departure time. The authors proved that the gen-
eral problem is strongly NP-hard, and provided a pseudo-polynomial-time solution
procedure for the two-delivery-dates problem. However, none of the above works
consider the delivery cost. Stecke and Zhao [24] considered a model with evenly
spaced fixed departure times and order deadlines, where both cases of non-splittable
and splittable delivery are allowed. For the former case, the authors proved that
the nonpreemptive schedule where jobs are sequenced in the “Earliest Due-Date”
(EDD) order is optimal. For the latter case, the authors proved that it is NP-hard
and provided a heuristic solution procedure for it. Melo and Wolsey [18] further
studied the non-splittable delivery problem considered in Stecke and Zhao [24] by
developing an integer programming model with very tight dual bounds that can
solve large-scale instances. Some studies also investigate integrated models with
fixed departure times and optimality criteria comprised of the inventory cost and
delivery cost. Agnetis et al. [1] addressed the problem to minimise the total delivery
and inventory cost. The authors proved that it is NP-hard and devised polynomial
time solution procedures for two special cases. Li et al. [15] studied a different set
of models with fixed delivery time windows, where the delivery of orders can be
either splittable or nonsplittable. The authors either proved that it is NP-hard or
devising an exact solution procedure for each of the problems they consider. Han et
al. [9] investigated a model in a three-stage supply chain, where the orders are first
partly processed by the supplier, then processed with identical processing times by
the manufacturer, and the finished orders are delivered to their respective customers
by delivery transporters, each of which has a set of fixed departure times. They
derived the computational complexity results and solution solution procedures for
several variants of the model.

However, all the above-cited studies either involve a single customer with an
optimality criterion, or multiple customers with an integrated optimality criterion.
Recently, multi-agent scheduling, which refers to the process of allocating services
over time to perform a set of orders (jobs) from two or more competing customers
whereby each customer desires to optimize its own optimality criterion on its orders
only, has attracted increasing interest from the scheduling community. Pioneering
multi-agent scheduling research, Agnetis et al. [2] and Baker and Smith [3] inves-
tigated the two-agent scheduling problems, where Baker and Smith [3] desired to
minimise the weighted sum of the optimality criteria of the two customers, and
Agnetis et al. [2] focused on the constrained optimization problems (determining
the optimal solution for one agent subject to a restriction on the objective of the
other agent) and the Pareto-optimization problems (identifying all nondominated
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schedules). Since then, multi-agent scheduling has been extensively investigated.
For more results on this line of research, see Gerstl and Mosheiov [5], Hermelinn et
al. [10], Leung et al. [14], Li and Yuan [16], Wan et al. [27], Wang et al. [28, 31],
Yin et al. [32, 36, 33] etc, and the excellent survey by Perez-Gonzalez and Framinan
[20]. Among these works, there are a few studies focusing on the integrated sched-
uling of production and distribution operations. For example, Mor and Mosheiov
[19] studied a two-agent scheduling model, where the orders are first processed on
a machine, and the finished orders are then packed to form batches and delivered
to the customers in batches immediately after all the orders in a batch finish their
processing. The authors focused on the case that the processing times and setup
times of the orders of the same customer are identical, and the batches of the sec-
ond customer must be processed continuously. Kovalyov et al. [12] considered the
general model studied in Mor and Mosheiov [19], and devised pseudo-polynomial-
time or polynomial-time solution procedures for several problems depending on the
optimality criteria of the two customers. Yin et al. [35] further generalized the
model of Kovalyov et al. [12] by adding delivery cost to the optimality criterion,
and devised alternative solution procedures for the problems they consider and de-
veloped fully polynomial-time approximation schemes for some problems. Yin et
al. [37, 34] focused on a set of similar models, except that the due dates of some
orders are part of the decision process rather than input parameters. In Yin et
al. [37], the orders of the first customer share a common due date that is part of
the decision process, while the due dates of the orders of the second customer are
predefined. The optimality criterion of the first customer is related to the earliness
penalty, weighted number of late orders, inventory cost, due date assignment cost,
and delivery cost, whereas the second customer wants to minimise the sum of one of
the following optimality criteria and delivery cost: the maximum value of a regular
optimality criterion, the total completion time, and the weighted number of late
orders. In Yin et al. [34], the due dates of all the orders are part of the decision
process, which are determined by two commonly used due date assignment models,
i.e., the common due date assignment and unrestricted due date assignment models.
The objective of each customer is to minimise an integrated cost of its orders that
consists of the earliness, tardiness, or weighted number of late orders, order holding,
due date assignment, and delivery costs. In both studies, the authors provided the
computational complexity results and devised efficient solution procedures for the
problems they consider. It is noted that none of the above studies investigates the
case with limited delivery capacity of the transporters, which is more intractable
than the case with unlimited delivery capacity. In addition, compared with our
study, a delivery transporter is dispatched to a customer immediately when all the
orders in it finish their processing in all the above studies.

4. Problem and preliminary analysis. This section introduces the problems
under study mathematically and provides some optimality properties that simplify
the subsequent analysis.

4.1. Problem description. The supplier receives from two customers, to which we
refer as customers A and B, a set of orders to be processed on a single production
line (machine). The machine and orders all are available at time zero, and the
machine can process at most one order at a time, and order preemption is not
permitted. Throughout the paper, we let X ∈ {A,B}. Customer X wants to
process the order set JX = {JX

1 , · · · , JX
nX
}, the orders in which are referred to
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as the X-orders. Each order JX
j ∈ JX has a processing time pXj , a weight wX

j

denoting the importance of order JX
j relative to other X-orders, and a due date

dXj before or at which order JX
j is expected to leave the supplier for its customer.

The finished orders from the same customer need to be packed to form batches and
delivered to the customer by a 3PL provider with a limited number of transporters,
each of which departs at a predefined time point. Specifically, let T1, · · · , Ts denote
the fixed departure times with 0 = T0 < T1 < · · · < Ts. At each time point
Tk, k = 1, · · · , s, there are vXk transporters available for delivering the X-orders to
customer X. The transporters for delivering the X-orders are referred to as the
X-transporters, and each X-transporter owns a capacity limit, i.e., it can carry up
to qX X-orders per delivery. A fixed delivery cost cX per delivery for the X-orders
is incurred regardless of the number of orders it carries, since the distances from
the supplier to the two customers are different.

For a given schedule, we define the following variables:
DX

j : the delivery time of order JX
j equal to the time when the transporter

containing order JX
j departs from the 3PL provider to customer X;

UX
j : a lateness indictor equal to 1 iff order JX

j is late, i.e., DX
j > dXj .

Since all the orders are available at time 0, DX
j also denotes the lead time of order

JX
j . Each customer has a certain optimality criterion consisting of the customer

service level and total delivery cost desired to optimize, which depends on its orders
only. We use HX(DX

1 , · · · , DX
nX

) to measure the customer service level related to
customer X, which is a nondecreasing function and depends on the lead time of the
X-orders only, and use TCX to denote the total delivery cost for delivering the X-
orders. Thus, customer X desires to minimize HX(DX

1 , · · · , DX
nX

) + TCX . In this
study, we address the following particular forms of the customer service function:
fXmax = max

JX
j ∈JX

{fXj (DX
j )}: the maximum value of a regular optimality criterion,

where each fXj (.) is a nondecreasing function of the lead time of order JX
j ;∑

(wX
j )DX

j =
∑

JX
j ∈JX

(wX
j )DX

j : the total (weighted) lead time of the X-orders;∑
wX

j U
X
j =

∑
JX
j ∈JX

wjU
X
j : the weighted number of late X-orders.

Note that all these optimality criteria are regular, so any two optimality criteria,
in which one corresponds to customer A and another corresponds to customer B,
are conflicting. To address the two optimality criteria, we adopt the constrained
optimization approach. The problem is thus to identify jointly a production schedule
and a distribution schedule to minimise the objective of one customer, while keeping
the objective of the other customer at or below a predefined level.

Following the five-field notation system for integrated scheduling of produc-
tion and distribution operations by Chen [4], and the notation for multi-agent
scheduling by Agnetis et al. [2], we denote the problems under consideration
by 1||V (vX , cX), fedp|1|(γA, γB ≤ V B), where in the third field, V (vX , cX) in-
dicates that the number of the X-transporters and the delivery capacity of each
X-transporter are both limited, and fedp indicates that the departure times are
fixed and specified, and in the fifth field, γA and γB are the optimality criteria of
customers A and B, respectively, and V B is a predefined upper limit on the optimal-
ity criterion γB . However, since we only investigate this kind of problems, for ease of
presentation, we denote this problem by (γA, γB ≤ V B). In addition, if the equality
s = s appears in the bottom right corner of (γA, γB ≤ V B), i.e, (γA, γB ≤ V B)s=s,
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we mean that the number of fixed departure times is a constant; otherwise, the
number of fixed departure times is arbitrary.

For notational convenience, we let n = nA + nB , PX =
nX∑
j=1

pXj , P = PA +

PB , vX =
s∑

r=1
vXr , and nXmax d = min{nX ,maxs

r=1{qXvXr }}. We assume that the

parameters are all integer valued, and Ds ≥ P since otherwise not all the orders
can be delivered to their customers.

Table 2 summarizes the computational complexity results of the problems we ob-
tain, where “ONP”, “SNP”, and “PS” represent that a problem is binary NP-hard,
strongly NP-hard, and polynomially solvable, respectively, and “Open” indicates
that the computational complexity of a problem is still unknown.

Table 3. Computational complexity results

Problem Complexity
(
∑
wA

j D
A
j + TCA, γB ≤ V B) SNP, even if there is no capacity constraint on the delivery

transporters, Theorems 5.1 and 7.2
(
∑
DA

j + TCA, fBmax + TCB ≤ V B) PS, O(s2nAn
2
Bn

A
max dn

B
max d min{vB , nB}), Theorem 4.4

(fBmax + TCB ,
∑
DA

j + TCA ≤ V A) PS, O(s2nAn
2
Bn

A
max dn

B
max d min{vB , nB} log(QB

u − QB
l )),

Theorem 4.5
(
∑
wA

j D
A
j +TCA, fBmax +TCB ≤ V B)s=s ONP, O(nAn

2
B(nAmax d)s−1nBmax dP

s−1 min{vB , nB}), The-
orem 7.2

(fBmax +TCB ,
∑
wA

j D
A
j +TCA ≤ V A)s=s ONP,O(nAn

2
B(nAmax d)s−1nBmax dP

s−1 min{vB , nB} log(QB
u−

QB
l )), Theorem 7.2

(
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤
V B)s=s

ONP, O(nAnB(nAmax d)s−1 nBmax dP
s−1V B), Theorem 5.6

(
∑
wA

j D
A
j + TCA,

∑
wB

k U
B
k + TCB ≤

V B)s=s

ONP, O(nAnB(nAmax d)s−1 nBmax dP
s−1PBV B), Theorem

7.2

(
∑
DA

j + TCA,
∑
DB

k + TCB ≤ V B) Open, O(s2nAnB(nAmax d)nBmax dV
B), Theorem 7.2

(
∑
DA

j + TCA,
∑
wB

k U
B
k + TCB ≤ V B) ONP, O(s2nAnB(nAmax d)nBmax dP

BV B), Theorem 6.5
(
∑
wA

j U
A
j + TCA,

∑
wB

k U
B
k + TCB ≤

V B)

ONP, O(s2nAnB(nAmax d)nBmax dPV
B), Theorem 7.1

4.2. Preliminary analysis. This section provides some preliminary results about
the structure of the problems, which will be used in the remaining part of this study.

Lemma 4.1. For each problem we consider, an optimal schedule exists, if any,
such that all of the following hold:

(1) All the orders are processed continuously from time zero;
(2) The orders processed earlier are delivered no later than those from the same

customer processed later;
(3) The departure time of each transporter is one of the fixed departure times

that are no earlier than the time when all the orders in it finish their processing;
(4) If not all the vXi , i = 1, · · · , s, delivery transporters with departure time Ti

are used, there are fewer than qX orders that are finished by Ti but delivered at a
later departure time;

(5) At each departure time Ti, r = 1, · · · , s, all the X-transporters, except possibly
one transporter, are full-load; and if there exists an X-transporter with departure
time Ti that is not full-load, all the X-orders finished by Ti are delivered by Ti.

Proof. Property (3) is straightforward. The correctness of Properties (1), (2), and
(4) stems from the fact that each optimality criterion we consider is nondecreasing
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in the order the lead times. The proof of (5) is similar to that of Lemma 8 in Chen
[4].

Lemma 4.2. When the optimality criterion
∑
DX

j is addressed, an optimal sched-
ule exists such that the X-orders are processed in the “Shortest Processing Time”
(SPT) order.

Proof. Consider an optimal schedule ρ∗ where the X-orders are not processed in
SPT order. Let JX

j and JX
k be the first pair of orders in ρ∗, such that JX

j is processed

prior to JX
k with pXj > pXk , and let π be the set of the Y -orders with {A,B} \

{X} that are processed between orders JX
j and JX

k . Consider another schedule ρ
constructed by interchanging the processing positions and delivery transporters of
orders JX

j and JX
k , while leaving the other orders unchanged. It is evident that the

completion times of order JX
k and the orders in set π in schedule ρ are less than

those in ρ∗, and the completion times of the other orders in schedule ρ∗ are identical
to those in ρ∗. It follows that schedule ρ is feasible and no worse than ρ∗ since all
the optimality criteria we consider are regular, as required.

Lemma 4.3. When the optimality criterion
∑
wjU

X
j is considered, an optimal

schedule exists such that the X-orders are processed in the EDD order.

Proof. The proof is similar to that of Lemma 3.2 with the following difference: when
an optimal schedule exits such that JX

j and JX
k are the first pair of orders such that

JX
j is processed prior to JX

k with dXj > dXk , we construct another schedule from this

schedule by extracting order JX
j , inserting it in the processing position just after

order JX
k , and interchanging the delivery transporters of orders JX

j and JX
k .

5. Problems (
∑
DA

j +TCA, fBmax+TCB ≤ V B) and (fBmax+TCB ,
∑
DA

j +TCA ≤
V A). This section first considers problem (

∑
DA

j +TCA, fBmax+TCB ≤ V B). Given

the number of B-transporters mB , mB = dnB

qB
e, · · · , nB , for each job JB

k , we define

an induced deadline d
mB

k such that fBk (DB
k ) ≤ V B − cBmB for DB

k ≤ d
mB

k and

fBk (DB
k ) ≥ V B − cBmB for DB

k ≥ d
mB

k . It is assumed that each inverse function
(fBk )−1(.) is available, implying that the deadlines can be calculated in constant
time.

The following result states the structure properties of an optimal schedule for
problem (

∑
DA

j + TCA, fBmax + TCB ≤ V B).

Lemma 5.1. For problem (
∑
DA

j + TCA, fBmax + TCB ≤ V B) with a given mB,
an optimal schedule exists, if any, such that all of the following hold:

(1) The A-orders are processed in SPT order;

(2) The B-orders are processed in non-decreasing order of d
mB

k .

Proof. Property (1) is an immediate consequence of Lemma 3.2 and the proof of
property (2) is analogous to that of Lemma 3.3.

In view of Lemma 4.1, we re-number the A-orders in SPT order, and the B-orders
in non-decreasing order of d

mB

k for any given mB in this section. For any given j
and k, j = 0, 1, · · · , nA, k = 0, 1, · · · , nB , we let P (j, k) be the total processing
time of the first j A-orders and the first k B-orders. Our solution procedure for
problem (

∑
DA

j + TCA, fBmax + TCB ≤ V B), to which we refer as Algorithm DP1,
is a forward dynamic programming solution procedure that iteratively appends a
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single A-order or B-order to a previously generated partial schedule of orders, and
is based on the results described in Lemmas 3.1 and 4.1.

In Algorithm DP1, we use a state variable mB to enumerate the number of B-
transporters used in the final complete schedule. For any given mB , j, and k, where
mB = dnB

qB
e, · · · , nB , j = 0, · · · , nA, and k = 0, · · · , nB , let LmB

(j, k) be a state

set in which any state is a vector (lA, lB , nlA , nlB , αB , f
A) that stands for a feasible

partial schedule for the orders in {JA
1 , · · · , JA

j , J
B
1 , · · · , JB

k }, where

• lA (resp., lB) denotes that the last processed A-order JA
j (resp., B-order JB

k )
is delivered at departure time TlA (resp., TlB );

• nlA (resp., nlB ) represents that there are nlA A-orders (resp., nlB B-orders)

delivered at departure time TlA (resp., TlB ) with dn
A
l

qA
e ≤ vAlA (resp., dn

B
l

qB
e ≤

vBlB );
• αB measures the number of B-transporters used;
• fA denotes the sum of the total lead time and total delivery cost of the A-

orders.

The state sets LmB
(j, k) are generated iteratively, which is initialized with LmB

(0, 0) = {(0, · · · , 0︸ ︷︷ ︸
6

)}. In the (j, k)-th phase with j + k ≥ 1, a state set LmB
(j, k)

is generated from LmB
(j − 1, k) and LmB

(j, k − 1). To be precise, for each state
(lA, lB , nlA , nlB , αB , f

A) ∈ LmB
(j− 1, k), to append order JA

j to the corresponding
partial schedule, three decisions need to be considered.

Decision FTA1 : place order JA
j as the last processed order, and add it to the

last used A-transporter with departure time TlA . This is valid only if P (i, j) ≤ TlA
and

nlA+1

qA
< dnlA+1

qA
e ≤ vAlA , in which the second inequality indicates that the last

used A-transporter is not full-load. The contribution of order JA
j in this case to the

objective of customer A is TlA . Therefore, if P (i, j) ≤ TlA and
nlA+1

qA
< dnlA+1

qA
e ≤

vAlA , add the state (lA, lB , nlA + 1, nlB , αB , f
A + TlA) to LmB

(j, k).

Decision FTA2 : place order JA
j as the last processed order, and add it to a

new A-transporter with departure time TlA . This is valid only if P (i, j) ≤ TlA
and

nlA

qA
= dnlA

qA
e. The contribution of order JA

j in this case to the objective of

customer A is TlA + cA. Therefore, if P (i, j) ≤ TlA and
nlA

qA
= dnlA

qA
e, add the state

(lA, lB , nlA + 1, nlB , αB , f
A + TlA + cA) to LmB

(j, k).
Decision FTA3 : place order JA

j as the last processed order, and add it to a new

A-transporter with departure time ToA , where oA is the minimum subscript such
that lA < oA, vAoA > 0, and P (i, j) ≤ ToA . This is valid only if

nlA

qA
= dnlA

qA
e. The

contribution of order JA
j in this case to the objective of customer A is ToA + cA.

Therefore, if there exists such a subscript oA and
nlA

qA
= dnlA

qA
e, add the state

(oA, lB , 1, nlB , αB , f
A + ToA + cA) to LmB

(j, k).
For each state (lA, lB , nlA , nlB , αB , f

A) ∈ LmB
(j, k − 1), to append order JB

k to
the corresponding partial schedule, three decisions need to be considered.

Decision FTB1 : place order JB
k as the last processed order, and add it to the

last used B-transporter with departure time TlB . This is valid only if P (i, j) ≤
TlB ≤ d

mB

k and
nlB+1

qB
< dnlB+1

qB
e ≤ vBlB . The contribution of order JB

k in this

case to the objective of customer A is 0. Therefore, if P (i, j) ≤ TlB ≤ d
mB

k and
nlB+1

qB
< dn

B
l +1
qB
e ≤ vBlB , add the state (lA, lB , nlA , nlB + 1, αB , f

A) to LmB
(j, k).
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Decision FTB2 : place order JB
k as the last processed order, and add it to a new

B-transporter with departure time TlB . This is valid only if P (i, j) ≤ TlB ≤ d
mB

k

and
nlB

qB
= dnlB

qB
e. The contribution of order JB

k in this case to the objective of

customer A is 0. Therefore, if P (i, j) ≤ TlB ≤ d
mB

k and
nB
l

qB
= dn

B
l

qB
e, add the state

(lA, lB , nlA , nlB + 1, αB + 1, fA) to LmB
(j, k).

Decision FTB3 : place order JB
k as the last processed order, and add it to a new

B-transporter with departure time ToB , where oB is the minimum subscript such
that lB < oB , vBoB > 0, and P (i, j) ≤ ToB ≤ d

mB

k . This is valid only if
nlB

qB
= dnlB

qB
e.

The contribution of order JB
k in this case to the objective of customer A is 0.

Therefore, if there exists such a subscript oB and
nlB

qB
= dnlB

qB
e, add the state

(lA, oB , nlA , 1, αB + 1, fA) to LmB
(j, k).

The following results show how to delete some dominated states which will not
lead to a complete optimal schedule.

Lemma 5.2. For any two states (lA, lB , nlA , nlB , αB , f
A) and (l

′A, l
′A, n′lA ,

n′lB , α
′
B , f

′A) in LmB
(j, k), if lA ≤ l

′A, lB ≤ l
′B , nlA ≤ n′lA , nlB ≤ n′lB , αB ≤ α′B,

and fA ≤ f ′A, the latter state can be deleted from LmB
(j, k).

Proof. The proof is straightforward and we omit it.

For any state (lA, lB , nlA , nlB , αB , f
A) in LmB

(j, k), we store the number of X-
transporters nsX with departure time TsX used in the partial schedule corresponding
to the state (lA, lB , nlA , nlB , αB , f

A), where TsX is the time instant immediately
prior to TlA .

Lemma 5.3. For any state (lA, lB , nAl , n
B
l , αB , f

A) in LmB
(j, k), if (

nsA

qA
< dnsA

qA
e,

P (i, j) ≤ TsA and nlA ≥ qA) or (
nsB

qB
< dnsB

qB
e, P (i, j) ≤ TsB and nlB ≥ qB), the

state can be deleted from LmB
(j, k).

Proof. The conditions
nsA

qA
< dnsA

qA
e, P (i, j) ≤ TsA , and nlA ≥ qA indicate that

the last used A-transporter with departure time TsA is not full-load, the com-
pletion time of the last A-order is not larger than TsA , and the number of A-
orders finished processing by TsA but delivered at a later departure time is larger
or equal to qX . As a consequence, by property (5) in Lemma 4.1, any exten-
sion of (lA, lB , nAl , n

B
l , αB , f

A) cannot lead to a complete optimal schedule, so the
state can be deleted from LmB

(j, k). The analysis of the conditions
nsB

qB
< dnsB

qB
e,

P (i, j) ≤ TsB , and nlB ≥ qB is analogous, which completes the proof.

Algorithm DP1 can be formally depicted as follows:

Algorithm DP1
Step 1. Re-number the A-orders in SPT order.
Step 2. Set LmB

(0, 0) = (0, · · · , 0︸ ︷︷ ︸
6

) and LmB
(j, k) = +∞ with j = −1 or k = −1,

for dnB

qB
e ≤ mB ≤ nB .

Step 3.
For mB = dnB

qB
e to nB , do

Calculate d
mB

k from fBk (d
mB

k ) = V B − cBmB for k = 1, · · · , nB ;

Re-number the B-orders according to non-decreasing order of d
mB

j such
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that d
mB

1 ≤ · · · ≤ dmB

nB
;

For each combination of (j, k) with 0 ≤ j ≤ nA, 0 ≤ k ≤ nB , and j+k ≥ 1,
do

Set LmB
(j, k) = ∅;

For each (lA, lB , nAl , n
B
l , αB , f

A) ∈ LmB
(j − 1, k), do

/*Decision FTA1 */

If P (i, j) ≤ TlA and
nlA+1

qA
< dnlA+1

qA
e ≤ vAlA , then

LmB
(j, k)← LmB

(j, k) ∪ {(lA, lB , nlA + 1, nlB , αB , f
A + TlA)};

Endif
/*Decision FTA2 */
If P (i, j) ≤ TlA and

nlA

qA
= dnlA

qA
e, then

LmB
(j, k)← LmB

(j, k)∪{(lA, lB , nlA + 1, nlB , αB , f
A +TlA + cA)};

Endif
/*Decision FTA3 */
If there exists a minimum subscript oA such that lA < oA, vAoA > 0,

and P (i, j) ≤ ToA , and
nlA

qA
= dnlA

qA
e, then

LmB
(j, k)← LmB

(j, k) ∪ {(oA, lB , 1, nlB , αB , f
A + ToA + cA)};

Endif
Endfor
For each (lA, lB , nAl , n

B
l , αB , f

A) ∈ LmB
(j, k − 1), do

/*Decision FTB1 */

If P (i, j) ≤ TlB ≤ d
mB

k and
nlB+1

qB
< dn

B
l +1
qB
e ≤ vBlB , then

LmB
(j, k)← LmB

(j, k) ∪ {(lA, lB , nlA , nlB + 1, αB , f
A)};

Endif
/*Decision FTB2 */

If P (i, j) ≤ TlB ≤ d
mB

k and
nB
l

qB
= dn

B
l

qB
e, then

LmB
(j, k)← LmB

(j, k) ∪ {(lA, lB , nlA , nlB + 1, αB + 1, fA)};
Endif
/*Decision FTB3 */
If there exists a minimum subscript oA such that lB < oB , vBoB > 0,

and P (i, j) ≤ ToB ≤ d
mB

k , and
nlB

qB
= dnlB

qB
e, then

LmB
(j, k)← LmB

(j, k) ∪ {(lA, oB , nlA , 1, αB + 1, fA)};
Endif

Endfor
/*Elimination*/

(1) For any two states (lA, lB , nlA , nlB , αB , f
A) and (l

′A, l
′A, n′lA , n

′
lB ,

α′B , f
′A) in LmB

(j, k), if the conditions in Lemma 4.2 are valid, delete
the latter state from LmB

(j, k);
(2) For any state (lA, lB , nlA , nlB , αB , f

A) in LmB
(j, k), if the conditions

in Lemma 4.3 are valid, delete the state from LmB
(j, k);

Endfor
Endfor

Step 4. The optimal solution value is min{fA|(lA, lB , nlA , nlB , αB , f
A) ∈ LmB (nA, nB),

dnB

qB
e ≤ mB ≤ nB}.

Theorem 5.4. Algorithm DP1 solves problem (
∑
DA

j +TCA, fBmax +TCB ≤ V B)

in O(s2nAn
2
B nAmax dn

B
max d min{vB , nB}) time.
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Proof. Algorithm DP1 implicitly enumerates all the feasible schedules fulfilling the
properties described in Lemmas 3.1 and 4.1, so it will find an optimal solution. We
next study the time complexity, which is mainly consumed in Step 3. In Step 3,
there are at most (s+1) possible values for lA and lB , nAmax d possible values for nlA ,
nBmax d possible values for nlB , and min{vB , nB} possible values for αB . Due to the
elimination rule, the number of different combinations of (lA, lB , nlA , nlB , αB , f

A)
is at most O(s2nAmax dn

B
max d min{vB , nB}). Thus, the number of new states gen-

erated in LmB
(j, k) is upper-bounded by O(s2nAmax dn

B
max d min{vB , nB}) after the

elimination process. Therefore, after at most nB(nA + 1)(nB + 1) iterations, Step
3 takes O(s2nAn

2
Bn

A
max dn

B
max d min{vB , nB}) time, as required.

Now, we consider problem (fBmax+TCB ,
∑
DA

j +TCA ≤ V A). To solve it, we first
design a solution procedure with a slight modification of Algorithm DP1 by deleting
the state (lA, lB , nlA , nlB , αB , f

A), if fA > V A, to identify whether or not a feasible
schedule exists for the the decision problem (fBmax+TCB ≤ V B ,

∑
DA

j +TCA ≤ V A)

with V B ≥ 0. We then use the modified solution procedure as a subroutine to solve
problem (fBmax + TCB ,

∑
DA

j ≤ V A). Specifically, we need to enumerate all the

possible thresholds V B to determine the optimal V B∗, which can be achieved by
conducting a binary search on V B ∈ [QB

l , Q
B
u ], where QB

l and QB
u are the lower

and upper bounds on fBmax + TCB . We can set QB
l = max{fBk (Dr) : 1 ≤ k ≤

nB}+ cBdnB

qB
e and QB

l = max{fBk (Ds) : 1 ≤ k ≤ nB}+ cBdnB

qB
e since the delivery

time of the last finished order must be no earlier than Dr and no later than Ds,
where r and s are the subscripts such that Dr−1 < PB ≤ Dr and Ds−1 < P ≤ Ds,
respectively. Thus, by enumerating the value of V B ∈ [QB

l , Q
B
u ] via a bisection

search with O(log(QB
u −QB

l )) iterations, problem (fBmax+TCB ,
∑
DA

j ≤ V A) can be

solved in O(s2nAn
2
Bn

A
max dn

B
max d min{vB , nB} log(QB

u −QB
l )) time. As consequence,

the following result is valid.

Theorem 5.5. Problem (fBmax + TCB ,
∑
DA

j + TCA ≤ V A) can be solved in

O(s2nAn
2
Bn

A
max dn

B
max d min{vB , nB} log(QB

u −QB
l )) time.

6. Problems (
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤ V B) and (
∑
wA

j D
A
j + TCA,∑

DB
k +TCB ≤ V B)s=s̃. This section addresses problems (

∑
wA

j D
A
j +TCA,

∑
DB

k +

TCB ≤ V B) and (
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤ V B)s=s̃. The following result
states the computational complexity of the considered problems.

Theorem 6.1. The problem (
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤ V B) is strongly
NP-hard, even if there is no capacity constraint on the delivery transporters.

Proof. For sufficiently large V B , the problem under consideration reduces to the
single-agent problem with an arbitrary number of fixed departure times to minimize∑
wA

j D
A
j , which has been proven to be strongly NP-hard (see Theorem 3.4 in Hall

et al. [8]), so the result follows.

Theorem 6.2. Problem (
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤ V B)s=s̃ is NP-hard,
even if there is no capacity constraint on the delivery transporters.

Proof. Similar to the proof Theorem 5.1, the NP-harness of the problem under
consideration comes from the NP -harness of the single-agent problem with a given
number of fixed departure times to minimize

∑
wA

j D
A
j (see Theorem 3.3. in Hall

et al. [8]), as required.
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In what follows, we focus on problem (
∑
wA

j D
A
j +TCA,

∑
DB

k +TCB ≤ V B)s=s̃

and devise a dynamic programming solution procedure that runs in pseudo-
polynomial time, establishing that it is binary NP-hard. We first introduce a
result on the structure of the problem, analogous to that stated in Lemma 5.1.

Lemma 6.3. For problem (
∑
wA

j D
A
j +TCA,

∑
DB

k +TCB ≤ V B)s=s̃, an optimal
schedule exists, if any, such that the B-orders are processed in SPT order.

In view of Lemma 5.3, we re-number the B-orders in SPT order in this sec-
tion. Our dynamic programming solution procedure for problem (

∑
wA

j D
A
j +

TCA,
∑
DB

k + TCB ≤ V B)s=s̃, denoted by Algorithm DP2, is a forward algo-
rithm strongly depending on the properties stated in Lemmas 3.1 and 5.3. For any
given j and k, where j = 0, · · · , nA and k = 0, · · · , nB , let H(j, k) be a state space,
in which each state is a vector (l, nA

1 , · · · , nAs , t1, · · · , ts, nBl , fA, fB) that stands for
a feasible partial schedule for the orders in {JA

1 , · · · , JA
j , J

B
1 , · · · , JB

k }, where

• l denotes that the last processed A-order JA
j is delivered at departure time

Tl;
• nAi , i = 1, · · · , s, gives the number of A-orders delivered at time Ti with

dn
A
i

qA
e ≤ vAl and

s∑
r=1

nAr = j;

• ti, i = 1, · · · , s, measures the total processing time of the orders delivered at

time Tk with
i∑

r=1
tr ≤ Ti and

s∑
r=1

tr = P (j, k);

• nBl gives the number of B-orders delivered at time Tl with dn
B
l

qB
e ≤ vBl ;

• fA and fB denote the total weighted lead time of the A-orders and the total
lead time of the B-orders, respectively.

For ease of presentation, we simplify (nA1 , · · · , nAs ), (t1, · · · , ts), (nA1 , · · · , nAr−1,
x, nAr+1, · · · , nAs ), and (t1, · · · , tr−1, y, tr+1, · · · , ts) to nA, t, (· · · , x, · · · ), and (· · · ,
y, · · · ), respectively.

The state setsH(j, k) are generated iteratively, which is initialized withH(0, 0) =
{(0, · · · , 0︸ ︷︷ ︸

4+2s

)}. In the (j, k)-th phase with j + k ≥ 1, a state set H(j, k) is generated

from H(j − 1, k) and H(j, k − 1). To be precise, for each state (j, k, l, nA, t, nBl , f
A,

fB) ∈ H(j − 1, k), to append order JA
j to the corresponding partial schedule, the

following s decisions need to be considered.
Decision WTTAi : deliver order JA

j at time Ti, i = 1, · · · , s. This is valid only if

dnlA+1

qA
e ≤ vAi and pAj +

o∑
r=1

tr ≤ To for o = i, · · · , s, in which the latter conditions

ensure that the insertion of order JA
j into the partial schedule would not lead the

resulting completion time of each order assigned to be delivered at time To, o =
i, · · · , s, in the partial schedule that stands for the state (j, k, l, nA, t, nBl , f

A) to
exceed To. In this case, the contributions of order JA

j to the objectives of customer

A and customer B are wA
j Ti + cA(dnlA+1

qA
e − dnlA

qA
e) and 0, respectively. Therefore,

if dnlA+1

qA
e ≤ vAi and pAj +

o∑
r=1

tr ≤ To for o = i, · · · , s, add the state (l, · · · , nAi +

1, · · · , ti + pAj , · · · , nBl , fA + wA
j Ti + cA(dn

A
i +1
qA
e − dn

A
i

qA
e), fB) to H(j, k).
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For each state (l, nA, t, nBl , f
A, fB) ∈ H(j, k − 1), to append order JB

k to the
corresponding partial schedule, three decisions similar to Decision FTA1 to Decision
FTA3 in Algorithm DP1 need to be considered.

The following results demonstrate how to delete the dominated states generated
in H(j, k).

Lemma 6.4. For any two states (l, nA, t, nBl , f
A, fB) and (l′, n′

A
, t′, n

′B
l , f

′A, f
′B)

in H(j, k), if l ≤ l′, · · · , nAi ≤ n
′A
i , · · · , ti ≤ t′i, · · · , nBl ≤ n

′B
l , fA ≤ f ′A, and

fB ≤ f ′B, the latter state can be deleted from H(j, k).

Proof. The proof is similar to that of Lemma 4.2.

For any state (l, nA, t, nBl , f
A, fB) in H(j, k), we store the number of B-

transporters ns with departure time Ts used in the partial schedule encoding the
state (l, nA, t, nBl , f

A, fB), where Ts is the time instant immediately prior to Tl.

Lemma 6.5. For any state (l, nA, t, nBl , f
A, fB) in H(j, k), if ns

qA
< dns

qA
e,

l∑
r=1

tr ≤

Ts, and nBl ≥ qA, the state can be deleted from H(j, k).

Proof. The proof is similar to that of Lemma 4.3.

Algorithm DP2 can be formally depicted as follows:

Algorithm DP2
Step 1. Re-number the B-orders in SPT order.
Step 2. Set H(0, 0) = {(0, · · · , 0︸ ︷︷ ︸

4+2s

)} and H(j, k) = +∞ with j = −1 or k = −1.

Step 3.
For each combination of (j, k) with 0 ≤ j ≤ nA, 0 ≤ k ≤ nB , and j + k ≥ 1,
do

Set H(j, k) = ∅;
For each (l, nA, t, nBl , f

A, fB) ∈ H(j − 1, k), do
For i = 1 to s, do

/*Decision WTTAi*/

If dnlA+1

qA
e ≤ vAi and pAj +

o∑
r=1

tr ≤ To for o = i, · · · , s, then

H(j, k)← H(j, k)∪{(l, · · · , nAi + 1, · · · , ti + pAj , · · · , nBl , fA +wA
j Ti+

cA(dn
A
r +1
qA
e − dn

A
r

qA
e), fB)};

Endif
Endfor

Endfor
For each (l, nA, t, nBl , f

A, fB) ∈ H(j, k − 1), do
/*Decision FTA1 */

If
l∑

r=1
tr + pBk ≤ Tl,

nB
l +1
qB

< dn
B
l +1
qB
e ≤ vBl and fB + Tl ≤ vB , then

H(j, k)← H(j, k) ∪ {(l, nA, t, nBl + 1, fA, fB + Tl)};
Endif
/*Decision FTA2 */

If
l∑

r=1
tr + pBk ≤ Tl,

nB
l

qB
= dn

B
l

qB
e and fB + Tl + cB ≤ V B , then

H(j, k)← H(j, k) ∪ {(l, nA, t, nBl + 1, fA, fB + Tl + cB)};
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Endif
/*Decision FTA3 */
If there exists a minimum subscript o such that l < o, vBo > 0, and
o∑

r=1
tr + pBk ≤ To),

nB
l

qB
= dn

B
l

qB
e, and fB + To + cB ≤ V B , then

H(j, k)← H(j, k) ∪ {(o, nA, t, 1, fA, fB + To + cB)};
Endif

Endfor
/*Elimination*/

(1) For any two states (l, nA, t, nBl , f
A, fB) and (l′, n′

A
, t′, n

′B
l , f

′A, f
′B) in

H(j, k), if the conditions in Lemma 5.4 are valid, delete the latter state
{romH(j, k);

(2) For any state (l, nA, t, nBl , f
A, fB) inH(j, k), if the conditions in Lemma

5.5 are valid, delete the state from H(j, k);
Endfor

Step 4. The optimal solution value is min{fA|(l, nA, t, nBl , fA, fB) ∈ H(nA, nB).

Theorem 6.6. Algorithm DP2 solves problem (
∑
wA

j D
A
j +TCA,

∑
DB

k +TCB ≤
V B) in O(nAnB(nAmax d)s−1 P s−1nBmax dV

B) time.

Proof. The proof is similar to that of Theorem 4.4, where the difference lies in that
the number of states in H(j, x1, · · · , xr) is at most O(s(nAmax d)s−1P s−1nBmax dV

B)
due to the fact that there are at most (s+ 1) possible values for l, (nAmax d + 1) and
(P +1) possible values for nAr and tr, r = 1, · · · , s, respectively, (nBmax d +1) possible
values for nBl , and (V B + 1) possible values for fB , and we only consider those nA

and t such that
∑s

r=1 n
A
r = j and

∑s
r=1 tr = P (j, k).

7. Problem (
∑
DA

j +TCA,
∑
wB

k U
B
k +TCB ≤ V B). This section studies problem

(
∑
wA

j D
A
j + TCA,

∑
DB

k + TCB ≤ V B). The following results state the compu-
tational complexity and the structure of an optimal schedule for the considered
problem.

Theorem 7.1. Problem (
∑
DA

j +TCA,
∑
wB

k U
B
k +TCB ≤ V B) is NP-hard, even

if there is no capacity constraint on the delivery transporters.

Proof. For sufficiently large V B , the problem reduces to the single-agent problem
with an arbitrary number of fixed departure times to minimize

∑
wA

j U
A
j , which

has been proven to be NP-hard (see Theorem 2.9 in Hall et al. [8]), so the result
follows.

Lemma 7.2. For problem (
∑
DA

j + TCA,
∑
wB

k U
B
k + TCB ≤ V B), an optimal

schedule exists, if any, such that all the following hold:
(1) The A-orders are processed in SPT order;
(2) The B-orders are processed in EDD order.

In view of Lemma 6.2, we re-number the A-orders and B-orders in SPT order
and EDD order, respectively, in this section. In what follows, based on Lemmas 3.1
and 6.2, we devise a forward dynamic programming solution procedure, to which
we refer as Algorithm DP3, for problem (

∑
DA

j + TCA,
∑
wB

k U
B
k + TCB ≤ V B)

with pseudo-polynomial running time, indicating that it is binary NP-hard.
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For any given j and k, where j = 0, · · · , nA, and k = 0, · · · , nB , let S(j, k) the
set of states, in which each state is a vector (lA, lB , nlA , nlB , t, f

A, fB) that stands
for a feasible partial schedule for the orders in {JA

1 , · · · , JA
j , J

B
1 , · · · , JB

k }, where

• t is the total processing time of the early B-orders;
• lB represents that the last early B-order is delivered at time TlB ;
• nlB indicates that there are nlB early B-orders delivered at time TlB with

dn
B
l

qB
e ≤ vBlB ;

• fB gives the weighted number of late B-jobs;
• lA, nlA , and fA are defined as those in Algorithm DP1.

The state sets G(j, k) are generated iteratively, which is initialed with G(0, 0) =
{(0, · · · , 0︸ ︷︷ ︸

7

)}. In the (j, k)-th phase with j + k ≥ 1, a state set G(j, k) is generated

from G(j− 1, k) and G(j, k− 1). To be precise, for each state (lA, lB , nlA , nlB , t, f
A,

fB) ∈ G(j − 1, k), to append order JA
j to the corresponding partial schedule, three

decisions similar to Decision FTA1 to Decision FTA3 in Algorithm DP1 need to
be considered.

For each state (lA, lB , nlA , nlB , t, f
A, fB) ∈ G(j, k − 1), to append order JB

k to
the corresponding partial schedule, four decisions need to be considered.

Decision TWL1 : schedule order JB
k as early, and add it to the last used B-

transporter with departure time TlB . This is valid only if P (j) + t+pBk ≤ TlB ≤ dBk
and

nlB+1

qB
< dnlB+1

qB
e ≤ vBlB , in which the first two inequalities ensure that order

JB
k can be delivered at time TlB prior to its due date, and P (j) represents the total

processing time of the first j A-orders. The contributions of order JB
k in this case to

the objectives of customers A and B are both 0. Therefore, if P (j)+t+pBk ≤ TlB ≤
dBk and

nlB+1

qB
< dnlB+1

qB
e ≤ vBlB , add the state (lA, lB , nlA , nlB + 1, t + pBk , f

A, fB)

to G(j, k).
Decision TWL2 : schedule order JB

k as early, and add it to a new B-transporter
with departure time TlB . This is valid only if P (j) + t+ pBk ≤ TlB ≤ dBk and

nlB

qB
=

dnlB

qB
e. The contributions of order JB

k in this case to the objectives of customers A

and B are 0 and cB , respectively. Therefore, if P (j) + t + pBk ≤ TlB ≤ dBk ,
nlB

qB
=

dnlB

qB
e and fB + cB ≤ V B , add the state (lA, lB , nlA , nlB + 1, t + pBk , f

A, fB + cB)

to G(j, k).
Decision TWL3 : schedule order JB

k as early, and add it to a new B-transporter
with departure time ToB , where oB is the minimum subscript such that lB < oB ,
vBoB > 0, and P (j) + t + pBk ≤ ToA ≤ dBk . This is valid only if

nlB

qB
= dnlB

qB
e. The

contributions of order JB
k in this case to the objectives of customers A and B are

0 and cB , respectively. Therefore, if there exists such a subscript oB ,
nlB

qB
= dnlB

qB
e,

and fB + cB ≤ V B , add the state (lA, oB , nlA , 1, t+ pBk , f
A, fB + cB) to G(j, k).

Decision TWL4 : schedule order JB
k as a late order. By our assumption, order JB

k

is neither processed nor delivered in this case. The contributions of order JB
k in this

case to the objectives of customers A and B are 0 and wB
k , respectively. Therefore,

if fB + wB
k ≤ V B , add the state (lA, lB , nlA , nlB , t, f

A, fB + wB
k ) to G(j, k).

Analogous to Lemmas 4.2 and 4.3, we provide the following results to reduce the
state set G(j, k).
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Lemma 7.3. For any two states (lA, lB , nlA , nlB , t, f
A, fB) and (l

′A, l
′A, n′lA , n

′
lB ,

t′, f
′A, f

′B) in G(j, k), if lA ≤ l
′A, lB ≤ l

′B , nlA ≤ n′lA , nlA ≤ n′lA , t ≤ t′, fA ≤ f ′A,

and fB ≤ f ′B, the latter state can be deleted from G(j, k).

Lemma 7.4. For any state (lA, lB , nlA , nlB , t, f
A, fB) in G(j, k), if (

nsA

qA
< dnsA

qA
e,

P (j) + t + pBk ≤ TsA and nlA ≥ qA) or (
nsB

qB
< dnsB

qB
e, P (j) + t + pBk ≤ TsB and

nlB ≥ qB), the state can be deleted from G(j, k).

Algorithm DP3 can be formally depicted as follows:

Algorithm DP3
Step 1. Re-number the A-orders and B-orders in SPT order and EDD

order, respectively.
Step 2. Set G(0, 0) = (0, · · · , 0︸ ︷︷ ︸

7

) and G(j, k) = +∞ with j = −1 or k = −1.

Step 3.
For each combination of (j, k) with 0 ≤ j ≤ nA, 0 ≤ k ≤ nB , and j + k ≥ 1,
do

Set G(j, k) = ∅;
For each (lA, lB , nlA , nlB , t, f

A, fB) ∈ G(j − 1, k), do
/*Decision FTA1 */

If P (j) + t ≤ TlA and
nlA+1

qA
< dnlA+1

qA
e ≤ vAlA , then

G(j, k)← G(j, k) ∪ {(lA, lB , nlA + 1, nlB , t, f
A + TlA , f

B)};
Endif
/*Decision FTA2 */
If P (j) + t ≤ TlA and

nlA

qA
= dnlA

qA
e, then

G(j, k)← G(j, k) ∪ {(lA, lB , nlA + 1, nlB , t, f
A + TlA + cA, f

B)};
Endif
/*Decision FTA3 */
If there exists a minimum subscript oA such that lA < oA, vAoA > 0, and

P (j) + t ≤ ToA , and
nlA

qA
= dnlA

qA
e, then

G(j, k)← G(j, k) ∪ {(oA, lB , 1, nlB , t, fA + ToA + cA, f
B)};

Endif
Endfor
For each (lA, lB , nlA , nlB , t, f

A, fB) ∈ G(j, k − 1), do
/*Decision TWL1 */

If P (j) + t+ pBk ≤ TlB ≤ dBk and
nlB+1

qB
< dnlB+1

qB
e ≤ vBlB , then

G(j, k)← G(j, k) ∪ {(lA, lB , nlA , nlB + 1, t+ pBk , f
A, fB)};

Endif
/*Decision TWL2 */
If P (j) + t+ pBk ≤ TlB ≤ dBk ,

nlB

qB
= dnlB

qB
e and fB + cB ≤ V B , then

G(j, k)← G(j, k) ∪ {(lA, lB , nlA , nlB + 1, t+ pBk , f
A, fB + cB)};

Endif
/*Decision TWL3 */
If there exists a minimum subscript oA such that lB < oB , vBoB > 0, and

P (j) + t+ pBk ≤ ToA ≤ dBk ,
nlB

qB
= dnlB

qB
e, and fB + cB ≤ V B , then

G(j, k)← G(j, k) ∪ {(lA, oB , nlA , 1, t+ pBk , f
A, fB + cB)};

Endif
/*Decision TWL4 */
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If fB + wB
k ≤ V B , then

G(j, k)← G(j, k) ∪ {(lA, lB , nlA , nlB , t, fA, fB + wB
k )};

Endif
Endfor
/*Elimination*/

(1) For any two states (lA, lB , nlA , nlB , t, f
A, fB) and (l

′A, l
′A, n′lA , n

′
lB , t

′,

f
′A, f

′B) in G(j, k), if the conditions in Lemma 6.3 are valid, delete the
latter state from G(j, k);
(2) For any state (lA, lB , nlA , nlB , t, f

A, fB) in G(j, k), if the conditions in
Lemma 6.4 are valid, delete the state from G(j, k);

Endfor
Step 4. The optimal solution value is min{fA|(lA, lB , nlA , nlB , t, fA, fB) ∈ G(nA,
nB)}.

Theorem 7.5. Algorithm DP3 solves problem (
∑
DA

j +TCA,
∑
wB

k U
B
k +TCB ≤

V B) in O(s2nAnB(nAmax d)nBmax dP
BV B) time.

Proof. The proof is similar to that of Theorem 4.4, where the difference lies in
that the number of states in G(j, k) is at most O(s2nAmax dn

B
max dP

AV B) due to the
fact that there are at most (s + 1) possible values for lA and lB , (nAmax d + 1) and
(nBmax d + 1) possible values for nlA and nlB , respectively, PB possible values for t,
and (V B + 1) possible values for fB .

8. Extensions. This section analyzes the computational complexity of the other
combinations of the considered optimality criteria of the two customers by borrowing
the idea for designing the algorithms in Sections 3 through 6.

We first consider problem (
∑
wA

j U
A
j + TCA,

∑
wB

k U
B
k + TCB ≤ V B). By the

proof of Theorem 6.1, we know that any problem involving the optimality criterion∑
wX

j U
X
j + TCX , X ∈ {A,B} is NP-hard, implying that the problem is NP-hard

too. Note that for the problem, property (1) in Lemma 6.2 is valid for both the
A-orders and B-orders. Based on this, we can re-number both the A-orders and B-
orders in EDD order, and define (lA, lB , nlA , nlB , t, f

A, fB) that stands for a feasible
partial schedule for the orders in {JA

1 , · · · , JA
j , J

B
1 , · · · , JB

k }, where

• t is the total processing time of the early orders;
• lA represents that the last early A-order is delivered at time TlA ;
• nlA indicates that there are nlA early A-orders delivered at time TlA with

dn
A
l

qA
e ≤ vAlA ;

• fA gives the weighted number of late A-jobs;
• lB , nlB , and fAB are defined as those in Algorithm DP3.

We devise a dynamic programming solution procedure with running time O(s2nAnB
nAmax dn

B
max dPV

B) to solve problem (
∑
wA

j U
A
j + TCA,

∑
wB

k U
B
k + TCB ≤ V B) by

borrowing the idea for Algorithm DP3. It follows that the problem (
∑
wA

j U
A
j +

TCA,
∑
wB

k U
B
k +TCB ≤ V B) is binary NP-hard. As a consequence, the following

result is valid.

Theorem 8.1. Problem (
∑
wA

j U
A
j +TCA,

∑
wB

k U
B
k +TCB ≤ V B) is binary NP-

hard and can be solved in O(s2nAnBn
A
max dn

B
max dPV

B) time.
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Similarly, for other combinations of the considered optimality criteria of the two
customers, we conclude with the following results.

Theorem 8.2. (1) Problem (
∑
wB

j D
A
j +TCA, fBmax+TCB ≤ V B) is strongly NP-

hard; and problem (
∑
wB

j D
A
j + TCA, fBmax + TCB ≤ V B)s=s is binary NP-hard

and can be solved in O(nAn
2
B(nAmax d)s−1nBmax dP

s−1 min{vB , nB}) time.
(2) Problem (fBmax + TCB ,

∑
wB

j D
A
j + TCA ≤ V A) is binary NP-hard; and

problem (fBmax + TCB ,
∑
wB

j D
A
j + TCA ≤ V A)s=s is binary NP-hard and can be

solved in O(nAn
2
B(nAmax d)s−1nBmax d P

s−1 min{vB , nB} log(QB
u −QB

l )) time.
(3) Problem (

∑
wB

j U
A
j + TCA, fBmax + TCB ≤ V B) is binary NP-hard and can

be solved in O(s2nAn
2
Bn

A
max dn

B
max dP

B min{vB , nB}) time.
(4) Problem (fBmax + TCB ,

∑
wB

j U
A
j + TCA ≤ V A) is binary NP-hard and can

be solved in O(s2nAn
2
Bn

A
max dn

B
max dP

B min{vB , nB} log(QB
u −QB

l )) time.
(5) Problem (

∑
wA

j D
A
j + TCA,

∑
wB

k U
B
k + TCB ≤ V B) is strongly NP-hard;

and problem (
∑
wA

j D
A
j +TCA,

∑
wB

k U
B
k +TCB ≤ V B)s=s is binary NP-hard and

can be solved in O(nAnB(nAmax d)s−1nBmax dP
s−1PBV B) time.

(6) Problem (
∑
DA

j + TCA,
∑
DB

k + TCB ≤ V B) can be solved in O(s2nAnB
nAmax dn

B
max dV

B) time.

9. Conclusions. This study considers several problems related to integrated sched-
uling of production and distribution operations with two competing customers,
where the number of delivery transporters and the delivery capacity of each trans-
porter are both limited, and the departure time of each delivery transporter is fixed
and specified. Each customer desires to minimise a certain optimality criterion that
takes into account both the customer service level and total delivery cost of its
orders only. The overall goal is to determine a joint schedule of production and
distribution to minimise the objective of one customer, subject to a limit on the
objective of the other customer. We analyze the computational complexity of var-
ious problems and develop pseudo-polynomial-time solution procedures, if viable.
However, the complexity status of problem (

∑
DA

j + TCA,
∑
DB

k + TCB ≤ V B) is
still open.

Our model can be extended in various different directions. First, future research
may analyze special cases of the NP-hard problems, e.g., assuming the orders
have identical processing times, the number or capacity of delivery transporters
is unlimited etc. Second, it would be valuable to extend our model to more general
machine environments, e.g., parallel-machine, flow shop etc. Third, it is of interest
to investigate the model with more than two customers, e.g., one can consider the
model of minimizing the objective of one customer, while keeping the value of each
of the other customers’ objective functions at or below a predefined value. This
extension will not alter the model structure and the solutions we provide in our
study remain valid. Fourth, it is interesting to perform sensitivity analyses of the
key parameters of the model. Finally, it is challenging to study the model in the
stochastic or dynamic setting.

Our research findings reveal that the problems under study are very difficult to
solve. Thus, it is of great interest to design efficient and effective solution algorithms
using various mixed integer linear programming methods, such as branch-and-price,
Benders decomposition etc, or develop approximation algorithms and polynomial
approximation schemes to deal with the computationally intractable cases.



1006 ZOU, LIN, HAN, CHENG AND WU

Acknowledgments. We thank three anonymous referees for their helpful com-
ments on an earlier version of our paper. Cheng was supported in part by The Hong
Kong Polytechnic University under the Fung Yiu King-Wing Hang Bank Endowed
Professorship in Business Administration. Wu was supported by the Ministry of
Science and Technology of Taiwan under grant number MOST 109-2410-H-035-019.

REFERENCES

[1] A. Agnetis, M. A. Aloulou and M. Y. Kovalyov, Integrated production scheduling and batch
delivery with fixed departure times and inventory holding costs, International Journal of

Production Research, 55 (2017), 6193–6206.

[2] A. Agnetis, P. B. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling problems with two
competing agents, Operations Research, 52 (2004), 229–242.

[3] K. R. Baker and J. C. Smith, A multiple-criterion model for machine scheduling, Journal of

Scheduling, 6 (2003), 7–16.
[4] Z.-L. Chen, Integrated production and outbound distribution scheduling: Review and exten-

sions, Operations Research, 58 (2010), 130–148.
[5] E. Gerstl and G. Mosheiov, Single machine just-in-time scheduling problems with two com-

peting agents, Naval Research Logistics, 61 (2014), 1–16.

[6] A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, G. Tian and Z. Li, An adaptive Lagrangian
relaxation-based algorithm for a coordinated water supply and wastewater collection network

design problem, Information Sciences, 512 (2020), 1335–1359.

[7] N. G. Hall, M. Lesaoana and C. N. Potts, Scheduling with fixed delivery dates, Operations
Research, 49 (2001), 134–144.

[8] N. G. Hall and C. N. Potts, Supply chain scheduling: Batching and delivery, Operations

Research, 51 (2003), 566–584.
[9] D. Han, Y. Yang, D. Wang, T. C. E. Cheng and Y. Yin, Integrated production, inventory, and

outbound distribution operations with fixed departure times in a three-stage supply chain,

Transportation Research Part E: Logistics and Transportation Review , 125 (2019), 334–347.
[10] D. Hermelina, J.-M. Kubitza, D. Shabtay, N. Talmon and G. J. Woeginger, Scheduling two

agents on a single machine: A parameterized analysis of NP -hard problems, Omega, 83
(2011), 275–286.

[11] M. E. Johnson, Learning from toys: Lessons in managing supply chain risk from the toy

industry, California Management Review , 43 (2001), 106–124.
[12] M. Y. Kovalyov, A. Oulamara and A. Soukhal, Two-agent scheduling with agent specific

batches on an unbounded serial batching machine, Journal of Scheduling, 18 (2015), 423–
434.

[13] J. Y.-T. Leung and Z.-L. Chen, Integrated production and distribution with fixed delivery

departure dates, Operations Research Letters, 41 (2013), 290–293.

[14] J. Y.-T. Leung, M. Pinedo and G. Wan, Competitive two agents scheduling and its applica-
tions, Operations Research, 58 (2010), 458–469.

[15] F. Li, Z.-L. Chen and L. Tang, Integrated production, inventory and delivery problems:
Complexity and algorithms, INFORMS Journal on Computing, 29 (2017), 232–250.

[16] S. Li and J. Yuan, Unbounded parallel-batching scheduling with two competitive agents,

Journal of Scheduling, 15 (2012), 629–640.

[17] H. Matsuo, The weighted total tardiness problem with fixed shipping times and overtime
utilization, Operations Research, 36 (1988), 293–307.

[18] R. A. Melo and L. A. Wolsey, Optimizing production and transportation in a commit-to-
delivery business mode, European Journal of Operational Research, 203 (2010), 614–618.

[19] B. Mor and G. Mosheiov, Single machine batch scheduling with two competing agents to

minimize total flowtime, European Journal of Operational Research, 215 (2011), 524–531.
[20] P. Perez-Gonzalez and J. M. Framinan, A common framework and taxonomy for multicriteria

scheduling problem with interfering and competing jobs: Multi-agent scheduling problems,

European Journal of Operational Research, 235 (2014), 1–16.
[21] C. N. Potts and M. Y. Kovalyov, Scheduling with batching: A review, European Journal of

Operational Research, 120 (2000), 228–249.

http://dx.doi.org/10.1080/00207543.2017.1346323
http://dx.doi.org/10.1080/00207543.2017.1346323
http://www.ams.org/mathscinet-getitem?mr=MR2066398&return=pdf
http://dx.doi.org/10.1287/opre.1030.0092
http://dx.doi.org/10.1287/opre.1030.0092
http://www.ams.org/mathscinet-getitem?mr=MR1999987&return=pdf
http://dx.doi.org/10.1023/A:1022231419049
http://dx.doi.org/10.1287/opre.1080.0688
http://dx.doi.org/10.1287/opre.1080.0688
http://www.ams.org/mathscinet-getitem?mr=MR3162946&return=pdf
http://dx.doi.org/10.1002/nav.21562
http://dx.doi.org/10.1002/nav.21562
http://dx.doi.org/10.1016/j.ins.2019.10.062
http://dx.doi.org/10.1016/j.ins.2019.10.062
http://dx.doi.org/10.1016/j.ins.2019.10.062
http://www.ams.org/mathscinet-getitem?mr=MR1814615&return=pdf
http://dx.doi.org/10.1287/opre.49.1.134.11192
http://www.ams.org/mathscinet-getitem?mr=MR1991972&return=pdf
http://dx.doi.org/10.1287/opre.51.4.566.16106
http://dx.doi.org/10.1016/j.tre.2019.03.014
http://dx.doi.org/10.1016/j.tre.2019.03.014
http://dx.doi.org/10.1016/j.omega.2018.08.001
http://dx.doi.org/10.1016/j.omega.2018.08.001
http://dx.doi.org/10.2307/41166091
http://dx.doi.org/10.2307/41166091
http://www.ams.org/mathscinet-getitem?mr=MR3360458&return=pdf
http://dx.doi.org/10.1007/s10951-014-0410-0
http://dx.doi.org/10.1007/s10951-014-0410-0
http://www.ams.org/mathscinet-getitem?mr=MR3048845&return=pdf
http://dx.doi.org/10.1016/j.orl.2013.02.006
http://dx.doi.org/10.1016/j.orl.2013.02.006
http://www.ams.org/mathscinet-getitem?mr=MR2674809&return=pdf
http://dx.doi.org/10.1287/opre.1090.0744
http://dx.doi.org/10.1287/opre.1090.0744
http://www.ams.org/mathscinet-getitem?mr=MR3653810&return=pdf
http://dx.doi.org/10.1287/ijoc.2016.0726
http://dx.doi.org/10.1287/ijoc.2016.0726
http://www.ams.org/mathscinet-getitem?mr=MR2971656&return=pdf
http://dx.doi.org/10.1007/s10951-011-0253-x
http://www.ams.org/mathscinet-getitem?mr=MR948372&return=pdf
http://dx.doi.org/10.1287/opre.36.2.293
http://dx.doi.org/10.1287/opre.36.2.293
http://dx.doi.org/10.1016/j.ejor.2009.09.011
http://dx.doi.org/10.1016/j.ejor.2009.09.011
http://www.ams.org/mathscinet-getitem?mr=MR2832846&return=pdf
http://dx.doi.org/10.1016/j.ejor.2011.06.037
http://dx.doi.org/10.1016/j.ejor.2011.06.037
http://www.ams.org/mathscinet-getitem?mr=MR3159896&return=pdf
http://dx.doi.org/10.1016/j.ejor.2013.09.017
http://dx.doi.org/10.1016/j.ejor.2013.09.017
http://www.ams.org/mathscinet-getitem?mr=MR1785709&return=pdf
http://dx.doi.org/10.1016/S0377-2217(99)00153-8


TWO-AGENT INTEGRATED SCHEDULING OF PRODUCTION AND ... 1007

[22] M. Safaeian, A. M. Fathollahi-Fard, G. Tian, Z. Li and H. Ke, A multi-objective supplier
selection and order allocation through incremental discount in a fuzzy environment, Journal

of Intelligent & Fuzzy Systems, 37 (2019), 1435–1455.

[23] Y. Seddik, C. Gonzales and S. Kedad-Sidhoum, Single machine scheduling with delivery dates
and cumulative payoffs, Journal of Scheduling, 16 (2013), 313–329.

[24] K. E. Stecke and X. Zhao, Production and transportation integrationfor a make-to-order
manufacturing company with a commit-to-delivery business mode, Manufacturing & Service

Operations Management , 9 (2007), 206–224.

[25] G. Tian, X. Liu, M. Zhang, Y. Yang, H. Zhang, Y. Lin, F. Ma, X. Wang, T. Qu and Z. Li,
Selection of take-back pattern of vehicle reverse logistics in China via Grey-DEMATEL and

Fuzzy-VIKOR combined method, Journal of Cleaner Production, 220 (2019), 1088-1100.

[26] G. Tian, H. Zhang, Y. Feng, H. Jia, C. Zhang, Z. Jiang, Z. Li and P. Li, Operation patterns
analysis of automotive components remanufacturing industry development in China, Journal

of Cleaner Production, 64 (2017), 1363–1375.

[27] G. Wan, S. R. Vakati, J. Y.-T. Leung and M. Pinedo, Scheduling two agents with controllable
processing times, European Journal of Operational Research, 205 (2010), 528–539.

[28] D.-J. Wang, Y. Yin, J. Xu, W. H. Wu, S.-R. Cheng and C.-C. Wu, Some due date deter-

mination scheduling problems with two agents on a single machine, International Journal of
Production Economics, 168 (2015), 81–90.

[29] D. Wang, Y. Yu, H. Qiu, Y. Yin and T. C. E. Cheng, Two-agent scheduling with linear
resource-dependent processing times, Naval Research Logistics, 67 (2020), 573–591.

[30] D.-Y. Wang, O. Grunderand and A. E. Moudni, Integrated scheduling of production and dis-

tribution operations: A review, International Journal of Industrial and Systems Engineering,
19 (2015), 94–122.

[31] W. Wang, G. Tian, M. Chen, F. Tao, C. Zhang, A. Al-Ahmari, Z. Li and Z. Jiang, Dual-

objective program and improved artificial bee colony for the optimization of energy-conscious
milling parameters subject to multiple constraints, Journal of Cleaner Production, 245

(2020), 118714.

[32] Y. Yin, S.-R. Cheng, T. C. E. Cheng, D.-J. Wang and C.-C. Wu, Just-in-time scheduling with
two competing agents on unrelated parallel machines, Omega, 63 (2016), 41-47.

[33] Y. Yin, Y. Chen, K. Qin and D. Wang, Two-agent scheduling on unrelated parallel machines

with total completion time and weighted number of tardy jobs criteria, Journal of Scheduling,
22 (2019), 315–333.

[34] Y. Yin, D. Li, D. Wang and T. C. E. Cheng, Single-machine serial-batch delivery scheduling
with two competing agents and due date assignment, Annals of Operations Research, (2018).

[35] Y. Yin, Y. Wang, T. C. E. Cheng, D. Wang and C. C. Wu, Two-agent single-machine sched-

uling to minimize the batch delivery cost, Computers & Industrial Engineering, 92 (2016),
16–30.

[36] Y. Yin, W. Wang, D. Wang and T. C. E. Cheng, Multi-agent single-machine scheduling and
unrestricted due date assignment with a fixed machine unavailability interval, Computers &
Industrial Engineering, 111 (2017), 202–215.

[37] Y. Yin, Y. Yang, D. Wang, T. C. E. Cheng and C.-C. Wu, Integrated production, inventory,

and batch delivery scheduling with due date assignment and two competing agents, Naval
Research Logistics, 65 (2018), 393–409.

Received July 2020; revised September 2020.

E-mail address: zyq1011@yeah.net

E-mail address: hfhandong@163.com

E-mail address: dalianjx@163.com

E-mail address: edwin.cheng@polyu.edu.hk

E-mail address: cchwu@fcu.edu.tw

http://dx.doi.org/10.3233/JIFS-182843
http://dx.doi.org/10.3233/JIFS-182843
http://www.ams.org/mathscinet-getitem?mr=MR3053930&return=pdf
http://dx.doi.org/10.1007/s10951-012-0302-0
http://dx.doi.org/10.1007/s10951-012-0302-0
http://dx.doi.org/10.1287/msom.1060.0138
http://dx.doi.org/10.1287/msom.1060.0138
http://dx.doi.org/10.1016/j.jclepro.2019.01.086
http://dx.doi.org/10.1016/j.jclepro.2019.01.086
http://dx.doi.org/10.1016/j.jclepro.2017.07.028
http://dx.doi.org/10.1016/j.jclepro.2017.07.028
http://www.ams.org/mathscinet-getitem?mr=MR2602759&return=pdf
http://dx.doi.org/10.1016/j.ejor.2010.01.005
http://dx.doi.org/10.1016/j.ejor.2010.01.005
http://dx.doi.org/10.1016/j.ijpe.2015.06.018
http://dx.doi.org/10.1016/j.ijpe.2015.06.018
http://www.ams.org/mathscinet-getitem?mr=MR4157272&return=pdf
http://dx.doi.org/10.1002/nav.21936
http://dx.doi.org/10.1002/nav.21936
http://dx.doi.org/10.1504/IJISE.2015.065949
http://dx.doi.org/10.1504/IJISE.2015.065949
http://dx.doi.org/10.1016/j.jclepro.2019.118714
http://dx.doi.org/10.1016/j.jclepro.2019.118714
http://dx.doi.org/10.1016/j.jclepro.2019.118714
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://www.ams.org/mathscinet-getitem?mr=MR3950732&return=pdf
http://dx.doi.org/10.1007/s10951-018-0583-z
http://dx.doi.org/10.1007/s10951-018-0583-z
http://dx.doi.org/10.1007/s10479-018-2839-6
http://dx.doi.org/10.1007/s10479-018-2839-6
http://dx.doi.org/10.1016/j.cie.2017.07.013
http://dx.doi.org/10.1016/j.cie.2017.07.013
http://www.ams.org/mathscinet-getitem?mr=MR3901279&return=pdf
http://dx.doi.org/10.1002/nav.21813
http://dx.doi.org/10.1002/nav.21813
mailto:zyq1011@yeah.net
mailto:hfhandong@163.com
mailto:dalianjx@163.com
mailto:edwin.cheng@polyu.edu.hk
mailto:cchwu@fcu.edu.tw

	1. Introduction
	2. Literature review
	3. Problem and preliminary analysis
	3.1. Problem description
	3.2. Preliminary analysis

	4. Problem and preliminary analysis
	4.1. Problem description
	4.2. Preliminary analysis

	5. Problems (DjA+TCA,fmaxB+TCBVB) and (fmaxB+TCB,DjA+TCAVA)
	6. Problems (wjADjA+TCA,DkB+TCBVB) and (wjADjA+TCA,DkB+TCBVB)s=s"0365s
	7. Problem (DjA+TCA,wkBUkB+TCBVB) 
	8. Extensions
	9. Conclusions
	Acknowledgments
	REFERENCES

