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Abstract. This paper considers an optimal investment problem under CRRA

utility with a borrowing constraint. We formulate it into a free boundary
problem consisting of a fully nonlinear equation and a linear equation. We

prove the existence and uniqueness of the classical solution and present the

condition for the existence of the free boundary under a linear constraint on a
borrowing rate. Furthermore, we prove that the free boundary is continuous

and smooth when the relative risk aversion coefficient is sufficiently small.

1. Introduction. Credit decisions depend on supply and demand factors in the
real financial market. On the supply side, the lender will decide how much to
lend, considering either their potential borrowers’ capacity to repay or quantity ra-
tioning. On the demand side, the investors’ desire to borrowing depends on the
price of credit, which is affected by interest rates, inflation, and other macroeco-
nomic conditions. Some institutional investors, tiny private firms, have difficulty
in raising money and are impacted by the discriminatory borrowing constraint im-
posed on them compared with state-owned firms. More collateral is required, and
the shortage of credit information exposure leads to the fact that they have less
access to sufficient external financing from banks. Individual investors have to face
credit ceilings according to the evaluations of their present value of assets, income
stream, consumption habits, credit reports, and many other factors. Therefore, in-
vestors cannot borrow money as much as they desire at any time. It is meaningful
for us to consider a borrowing constraint in the investment problem.

The milestone works on the optimal investment problem in a continuous-time
setting are represented by Samuelson [19] and Merton [16, 17], where investors
can dynamically adjust their portfolio allocation to the risk-free and risky asset in
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order to maximize a certain linear expected utility over a set of possible terminal
payoff over time. Along this line of research, optimal investment problems have
been extensively studied under different objectives with constraints. For example,
Li, Zhou and Lim [14] consider a continuous-time mean-variance portfolio problem
where short-selling stocks are prohibited. Bielecki et al. [2] study a similar problem
where the bankruptcy of the wealth process is prohibited. Dai and Yi [4] and Dai,
Xu and Zhou [3] develop optimal investment problems with transaction cost under
an expected utility model and the mean-variance model, respectively. Li and Xu
[13] consider a continuous-time Markowitz’s model with bankruptcy prohibition and
convex cone portfolio constraints. Guan [8] discusses an investment problem with
different interest rates. In this paper, we incorporate the borrowing constraint into
our model under the expected utility framework.

The borrowing constraint means the dollar amount allocated in the risky asset
cannot exceed an exogenous time-invariant function at any time t, mathematically,
that is

πt ≤ f(Xt),

namely, the maximum borrowing rate at time t is f(Xt)−Xt. Our control problem
is considered under a standard Black-Sholes framework over a finite trading horizon,
the associated HJB equation is

−Vt − max
0≤π≤f(x)

(1
2
σ2π2Vxx + µπVx

)
− rxVx = 0.

When

Vx > 0, Vxx < 0, (1.1)

the optimal strategy follows

π∗ = argmax
0≤π≤f(x)

(1
2
σ2π2Vxx + µπVx

)
= min

{
− µ

σ2

Vx

Vxx
, f(x)

}
. (1.2)

If π∗ = f(x), the borrowing rate reaches its upper limit, the corresponding HJB
equation is a linear partial differential equation

−Vt −
1

2
σ2f2(x)Vxx − µf(x)Vx − rxVx = 0.

if π∗ < f(x), the constraint is loose, V satisfies a fully nonlinear equation

−Vt +
µ2

2σ2

V 2
x

Vxx
− rxVx = 0.

The continuous-time optimal investment problem boils down to a free boundary
problem. Our model’s free boundary is a time-wealth curve, by which the whole
domain is divided into two regions based on different types of investment policy.

The topics covered in free boundary problems are diverse, including insurance
risk control, option pricing, credit default risk, and portfolio optimization. For
example, Asmussen and Taksar [1] study a dividend payout problem of an insurance
company under a controlled diffusion model, where dividend strategies depend on
the wealth of the insurance company. Yang, Yi and Dai [21] formulate a pricing
model of a strike reset option as a free boundary problem where the free boundary
corresponds to the optimal reset strategy adopted by the holder of the option. Hu,
Liang and Wu [11] propose a free boundary model for pricing a corporate bond with
credit rating migration. Guan et al. [9] investigate an optimal stopping problem for
an investor whose utility is nonsmooth and nonconcave over a finite time horizon.
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Mathematically, the free boundary problem can be distinguished into infinite and
finite time horizon problems. In infinite time scenarios, such as perpetual American
option pricing, dividend problem with unrestricted dividend rate, where the free
boundary degenerates to a point, explicit characterization can be derived by smooth
pasting, see [20] for a relatively complete exposition. While in the finite horizon
case, technically, it is more complicated than the former. A partial differential
equation implicitly specifies the solution to the free boundary problem, and the
free boundary is determined by the domain over which the PDE must be solved.
Due to its analytical intractability resulting from an additional time variable in the
associated HJB equation, we turn to investigate the regularity of the solution to
associated PDE and the properties of free boundary using techniques derived from
theories in the field of differential equations (See eg., Friedman [5, 6], Gilbarg and
Trudinger [7], Guan, Yi and Chen [10], Lieberman[15]).

In our problem, we impose quadratic differentiable and linear growth condi-
tions on f(x). We show that the value function is cubically differentiable in x
and quadratically differentiable in t, namely, V ∈ C3,2. In particular, we provide
conditions for the existence of the free boundary when f(x) is confined to a linear
function. Moreover, we prove that the free boundary is continuous and smooth
when the relative risk aversion coefficient is relatively small. In the previous work,
the closest one to us is Zariphopoulou [22], where they also incorporate the borrow-
ing constraint in the investment decision. We differ from their work in two aspects.
First, we apply PDE techniques to present rigorous proof of a classical solution’s ex-
istence and uniqueness to the value function. Second, we further investigate the free
boundary properties governed by a linear and a fully nonlinear partial differential
equation.

The main contributions of this paper are listed as follows. We formulate our
problem into a free boundary problem for a fully nonlinear equation and a linear
equation and prove that the solution belongs to C3,2 space. Moreover, we present
the existence and smoothness of the free boundary. The techniques established here
are also applicable to other similar problems.

The remainder of this paper is organized as follows. Section 2 formulates a dy-
namic investment model and provide some properties of the value function. Section
3 gives the HJB equation and presents the main results of the solution listed in
Theorem 3.1. In Section 4, we discuss the existence, uniqueness and smoothness
of the free boundary and estimate the upper bound when f(x) is a linear function.
Numerical examples are shown to visualize the free boundary in Section 5. We prove
Theorem 3.1, Lemma A.4 and Theorem 3.2 in Appendix A, B, and C, respectively.

2. Model formulation. We consider a financial market with two financial instru-
ments: a bond and a stock. The price of bond S0 follows an ordinary differential
equation:

dS0
t = rS0

t dt,

where r is the risk free interest rate. The price of stock can be described by the
classical Black-Sholes dynamics:

dS1
t = S1

t

(
(r + µ)dt+ σdBt

)
,

We assume the investor can trade continuously during the whole period [0, T ].
By denoting πt as dollar amount invested in risky asset, the wealth process of the
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investor becomes{
dXs =

(
rXs + µπs

)
ds+ σπsdBs, t ≤ s ≤ T,

Xt = x,
(2.1)

where x > 0 is the current endowment of the investor, the objective of the investor is
to choose the optimal investment strategy πs to maximize the expected (discounted)
utility of her terminal wealth

Et,x

[
e−β(T−t)U(XT )

]
,

where Et,x[·] represents the conditional expectation E[·|Xt = x], β is a constant
discount factor, and U : R+ → R is a concave function.

Denote L2
F ([0, T ];R) as the set of all R-valued, Ft- progressively measurable

process g(t, ω) satisfying E
∫ T

0
|g(t, ω)|2dt < +∞. It requires πs ∈ L2

F ([t, T ];R)
such that (2.1) admits a unique solution. Meanwhile, no bankruptcy is allowed in
this paper that

Xs ≥ 0, t ≤ s ≤ T.

In practice, the trading constraint on stock always exists partly due to the exis-
tence of leverage (borrowing) constraint, as pointed out in the introduction. Other
practical examples, such as Basel Accord imposes a leverage ceiling on banks to
prevent them expand the balance sheets. Mutual funds are also faced with leverage
monitor by Securities Regulatory Commission. Thus, in many cases, the leverage
available need not meet the demand for credit. These scenarios motivate us to
consider the investment strategy subject to an upper bound that

πs ≤ f(Xs), s ∈ [t, T ].

Specifically, we assume upper bound is a time invariant function of Xs, on which
we impose a quadratic and linear growth condition that

f ∈ C2([0,+∞)), (2.2)

0 ≤ f(x) ≤ kx+ b, (2.3)

0 ≤ f ′(x) ≤ k, (2.4)

where k, b are positive constants. Then the admissible investment strategy set can
be written as

Πt := {πs ∈ L2
F ([t, T ];R) | πs ≤ f(Xs), Xs ≥ 0, ∀s ∈ [t, T ]}.

The constant relative risk aversion (CRRA) utility function is commonly employed
to measure investors’ attitudes towards risk. In this paper, we adopt the CRRA util-
ity function and assume the predetermined discounted factor β is zero for analytical
simplicity, i.e., the value function is defined as

V (x, t) = sup
πs∈Πt

Et,x

[X1−γ
T

1− γ

]
(2.5)

for γ > 0 and γ ̸= 1.
If there is no upper bound restriction for πt, i.e. f(x) ≡ +∞, the explicit solution

of (2.5) can be expressed by

V := eρ(T−t) x
1−γ

1− γ
,

where ρ := µ2(1− γ)/(2σ2γ)+r(1−γ). In this case, the optimal investment strategy
π̄t is proportional to current wealth, namely, πt := κXt, where κ := µ/(σ2γ).
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If we choose admissible strategy πs ≡ 0, the particular solution is

V := eη(T−t) x
1−γ

1− γ
,

where η := r(1− γ). Hence, we get an upper bound and a lower bound on V :

V ≤ V ≤ V . (2.6)

If k ≥ κ, then πt = κXt < kXt + b, namely the constraint on πt is not tight, so we
have V = V . Thus, we only need to discuss the case of k < κ.

Due to the fact that the utility function U(x) = x1−γ/(1− γ) is increasing and
concave, It is not hard to prove that V is also increasing and concave with respect
to x. Thus Vx(·, t) is finite almost everywhere for each t. Moreover, according to
the concavity property, we get

V (λx, t)− V (x, t)

(λ− 1)x
≤ Vx(x, t) ≤

V (x, t)− V (x/2, t)

x/2
,

for any λ > 1. Using (2.6), we have

V (x, t)− V (x/2, t)

x/2
≤ V (x, t)− V (x/2, t)

x/2
= Cx−γ ,

where

C =
2eρ(T−t) − 2γeη(T−t)

1− γ
> 0.

On the other hand, using (2.6) again, we get

V (λx, t)− V (x, t)

(λ− 1)x
≥ V (λx, t)− V (x, t)

(λ− 1)x
= Cx−γ ,

where

C =
eη(T−t)λ1−γ − eρ(T−t)

(λ− 1)(1− γ)
,

It is positive if we choose λ > exp( (ρ−η)T
1−γ ). Therefore, we get a growth condition

on Vx as

Cx−γ ≤ Vx ≤ Cx−γ . (2.7)

Then we have a boundary condition on x = 0 that

Vx(0+, t) = +∞.

3. HJB equation. Applying dynamic programming method, we obtain the asso-
ciated HJB equation of problem (2.5) with terminal-boundary condition:

−Vt − max
0≤π≤f(x)

(
1
2σ

2π2Vxx + µπVx

)
− rxVx = 0 in Ω := (0,+∞)× [0, T ],

Vx(0+, t) = +∞, 0 < t < T,

V (x, T ) = x1−γ

1−γ , x > 0.

(3.1)

The following theorem gives that this fully nonlinear problem has a unique classical
solution.
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Theorem 3.1. Suppose f(x) satisfies conditions (2.2)-(2.4), then there exists a
unique classical solution V to Problem (3.1), and its first order partial derivatives

Vt, Vx ∈ C2,1(Ω). (3.2)

Moreover, there exist the following estimates

eN(T−t) x
1−γ

1− γ
− CT ≤V ≤ eM(T−t)2γ

x1−γ

1− γ
+ CT , (3.3)

eN(T−t)x−γ ≤Vx ≤ eM(T−t)2γx−γ , (3.4)

Vxx < 0, (3.5)

Vxt ≤ −NVx (3.6)

where M and N are constants, defined as

M : =
µ2(γ + 1)

2σ2γ
+ (µKf + r) +

1

2
γ(γ + 1), Kf := sup

x∈[0,+∞)

f ′(x),

N : = − (µ+ σ2Kf )
2

2σ2

γ

γ + 1
− rγ + (µkf + r), kf := inf

x∈[0,+∞)
f ′(x),

and CT > 0 only depends on T .

Proof. We put it in Section A.

Combining the regularity of the solution of Problem (3.1) and stochastic control
theory, we can prove the verification theorem.

Theorem 3.2. If the upper bound function f(x) satisfies condition (2.2)-(2.4),
then the solution of problem (3.1) is the value function defined in (2.5).

Proof. See Appendix C.

4. The free boundary for the case f(x) = kx+ b. Based on Theorem 3.1, the
HJB equation in (3.1) can be rewritten as{

−Vt +
µ2

2σ2

V 2
x

Vxx
− rxVx = 0, if − µ

σ2
Vx

Vxx
< f(x),

−Vt − 1
2σ

2f2(x)Vxx − µf(x)Vx − rxVx = 0, if − µ
σ2

Vx

Vxx
≥ f(x).

(4.1)

It is a free boundary problem consisting of a fully nonlinear equation and a linear
equation.

In this section, we consider a special case of the trigger bound f(x) with a linear
function that

f(x) = kx+ b,

where k, b > 0.
Define the following two regions

S := {(x, t)|π∗ < kx+ b}, R := {(x, t)|π∗ = kx+ b},

where

π∗ := min
{
− µ

σ2

Vx

Vxx
, kx+ b

}
, (4.2)

is the optimal investment on risky asset.
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4.1. The condition on the existence of free boundary. Before we discuss the
existence of these two regions, we present two lemmas.

Lemma 4.1. Let

θ :=
(µ+ σ2k)2

µ2

γ

γ + 1
+

2σ2rγ

µ2
− 2σ2k

µ
− 1,

we have the estimation

∂x

( Vx

Vxx

)
≤ θ in S. (4.3)

Proof. Differentiating the first equation of (4.1) w.r.t. x we have

−Vxt −
µ2

2σ2

( Vx

Vxx

)2

Vxxx − rxVxx + (
µ2

σ2
− r)Vx = 0 in S.

Dividing by Vx and noting that

Vxxx = − (Vxx)
2

Vx

[
∂x

( Vx

Vxx

)
− 1

]
we obtain

−Vxt

Vx
+

µ2

2σ2
∂x

( Vx

Vxx

)
− µ2

2σ2
− rx

Vxx

Vx
+ (

µ2

σ2
− r) = 0 in S.

Using (3.5) and (3.6), namely,

Vxx < 0, Vxt ≤ NVx,

we get

∂x

( Vx

Vxx

)
≤ 2σ2

µ2
(r −N)− 1 = θ in S.

Lemma 4.2. For any t ∈ [0, T ],

lim
x→0

π∗(x, t) = 0. (4.4)

Proof. We first prove that for any t ∈ [0, T ],

lim inf
x→0

π∗(x, t) = 0. (4.5)

If it is not true, there exist t0 ∈ [0, T ] and δ > 0, such that

π∗(x, t0) ≥ δ, x ∈ (0, δ),

which implies

− µ

σ2

Vx

Vxx
(x, t0) ≥ δ, x ∈ (0, δ).

So

ln(Vx(δ, t0))− ln(Vx(x, t0)) =

∫ δ

x

Vxx

Vx
(y, t0)dy ≥ − µ

σ2δ
(δ − x), x ∈ (0, δ).

Using the first inequality in (3.4), we derive

ln(Vx(δ, t0))−N(T − t) + γ lnx ≥ − µ

σ2δ
(δ − x), x ∈ (0, δ).

Taking x → 0+, we get a contradiction that −∞ ≥ µ/σ2. Therefore, (4.5) holds.
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Furthermore, by (4.3) we have

lim
x→0

π∗(x, t) = lim inf
x→0

π∗(x, t) = 0.

Intuitively, investors tend to fully invest in the riskless asset for value maintenance
when they are on the brink of bankruptcy. Our lemma proves that the optimal
investment strategy in risky assets is zero when the wealth state is close to zero,
which is consistent with the practice.

The following proposition gives the condition of the existence of R.

Proposition 4.3. If k ≥ κ = µ/(σ2γ), we have

π∗(x, t) < kx+ b, ∀x > 0, 0 ≤ t ≤ T,

namely R = ∅. Otherwise, if k < κ = µ/(σ2γ), then for any t ∈ [0, T ], we have

{x > 0|π∗(x, t) = kx+ b} ≠ ∅. (4.6)

Proof. If k ≥ κ = µ/(σ2γ), according to the discussion in Section 2, π∗(x, t) = κx <
kx+ b.

In the case that k < κ, if (4.6) fails, there exists a t0 ∈ [0, T ], such that π∗(x, t0) <
kx+ b for all x > 0, i.e.,

− µ

σ2

Vx

Vxx
(x, t0) < kx+ b, x > 0.

Note that

ln(Vx(x, t0))− ln(Vx(1, t0)) =

∫ x

1

Vxx

Vx
(y, t0)dy

< − µ

σ2

∫ x

1

1

ky + b
dy = − µ

σ2k

(
ln(kx+ b)− ln(k + b)

)
.

Using the first inequality in (3.4), we have

N(T − t)− γ lnx− ln(Vx(1, t0)) < − µ

σ2k

(
ln(kx+ b)− ln(k + b)

)
.

Dividing by lnx and taking x → +∞ we get −γ ≤ −µ/(σ2k), which is a contradic-
tion.

Now, we define a function

g(t) := inf{x > 0|π∗(x, t) = kx+ b}.

Due to (4.4) and (4.6), we obtain 0 < g(t) < +∞ when k < κ := µ/(σ2γ). We
know from the definition of g(t) that {(x, t)|x < g(t)} ⊂ S. But up to now, whether
π∗(x, t) = kx + b when x ≥ g(t) is still unknown. In other words, we could not
ascertain g(t) is the unique free boundary line. In the next section, we will prove
g(t) is the unique and smooth free boundary when γ is small enough.
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4.2. The smoothness of free boundary for small γ.

Theorem 4.4. If γ is small enough such that

q := − (µ+ σ2k)2

σ2µ

γ

γ + 1
− 2rγ

µ
+

µ

σ2
+ k > 0,

(which implies k < κ), the free boundary line g(t) is unique, i.e.,

S = {(x, t)|x < g(t)}, R = {(x, t)|x ≥ g(t)}. (4.7)

Moreover, we have g ∈ C1([0, T ]) and

0 < g(t) ≤ b

q
,

g(T ) =
b

µ
σ2γ − k

> 0. (4.8)

Proof. Define

I(x, t) := − µ

σ2

Vx

Vxx
− (kx+ b). (4.9)

Note that (3.2) and Vxx(g(t), t) ̸= 0 imply I ∈ C1,1 in a neighborhood of the line
x = g(t). Using (4.3) we get

Ix ≥ − µ

σ2
θ − k

≥ − µ

σ2

( (µ+ σ2k)2

µ2

γ

γ + 1
+

2σ2rγ

µ2
− 2σ2k

µ
− 1

)
− k

= q > 0 in S,

which implies {(x, t)|x ≥ g(t)} ⊂ R, and will imply (4.7).
Since I(g(t), t) = 0 and I(0+, t) = −b (by Lemma 4.2), combining with Ix ≥ q >

0 when x < g(t), we have

b = I(g(t), t)− I(0+, t) ≥ qg(t),

which implies

g(t) ≤ b

q
.

Now, we prove the continuity of g(t). Suppose it is not true, there exists a
t0 ∈ [0, T ] such that g(t) is discontinuous at t0, i.e.,

x1 := lim inf
t→t0

g(t) < x2 := lim sup
t→t0

g(t), (4.10)

by the continuity of I defined by (4.9), we have I(x, t0) = 0, ∀x ∈ [x1, x2], thus
Ix(x, t0) = 0, ∀x ∈ [x1, x2]. However, since Ix ≥ q in S and the continuity of
Ix, we have Ix(x1, t0) ≥ q > 0. This contradiction implies (4.10) is impossible.
Consequently, g(t) ∈ C([0, T ]).

Now, we prove g(t) ∈ C1([0, T ]). Note that

I(g(t), t) = 0, t ∈ [0, T ].

It follows from implicit differentiation that

Ix(g(t), t)g
′(t) + It(g(t), t) = 0, t ∈ [0, T ].
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Note that Ix ≥ q in S and the continuity of Ix imply Ix(g(t), t) > 0. Then we can
derive

g′(t) =
It(g(t), t)

Ix(g(t), t)
∈ C([0, T ]),

Thus g(t) ∈ C1([0, T ]).
Finally, we ascertain g(T ). The terminal condition V (x, T ) = x1−γ/(1− γ) leads

to

− µ

σ2

Vx

Vxx
(x, T ) =

µ

σ2

1

γ
x.

Thus g(T ) is the root of the equation

µ

σ2

1

γ
x = kx+ b.

Then we have (4.8). The proof is complete.

5. A numerical example. We provide numerical results to the free boundary and
with the following parameters unless otherwise specified:

γ = 0.5, µ = 0.4, σ2 = 0.35, r = 0.05, T = 3, k = 1.2, b = 1.5.

which satisfy the conditions in Theorem 4.4. We approximate the problem in a
bounded domain [xmin, xmax]× [0, T ] with boundary conditions

V
∣∣
x=xmin

= 0, Vx

∣∣
x=xmax

= 0.

and further choose the following parameters:

∆x = 0.01, ∆t = 0.001, xmin = 0.01, xmax = 50,

where ∆t is the time step size and ∆x is the value size. We change the direction of
time by taking τ = T − t as remaining maturity. Figure 1 depicts the free boundary
g(τ) for different parameters k and b. We can see that the free boundary is a smooth
curve, which is consistent with the result of Theorem 4.5. Besides, with different
coefficients in f(x), the corresponding free boundaries all exhibit decreasing trends
as time approaches maturity.

0 0.5 1 1.5 2 2.5 3

x

0

0.5

1

1.5

2

2.5

3

S R

k =1.3
k = 1.2
k = 1.1

0 0.5 1 1.5 2 2.5 3

x

0

0.5

1

1.5

2

2.5

3

S R

b = 1.5
b = 1.2
b =0.9

Figure 1. Free boundaries with various k and b
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Appendix A. The proof of Theorem 3.1.

A.1. The equation on W := Vx. Now, we derive the equation on W := Vx and
discuss its regularity. The advantage is that it can transform the fully non-linear
equation of V into a quasilinear equation of W .

From (4.2) we see that the optimal π∗ is a function of Vx/Vxx and x, we define
this function by

A(z, x) := min
{
− µ

σ2
z, f(x)

}
, z < 0, x > 0.

For convenience of discussion, set A(z, x) = f(x) if z ≥ 0 such that

A(z, x) =

{
− µ

σ2 z, if 0 < − µ
σ2 z < f(x),

f(x), others.

Then we can write

π∗ = A
( Vx

Vxx
, x

)
.

Without precluding the case Vxx = 0, we further define

A(±∞, x) := lim
z→±∞

A(z, x) = f(x),

Az(±∞, x) := lim
z→±∞

Az(z, x) = 0,

Ax(±∞, x) := lim
z→±∞

Ax(z, x) = f ′(x).

Furthermore, if we regard π∗ as a function of (Vx, Vxx, x), which is denoted by

G(u, v, x) := A
(u
v
, x

)
.

We found that it is Lipschitz continuous in [ε,+∞) × (−∞,+∞) × [0, L] for any
fixed ε, L > 0 since

|Gu(u, v, x)| =
∣∣∣Az(

u

v
, x)

1

v

∣∣∣ = − µ

σ2

u

v

1

u
≤ f(L)

ε
,

|Gv(u, v, x)| =
∣∣∣−Az(

u

v
, x)

u

v2

∣∣∣ = σ2

µ
(− µ

σ2

u

v
)2
1

u
≤ σ2

µ

f2(L)

ε

if 0 < − µ
σ2

u
v < f(x) and G(u, v, x) = f(x) ∈ C1(R+) if − µ

σ2
u
v ≥ f(x) or − µ

σ2
u
v ≤ 0.

Now, (3.1) can be rewritten as the following terminal-boundary value problem
on fully nonlinear equation.

−Vt − LV = 0 in Ω,
Vx(0+, t) = +∞, 0 < t < T,

V (x, T ) = x1−γ

1−γ , x > 0,
(A.1)

where the operator L is defined by

LV :=
1

2
σ2A2

( Vx

Vxx
, x

)
Vxx + µA

( Vx

Vxx
, x

)
Vx + rxVx.

Note that if

0 < − µ

σ2

Vx

Vxx
< f(x),

then

∂x(LV ) =
µ2

2σ2

( Vx

Vxx

)2

Vxxx − µ2

σ2
Vx + rxVxx + rVx,
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otherwise,

∂x(LV ) =
1

2
σ2f(x)2Vxxx + (µ+ σ2f ′(x))f(x)Vxx + rxVxx + (r + µf ′(x))Vx,

they can be merged into

∂x(LV ) =
1

2
σ2A2

( Vx

Vxx
, x

)
Vxxx +

(
µ+ σ2f ′(x)

)
A
( Vx

Vxx
, x

)
Vxx

+ rxVxx +
(
r + µf ′(x)

)
Vx,

which is a quasilinear operator on Vx, we denote it by T , i.e.,

T W :=
1

2
σ2A2

( W

Wx
, x

)
Wxx +

(
µ+ σ2f ′(x)

)
A
( W

Wx
, x

)
Wx

+ rxWx +
(
r + µf ′(x)

)
W, (A.2)

thus, W = Vx satisfies the following terminal-boundary value problem −Wt − T W = 0 in Ω,
W (0+, t) = +∞, 0 < t < T,
W (x, T ) = x−γ , x > 0.

(A.3)

A.2. Approximation method. If we regard equations in (A.1) and (A.3) as linear
equations, coefficients of the second order term will not have positive lower bounds,
i.e. (A.1) and (A.3) will not satisfy the parabolic condition. Therefore, we define

LεV := LV +
ε2

2
Vxx

and

TεW := T W +
ε2

2
Wxx.

Denote

Qε := (ε,
1

ε
)× [0, T ].

Consider the following approximation problem of (A.3) in bounded domain
−W ε

t − TεW ε = 0 in Qε,

W ε(ε, t) = eN
+(T−t)ε−γ , 0 < t < T,

(εγW ε +W ε
x)(

1
ε , t) = 0, 0 < t < T,

W ε(x, T ) = x−γ , ε < x < 1
ε ,

(A.4)

where N+ = max{N, 0}. We will begin with problem (A.4) to prove the existence
and the properties of solution to the origin problem (A.1).

To the approximation problem (A.4), we have

Lemma A.1. If the upper bound function f(x) satisfies conditions (2.2)-(2.4),
there exists a unique solution W ε ∈ C2,1(Qε)∩C(Qε) of problem (A.4). Moreover,
it satisfies

eN(T−t)x−γ ≤ W ε ≤ eM(T−t)2γ(x+ ε)−γ , (A.5)

where M, N are positive constants defined in Theorem 3.1.
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Proof. Using the Leray-Schauder fixed point theorem (see [5] or [7]) and embedding
theorem (see [5]) we can prove problem (A.4) has at least a solution belongs to the
space {

W ε ∈ C1+α, 1+α
2

(
Qε

) ∣∣ 0 ≤ W ε ≤ eTN+

ε−γ
}

for some 0 < α < 1. Moreover, Schauder estimation (see [12]) implies this solution
W ε ∈ C2+α,1+α

2

(
Qε

)
.

Now we give the proof to (A.5). Denote

ϕ(x, t) := eN(T−t)x−γ .

Note that

ϕ > 0, ϕx < 0, ϕxx > 0.

So we have

−ϕt − Tεϕ =− ϕt −
1

2
σ2A2

( ϕ

ϕx
, x

)
ϕxx − ε2

2
ϕxx

−
(
µ+ σ2f ′(x)

)
A
( ϕ

ϕx
, x

)
ϕx − rxϕx −

(
r + µf ′(x)

)
ϕ

≤− ϕt +max
a∈R

(
− 1

2
σ2a2ϕxx −

(
µ+ σ2f ′(x)

)
aϕx

)
− rxϕx −

(
r + µf ′(x)

)
ϕ

≤− ϕt +

(
µ+ σ2f ′(x)

)2

ϕ2
x

2σ2ϕxx
− rxϕx −

(
r + µf ′(x)

)
ϕ

≤eN(T−t)x−γ
(
N +

(
µ+ σ2Kf

)2

2σ2

γ

γ + 1
+ rγ −

(
r + µkf

))
=0.

Since ϕ(ε, t) = eN(T−t)ε−γ ≤ eN
+(T−t)ε−γ = W ε(ε, t), (εγϕ + ϕx)(

1
ε , t) = 0 =

(εγW ε+W ε
x)(

1
ε , t) and ϕ(x, T ) = x−γ = W ε(x, T ), we can obtain the first inequality

in (A.5) by using the comparison principle to the quasilinear equation (see [6] or
[18]).

Similarly, denote

Φ(x, t) := eM(T−t)2γ(x+ ε)−γ .

Note that

Φ > 0, Φx < 0, Φxx > 0, A
( Φ

Φx

)
≤ µ

σ2

∣∣∣ Φ
Φx

∣∣∣.



1928 CHONGHU GUAN, XUN LI, RUI ZHOU AND WENXIN ZHOU

So we have

−Φt − TεΦ =− Φt −
1

2
σ2A2

( Φ

Φx
, x

)
Φxx − ε2

2
Φxx −

(
µ+ σ2f ′(x)

)
A
( Φ

Φx
, x

)
Φx

− rxΦx −
(
r + µf ′(x)

)
Φ

≥− Φt −
µ2

2σ2

( Φ

Φx

)2

Φxx − ε2

2
Φxx −

(
r + µf ′(x)

)
Φ

≥eM(T−t)2γ
[
(x+ ε)−γ

(
M − µ2(γ + 1)

2σ2γ
− (r + µf ′(x))

)
− ε2

2
γ(γ + 1)(x+ ε)−γ−2

]
≥eM(T−t)2γ(x+ ε)−γ

(
M − µ2(γ + 1)

2σ2γ
− (r + µKf )−

1

2
γ(γ + 1)

)
=0.

Due to the fact that M ≥ N+ and 2γ(x + ε)−γ ≥ x−γ , ∀x ≥ ε, we get Φ(ε, t) ≥
W ε(ε, t) and Φ(x, T ) ≥ W ε(x, T ). Moreover, (εγΦ+Φx)(

1
ε , t) = eM(T−t)2γγε2( 1ε +

ε)−γ−1 ≥ 0. According to the comparison principle to quasilinear equation, the
second inequality in (A.5) holds.

Proposition A.2. For ε > 0, we have

W ε
x ≤ 0. (A.6)

Proof. It is easy to prove that the function h(x, t) := eN
+(T−t)ε−γ is a super-solution

to problem (A.4), together with W ε(ε, t) = h(ε, t), we have W ε
x(ε, t) ≤ hx(ε, t) =

0. The right boundary condition in (A.4) yields W ε
x(

1
ε , t) = −εγW ε( 1ε , t) ≤ 0.

Combining with terminal condition W ε
x(x, T ) = −γx−γ−1 < 0, (A.6) holds on the

parabolic boundary of Qε.
Taking derivative to the equation in (A.4) with respect to x, we obtain the

following equation on W ε
x in divergence form as follows

− ∂tW
ε
x − ∂x

[(σ2

2
A2 +

ε2

2

)
∂xW

ε
x

]
−
[(

µ+ σ2f ′(x)
)
A+ rx

]
∂xW

ε
x

−
(
µ+σ2f ′(x)

)[(
1−W εW ε

xx

(W ε
x)

2

)
Az+Ax

]
W ε

x −
[
σ2f ′(x)′A+µf ′(x)+2r

]
W ε

x = 0.

where we slightly abuse the notation for simplicity that

A = A
(W ε

W ε
x

, x
)
, Ax = Ax

(W ε

W ε
x

, x
)
, Az = Az

(W ε

W ε
x

, x
)
.

After adjustment, we get

− ∂tW
ε
x − ∂x

[(σ2

2
A2 +

ε2

2

)
∂xW

ε
x

]
−
[(

µ+ σ2f ′(x)
)
A−

(
µ+ σ2f ′(x)

)
Az

W ε

W ε
x

+ rx
]
∂xW

ε
x

−
[(

µ+ σ2f ′(x)
)(

Az +Ax

)
+ σ2f ′(x)′A+ µf ′(x) + 2r

]
W ε

x = 0. (A.7)

Note that

A
(W ε

W ε
x

, x
)
, Az

(W ε

W ε
x

, x
)W ε

W ε
x

, Ax

(W ε

W ε
x

, x
)
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are bounded in [ε, ε−1] × [0, T ]. Using the maximum principle of divergence form
(see [6] or [18]), we obtain W ε

x ≤ 0.

Proposition A.3. For any ε > 0, we have

W ε
t ≤ −NW ε. (A.8)

Proof. Denote w(x, t) := e−N(T−t)W ε(x, t) and w(x, t) = w(x, t− h). Then both w
and w satisfy the same following equation

−wt − Tεw +Nw = 0.

The first inequality in (A.5) yields w ≥ xγ , which implies

w(x, T ) = xγ ≤ w(x, T − h) = w(x, T ).

Since w(ε, t) = e(N
+−N)(T−t)ε−γ and (εγw + w)( 1ε , t) = 0 are decreasing in t, by

comparison principle, we get w ≥ w in Qε, i.e. w := e−N(T−t)W ε(x, t) is decreasing
in t, which implies the desired result (A.8).

The following lemma shows that the equation in (A.4) satisfies the uniform par-
abolic condition interior.

Lemma A.4. For any d > a > 0, there exists a δ > 0, which is independent of ε
(but depends on a, d), such that

A
(W ε

W ε
x

, x
)
≥ δ, (x, t) ∈ [a, d]× [0, T ].

Proof. Since the proof is somewhat technical, we put it in Appendix B.

Now, suppose W ε is the solution of (A.4), and define

V ε(x, t) =

∫ x

1

W ε(y, t)dy +

∫ T

t

hε(t)dt+
1

1− γ
, (A.9)

where

hε(t) :=
1

2
σ2A2

(W ε

W ε
x

, x
)
W ε

x +
ε2

2
W ε

x + µA
(W ε

W ε
x

, x
)
W ε + rxW ε

∣∣∣∣∣
(1,t)

.

Then V ε
x = W ε. So we have

∂x(−V ε
t − LεV

ε) = −W ε
t − TεW ε = 0.

Moreover, note that
(−V ε

t − LεV
ε)(1, t) = 0,

we derive

(−V ε
t − LεV

ε)(x, t) = (−V ε
t − LεV

ε)(1, t) +

∫ x

1

∂x(−V ε
t − LεV

ε)(y, t)dy = 0.

Therefore, V ε satisfies the following equation.{
−V ε

t − LεV
ε = 0 in Qε,

V ε(x, T ) = x1−γ

1−γ , ε < x < 1/ε.
(A.10)

Lemma A.5. There exists a 0 < α < 1 such that, for any [a, d] ⊂ (0,+∞),

|V ε|
C3+α, 3+α

2 ([a,d]×[0,T ])
≤ C, (A.11)

where C is independent of ε.
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Proof. Note that W ε is uniformly bounded in any bounded region [a, d]×[0, T ] ⊂ Ω.
Since the coefficients of the second derivative of (A.4) have uniform positive upper
and lower bounds which are independent of ε in [a, d] × [0, T ], i.e., (A.4) satisfies
the uniform parabolic condition in [a, d]× [0, T ]. Taking Cα,α2 interior estimate (see
[6] or [15]), we obtain

|W ε|
Cα, α

2 ([a,d]×[0,T ])
≤ C, (A.12)

where C is independent of ε. Using Cα,α2 interior estimate to (A.7) yields

|W ε
x |Cα, α

2 ([a,d]×[0,T ])
≤ C. (A.13)

Therefore, according to the definition in (A.9), V ε is uniformly bounded in [a, d]×
[0, T ]. Using Cα,α2 interior estimate to (A.10), we derive

|V ε|
Cα, α

2 ([a,d]×[0,T ])
≤ C.

According to (A.12), (A.13) and the equation in (A.10), we have

|V ε
t |Cα, α

2 ([a,d]×[0,T ])
≤ C.

Hence, |V ε|
C2+α,1+α

2 ([a,d]×[0,T ])
is uniformly bounded. Furthermore, taking Schauder

interior estimate to (A.4) (see [5] or [15]), we have

|V ε
x |C2+α,1+α

2 ([a,d]×[0,T ])
≤ C,

which implies the desired result (A.11).

A.3. Existence and uniqueness of solution to the original problem. By

Lemma A.5, problem (A.10) has at least one solution V ε ∈ C3+α, 3+α
2 ([ε, 1

ε ]× [0, T ]),
such that for any region Q = [a, d]× [0, T ] ⊂ Ω, there exists a subsequence, which is

denoted by V ε, satisfying V ε → V in C3, 32 (Q). Therefore, V satisfies the equation
and the terminal condition of (A.1).

Taking derivative for the PDE in (A.1) with respect to t, we obtain the following
equation

−∂tVt −
1

2
σ2A2

( Vx

Vxx
, x

)
∂xxVt − µA

( Vx

Vxx
, x

)
∂xVt − rx∂xVt = 0.

Since V ∈ C3+α, 3+α
2 (Ω) and A( Vx

Vxx
, x) belongs to Cα,α2 with positive upper and

lower bounds in any bounded region contained in Ω, we obtain

Vt ∈ C2,1(Ω)

using Schauder interior estimate.
Following from (A.5) and (A.8) we have (3.4) and (3.6). (A.6) implies (3.5).

Also, we derive (3.3) from (A.9).
Finally, we prove its uniqueness. Suppose that V1, V2 ∈ C2,1(Ω) are two solutions

to problem (3.1) with the growth condition:

|Vi| ≤ C(x1−γ + 1), i = 1, 2, (A.14)

for a large constant C > 0.
Define a barrier function

ΦL := 4eβ(T−t)C
x2 + 1

L
in [0, L]× [0, T ],
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where β > 0 is undetermined. Note that

− ∂tΦ
L − sup

0≤π≤f(x)

(1
2
σ2π2∂xxΦ

L + µπ∂xΦ
L
)
− rx∂xΦ

L

=
4eβ(T−t)C

L

(
β(x2 + 1)− σ2f2(x)− 2µf(x)x− 2rx

)
.

We choose β large enough to get

− ∂tΦ
L − sup

0≤π≤f(x)

(1
2
σ2π2∂xxΦ

L + µπ∂xΦ
L
)
− rx∂xΦ

L ≥ 0.

Introducing V ε
2 (x, t) := V2(x+ ε, t), we derive

− ∂tV
ε
2 − sup

0≤π≤f(x)

(1
2
σ2π2∂xxV

ε
2 + µπ∂xV

ε
2

)
− rx∂xV

ε
2

≥− ∂tV
ε
2 − sup

0≤π≤f(x+ε)

(1
2
σ2π2∂xxV

ε
2 + µπ∂xV

ε
2

)
− r(x+ ε)∂xV

ε
2

=0.

Together with the equation

−∂tV1 − sup
0≤π≤f(x)

(1
2
σ2π2∂xxV1 + µπ∂xV1

)
− rx∂xV1 = 0,

we obtain

− ∂t

(
V1 − V ε

2 − ΦL
)
− sup

0≤π≤f(x)

[1
2
σ2π2∂xx

(
V1 − V ε

2 − ΦL
)

+ µπ∂x

(
V1 − V ε

2 − ΦL
)]

− rx∂x

(
V1 − V ε

2 − ΦL
)
≤ 0.

Moreover,

(V1 − V ε
2 − ΦL)(x, T ) =

x1−γ

1− γ
− (x+ ε)1−γ

1− γ
− ΦL(x, T ) ≤ 0,

and owing to (A.14) and ∂xV1(0+, t) = +∞, we have (V1 − V ε
2 −ΦL)(L, t) ≤ 0 and

∂x(V1−V ε
2 −ΦL)(0+, t) = +∞ ≥ 0, respectively. Applying the maximum principle,

we get V1 − V ε
2 −ΦL ≤ 0 in [0, L]× [0, T ]. For the fixed point (x, t) ∈ Ω, we choose

L satisfying x < L to get (V1 − V ε
2 − ΦL)(x, t) ≤ 0. Taking L → +∞ and ε → 0,

we have V1 ≤ V2.

Appendix B. The prove of Lemma A.4. By Lemma A.1, we know that W ε

has a uniform positive lower bound in [a, d]× [0, T ]. Hence, we only need to prove
the following result.

Lemma B.1. For any a > d > 0, there exists a C > 0 which is independent of ε,
such that

W ε
x ≥ −C in [a, d]× [0, T ]. (B.15)

Proof. Define

Sε =
{
(x, t) ∈ Ω

∣∣∣ − µ

σ2

W ε

W ε
x

< f(x) and W ε
x < 0

}
,

Rε =
{
(x, t) ∈ Ω

∣∣∣ − µ

σ2

W ε

W ε
x

≥ f(x) or W ε
x ≥ 0

}
.
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It is obvious that (B.15) holds in Rε∩([a, d]× [0, T ]). Now, we focus on Sε∩([a, d]×
[0, T ]). By the PDE of (A.4), we have

−W ε
t − µ2

2σ2

(W ε

W ε
x

)2

W ε
xx − ε2

2
W ε

xx − rxW ε
x + (

µ2

σ2
− r)W ε = 0 in Sε.

Note that

∂x

(W ε

W ε
x

)
= 1− W ε

(W ε
x)

2
W ε

xx and W ε
xx = − (W ε

x)
2

W ε

[
∂x

(W ε

W ε
x

)
− 1

]
.

Then we obtain

− W ε
t

W ε
+

1

2

[µ2

σ2
+ ε2

(W ε
x

W ε

)2]
∂x

(W ε

W ε
x

)
− 1

2

[µ2

σ2
+ ε2

(W ε
x

W ε

)2]
− rx

W ε
x

W ε
+ (

µ2

σ2
− r) = 0 in Sε.

Using (A.6) and (A.8), we get

∂x

(W ε

W ε
x

)
≤

2(N − µ2

σ2 + r) +
[
µ2

σ2 + ε2
(

W ε
x

W ε

)2]
µ2

σ2 + ε2
(

W ε
x

W ε

)2 in Sε. (B.16)

Let

λ := max
{
1,

2(N + r)− µ2

σ2

µ2

σ2

}
,

then

∂x

(W ε

W ε
x

)
≤ λ in Sε.

Thus,

∂x

( (W ε)−λ

W ε
x

)
= ∂x

(
(W ε)−(λ+1)W

ε

W ε
x

)
= (W ε)−(λ+1)

[
∂x

(W ε

W ε
x

)
− (λ+ 1)

]
≤ −(W ε)−(λ+1) in Sε.

According to estimation (A.5), there exist two constants C2 > C1 > 0 independent
of ε such that

C1 ≤ W ε ≤ C2, (x, t) ∈ [
a

2
, d]× [0, T ].

Hence, we obtain

∂x

( (W ε)−λ

W ε
x

)
≤ −C

−(λ+1)
2 in Sε ∩ [

a

2
, d]× [0, T ]. (B.17)

For any (x, t) ∈ Sε ∩ ([a, d] × [0, T ]), let y = sup{z ∈ (a/2, x)|(z, t) ∈ Rε}, then
we obtain {(z, t)|y < z < x} ⊂ Sε. If y = a/2, i.e., {(z, t)|a/2 < z < x} ⊂ Sε, by
(B.17), we get( (W ε)−λ

W ε
x

)
(x, t) ≤

( (W ε)−λ

W ε
x

)
(
a

2
, t)−

(
x− a

2

)
C

−(λ+1)
2

≤ −
(
x− a

2

)
C

−(λ+1)
2 ≤ −a

2
C

−(λ+1)
2 .
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Therefore,

W ε
x(x, t) ≥ −2

a
C

(λ+1)
2 (W ε)−λ(x, t) ≥ −2

a
C

(λ+1)
2 C−λ

1 ,

which implies (B.15).
Otherwise, if y > a/2, by (B.17), we obtain( (W ε)−λ

W ε
x

)
(x, t) ≤

( (W ε)−λ

W ε
x

)
(y, t) =

(W ε

W ε
x

1

(W ε)λ+1

)
(y, t)

= −σ2

µ
f(y)

1

(W ε)λ+1(y, t)
≤ −σ2

µ
f(

a

2
)

1

Cλ+1
2

,

which also implies (B.15).

Appendix C. The proof of Theorem 3.2. Suppose V is the solution of (3.1).
For fixed x > 0 and t < T and any admissible πs, supposeXs is the strong solution of
(2.1), we choose τn = inf{s ≥ t|Vx(Xs) ≥ n} such that Ys :=

∫ s∧τn
t

Vx(Xu)σπudWu

is a martingale and τn → +∞ when n → +∞. By Itô formula and the HJB equation
on V ,

Et,x[V (XT∧τn , T ∧ τn)]− V (x, t)

= Et,x

[ ∫ T∧τn

t

(
Vt +

1

2
σ2π2

sVxx + µπsVx − rxVx

)
(Xs, s)ds

]
≤ 0.

Using the estimate (3.3) we have

|V (XT∧τn , T ∧ τn)| ≤ C(1 + sup
s∈[t,T ]

|Xs|1−γ),

by the standard SDE theorem, the right hand side is integrable, so we can apply
the dominated convergence theorem and the terminal condition to obtain

V (x, t) ≥ Et,x[ lim
n→∞

V (XT∧τn , T ∧ τn)] = Et,x[U(XT )].

Therefore, we have

V (x, t) ≥ sup
πs∈Πt

Et,x[U(XT )].

On the other hand, suppose X∗
s is the solution of the following SDE{

dX∗
s =

(
rX∗

s + µπ∗(X∗
s , s)

)
ds+ σπ∗(X∗

s , s)dBs, t ≤ s ≤ T,
X∗

t = x.
(C.18)

Applying Itô formula to V (X∗
s , s) for s ∈ [t, T ](after an eventual localization for

removing the stochastic integral term in the expectation), we get

V (x, t) =Et,x[V (X∗
T , T )]− Et,x

[ ∫ T

t

(
Vt +

1

2
σ2π∗2

s Vxx + µπ∗
sVx − rxVx

)
(X∗

s , s)ds
]

=Et,x[V (X∗
T , T )]

=U(X∗
T ),

where π∗ is defined in (4.2). This shows that V (x, t) = sup
πs∈Πt

Et,x[U(XT )] and

π∗
t := π∗(X∗

t , t) is the optimal control.
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