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Abstract: The point spread function (PSF) effect exists ubiquitously in real remotely sensed data 15 
and such that the observed pixel signal is not only determined by the land cover within its own 16 
spatial coverage but also by that within neighboring pixels. The PSF, thus, imposes a fundamental 17 
limit on the amount of information captured in remotely sensed images and it introduces great 18 
uncertainty in the widely applied, inverse goal of spectral unmxing. Until now, spectral unmixing 19 
has erroneously been performed by assuming that the pixel signal is affected only by the land cover 20 
within the pixel, that is, ignoring the PSF. In this paper, a new method is proposed to account for 21 
the PSF effect within spectral unmxing to produce more accurate predictions of land cover 22 
proportions. Based on the mechanism of the PSF effect, the mathematical relation between the 23 
coarse proportion and sub-pixel proportions in a local window was deduced. Area-to-point kriging 24 
(ATPK) was then proposed to find a solution for the inverse prediction problem of estimating the 25 
sub-pixel proportions from the original coarse proportions. The sub-pixel proportions were finally 26 
upscaled using an ideal square wave response to produce the enhanced proportions. The 27 
effectiveness of the proposed method was demonstrated using two datasets. The proposed method 28 
has great potential for wide application since spectral unmixing is an extremely common approach 29 
in remote sensing. 30 
 31 

Keywords: Land cover, Spectral unmixing, Soft classification, Point spread function (PSF), 32 
Area-to-point-kriging (ATPK). 33 
 34 
 35 

1. Introduction 36 
 37 

Mixed pixels exist unaviodably in remotely sensed images. Mixed pixels cover more than one 38 
land cover class such that the observed spectrum is a composite of the individual spectra for the 39 
constituent land cover classes (also termed endmembers). Spectral unmixing is the goal of 40 
predicting the areal proportions of the land cover classes within mixed pixels and it has been 41 
investigated over two decades. It is beyond the scope of this paper to review explicitly the existing 42 
methods for spectral unmixing, but several reviews exist (Bioucas-Dias et al., 2012; Quintano et al., 43 
2012). The linear spectral mixture model (LSMM) (Heinz & Chang, 2001; Keshava & Mustard, 44 
2002) underpins the development of most of the existing spectral unmixing methods, with benefits 45 
including its clear physical interpretation and mathematical simplicity. LSMM assumes that the 46 
spectrum of a mixed pixel is a linear weighted sum of the endmembers. 47 
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Wang (2014) provided a comprehensive review of existing methods that incorporate spatial 82 
information in spectral unmixing. These methods mainly incorporate spatial information in 83 
endmember extraction, selection of endmember combinations and abundance estimation. However, 84 
very few methods consider the PSF effect from the viewpoint of the physical mechanism. That is, 85 
very few studies focus on how the neighboring pixels affect the center coarse pixel based on the 86 
PSF effect and consider how to eliminate such an effect. Townshend et al. (2000) and Huang et al. 87 
(2002) proposed a deconvolution method to reduce the influence of the PSF in proportion 88 
estimation. This method quantifies the contributions from neighbors on the basis of coarse 89 
pixel-level information and treats all sub-pixels locations in a coarse neighbor equally. However, 90 
different sub-pixel locations in the coarse neighbor have different spatial distances to the center 91 
coarse pixel and can have different influences on the center coarse proportion. Therefore, it is 92 
necessary to develop methods to consider the impact of neighbors at the sub-pixel scale. 93 

In this paper, we propose a new method to account for the PSF effect in spectral unmixing and 94 
produce more accurate proportion predictions. The method predicts the land cover proportions at a 95 
finer spatial resolution inversely from the original coarse proportions before predicting the 96 
enhanced proportions (i.e., the final predictions at the same coarse spatial resolution with the 97 
original proportions, but the PSF effect is reduced). Section 2 first introduces the mechanism of the 98 
PSF effect on spectral unmixing and deduces the mathematical relation between the coarse 99 
proportions and sub-pixel proportions of both the coarse center pixel and its coarse neighbors. 100 
Based on the deduced relation, the area-to-point kriging (ATPK) method is then introduced to 101 
predict the sub-pixel proportions from the original coarse proportions. For validation of the method, 102 
Section 3 provides and analyzes the experimental results for two datasets. The method is further 103 
discussed with several open issues in Section 4. A conclusion is provided in Section 5. 104 
 105 
 106 

2. Methods 107 
 108 

2.1. The effect of the PSF on spectral unmixing 109 
 110 

Suppose VS  is the spectrum of coarse pixel V, ( )kR  is the spectrum of class endmember k (k=1, 111 

2, …, K, where K is the number of land cover classes), and ( )VF k  is the proportion of class k within 112 

coarse pixel V. Based on the classical linear spectral mixture model, the spectrum of a coarse pixel 113 
is a linearly weighted spectra of endmembers, where the weights are class proportions within the 114 
coarse pixel: 115 

1

( ) ( )
K

V V
k

k F k


 S R .                                                         (1) 116 

Due to the PSF effect, the spectrum of coarse pixel V can be considered as a convolution of the 117 
spectra of sub-pixels 118 

V v Vh S S                                                                 (2) 119 

in which vS  is the spectrum of sub-pixel v, * is the convolution operator and Vh  is the PSF. The 120 

spectrum of sub-pixel v can be characterized as 121 

1

( ) ( )
K

v v
k

k F k


 S R                                                            (3) 122 

where ( )vF k  is the proportion of class k in sub-pixel v. Substituting Eq. (3) into Eq. (2), we have 123 
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 S R R .                                    (4) 124 

Comparing Eqs. (1) and (4), we can conclude 125 

( ) ( )V v VF k F k h  .                                                          (5) 126 

This means that the predicted coarse proportion (e.g., based on the classical linear spectral mixture 127 

model) within each coarse pixel, ( )VF k , is a convolution of the sub-pixel proportions.  128 

In theory, the true (i.e., ideal) coarse proportion (denoted as ( )VT k ) is identified as the average of 129 

all sub-pixel class proportions ( )vF k  within the center coarse pixel. That is, for ( )VT k , the PSF 130 

(denoted as Vh  ) is an ideal square wave filter 131 

1
, if ( , ) ( , )( , )

0, otherwise
V

i j V i jh i j 
    


.                                               (6) 132 

In Eq. (6),   is the areal ratio between the pixel sizes of V and v, (i, j) is the spatial location of the 133 

sub-pixel and ( , )V i j  is the spatial coverage of the coarse pixel V in which each sub-pixel located 134 

at (i, j) falls. Eq. (6) means that based on the square wave filter, only the sub-pixels within the 135 
coarse pixel V will affect the coarse pixel and, moreover, all of them will exert the same effect. The 136 

relation between ( )VT k  and ( )vF k  is expressed as 137 

( ) ( )V v VT k F k h   .                                                          (7) 138 

In reality, the PSF Vh  in Eq. (5) is different to the ideal square wave PSF Vh   in Eq. (7) (i.e., 139 

V Vh h  ). The spatial coverage of Vh  is generally larger than a coarse pixel extent and different 140 

sub-pixels may have different effects on the coarse pixel. For example, the PSF is often assumed to 141 
be a Gaussian filter (Huang et al., 2002; Townshend et al., 2000; Van der Meer, 2012) 142 

2 2

2 2

1
exp , if ( , ) ( , )( , ) 2 2

0, otherwise
V

i j
i j V i jh i j  

             

                               (8) 143 

where   is the standard deviation (i.e., the width of the Gaussian PSF) and ( , )V i j  is the spatial 144 

coverage of the local window centered at coarse pixel V ( ( , )V i j  is larger than ( , )V i j  in Eq. (6)). 145 

Based on the Gaussian PSF, ( )VF k  is actually a convolution of the sub-pixel proportions in the 146 

local window centered at the coarse pixel V, rather than being restricted to only the sub-pixel 147 
proportions within the coarse pixel V. Moreover, the sub-pixels with different spatial distances to 148 

the center coarse pixel will exert different effects on it. Thus, due to the PSF effect, ( )VF k  is 149 

actually contaminated by the sub-pixels surrounding the coarse pixel V. 150 

Evidently, the difference between Vh  and Vh   makes the predicted coarse proportion ( )VF k  151 

different to the ideal coarse proportion ( )VT k . The spectral unmixing predictions ( )VF k  can, 152 

however, be enhanced by considering the PSF effect. To produce more accurate coarse proportions 153 

(i.e., predictions that are as close to ( )VT k  as possible), the sub-pixel proportions ( )vF k  need to be 154 

predicted. As seen from Eq. (5), just as ( )VF k  is obtained from spectral unmixing, ( )vF k  can be 155 

predicted inversely once the PSF Vh  is known. 156 
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 157 

2.2. Area-to-point kriging (ATPK) for enhancing the original coarse proportions 158 
 159 

The key in the inverse prediction problem of estimating a sub-pixel proportion ( )vF k  from 160 

coarse proportion ( )VF k  is to account for the PSF Vh  which introduces the contributions of 161 

neighboring pixels to the coarse proportion of center pixel V. This process involves downscaling. 162 
ATPK is a powerful choice for downscaling, which can account for the PSF effect explicitly in the 163 
scale transformation (Kyriakidis, 2004). In this paper, it is used to downscale the coarse 164 

proportions to the finer spatial resolution proportions ( )vF k . 165 

Based on ATPK, the sub-pixel proportion is calculated as a linear weighted sum of the 166 
neighboring coarse proportions 167 

1 1

ˆ ( ) ( ), s.t. 1
i

N N

v i V i
i i

F k F k 
 

                                                    (9) 168 

in which i  is the weight for the ith coarse neighbor iV  and N is the number of neighbors. The N 169 

weights are calculated according to a kriging matrix, where the semivariograms at different spatial 170 
resolutions account for the PSF in scale transformation. Details on the kriging matrix and 171 
semivariograms can be found in Wang et al. (2015, 2016a). 172 

ATPK has the appealing advantage of honoring the coarse data perfectly. This means that when 173 

the ATPK predictions ˆ ( )vF k  are convolved with the PSF Vh , exactly the original coarse 174 

proportions ( )VF k  are produced (Kyriakidis, 2004) 175 

ˆ( ) ( )V v VF k F k h  .                                                        (10) 176 

By comparing Eqs. (5) and (10), we can consider the ATPK predictions ˆ ( )vF k  as a reliable 177 

solution to the inverse prediction problem of estimating the sub-pixel proportions ( )vF k . 178 

The final coarse proportion for class k is calculated as a convolution of ˆ ( )vF k  with the ideal 179 

square wave filter Vh   180 

ˆ ˆ( ) ( )V v VT k F k h   .                                                        (11) 181 

That is, for each coarse pixel, the final proportion for class k is predicted as the average of ˆ ( )kF v  182 

within it. Fig. 2 describes the process of predicting ( )VT k  from the original coarse proportion 183 

( )VF k . 184 

ˆ ( )vF k( )VF k

ˆ ( )VT k

ˆ ( ) ( )v V VF k h F k 

ˆ ˆ( ) ( )V v VT k F k h  
 185 

Fig. 2. Flowchart of transforming the original coarse proportion ( )VF k  to ( )VT k . 186 

 187 
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The implementation of the proposed ATPK-based method that accounts for the PSF in spectral 188 
unmixing is not affected by the specific form of PSF and the method is suitable for any PSF. Once 189 
the PSF is known or predicted, it can be used readily in the method. 190 
 191 
 192 

3. Experiments 193 
 194 

The proposed method for considering the PSF effect in spectral unmixing was demonstrated 195 
using two datasets, including a land cover map and a multispectral image. As the estimation of the 196 
PSF of sensors remains open and the proposed method is suitable for any PSF, the coarse data 197 
(coarse proportions or multispectral image) were synthesized by convolving the available fine 198 
spatial resolution land cover map or multispectral image, using the widely acknowledged Gaussian 199 
PSF in Eq. (8) (Huang et al., 2002; Townshend et al., 2000; Van der Meer, 2012). The width of the 200 
PSF was set to half of the coarse pixel size. The strategy can help to avoid the uncertainty in PSF 201 
estimation and concentrate solely on the performance of proportion prediction. Moreover, the 202 
coarse proportions are known perfectly and can be used as reference data for evaluation. 203 

The root mean square error (RMSE) and correlation coefficient (CC) were used for quantitative 204 
evaluation between the proportion predictions and real proportions. To emphasize the increase in 205 
accuracy of the predictions of the proposed method over the original ones contaminated by the PSF, 206 
an index called the reduction in remaining error (RRE) (Wang et al., 2015) was also used. Details 207 
on the calculation of RRE can be referred to Wang et al. (2015). 208 
 209 

3.1. Experiment on the land cover map 210 
 211 

A land cover map (with a spatial resolution of 0.6 m) covering an area in Bath, UK was used in 212 
this experiment, as shown in Fig. 3. The map has a spatial size of 360 by 360 pixels. Four classes 213 
were identified in the land cover map, including roads, trees, buildings and grass. The map was 214 
degraded by a factor of 8 and a square wave PSF, generating four actual proportion images at a 215 
spatial resolution of 4.8 m, as shown Fig. 4(a). Similarly, the four original coarse proportion 216 
images produced by spectral unmixing were simulated using a factor of 8 and a Gaussian PSF (the 217 
width of the PSF was set to 2.4 m), as shown Fig. 4(b). 218 

Fig. 5(a) shows the scatter plots between the actual proportions and original proportions 219 
contaminated by the PSF. A visual check of both Figs. 4 and 5 reveals that due to the PSF effect, 220 
the original proportions are obviously different from the actual proportions. For example, some 221 
actual proportions of 0 are inaccurately predicted as a larger value (for grass, the value can reach 222 
0.3, as shown in Fig. 5(a)) and some actual proportions of 1 are inaccurately predicted as a much 223 
smaller value (e.g., some of the trees proportions are incorrectly predicted as 0.7, see Fig. 5(a)). Fig. 224 
4(c) shows the enhanced proportions produced using the proposed method that considers the PSF 225 
effect. Compared with the original proportion images in Fig. 4(b), the enhanced proportion images 226 
in Fig. 4(c) are visually closer to the reference in Fig. 4(a). For example, the enhanced proportion 227 
images are clearly much brighter than the original proportion images. The scatter-plots between the 228 
actual proportions and enhanced proportions accounting for the PSF are shown in Fig. 5(b). 229 
Compared with Fig. 5(a), the distribution of points for all four classes in Fig. 5(b) is more compact 230 
and closer to the line of y =x, suggesting that the enhanced proportions are closer to the actual 231 
proportions. 232 
 233 
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using the proposed method that considers the PSF effect in spectral unmixing. From left to right are the results for 249 
roads, trees, buildings and grass. 250 
 251 
(a) 252 

 253 
(b) 254 

 255 
Fig. 5. (a) Relation between the actual proportions and original proportions in Fig. 4(b). (b) Relation between the actual 256 
proportions and enhanced proportions in Fig. 4(c). From left to right are the results for roads, trees, buildings and grass. 257 
 258 

Table 1 lists the accuracies of the proportions before and after considering the PSF effect. It is 259 
seen that by considering the PSF effect, the enhanced proportions have larger CCs and smaller 260 
RMSEs than the original proportions. More precisely, the RMSEs decrease by around 0.03, 0.04, 261 
0.04 and 0.06 for roads, trees, buildings and grass, and the RREs are 69.55%, 61.11%., 65.14% and 262 
63.53%. Correspondingly, the RREs for CCs of the four classes are 88.06%, 81.20%, 83.33% and 263 
82.21%, revealing that the errors are greatly reduced by considering the PSF effect. 264 
 265 

Table 1 Accuracy of the proportions for the land cover map 266 
  Roads Trees Buildings Grass 

RMSE 
Original 0.0440 0.0576 0.0591 0.0924 

Enhanced 0.0134 0.0224 0.0206 0.0337 
RRE 69.55% 61.11% 65.14% 63.53% 

CC 
Original 0.9866 0.9867 0.9844 0.9792 

Enhanced 0.9984 0.9975 0.9974 0.9963 
RRE 88.06% 81.20% 83.33% 82.21% 

 267 
The performance of the proposed method for different PSF width (i.e., 0.25, 0.5, 0.75 and 1) is 268 

shown in Fig. 6. It is clear that the enhanced proportions have consistently larger CCs than the 269 
original proportions for all three cases and all four land cover classes. Moreover, the accuracy gains 270 
become larger when the width increases. For the width of 0.25, the CCs of original and enhanced 271 
proportions are very close (both close to 1, with difference about 0.001), but the difference increase 272 
to be larger than 0.04 for the width of 1. It is worth noting that the accuracies of both original and 273 
enhanced proportions decrease as the width increases. 274 
 275 
 276 
 277 
 278 
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the Moderate Resolution Imaging Spectroradiometer (MODIS) since 2000, which contains the 355 
percentage of vegetative cover within each MODIS pixel (DiMiceli et al., 2011). MODIS data have 356 
also been used for crop area estimation based on spectral unmixing (Pan et al., 2012). The VCF 357 
products and crop area estimation can be potentially enhanced by accounting for the PSF effect. 358 

Sub-pixel mapping (Atkinson 1997; Wang et al., 2016b) has been developed for decades, which 359 
is a post-processing analysis of spectral unmixing. It creates a thematic map at a finer spatial 360 
resolution based on the spectral unmixing predictions as inputs. Specifically, under the proportion 361 
coherence constraint and starting with the coarse proportions, sub-pixel mapping divides each 362 
mixed pixel into sub-pixels and predicts their land cover class. When the PSF effect is considered 363 
in the coarse proportions, more reliable inputs and proportion constraints can be provided for 364 
sub-pixel mapping to create more accurate finer spatial resolution land cover maps. 365 

According to the relation in Eq. (5), the proposed ATPK-based method can predict sub-pixel 366 
proportions (i.e., a by-product) inversely from the coarse proportions. The by-product has a finer 367 
spatial resolution than the original proportions and is also expected to have great application value. 368 
For example, Gu et al. (2008) produced finer spatial resolution proportion images from input 369 
coarse proportion images and the results (e.g., Fig. 10(f) in Gu et al., 2008) showed that aircraft can 370 
be observed more clearly from the sub-pixel proportion images. For sub-pixel mapping, the 371 
by-product can be hardened to create a finer spatial resolution land cover map, under the proportion 372 
coherence constraint from the enhanced coarse proportions. This is also the core idea of the 373 
recently developed soft-then-hard sub-pixel mapping algorithm (Wang et al., 2014), which predicts 374 
sub-pixel proportion images first and then hardens them to land cover maps. The by-product, along 375 
with the enhanced proportions, opens new avenues for future research. 376 

In our previous research, the PSF effect was considered directly in the post SPM process (Wang 377 
and Atkinson, 2017) to produce more accurate sub-pixel resolution land cover maps. Alternatively, 378 
this paper aims to produce more accurate coarse proportions. As discussed above, the coarse 379 
proportions have more general applications, including not only in the post SPM process, but also in 380 
practical applications such as in large scale crop area and VCF estimation. The by-product of 381 
sub-pixel proportions also imposes extra value. It would be interesting to conduct a comparison for 382 
SPM predictions based on the method in Wang and Atkinson (2017) and the enhanced coarse 383 
proportions produced using the proposed method in this paper. 384 

The PSF width (i.e., standard deviation of the Gaussian PSF in this paper) determines how 385 
greatly the observed pixel signal is affected by its neighboring pixels. It is a crucial factor affecting 386 
the accuracy of spectral unmixing predictions. When the width increases, more neighbors 387 
contaminate the center pixel and the uncertainty in predicting the proportions increases as a result, 388 
and vice versa. Thus, the accuracy of the proportions (either original or enhanced) decreases as the 389 
width increases, as reported in Fig. 6. It is worth noting that in Fig. 6, the accuracies of both original 390 
and enhanced proportions for the width of 0.25 are nearly the same and both values are close to the 391 
ideal value. This reveals that a very narrow PSF (e.g., less than 0.5 pixel) on a discrete grid (i.e., 392 
pixel) has little effect. It should be noted that each senor has its own PSF width. For example, based 393 
on the assumption of the Gaussian PSF, Radoux et al. (2016) found that the width for the Landsat 8 394 
red band is 0.72 pixel and ranges from 0.71 to 0.94 pixel for the Sentinel-2 bands. The consistently 395 
greater accuracy of the proposed method for different widths suggests its great application value 396 
for different sensors. 397 

In this paper, a Gaussian PSF was assumed for convenience in the experimental validation. It 398 
should be noted that the PSF may not be the Gaussian filter in reality, especially for sensors with a 399 
scanning mirror which will ensure that the shape has a directional component (Tan et al., 2006). 400 
However, this paper aims to find a solution to account for the PSF effect to enhance spectral 401 
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unmixing predictions. We did not focus on the specific form of the PSF (e.g., specific form of the 402 
function and related parameters), as the proposed method is suitable for any PSF. In practice, once 403 
the PSF is available, it can be used readily in the proposed ATPK-based method. 404 

It is assumed that the endmembers are scale-free and that the same endmembers can be 405 
considered for the coarse and fine spatial resolution spectra in Eqs. (1) and (3). This assumption is 406 
more reliable when the landscapes are homogeneous or the intra-class spectra variation is small, 407 
such that slight differences exist between the endmembers at different spatial resolutions. However, 408 
intra-class spectral variation is a common problem in spectral unmixing that remains open 409 
(Drumetz et al., 2016; Somers et al., 2011). It would be worthwhile to investigate the relation 410 
between the endmembers at different spatial resolutions, or to consider endmember extraction in a 411 
local window and the use of multiple endmembers to characterize each land cover class. 412 

The proposed ATPK-based method is shown to be effective in considering the PSF effect, based 413 

on the assumption that the ATPK predictions ˆ ( )vF k  are a reliable solution to the inverse prediction 414 

problem of estimating sub-pixel proportion ( )vF k  from ( )VF k . However, this inverse prediction 415 

problem is ill-posed, and multiple solutions may meet the coherence constraint in Eq. (10). In 416 
future research, it would be interesting to design an appropriate model to incorporate additional 417 
information (e.g., prior spatial structure information for each land cover class at the fine spatial 418 
resolution) into the ATPK method to reduce the solution space and produce more reliable sub-pixel 419 
proportions. 420 
 421 
 422 

5. Conclusion 423 
 424 

A new method was proposed for considering the PSF in spectral unmixing and increasing the 425 
accuracy of land cover proportion predictions. Based on the ubiquitous existence of the PSF effect 426 
in real remotely sensed images, spectral unmixing predictions are made as a convolution of the 427 
sub-pixel proportions of both the coarse center pixel and coarse neighbors. ATPK is proposed to 428 
predict the sub-pixel proportions inversely from the coarse proportions and the sub-pixel 429 
proportions are then convolved with the ideal square wave PSF to produce the final predictions. 430 
The experimental results on two datasets suggest that the proposed method provides a satisfactory 431 
solution for reducing the PSF effect in spectral unmixing. 432 
 433 
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