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Abstract— A novel algorithm for water vapor retrieval from 

MODerate resolution Imaging Spectroradiometer (MODIS) Near 

Infrared (NIR) Channels is proposed in this research. In contrast 

to conventional retrieval algorithms based on radiative transfer 

methods, this algorithm uses the empirical regression functions to 

calculate precipitable water vapor (PWV). In this study, water 

vapor data observed from January 1st, 2003 to December 31st, 

2017 from 464 GPS stations situated in western North America 

serve as reference data to determine the relationship between the 

transmittance of the water vapor absorption channels and 

atmospheric water vapor content. The model is trained on 

different subsets of the training data through the bootstrap 

resampling method. Validation results against PWV observations 

during the period 2010-2017 from 5 globally distributed GPS 

stations illustrate that the algorithm can significantly improve the 

accuracy of MODIS NIR water vapor data, with 

root-mean-squares error (RMSE) reduction of 22.48% from 7.670 

mm to 5.946 mm for 2-channel ratio method and 21.69% from 

7.670 mm to 6.006 mm for 3-channel ratio method for 

MODIS/Terra satellite data, and RMSE reduction of 16.42% 

from 7.191 mm to 6.010 mm and 15.26% from 7.191 mm to 6.094 

mm for PWV derived from 2-channel and 3-channel ratio method 

from Aqua, respectively, for MODIS/Aqua satellite data. 

Index Terms— MODIS, GPS, PWV, Retrieval 

I. INTRODUCTION

Water vapor is the most important natural greenhouse gas in 

the atmosphere [1]. It has a significant impact on the process of 

the hydrological cycle, weather formation [2] and climate 

change [3]. Observations of atmospheric water vapor using 

remote sensing techniques have been widely accepted as the 

most cost-effective approach to estimate precipitable water 

vapor (PWV) at a global scale [4]–[6]. It has the widest range of 
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monitoring categories [7] and the development of geostationary 

satellites makes it possible to continuously observe water vapor 

distribution with a coarser spatial resolutions [8]. 

The Global Climate Observing System (GCOS) declared 

that the Essential Climate Variables (ECV) requirement for 

quantifying climate observation on satellite-derived water 

vapor be with 5% measurement uncertainty and stability of 0.3% 

per decade [9]. Water vapor mapping using remote sensing 

technologies has benefited from instruments with better 

resolutions, and advances in computational storage and 

processing capabilities [10]–[12]. Infrared (IR) provides 

observation results in both daytime and nighttime based on split 

window technique [13]. Research shows that mean 

root-mean-squares error (RMSE) for MODIS IR product 

against radiosonde is 6.02 mm during daytime and 5.81 mm 

during nighttime, respectively [14]. Other IR water vapor 

retrieval using Advanced Infra-Red WAter Vapour Estimator 

(AIRWAVE) was proposed for Along-Track Scanning 

Radiometer (ATSR) [15]. Validation for ATSR using 

AIRWAVEv2 shows that the RMSE is 4.69 mm against 

Special Sensor Microwave/Imager (SSM/I) and is 6.13 mm 

against Analyzed RadioSounding Archive (ARSA) [16]. NIR 

channels are more sensitive to precipitable water vapor in the 

boundary layer, where most water vapor resides [17]. Water 

vapor calculated from NIR channels is based on the variations 

of the transmittance of absorption bands and the nearby 

window channel [18], [19]. The RMSE for NIR observations of 

POLarization and Directionality of the Earth's Reflectances 

(POLDER) onboard Advanced Earth Observing Satellite 

(ADEOS) is 3.1 mm [20]. The microwave (MW) can penetrate 

most of the dense clouds and provide more information than 

traditional infrared-visible retrieval schemes [21], [22]. The 

microwave radiance shows high correlation with water vapor 

under either 22.235 GHz or 183.3 GHz [23]. Validation 

analysis for microwave derived PWV from Advanced 

Microwave Scanning Radiometer - Earth Observing System 

(AMSR-E) onboard Aqua is reported to have an RMSE around 

3.0 mm [23], and the RMSE for AMSR2 is 4.7 mm [24]. The 

water vapor retrieved from Atmospheric Infrared Sounder 

(AIRS) uses the combined IR and MW radiances. Evaluation of 

AIRS PWV against GPS PWV shows good agreement (within 

5%) and the mean bias is less than 2 mm [25]. 

MODIS onboard the Terra and Aqua satellite platforms is 

the first space instrument to obtain PWV with NIR bands as 

well as the traditional IR bands. It measures in 36 spectral 

bands, covering the spectral bands from 0.4 to 15 µm [17]. Five 

of these bands in NIR are used for water vapor retrieval. Three 

absorbing channels are centered at 905 nm, 936 nm, and 940 
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nm while the two window channels are centered at 865 nm and 

1240 nm. The operational products of MODIS NIR channels 

(MOD05 for Terra and MYD05 for Aqua) were derived based 

on a priori look-up table, which is estimated through 

High-resolution Transmission (HITRAN) 2000 [18], [26] or 

MODerate resolution atmospheric TRANsmission 

(MODTRAN) [27]. The employment of these atmospheric 

transmittance models requires a priori data of the atmosphere as 

input during the simulation process [28]. The common problem 

for this method is that it underestimates the transmittance 

variations at the majority of the absorption bands [29]. 

Validation analysis shows that the MOD05 data overestimated 

PWV against radiosonde with a scale factor from 1.14 to 1.20, 

while it overestimated against GPS by 7 to 14% [30]. 

Inter-comparisons among multi-source water vapor products 

over other places also show overestimation of MOD05 product 

[21], [31]–[33], indicating that a better model is needed for 

water vapor retrieval in MODIS NIR channels. Further 

development of retrieval algorithm of MODIS was performed 

using either a pre-calculated look-up table, regression method 

or an artificial neural network [17], [28], [34], [35]. Empirical 

correction coefficients were introduced for transmittance 

calculation to eliminate the wet bias of MODIS NIR products 

and the RMS deviations were between 0.9 and 2 mm against 

ground-based observations [36]. Optimization of water vapor 

measurement from MODIS was performed to improve the 

retrieval accuracy at a local scale. For instance, research 

indicated that the RMSE was reduced to 2.702 mm in western 

Iran [37].  

Although improvements on MODIS NIR water vapor 

retrieval have been made with the employment of different 

algorithms, uncertainties in surface spectral reflectance, sensor 

calibration, atmospheric profile, channel shift, and mixed 

pixels remain in the retrieval process [26]. The quality of 

MODIS NIR water vapor product remains to be improved [35], 

[38], [39]. In this research, a novel PWV retrieval algorithm 

based on regression fitting with GPS-derived high accuracy 

PWV is proposed for MODIS NIR channels. Unlike the 

existing retrieval methods, which rely on theoretical modelling, 

this approach is empirically determined and fits well with the 

real scenario based on simple but accurate parameterization. 

Ensemble analysis is performed based on independent subsets 

of training data, which produce a robust and accurate model. 

Section 2 gives a detailed description of the data used in this 

research. In section 3, the improved methodology of water 

vapor retrieval through MODIS NIR is discussed. In section 4, 

independent validation analysis against additional GPS 

observations is performed. Finally, the conclusions are drawn 

in section 5. 

II. DATA DESCRIPTION 

Four pairs of MODIS data products from both Terra and 

Aqua satellites are utilized, including surface reflectance 

observations (MOD021KM/MYD021), geolocation data 

(MOD03/MYD03), cloud mask product (MOD35/MYD35), 

and level 2 NIR water vapor product (MOD05/MYD05) for 

comparative analysis. The detailed characteristics of the data 

are presented in Table 1. As the NIR wavelengths cannot 

penetrate cloud, water vapor estimation results have a poor 

accuracy under cloudy conditions [38], [39]. The cloud-mask 

MOD35/MYD35 is used as quality control flag. Only confident 

clear pixels are used in the algorithm development and 

validation. The data from January 1st, 2003 to December 31st, 

2017 are used for the development of the new algorithm. 

The GPS data used in this research is hourly water vapor 

data derived from SuomiNet GPS network by University 

Corporation for Atmospheric Research (UCAR) 

(http://www.suominet.ucar.edu/data.html). Phase delays of 

GPS signals can be converted into integrated water vapor. Thus 

GPS stations provide continuous, accurate, all-weather and 

all-time water vapor measurement over these stations [40]. The 

absolute errors for this data are less than 2 millimeters [41]. 

PWV observations during the period from January 1st, 2003 to 

December 31st, 2017 from 469 ground-based GPS stations from 

Continental United States (CONUS) sites are used in this 

research for model development. PWV data for the period 2010 

to 2017 from 5 globally distributed GPS stations are used for 

validation. To reduce the impact of temporal discrepancies 

between GPS and MODIS remote sensing water vapor 

observations, the allowable time difference between the two 

data sources is 30 minutes.  

In short, spatially and temporally collocated GPS and 

MODIS data collected under the cloud-free condition are used 

for both model construction (119,417 pairs for Terra and 

121,800 pairs for Aqua) and model validation (1,527 pairs for 

Terra and 1,396 for Aqua).  

III. METHODOLOGY FOR MODIS NIR WATER VAPOR 

RETRIEVAL 

Atmospheric water vapor is related to the transmission in 

the spectral channel. Existing differences in all 5 bands imply 

different spectral response functions (SRF) characteristics 

between the Terra and Aqua platforms. Therefore, regression 

fitting for individual MODIS sensor is expected. Detailed 

descriptions of the five NIR channels of MODIS are given in 

Table 2.  

Before we began developing the new model for water vapor 

retrieval, the current retrieval algorithm for MOD05 product is 

examined. In the operational MODIS NIR PWV product, the 

relation between the measured radiance ratio and water vapor 

was calculated using a radiative transfer model (RTM) for a 

large variety of different atmospheric profiles [18], [28], [38]. 

The relationship can be expressed by an exponential formula 

written as: 

 𝑇𝑤 = exp (𝛼 − 𝛽√𝑊∗) (1) 

where 𝑇𝑤  is the transmittance of a water vapor, 𝛼 and 𝛽  are 

determined by the surface type, and the 𝑊∗  is water vapor 

along the sun-surface-sensor (slant) path [26].  

As suggested in previous research, the current MODIS NIR 

PWV products tend to systematically overestimate water vapor 

values [42], [43]. The critical step to improve the retrieval 

algorithm is to mathematically describe the relationship 

between the transmittance and atmospheric water vapor content 

in a more accurate way. Therefore, regression analysis using 

the least squares curve fitting method is performed, where the 

GPS water vapor data are treated as the ground truth. 
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The flow chart of this retrieval scheme is illustrated in 

Figure 1. Firstly, the ratio method is utilized to reduce the effect 

of ground surface type while calculating the transmittance. 

Cloud mask products from MODIS are employed as quality 

control flag. Only confident clear pixels are selected for water 

vapor retrieval in this research. The collocated data points were 

resampled into independent training and testing subsets using 

the bootstrap method. Ensemble functions were then generated 

from 10 separate resampling training sets. The GPS data are 

used to quantify the relationship between water vapor and the 

transmittance from three absorption channels. By employing 

the regression functions, the water vapor could be estimated 

from the MODIS Level 1B data.  

A. Transmittance Calculation Using Differential Absorption 

Techniques 

Observation of transmittance is one of the most crucial steps 

in atmospheric remote sensing. The earth surface varies from 

location to location. Therefore, the surface reflectance becomes 

a main source of uncertainty in the estimation of water vapor 

absorption. Based on the theory of molecular physics, the 

reflectance of the earth atmosphere is affected by the 

aero-physical characteristics of the molecules [44]. 

Furthermore, only molecules with asymmetric-top could affect 

the transmission of solar radiation [45]. Solar radiation between 

860 nm and 1240 nm on the slant path is subject to atmospheric 

water vapor absorption, atmospheric aerosol scattering, and 

surface reflection [26], [39]. Water vapor (H2O), a 

non-symmetric molecular, contributes the most to the 

transmission decrease of channels between 930 to 950 nm, 

while the transmission of symmetric molecular (O3) remains 

the same among MODIS NIR channels [46].  

As the water vapor transmittance cannot be observed 

directly, interpolation of surface reflectance between two or 

three channels around water vapor absorption is conducted to 

estimate the transmittance. In this case, the ratio technique is 

employed to calculate the transmittance of atmospheric water 

vapor. This technique is built on the differential absorption 

method, which assumes that the transmittance of solar energy 

can be estimated through the reflectance ratio between one 

absorption channel and one or two window channels [17].  

For most types of ground surface cover, the reflectance 

varies linearly with wavelength. The ratio partially eliminates 

the impact of surface reflectance on different wavelengths, and 

it is approximately equal to the atmospheric water vapor 

transmittance [34]. The functions using a two-channel ratio 

method to calculate the transmittances of T17, T18, and T19 are 

defined as: 

 
𝑇𝑖 ≅ 𝑅𝑖 = 

𝐿𝑖

𝐿2

 (2) 

where 𝑇𝑖  is the transmittance of channel i, which is 

approximately equal to the reflectance ratio 𝑅𝑖 . Li  is the 

reflectance in absorption channel i, i = 17, 18 and 19. L2 is the 

reflectance in window channel 2 (centred at 865 nm). 

For a complex land surface with variable reflectance spectra, 

more window channels are required to estimate the 

transmittance in the water vapor absorption channel. Therefore, 

an additional window channel 5 (centred at 1240 nm) is also 

included, and a three-channel ratio method is employed to 

estimate the transmission, which can be calculated as: 

 
𝑇𝑖 ≅ 𝑅𝑖 =

𝐿𝑖

[𝐶1𝐿2 + 𝐶2𝐿5]
 (3) 

where the coefficients C1 and C2 are prescribed as 0.8 and 0.2, 

respectively. It is assumed that the reflectance ratio around 1 

µm remains the same, or the reflectance ratio varies linearly 

[38]. 

B. Water Vapor Retrieval from MODIS NIR Channels 

The key procedure in this algorithm is to accurately model 

the relationship between water vapor concentration and 

transmittance from each absorption channel. Previous studies 

on atmospheric transmission variation at different water vapor 

levels using MODTRAN show that the total atmospheric 

transmission decreases with the increase of water vapor [18], 

[26]. The largest decrease in transmittance occurs at Band 18, 

the strongest absorption band. Band 17 is the least sensitive 

band to water vapor variation among the three absorption bands. 

Band 19 has a moderate sensitivity. On the other hand, the 

transmission in the window channels has a weak dependence on 

water vapor concentration. In conclusion, the transmittance in 

the NIR absorption channels can represent the magnitude of 

radiance attenuation caused by water vapor.  

The selection of an exponential function is based on the 

examination of the numerical relationship between the MODIS 

transmittance and water vapor content. The functions from 

RTM are developed based on simplified assumptions in order 

to reduce the complexity of band transmittance calculation. 

This will lead to large transmittance errors, which in turn lead 

to spectrally dependent flux and heating rate errors [29]. For a 

complex and variable land surface, the 𝛼  in equation (1) is 

unlikely to be zero. As displayed in Figure 2, the relationship 

between transmittance 𝑇𝑊 and sun-surface-sensor optical path 

(slant path) water vapor can be well characterized by an 

exponential function. After studying the properties of many 

different functions, the best results are obtained by expressing 

the transmittance as: 

 𝑇𝑖 = 𝑎 exp (𝑏 𝑊𝑖
∗) + 𝑐 exp  (𝑑 𝑊𝑖

∗) 
           

(4) 

where Ti is the transmittance from MODIS NIR channel i;  𝑊𝑖
∗ 

is the slant path water vapor content at the channel i; a, b, c and 

d are the coefficients to be determined. The vertical total 

precipitation water vapor (𝑊) is written as: 

 𝑊∗ = 𝑊 (
1

cos 𝜃
+

1

cos 𝜃0

) (5) 

where 𝜃 is the view zenith angle and 𝜃0 is the solar zenith angle 

[26]. Nevertheless, the results may be affected for observations 

with large view and solar zenith angle because of the stronger 

atmospheric effect of aerosol scattering through the longer 

optical path [26]. 

C. Optimization of Channel Selection 

Water vapor values can be estimated from individual 

absorption channel. The absorption channel at 936 nm is more 

sensitive to water vapor variation under dry conditions, while 

the absorption channel at 905 nm is more sensitive to water 

vapor under humid conditions. To get a more accurate water 
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vapor value, the weighted mean PWV from the three absorption 

channels are calculated as total column water vapor as follow: 

 𝑊 = 𝑓1𝑊17 + 𝑓2𝑊18 + 𝑓3𝑊19 (6) 

where W17, W18 and W19 are water vapor estimated from band 

17, band 18 and band 19, respectively; f1 , f2  and f3  are the 

corresponding weighting parameters [18], [39]. 

The coefficients f1 , f2  and f3  are calculated from 

normalized values of sensitivity in each simulation band: 

 𝑓𝑖 =
𝜂𝑖

𝜂1 + 𝜂2 + 𝜂3

 (7) 

where ηi is the slope of the graph of transmission versus water 

vapor for each water vapor absorption band of MODIS. It 

represents the sensitivity of transmission in each absorption 

band: 

 
𝜂𝑖 = |

𝑑𝑇𝑤

𝑑𝑊𝑖

| (8) 

D. Training of Regression Algorithm 

A total of 119,417 pairs of MODIS-GPS collocated water 

vapor data points for Terra and 121,800 pairs for Aqua have 

been observed for the western part of the North America 

continent (Figure 3), covering the area from 15 °N to 50 °N and 

90 °W to 130 °W. They are used for model development 

because this is a large dataset and the geographic region covers 

a diversity of climates. However, a common problem with 

empirical regression model is that the selection of the training 

data might influence the outcome, as the model is highly 

data-dependent [47]. An ensemble-based algorithm is 

introduced to solve this potential imbalance problem in the 

training dataset. The multiple classifiers could have a better 

answer than a single one as it can average prediction errors and 

reduce the bias and variance of errors [48]. In this research, the 

bootstrap resampling method [48] is applied to balance class 

distribution. It is a resampling technique used to estimate 

statistics of a population by sampling a dataset [49], [50]. By 

resampling the collocated datasets into 10 independent training 

and testing subsets, the obtained regression functions are 

expected to be bias-robust [50]. 

To reduce the effect of random sampling errors generated 

from the bootstrap procedure itself, and minimize the 

sensitivity of possible channel drifting in the channel position 

over the years, and find a proper sampling number for training 

sets, a series of tests using different numbers of samples (Table 

3) have been performed in this research. Results show that the 

standard deviation for the ensemble members of water vapor 

from the test datasets is smaller than the observation error of 

GPS PWV (1~2 mm), indicating that this empirical regression 

model is bias-robust. To take both quantity and variability of 

the subsets into account, around 70% of total training data 

(66,500 pairs for Terra and 62,500 pairs for Aqua) are used in 

the ensemble analysis. The least squares fitting parameters are 

listed in Table 4 and Table 5. 

E. Verification of the Ensemble Analysis  

With the above retrieval procedure, the new sets of 

ensemble members of MODIS NIR PWV from both Terra and 

Aqua can be recalculated. To evaluate the performance of the 

proposed new water vapor retrieval scheme, verification results 

of the corresponding ensemble test subsets against GPS PWV 

observation are discussed. 

Statistical metrics used to evaluate the performance of the 

proposed new algorithm are the coefficient of determination 

(R2), mean bias (MB), and root mean squares error (RMSE). 

The metrics are written as: 
𝑅2

=

[
 
 
 ∑ (𝑃𝑊𝑉𝑅𝑖

− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�)(𝑃𝑊𝑉𝑂𝑖

− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�)𝑛

𝑖=1

√∑ (𝑃𝑊𝑉𝑅𝑖
− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅

�̅�)
2
(𝑃𝑊𝑉𝑂𝑖

− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�)

2𝑛
𝑖=1 ]

 
 
 
2

 
(9) 

𝑀𝐵 =
1

𝑁
∑(𝑃𝑊𝑉𝑅𝑖

− 𝑃𝑊𝑉𝑂𝑖
)

𝑛

𝑖=1

 (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑|𝑃𝑊𝑉𝑅𝑖

− 𝑃𝑊𝑉𝑂𝑖
|
2

𝑁

𝑖=1

 (11) 

where the 𝑃𝑊𝑉𝑅𝑖
 is the reference PWV from GPS, 𝑃𝑊𝑉̅̅ ̅̅ ̅̅

�̅�  is 

the mean PWV from GPS, 𝑃𝑊𝑉𝑂𝑖
 is the observed PWV from 

MODIS. The R2 shows the relationship strength between the 

calibrated water vapor and reference PWV datasets of GPS; the 

MB indicates the systematic difference between two PWV 

datasets; the standard deviation quantifies the dispersion of the 

relative differences; and the RMSE measures the overall 

agreement between calibrated PWV observations and the 

reference PWV data. 

As shown in Figure 4, the calibrated water vapor has 

improved accuracy for each ensemble member. The operational 

products of MOD05 and MYD05 have a wet bias of 22.0% and 

21.9%, respectively. For MODIS/Terra, the RMSE has reduced 

48.12% to 2.362 mm for PWV calculated from 2-channel ratio 

method and has reduced 50.74% to 2.243 mm for 3-channel 

ratio method derived PWV. Meanwhile, the MB has reduced 

from 3.281 mm to 0.054 mm and -0.001 mm for 2-channel ratio 

method and 3-channel ratio method, respectively. For 

MODIS/Aqua, the RMSE has reduced 42.54% to 2.562 mm 

and has reduced 42.99% to 2.541 mm for PWV retrieved from 

2-channel and 3-channel ratio method, respectively. The MB 

has reduced from 2.920 mm to 0.115 mm and 0.055 mm for 

2-channel ratio method and 3-channel ratio method, 

respectively.  

IV. VALIDATION OF THE NEW WATER VAPOR 

RETRIEVAL ALGORITHM 

In order to evaluate the performance of this newly 

developed retrieval method, validation against additional GPS 

stations are discussed in detail. A total of 1,527 pairs for Terra 

and 1,396 pairs for Aqua under clear conditions during daytime 

obtained from 5 global stations in different climate zones are 

selected (Figure 5). These stations include Alice Springs, 

Australia (ALIC) of hot desert; Kiruna, Sweden (KIRU) of 

arctic region; Quezon City, Philippines (PIMO) of tropical 

monsoon region; Braunschweig, Germany (PTBB) from 

mid-latitude; and Salta, Argentina (UNSA) of sub-tropical 

highland. The detailed characteristics are listed in Table 6. 

These stations are selected as they have a relatively long period 
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of GPS observations, and they are representative of the climatic 

regions.  

Validation results in Figure 6 show that the operational 

PWV products from Aqua perform better than Terra, with 

higher correlation and smaller RMSE against GPS PWV. 

Moreover, the employment of new retrieval algorithm can 

significantly reduce the wet bias of operational products on a 

global scale. For MODIS/Terra, the RMSE has reduced 22.48% 

from 7.670 mm to 5.946 mm for PWV derived from 2-channel 

ratio method and has reduced 21.69% to 6.006 mm for 

3-channel ratio derived PWV. For MODIS/Aqua, the RMSE 

has reduced 16.42% from 7.191 mm to 6.010 mm for 2-channel 

ratio method and 15.26% from 7.191 mm to 6.094 mm for 

PWV 3-channel ratio method. 

The detailed validation result for each station is shown in 

Table 7. All stations have shown improvement in retrieval 

accuracy in terms of RMSE reduction compared to the MODIS 

operational PWV product. In particular, the calibrated PWV 

from ALIC using 2-channel ratio method has the smallest wet 

bias among these stations, with a reduced wet bias of 5.00% 

from Terra and 6.50% from Aqua. The PWV retrieved from 

Terra over UNSA station has the largest reduction rate in 

RMSE, which drops 45.23% to 4.517 mm using 2-channel ratio 

method and 44.88% to 4.546 mm using 3-channel ratio method. 

The decline of RMSE is also obvious over ALIC and PIMO 

stations, with over 10% decrease in all calibrated products, 

indicating that this empirical fitting algorithm is globally 

applicable and valid.  

V. CONCLUSION  

Water vapor can be estimated from remote sensing satellites 

through transmittance measurement of water vapor absorption 

channels. Accurately identifying the relationship between the 

transmittance and atmospheric water vapor content is the key 

step in retrieval algorithm. In MODIS NIR PWV operational 

products, this relationship is calculated through a radiative 

transfer model. This conventional method is based on several 

simplifying assumptions, which requires pre-calculated input 

parameters of atmospheric profiles. A systematic wet bias has 

been observed.  

A new algorithm is proposed in this study, which aims to 

retrieve water vapor from MODIS NIR channels using 

regression functions derived from ground-based GPS PWV 

data. It provides an effective way to retrieve water vapor with 

significantly improved accuracy. The training data samples in 

the fitting procedure are constructed by GPS-based PWV 

observations collected in various environmental conditions by 

the SuomiNet in the western North America region. It is 

resampled into 10 subsets based on the bootstrap method. The 

regression functions trained by those independent subsets 

minimize the uncertainty in the model training and minimize 

the sensitivity of possible channel drifting. Therefore, the 

results of ensemble analysis are improved over the whole 

absorption channel. 

Verification of the ensemble analysis shows that the RMSE 

for calibrated MODIS/Terra PWV data has reduced to 2.362 

mm using 2-channel ratio method, and has reduced to 2.243 

mm using 3-channel ratio method. For MODIS/Aqua, the 

RMSE of calibrated PWV has reduced to 2.562 mm and 2.541 

mm using 2-channel and 3-channel ratio method, respectively. 

Validation against PWV from 5 global GPS stations shows that 

the RMSE of PWV data has reduced 22.48% from 7.670 mm to 

5.946 mm using 2-channel ratio method and has reduced 21.69% 

from 7.670 mm to 6.006 mm for 3-channel ratio method. For 

MODIS/Aqua, the RMSE of calibrated PWV has reduced 

16.42% from 7.191 mm to 6.010 mm using 2-channel ratio 

method and reduced 15.26% from 7.191 mm to 6.094 mm using 

3-channel ratio method. 

In summary, this empirical regression model can 

significantly reduce the wet bias and RMSE for most occasions. 

Although a large number of training data are employed in the 

model construction, the number of data points under extremely 

wet and arid conditions is however still limited, which may 

result in an underestimation of transmittance variation under 

these conditions. Analysis with more training data from these 

extreme conditions is likely to further improve the performance 

of the model. 
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