
GPR pattern recognition of shallow subsurface air voids 1 

Tess X.H. Luo, Wallace W.L. Lai* 2 

Department of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University, Hong Kong 3 
* Corresponding author: ZS615, The Hong Kong Polytechnic University, Hung Hom, Hong Kong. email: 4 
wllai@polyu.edu.hk 5 
 6 

Abstract: Countless subsurface voids in urban areas of cities threaten people’s lives and property. A workflow for 7 
automatically identifying subsurface voids from ground penetrating radar (GPR) data was developed in this study. The 8 
workflow consists of 3 stages: locating voids automatically from C-scans, then verifying voids from corresponding B-scans, 9 
and finally making judgements based upon the previous 2 sets of results. This study adopted 2 (Lai et al., 2016) approaches: 10 
approach 1 quantified the GPR response of air voids using forward modelling, while approach 2 used workflow prototyping 11 
and validation with inverse modelling. Forward simulations indicated that different ratios of void size to GPR signal 12 
footprint could result in a variety of patterns in B-scans: they can be hyperbolas, cross patterns, bowl shaped patterns and 13 
reverberations. With a database of void patterns of both C-scans and B-scans established, in approach 2 the workflow uses 14 
a pyramid pattern recognition method – with pixel value or gradient being used for feature identification – to search 15 
automatically for air-filled void responses in GPR data. The workflow was tested using 2 laboratory and field experiments 16 
and the results were promising. The constraint values proposed by the 2 experiments were validated with another site 17 
experiment. Given the huge workload involved in city-scale subsurface health inspections, a standardized workflow can 18 
help improve efficiency and effectiveness of subsurface void identification.  19 
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1. Introduction 21 

Metropolises such as Hong Kong have complex utility networks buried underground. These utilities ensure that cities 22 
function effectively have a crucial influence on the daily lives of citizens (Lai et al., 2017; Lai et al., 2016). Among these 23 
utilities, water supply network degradation has become a growing issue, and urban hazards like the sudden bursting of water 24 
mains and seepage in busy roads are frequently reported (Farley et al., 2001). Subsurface pipe leakage causes underground 25 
wash-out, leaving an air void when water is drained and finally resulting in road collapse when the damaged area can no 26 
longer support the heavy load of the pavement structure and its traffic. Over time, countless numbers of air voids develop 27 
beneath a city’s road network, which threaten the safety of the citizens’ lives and property. Conducting regular health checks 28 
on road surfaces in order to diagnose subsurface voids can help predict potential urban hazards and contribute to effective 29 
and efficient utility management.  30 

The management of these utility networks is difficult and complex. Non-destructive testing (NDT) and near surface 31 
geophysics (NSG) enables operators to see the unseen subsurface world without excavations. Ground penetrating radar 32 
(GPR) is an NSG technique that is based upon the propagation, reflection and measurement of electromagnetic (EM) waves 33 
(Annan, 2004; Jol, 2009). GPR has proven to be a time and cost-efficient method in infrastructure inspection applications 34 
as it can provide high-resolution imaging of the subsurface world(Annan, 2002). There is a substantial body of past research 35 
that has demonstrated GPR’s capabilities in detecting subsurface air voids. 36 

Although thanks to the development of antennas and control units, the survey time required by GPR has been significantly 37 
reduced, it is still difficult to carry out city-wide GPR surveys. The complicated subsurface environment distorts GPR 38 
responses, and the analysis of GPR patterns is therefore still mainly reliant upon human visual interpretation. If large-scale 39 
GPR surveys are conducted, there might be dozens or even hundreds of GPR profiles requiring analysis. Recent research 40 
has focused upon automatically interpreting GPR responses using pattern recognition techniques (Al-Nuaimy et al., 2000; 41 
Ayala-Cabrera et al., 2011; Gamba & Lossani, 2000; Ghasemi & Abrishamian, 2007; Pasolli et al., 2009; Xie et al., 2013). 42 
Applications of automatic recognition techniques mainly focus on the more typical kinds of GPR responses: namely, 43 
hyperbolas. In contrast to hyperbolic reflections generated by point reflectors, reflections from voids have no fixed 44 
morphology, as the subsurface voids themselves come in various sizes and shapes. The methods used in past research,  such 45 
as Hough transform (Simi et al., 2008), support-vector-machine (SVM) (Xie et al., 2013), and neural network (Gamba & 46 
Lossani, 2000), all demand sufficient training in order to obtain a valid template. In contrast, due to its developmental 47 
maturity and computational efficiency, a much simpler pyramid-based pattern matching approach is explored in this study. 48 

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.tust.2020.103355 This is the Pre-Published Version.



The flexible template of pyramid-based matching is also more suitable for the detection of subsurface voids of various shape. 49 
This study was therefore aimed at developing an automatic void identification workflow using pyramid pattern recognition.  50 

The essential criteria for defining a void concern its extent and nature–i.e., whether it is filled with air or water. Before 51 
conducting pattern recognition, the GPR responses of various kinds of subsurface voids were firstly investigated and 52 
quantified using forward modelling to predict how air-filled subsurface voids would look in 2D (B-scan) and 3D (C-scan) 53 
representation of GPR data. Next, templates were constructed to facilitate further pattern recognition. Then an integrated 54 
pattern recognition workflow was developed and prototyped in order to conduct inverse modelling for void identification. 55 
Controlled experiments were then carried out to validate this workflow.  56 

2. GPR response of air-filled voids 57 

2.1. GPR principle 58 

The electromagnetic waves produced by GPR instrumentation are emitted from a transmitting antenna. The signal then 59 
spreads out into the ground in a downward conical form and penetrates through any subsurface layers present. When the 60 
EM wave encounters any electrical parameter contrast in the ground, it is backscattered and received by receiving antenna. 61 
The main electrical parameters of any medium, i.e. the permittivity, the permeability and the conductivity, are generally a 62 
function of frequency. Contrasts in permittivity are the main cause of reflections of the radiated EM waves. The change in 63 
conductivity affects absorption of the radar signal by the medium, whilst the variation in permittivity determines variations 64 
in the impedance characteristic of the medium (Annan, 2004; Benedetto & Pajewski, 2015).  65 

A, B and C-scans are three forms of GPR data presentation from 1 to 3 dimensions, respectively. An A-scan denotes a single 66 
waveform recorded by GPR at a particular position. When moving antennas along a traverse, a set of A-scans form a vertical 67 
section through the ground, and this section is called a B-scan. C-scans map 3D data volumes comprising multiple data 68 
‘slices’, each of which is a horizontal plan for a plane at a certain depth. A C-scan is formed by stacking multiple B-scans 69 
collected in this horizontal plane, and then plotting the amplitudes of the recorded data at a given time (Goodman & Piro, 70 
2013). C-scans show reflection intensities from an overall perspective, while B-scans offer full waveform information in 71 
vertical sections. The generation of C-scans follows a standardized workflow developed by Luo et al. (2019). 72 

2.2. Air-void pattern 73 

The inner boundary of an air-filled void causes reverberation or ‘ringing’ of the electromagnetic waves (Kofman et al., 74 
2006). Although many kinds of buried infrastructure may cause reverberation patterns in B-scans, for example manholes 75 
and metal plates, the reverberation signals from these objects start from time-zero, whereas those from air voids continue 76 
attenuating in a time/depth window that is not close to the surface (Lai et al., 2017).  77 

The significant permittivity contrast between soil and air also produces a strong reflection intensity. In a C-scan, reflection 78 
intensities (pixel value) of air voids are significantly higher than that of the background. Subsurface voids are normally 79 
irregular in shape and present as a local but discontinuous object in a C-scan image at a certain depth, whereas a continuous 80 
reflection in a C-scan is most likely generated by an underground utility instead (Lai et al., 2017). 81 

Much research has been conducted aimed at studying the GPR response of voids. Clemeña et al. (1986) and Plati and 82 
Dérobert (2015) investigated the feasibility of detecting voids in concrete with GPR. Xu et al. (2010) used GPR to detect 83 
several common types of subsurface voids and found that cracks yield hyperbolic responses. Lai et al. (2017) validated the 84 
reverberation pattern of voids through three case studies. Casas et al. (1996) indicated that when the void is very small 85 
compared to GPR wavelength, diffracting hyperbolas happen in GPR radargrams, while, in contrast, big voids cause 86 
irregular signals with chaotic reflections and a reduction in the received frequency. Kofman et al. (2006) simulated GPR 87 
responses using GPRMax and pointed out that reverberation occurs only when the void size is sufficiently large when 88 
compared with the GPR wavelength. It is believed that the strong reflections with reduced frequency with air voids are 89 
caused by the reverberation of the EM wave (Kofman, 1994). All the above research has demonstrated that the general 90 
appearance of air voids in GPR data, that is attenuating reverberation. And the GPR response of different voids is subject 91 
to a number of factors, they might be geometry, size and depth, etc., but clear definition is still lacking. Besides, the use of 92 
automatic recognition is highly dependent upon a prior knowledge of void presentation; therefore, testing and definition of 93 
void presentation are an essential foundation upon which pattern recognition can be based. In order to ascertain the 94 



presentation of voids for use in pattern recognition, the GPR response of voids with diverse morphologies were further 95 
investigated using the GPRMax simulation. 96 

2.3. Forward modelling: GPR response simulation 97 

Drawing on the above research, a void’s extent within a survey traverse has a significant impact on the GPR response pattern, 98 
so simulations must focus on quantifying the relationship between void size and GPR response. Since subsurface voids 99 
would be collapsed before they are excavated, ground truths of voids morphology are hard to be obtained. Simulations were 100 
conducted with GPRMax, a Finite-Difference Time-Domain method (FDTD) simulation package that allows users to 101 
simulate the GPR response to the subsurface world (Giannopoulos, 2005; Warren et al., 2016). 102 

Subsurface voids with varying horizontal spread were created in the Underground Utility laboratory of the Hong Kong 103 
Polytechnic University (PolyU) (Wu, 2015). The tank was filled with garden soil. GPR profiles were collected with an IDS 104 
600MHz system using a 10cm profile spacing within an orthogonal grid, and C-scans of each void were generated. 105 
Meanwhile, GPRMax simulations were conducted, imitating the laboratory environment; such that voids or varying 106 
horizontal and vertical size were located at shallow depth (10cm) within a soil environment. Simulated signals were 107 
transmitted and received by a 600MHz common offset antenna unit with 15cm antenna offset, according to the specification 108 
of IDS 600MHz antenna. The laboratory experiments and simulations produced similar GPR responses. Four typical void 109 
patterns were identified in the B-scan data – hyperbola, cross, bowl shape, and reverberation - and these patterns appeared 110 
in succession as the void’s spread grew, as can be seen in the 3rd-4th rows in Table 1. In this way, the pattern templates were 111 
created in a relative homogenous environment, free from any interference from scatterers.    112 

Table 1 Forward modelling of voids with different horizontal spread 113 

Void 

spread (cm) 

10 (1* void 

spread) 

20 (2*void 

spread) 

40 (4*void 

spread) 

50 (5*void 

spread) 

60 (6*void 

spread) 

80 (8*void 

spread) 

Void Photo 

      
FFZ 

(600MHz) 
10cm 

Simulated 

Pattern  

      

Lab 

Experiment 

(B-scan)  

No data No data 

    

Lab 

Experiment 

(C-scan) 

No data No data 

    
Pattern hyperbola cross cross bowl bowl reverbration 

It is noticeable in Table 1, that in parallel with the increase of void horizontal spread, the hyperbolic reflections from the 114 
void’s edges also become more widely separated. When two hyperbolas overlap, cross patterns occur. Whether two signals 115 
can be distinguished depends on GPR spatial resolution, while GPR horizontal resolution is determined by the footprint of 116 
a GPR beam. The radar beam width determines the smallest footprint, therefore a narrower beam width leads to a smaller 117 
footprint, and provides better spatial resolution. Another important criteria that affects the spatial resolution is the spatial 118 
sampling in imaging. The spatial sampling must be smaller than the radar footprint, so as to make the best of the radar beam 119 
width. In this study, the radar footprint is within dozens of centimeters, which is significantly larger than the spatial sampling 120 
(200 scans/m), thus only radar footprint is calculated to describe the spatial resolution of GPR C-scans. There is a 121 



preliminary piece of research that established a simplified model of radar horizontal resolution, based on the relationship 122 
between feature size and radar resolution (Annan & Cosway, 1992). The footprint is usually estimated as the First Fresnel 123 
Zone (FFZ), and there are various equations to estimate the FFZ in the far field (Leckebusch & Peikert, 2001; Leucci & 124 
Negri, 2006; Leucci et al., 2003). Among these equations, Equation [1] was chosen for this study for its stable performance 125 
(Pérez-Gracia et al., 2008). The estimation of spatial resolution is always rough as it must take into account a number of 126 
factors, such as antenna design, frequency, beam angle and host medium properties. 127 

r(𝑣, 𝑧, 𝑓) = √(
𝑣2

16𝑓2 +
𝑣𝑧

2𝑓
)       [1] 128 

Where r is the radius of FFZ, 𝑧 denotes depth, 𝑓 is the standard for dominant frequency, and 𝑣 is GPR wave 129 
velocity. 130 

Because the footprint is dominated by wavelength and depth, and the void pattern is wavelength dependent, the footprint is 131 
calculated as 10cm (Table 1) in order to take the influence of void depth into consideration. It is observed that when the 132 

void spread is smaller than r, the GPR response is presented as a point reflection – a hyperbola. When the void spread 133 

increases to 2-4 times r, a cross pattern occurs in the radargram. The bowl-shaped pattern is expected when the void spread 134 

is larger than 4 times r. These rules can be applied in an inversion study, in which the void size is estimated from the GPR 135 
response. In terms of C-scans, voids with different spread present as localised strong reflections of different size, as shown 136 
in the bottom row of Table 1.  137 

It is also noted that the vertical thickness of the void does not have an obvious impact on GPR response, unless it is 138 
significantly smaller than wavelength (Casas et al., 1996). Along with the increase of void vertical spread, the pattern in the 139 
radargram did not change noticeably, except that the reverberation range along the time window may increase (Kofman et 140 
al., 2006). A database consisting of both simulated and experimental patterns was established to provide templates for 141 
further automatic pattern recognition.    142 

3. The void identification workflow prototype 143 

The developed workflow includes 3 stages: 1) roughly locate the void and estimate void size from a C-scan; 2) inspect the 144 
corresponding B-scans across the suspected void location and estimate the void size based on the matched pattern; and 3) 145 
cross-validate the results of the two previous stages, and select the most convincing void size and void material, while giving 146 
priority to the C-scan image. 147 

The detailed workflow is shown below in Figure 1:  148 

 149 

Figure 1 A 3-stage pattern recognition for void identification 150 

Stage 1: C-scans void locating.  151 

C-scans, as a kind of 3D representation, provide a general but intuitive view of the subsurface. Given that the dielectric 152 
properties of air and the garden soil host medium are different, the GPR reflection intensity of voids, which the C-scan is 153 
mapping, is often strong enough to be visible. It is therefore relatively straightforward to establish the approximate position 154 
of air voids within a survey area. And as shown in Table 1, voids are presented as local region with high reflections. 155 



Furthermore, any suspected voids in C-scans can be extracted using the image segmentation method. The size of the void 156 
is estimated by multiplying the scale of the pixel size to the ground distance and by counting the number of pixels.  157 

Stage 2: B-scans void verification.  158 

C-scans only provide information based on the normalized reflection intensity. Many kinds of local reflectors may generate 159 
similar patterns in C-scans if they have similar dielectric properties. A further verification using B-scans is therefore 160 
essential. Given that B-scans display the full GPR waveform, and subsurface voids generate reverberation-like responses, 161 
confidence can be enhanced by examining whether a localised response occurs in the suspected void’s position. Since 162 
different void characteristics, such as size and material, may yield various reflection patterns, a void’s description can be 163 
estimated.  164 

Stage 3: Judgement.  165 

In this stage, 2 sets of results (from C-scan and B-scan) are presented and compared. A void is most likely to exist when it 166 
is identifiable in both C-scans and B-scans. In addition, further evidence is provided if the void size estimations in the two 167 
previous steps are similar. In this case, C-scans and B-scans both support the same judgment and hence the highest 168 
identification confidence is given to the void. On the contrary, if no void pattern is found in B-scans that corresponds with 169 
the location of a suspected void in C-scans, then the anomaly may result from another kind of reflector. If a void is found 170 
in both C-scans and B-scans, but the sizes estimated by the two steps are significantly different, then the size estimated from 171 
the C-scan is adopted. This is because C-scans offer an overall perspective view of the survey area, while B-scan estimation 172 
relies entirely upon the void’s spread along the profile section.  173 

According to the designed workflow, it is critically important to define whether a specific void pattern is identifiable in the 174 
data. The pyramid method is applied in this stage in order to conduct automatic pattern recognition. In align with the 175 
workflow, a decision-support program, which integrates automatic void recognition from both C-scan and B-scan data, was 176 
developed with LabVIEW. LabVIEW is “a system design platform and development environment for a visual programming 177 
language from National Instruments” ("LabVIEW – See it. Solve it.s," 2018). 178 

3.1. Automatic pattern recognition using pyramid method 179 

In stage 1 and stage 2 of the workflow, pattern recognition is conducted in both B-scans and C-scans using the pyramid-180 
based pattern recognition method. The pyramid-based method is integrated within the LabVIEW system.  It was observed 181 
that the greyscale pyramid method performs best for void identification in C-scans, while the gradient pyramid is more 182 
suitable for B-scan pattern recognition.  183 

Pattern recognition includes 2 phases. Firstly, the algorithm learns the characteristics of a specific pattern using a template. 184 
A description of the pattern, including the region of interest, is then constructed. Next, in the matching phase, the algorithm 185 
searches for specific patterns within a data image.  186 

In the learning phase, the pixels of both data images and template images are resampled to construct the pyramid. The 187 
resolutions of both data images and templates are reduced to 4 lower-resolution levels using Gaussian pyramids. In a 188 
Gaussian pyramid, the original image is continually convolved and subsampled in one-octave step with a Gaussian kernel, 189 
then the resulting image of this process is a low-pass filtered copy of the original image (Adelson et al., 1984; MacLean & 190 
Tsotsos, 2008). This process is repeated 4 times to obtain a sequence of smoothed images, which constitute the 191 
representation model built in the learning phase. Since the pyramid representations are built for both template images and 192 
data images during the matching stage, the algorithm conducts pattern correlation computation with a coarse-to-fine 193 
approach, whereby the search starts from the highest pyramid level which has lowest resolution. The degree of correlation 194 
between the image information of the data pyramid and template pyramid at same level is then estimated. The correlation 195 
score is repeatedly computed for the different pyramid levels until the desired score is achieved. Two kinds of image 196 
information can be used to compute the correlation: grayscale values representing GPR reflection intensities, and gradients 197 
that describe the pattern geometry and edge information. The process is demonstrated in Figure 2. 198 



 199 

Figure 2 Coarse to fine approach for matching template pyramid with data pyramid 200 

In the search phase, when the greyscale image’s pixel value is considered to be the image information, the normalized cross 201 
correlation (NCC) is calculated to establish the correlation score between the template and data images, as shown in 202 
Equation [2]: 203 

𝐶 =
1

𝑛
∑

1

𝜎𝑓𝜎𝑡
(𝑓(𝑥, 𝑦) − 𝑓)(𝑡(𝑥, 𝑦) − 𝑡)

𝑥,𝑦

 [2] 

where 𝑛 is the number of pixels in the template image 𝑡(𝑥, 𝑦),  𝑓 is the average pixel value of the data image 𝑓(𝑥, 𝑦) and 204 

𝜎is the standard deviation of 𝑓. It should be noted that the correlation is computed based on a template image that should 205 

be smaller than the data image, and the template image is moved across the data image in order to find the optimal matching 206 
score. 207 

Therefore, the greyscale pyramid method places emphasis upon the distribution of normalized pixel grey values. It is helpful 208 
when the pattern presents as a specific greyscale shade but has no particular shape or sharp edges. As a consequence, the 209 
greyscale pyramid is sensitive to brightness change. As discussed in the previous section, air voids present as regions with 210 
locally high reflection intensity, which occurs due to the comparatively significant reflection contrast between an air void 211 
and the host material, and, thus the greyscale pyramid method is more suitable for C-scan detection.  212 

If the gradient is used as the image information, vector correction is then applied to calculate the correlation between the 213 
template image and data image. The vector component of images describes the gradient direction of each pixel. The vector 214 
correlation calculation is shown in Equation [3]: 215 

𝐶 =
𝐶𝑜𝑣(𝑡, 𝑓)

𝜎𝑡𝜎𝑓
 [3] 

where 𝐶𝑜𝑣(𝑡, 𝑓) is the covariance between template image 𝑡(𝑥, 𝑦) and data image 𝑓(𝑥, 𝑦), and 𝜎is the standard deviation 216 

of 𝑓. The same moving kernel is applied in order to find the optimal position with the highest matching score.  217 

As the gradient pyramid focuses on filter edge vectors, it is more suitable for templates that have a clear structure and 218 
obvious edge. Even though it is insensitive to an intensity change, the gradient pyramid demands higher image resolution, 219 
because the strength and reliability the of edges reduces at very low resolutions. As discussed above, for pattern recognition 220 
in B-scans,  changes in void size lead to different GPR response patterns. These patterns mainly differ in terms of their 221 
shapes and structures, and in this case the gradient pyramid possesses better recognition performance.  222 

When searching for rotated matches, a coarser angle is preliminarily adopted and then the rotation is refined with smaller 223 
angle step sizes ("NI Vision - Pattern Matching Techniques," 2018; Pavlidis, 2013). Since templates are analysed across all 224 
pyramid levels, the approach is scale and angle invariant. 225 

3.2. Image segmentation with Otsu’s method  226 

As shown in Figure 1, void size is estimated from C-scans using the image segmentation technique. Unlike traditional 227 
remote sensing images that are composed of multiple bands, GPR C-scans present only single band reflection intensities. In 228 
addition, due to the diffraction of GPR signals at the edges of an object, its boundary is not necessarily sharp in GPR C-229 
scans. Histogram thresholding, therefore, is the most straightforward approach for object extraction from C-scan images. 230 
There has been much research conducted on image segmentation, including the following: Laplacian and gradient counts 231 
of greyscale values focused upon the identification of maximum degrees of difference (Gou et al., 2013); Gaussian 232 
determination of edges based on image frequency (Permuter et al., 2006); and K-means and Otsu’s clustering-based 233 
threshold definition  (Lee et al., 1990). Among these methods, Otsu’s method is adopted in this study for its computational 234 



efficiency. Besides, Otsu’s method evaluates global image pixel value distributions, which requires no preliminary 235 
knowledge of the object reflectance, while, in contrast, some other methods take adjacent pixel values into consideration.  236 

Otsu's method is clustering-based and is widely used to conduct image segmentation in an automatic and unsupervised 237 
manner (Sezgin & Sankur, 2004). The objective of image segmentation is to define the threshold at which pixels can be 238 
classified into two groups: foreground pixels and background pixels (Lee et al., 1990). The algorithm firstly computes an 239 
image’s histogram and probabilities for each intensity level. When two initial classes are established, the algorithm 240 
iteratively computes the class mean and class probability. Then an optimum threshold can be obtained through minimizing 241 
the weighed sum of within-class variances in order to calculate the maximal inter-class variance (Otsu, 1979; Sezgin & 242 
Sankur, 2004). More details concerning the algorithm can be found in Otsu (1979).  243 

In addition to the tail of the GPR response generated by a buried object, a coarser profile spacing and interpolation in the 244 
C-scan processing would also both lead to an imaged object appearing to be larger than its real size. Therefore, image 245 
erosion using a 6*6 structure element is also introduced during image segmentation. The size of a structure element is 246 
defined based upon the resolution of GPR C-scans: given that the spatial resolution of GPR C-scans is normally within 247 
centimetres, the structure element should not be larger than the size of the smallest detectable objects, otherwise they might 248 
be removed from C-scans.  249 

3.3. Inverse modelling: Cross validation and decision-support system  250 

The interface of the designed workflow prototype is shown in Figure 3. In the designed LabVIEW interface, three stages of 251 
void identification workflow are separated into three sub-interfaces. Based upon the simulations and experimental results 252 
in section 2, two databases of void patterns for C-scans and B-scans were constructed, as shown in Table 1. 253 

 254 

Figure 3 Illustration of interface of designed workflow prototype 255 

For stage 1, the survey C-scan corresponding to the suspected void’s depth is input, and the greyscale pyramid method is 256 
selected as the desired algorithm. The program will retrieve void patterns from the C-scan database and search for the 257 
optimal match. As discussed in section 3.2, the matching score is computed in order to determine the correlation between 258 
the template and the inputted data image. A constraint can be defined to filter out results with lower matching scores. 259 
Through numerous experiments, it was possible to demonstrate that abnormal reflections in C-scans were easily detected 260 
with higher matching scores, so that a higher threshold – above 700 out of 1000 – on the matching score is preferred if an 261 
optimal matching result is desired. This is because in C-scans reflection scatters may frequently occur, and they are very 262 
unlikely to present an identifiable structure.  263 

Having input the survey grid information, as shown in Figure 4 a, the C-scan image is georeferenced and the coordinates of 264 
pixels are transformed into a real world coordinate system. The position of a void in terms of a real world coordinate system 265 

Display indexed 

radargrams Survey setting 

Matched pattern 

info & scores 



is thus defined and can be displayed in a plan, and the estimated void sizes in the real world should match. With the help of 266 
Otsu’s method (inter-class variance), the program computes the void’s edges based on the histogram distribution. A 267 
bounding box depicts the whole area of the detected void and the centre of the bounding box refers to the centre of the void. 268 
The radargram profiles that are closest to the centre point are indexed. For each void, two radargram profiles are selected 269 
for a gridded survey using x and y direction GPR survey profiles. These selected radargrams are then read and transferred 270 
to pixel-image format for further B-scan pattern recognition. 271 

 

 

 

a  b 

Figure 4. a presents the survey grid information setting interface while b shows the interface of the radar footprint calculation  272 

In the B-scan verification step (stage 2 in Figure 1), the approach is mainly the same as that adopted for identifying void 273 
location in C-scans, only in this case the gradient pyramid method is adopted when matching patterns. For each selected B-274 
scan, the program visits the B-scan patterns in the database one by one in order to find a match. The GPR reflection is 275 
affected by various factors, such as adjacent reflectors, profile orientation, and material properties. It is therefore difficult 276 
to have templates that match with GPR responses. Therefore, a lower constraint on matching score – 200 out of 1000 for 277 
instance – is suggested to avoid missing patterns. For all detected patterns, only those falling within the bounding box 278 
defined by the C-scan pattern are considered valid. The detailed flow of this loop is shown in Figure 5. According to the 279 
regularity of the GPR response on air void, as discussed in section 2, void spread along the direction of radargram profile is 280 
estimated.  281 

 282 

Figure 5 Illustration of the matching scheme of both C-scan and B-scan pattern recognition 283 

By inputting GPR parameters as in Figure 4 b, the FFZ is calculated according to Equation [1], and then the void size can 284 
be estimated based on the relationship between void response and void spread. Armed with the estimates of void position 285 
and void spread from both C-scans and B-scans, the operator can then make preliminary judgements regarding the void. 286 
The whole program imitates the human judgement process, but leaves the heavy cross-checking work to the program once 287 
the GPR survey setting information has been input.  288 

4. Case experiments 289 

Two experiments were conducted to test the workflow: a laboratory experiment within a controlled environment and an 290 
outdoor site experiment. Then another validation experiment was conducted to test the constraint values. There were 2 291 
criteria used for evaluating the precision and accuracy of the void pattern recognition:  292 

1) the pattern detected was generated by the air void; 293 
2) the type of the pattern matched with the void size. 294 

Survey area input 

Survey grid input 



For each criterion, the results can be categorized into 4 classes (Powers, 2011):  295 

True Positive (TP): 

void existed, and workflow claimed it existed 

False Positive (FP):  

void did not exist, but workflow claimed it existed 

False Negative (FN): 

void existed, but workflow claimed it did not exist 

True Negative (TN): 

void did not exist, and workflow claimed it did not exist 

The recognition sensitivity was evaluated using a true positive rate (TPR) and false positive rate (FPR), as described by 296 
Equations [4] and [5] respectively, and a higher TPR means a higher sensitivity (Fawcett, 2006). 297 

TPR =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 [4] 

FPR =  
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 [5] 

The selection of a matching score constraint is critical in recognition performance, especially for B-scan patterns. Multiple 298 
adjustments may be necessary before an optimal constraint figure is established. The use of a receiver operating 299 
characteristic curve (ROC) was used to find the best constraint. The ROC plots the TPR against FPR, and the data point – 300 
constraint – that is closest to the top left-hand corner (TPR =1, FPR = 0) denotes the perfect result; however, all results are 301 
correct, and none are left out. Then the distance of each value point from the perfect result point (0,1) was calculated using 302 
Equation [6] in order to find the smallest variance and thus the optimum constraint (Fawcett, 2006).  303 

 Optimum =  min
𝑖

√(𝐹𝑃𝑅𝑖
2 + (1 − 𝑇𝑃𝑅𝑖)2 [6] 

where 𝑖 denotes each data point in the ROC plot.  304 

4.1. A laboratory experiment 305 

Similar to the experiments in the forward modelling (section 2.3), another void was created in the soil tank of the 306 
Underground Utility Survey Laboratory in PolyU. The void spread measured 15*25*15cm in length, width and height 307 
respectively, and was surrounded by dry garden soil whose relative permittivity was defined as 7. A GPR survey was 308 
conducted using a 900MHz GSSI unit within an orthogonal grid. The void spread is therefore significantly larger than the 309 
GPR footprint, so that reverberations and cross like response was expected. The survey site measured 100*140cm and the 310 
profile spacing was 10cm. Having undergone basic signal processing, such as de-wow, gain, bandpass, time zero correction 311 
and velocity analysis, the GPR profiles were stacked together to construct C-scans based on the standard workflow for C-312 
scan generation. A surface void was imaged in C-scans images, as shown in Figure 6. The reflection intensity of the void is 313 
significantly higher than that of the background, and the edge of the void is blurred.   314 

  
Figure 4 The surface void dug in the Laboratory and its C-scan 315 

In the C-scan pattern recognition, 2 air voids were identified: one is the target void in the centre of the survey site (47, 48), 316 
and another is a manhole in the top left-hand corner, with the coordinate as (10, 130) of the survey site. They both present 317 
as strong local reflections in C-scans. The position of void centre and void size estimation are displayed in Figure 7.  318 



  
a b 

Figure 5 a shows 2 identified voids in the laboratory experiment as in red rectangle and b presents the extracted voids with their size 319 
and position information. Remarks: column x and y present the coordinates of the void centre, while ‘area’ shows the void size estimation 320 
(cm2) of each detected void 321 

Even though the void shape was not a regular circle like that of the template, it was successfully identified. The constraint 322 
matching score was 780 in C-scan pattern recognition, only the 2 largest anomalies were extracted, and smaller scatters 323 
were excluded. When compared with the void’s true size, the void size estimations were slightly bigger. The inhomogeneous 324 
reflections surrounding the void contributed to incorrect boundary definition during void extraction, and some adjacent 325 
responses were also in error included, as indicated by red rectangles in Figure 7 a.  326 

For the 2 detected “voids”, 4 GPR radargrams were indexed. A total of 15 constraint values were tested, ranging between 327 
150-350. The performance results with the ROC are displayed in Figure 9. According to Equations [4-6], when the constraint 328 
was set to 200 (shown as a red dot in Figure 6), the workflow performed the best, which resulted in 8 events being recognized 329 
as void responses, among which 5 were true positive, as displayed in Figure 8. With the matching constraint set at 200, the 330 
TPR and FPR were 0.8 and 0.59 respectively.  331 

  
a b 
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Figure 6 a are 4 indexed B-scans and b shows all recognition result in laboratory experiment. Remarks: solid red rectangles are TPs, 332 
dashed red rectangles are FNs, and dotted rectangles are FPs.  333 

 334 

Figure 7 ROC of void recognition from B-scan in laboratory experiment, the optimal point is highlighted with red. 335 

Figure 10 displays the positions of detected results from both C-scans and B-scans; they are closely distributed, which 336 
means the void positioning results were promising. Table 2 summarizes the size estimation results from both C-scans and 337 
B-scans. It is obvious that the size estimation from B-scans was not stable enough: although they indeed highlighted the 338 
void, the identification was perhaps based on the incorrect types of pattern templates and led to an incorrect size estimation.  339 

 340 

Figure 8 Position of identified responses from both C-scans (red) and B-scans (blue) in laboratory experiment 341 

 Table 2 Summary of void size estimation in laboratory experiment (cm) 342 

Void C-area B-pattern B-spread B-area 

V0 227.762 

1 7.7022 46.5929 

3 23.1066 419.336 

1 7.7022 46.5929 

2 15.4044 186.372 

4 46.2132 1677.34 

V1 504.908 

1 7.7022 46.5929 

1 7.7022 46.5929 

2 15.4044 186.372 
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Remarks: Column “B-pattern” refers to the kind of pattern with which the detected response was identified and matched. 343 
Number 1-4 in “B-pattern” represent hyperbola, cross, bowl and reverberation like patterns. 344 

4.2. A site experiment 345 

The tank in the laboratory was filled with homogenous soil, such that beyond the reflection from the void, there was hardly 346 
any signal disturbance. But in the real world, the subsurface environment is very complex and multiple types of objects in 347 
various shapes and materials are buried there. Real world site experience is therefore necessary to validate the workflow, 348 
and the survey of a seawall platform in Tai O, Hong Kong provided just such an opportunity.  349 

    350 

Figure 9 Tai O site and its C-scan at 40cm deep 351 

The site is near the seashore and subject to the threat of seawater infiltration.  Voids are likely to have occurred and there 352 
were indeed voids found there, as shown in Figure 11. The site area measures 280*320cm in size. GPR data were collected 353 
by traversing the grid in both the x and y directions using a profile spacing of 20cm. A 400MHz GSSI antenna and RADAN 354 
SIR-4000 control unit were utilized in this survey. 355 

Standard 2D and 3D processing were conducted on the GPR profiles. C-scans were generated as per Figure 7, and 2 voids 356 
were clearly imaged: one was already known, but the other was previously unknown. The shapes of the two voids were 357 
even more irregular than the void created in the laboratory. In this experiment, the matching score constraint for C-scans 358 
was kept the same at 780. The recognition result illustrates that the object shape does have certain effects on the result of 359 
greyscale pyramid pattern recognition. Since the void template in C-scans is almost circular in shape, an area of high 360 
reflection in the Tai O site C-scan was incorrectly identified as two voids (void-0 and void-2). The scattering around the 361 
hypothetical voids was also recognized to exist within the void. According to previous research conducted at this site, 2 362 
voids were confirmed: one was a visible and known surface void that was identified as void-3 in this study, while the other 363 
was an invisible but known shallow void that was detected as void-2 in this study (Lai et al., 2017). According to a site 364 
record drawing, there was a group of vertical utilities located in the position where void 0 was identified, and they also 365 
generated a strong reflection in the C-scan. In contrast, void-1 was not found in any previous records. The C-scan recognition 366 
results and size estimations are displayed in Figure 12 below.  367 

 
 

a b 



Figure 12 a shows identified voids at Tai O site in red rectangles and b presents the extracted voids with their size and position 368 
information. Remarks: column x and y present the coordinate of the void centre, and column area shows the void size estimation of each 369 
detected void 370 

There were 4 voids extracted from the C-scans, which led to 8 GPR profiles being indexed as shown in Figure 13. In terms 371 
of B-scan recognition, the matching score constraints were explored from 150 to 350, by an increasing step of 10. The ROCs 372 
demonstrating the performance of various constraints are displayed in Figure 14. It is obvious that the value of 180 yet again 373 
provided the optimal performance. As shown in Figure 13, 15 events were recognized as void patterns, and 10 of them were 374 
correctly identified. The TPR is 0.75, which is comparatively lower than that of the laboratory experiment.  375 

 376 
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Figure 11 a are 8 indexed B-scans and b shows all recognition results in Tai O experiment. Remarks: solid red rectangles are true 380 
positives, dash red rectangles are false negatives, and dotted rectangle are false positives.  381 

 382 

Figure 12 ROC of void recognition from B-scans in the Tai O experiment. Remarks: optimal point is highlighted in red. 383 

Figure 15 displays the positions of detected results from both C-scans and B-scans: they are rather sparsely distributed. 384 
Multiple patterns were identified along a traverse. The void size estimations from both C-scans and B-scans are displayed 385 
in Table 3. Since excavation was not permitted within the historical site, it was not possible to ground truth the voids’ 386 
existence, not to mention confirm their sizes. With visual inspection, the voids extracted from C-scans by image 387 
segmentation were closer to the reality. The sizes estimated from B-scans were variable; however, the response of a single 388 
void was successfully matched with multiple templates, which was similar to the results of the laboratory experiments. In 389 
conclusion, size estimation from B-scans is unreliable. 390 

   391 

Figure 15 Position of identified pattern from both C-scan (red) and B-scans (blue) in the Tai O experiment 392 

Table 3 Summary of void size estimation in Tai O experiment (cm) 393 

Void C-area B-pattern B-spread B-area 

V0 2352 
1 19.1421 287.787 

2 38.2843 1151.15 

V1 3062 

1 19.1421 287.787 

4 114.853 10360.3 
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3 57.4264 2590.08 

V2 2535 

1 19.1421 287.787 

2 38.2843 1151.15 

2 38.2843 1151.15 

3 57.4264 2590.08 

1 19.1421 287.787 

1 19.1421 287.787 

2 38.2843 1151.15 

3 57.4264 2590.08 

1 19.1421 287.787 

V3 2529 

1 19.1421 287.787 

3 57.4264 2590.08 

1 19.1421 287.787 

4 114.853 10360.3 

Remarks: Column “B-pattern” refers to the kind of pattern with which the detected response was identified and matched. 394 
Number 1-4 in “B-pattern” represent hyperbola, cross, bowl and reverberation like patterns. 395 

4.3. The site validation on constraint values  396 

The constraint values suggested in the laboratory and site tests, around 700 in the stage 1: void locating from the C-scan 397 
and 200 in the stage 2: void verification from the B-scan,  were further validated with a real site case. The validation site, 398 
which was 7*30 meter large, was located at Lamma Island, Hong Kong, as shown in Figure 16.a. The GPR C-scan of 1 399 
meter deep is shown as Figure 16.b.  400 

 401 

a 402 

 403 

b 404 
Figure 13. a. is the photo of the validation site at Lamma Island; b shows the result of the void locating from the C-scan.   405 

With the 300 constraint, in total 7 areas were identified as suspected voids – they presented as local-high reflection in the 406 
C-scan. Among these 7 areas, voids labelled as 0, 1 and 5 were metallic utilities pits, voids labled as 3 and 4 were concrete 407 
utility pits, and they could be seen from the ground. Void 2 was an unknown reflector. An excavation was dug in void 6, 408 
and a piece of concrete plinth was found: the high reflections in void 6 was generated by the concrete plinth. Small scatterers 409 
and the horizontal utility (marked as blue line in Figure 16.b) were excluded successfully.  410 



To further investigate the GPR patterns of the areas with high reflections, a section of B-scan that across both void 3 and 411 
void 6 was indexed (Figure 17). It can be seen that the GPR reflections at two void areas (blue rectangles) were very similar 412 
to the pattern of large voids – the plain reverberation. However, these two “voids” were proved to be either the concrete 413 
plinth or the utility pit.  414 

 415 

Figure 14 the result of the void pattern verification from B-scan, Remarks: blue rectangles indicating the areas of suspected void 3 and 416 
void 6 in Figure 16, and red rectangles circle the identified GPR responses. 417 

When the constraint was 250, the result of the void verification from B-scan was shown as red rectangles in Figure 17. Some 418 
small scattering that fell outside the suspected void areas were identified, thus they were given lower identification 419 
confidence. Other matched reflections were located within the void areas, therefore the void 3 and the void 6 met the two 420 
criteria of the void identification workflow: present as high reflection in C-scan and the reflection in B-scan match the 421 
specific pattern. The dielectric constant of the concrete plinth is around 6 ("ASTM D6432," 2011), which is much larger 422 
than that of the air. The validation test in Lamma shows the limitation of the proposed system: when the GPR reflection of 423 
the object is similar to that of voids, the system may not be able to distinguish them.   424 

5. Discussion 425 

5.1. Reasonable recognition workflow and promising void positioning 426 

The three experiments demonstrate that the subsurface void positioning of the workflow is promising, in that subsurface 427 
voids in 2 tests (the laboratory and Tai O) were successfully and precisely identified, and in the Lamma validation 428 
experiment, the constraint values were proved proper that only void-like patterns were identified. Similar to seeing a doctor 429 
– comprehensive medical examinations are of vital importance before a diagnosis can be concluded. C-scans can deliver a 430 
comprehensive view on the subsurface world, and the position and shape of subsurface objects can be roughly delineated. 431 
For civil engineering application, it is essential to conduct a 3D GPR survey in order to ensure important information 432 
concerning the underground situation is not omitted. Specifically, in the Tai O experiment, an underground structure was 433 
mistakenly identified as void-0 in the C-scan as it also presented as local strong reflection. But in the B-scan recognition 434 
stage, no proper pattern was matched with this void, and it was therefore identified with reduced confidence. The workflow, 435 
which roughly locates voids using C-scans and further verifies them with B-scans, is logically designed in that many local 436 
objects yield strong reflections, just as voids do, but they also generate various waveforms and present as different patterns 437 
in B-scans.  438 

- Tolerances of void positioning and void size estimation  439 

However, full coverage C-scans are generated using interpolation to fill in blank areas within survey profiles, which means 440 
that some pixel values in C-scans are a reflection of processing rather than true measurements. Added to that, the indexed 441 
B-scans are not necessarily positioned to cut across the centre of the void, since this position may be located in gaps among 442 
the GPR survey profiles. The maximum deviation of B-scan positions from the void centre is half a profile spacing. If the 443 
shape of a subsurface void is very irregular, then the patterns identified in B-scans may not describe the void’s geometry. 444 
Besides, during the B-scan recognition stage, the void size is determined by predefined multiples of the GPR footprint, and 445 
void size estimation is therefore not a continuous measurement and may only result in one of several predefined numbers. 446 
This further illustrates the point that void size estimation from B-scans is unreliable. 447 

- Conservative but efficient approach 448 

The whole recognition process, from the initial stage of C-scan scanning, to the final void diagnosis stage, takes less than 449 
10 minutes, which is significantly more convenient than the currently used visual interpretation approach. In view of the 450 
time-consuming nature of GPR data interpretation, the application of automatic recognition in GPR survey deserves further 451 
investigation in order to improve its reliability. The pyramid method applied in this study possesses both strengths and 452 



weaknesses. In B-scan recognition, it efficiently identified most GPR responses from air-filled voids in both experiments 453 
when using a lower constraint, although the experimental data was visually significantly different from the void template. 454 
Using lower constraints may lead to not only higher TPRs but also higher FPRs. Considering the hazardous nature of 455 
subsurface voids, it is better to be conservative in order to avoid missing voids.  456 

- Using greyscale or gradient as image information 457 

In this study, greyscale value and gradient were used for feature recognition in C-scans and B-scans, respectively. This 458 
approach was proven to be suitable through experimental testing. If the gradient approach was used in the C-scan void 459 
recognition, some round shaped local anomalies with weak reflection intensities were incorrectly identified as voids, 460 
because the template used in C-scans is round shaped and the gradient method focuses on pattern structure. Similarly, if the 461 
greyscale approach was used in the B-scan void recognition, more reflections with strong intensities were in-correctly 462 
identified as voids, while actual void responses with weaker reflection intensities were overlooked. Such cases resulted in 463 
lower TPRs and higher FPRs.  464 

5.2. Variety and confusion: GPR responses from voids 465 

Both the designed workflow and case experiments illustrate that in a GPR survey, an air void can only be defined by 466 
satisfying two criteria. The first criterion is the existence of non-continuous strong reflections in C-scans, while the second 467 
is the presence of special patterns with decaying amplitude and later time windows in B-scans. These two criteria reflect the 468 
findings of previous research (Lai et al., 2017).  469 

In both the C-scan and B-scan recognition stages, the Tai O site experiment has higher FPRs, which means more irrelevant 470 
responses were identified as voids. The laboratory experiment was conducted using a relatively homogenous background 471 
medium and, beyond the two identified voids, there were hardly any scatterers. In contrast, it can be observed from Figure 472 
13a that diverse and complicated response events were present in the Tai O site radargrams. Some of these response events 473 
were generated by multiple unknown objects rather than voids. In the Lamma experiment, a known utility pit and a concrete 474 
plinth were identified as voids, because they have similar reflection patterns.  475 

In addition, the void’s extent in the Tai O site was large enough to yield reverberation patterns, but very often some cross 476 
or hyperbola responses with weaker reflection intensities were found near to the targeted reverberation response. These 477 
cross or hyperbola like GPR responses were interference generated by the void’s top and bottom edges. As these responses 478 
occur at the edges of voids instead of within them, they might be confused with void patterns and contribute to incorrect 479 
void positioning. The interference response also resulted in a single void being identified by multiple templates, which in 480 
turn produced various void size estimations.  481 

With B-scans, it is difficult to describe a void’s appearance using a series of templates. Obvious differences can be observed 482 
by comparing templates and experimental data. Many factors, including inhomogeneous background material, equipment 483 
specifications, survey settings such as traverse interval and time window, and interference from adjacent objects, contribute 484 
to a variety of GPR responses to voids. Moreover, the validation experiment in Lamma shows that some other kinds of 485 
objects may yield similar patterns in GPR survey data, which also leads to confusion. For instance, both the subsurface void 486 
and manhole in this study’s Lamma experiment were filled with air and had an interface with the garden soil, and they both, 487 
perhaps not surprisingly, presented quite similar patterns in both the C-scans and B-scans. Beyond the flexible matching 488 
method used in this study, the use of intelligent searching and learning schemes deserves further exploration. In particular, 489 
the machine learning technique can be applied to continuously train the classifier using both simulation or real GPR 490 
measurements, so as to improve the precision and accuracy of void identification. 491 

6. Conclusions 492 

This study has developed a workflow for automatically identifying subsurface voids in GPR data. The workflow imitates 493 
the human judgment process, and integrates a pyramid pattern recognition technique in order to search for GPR responses 494 
generated by air-filled voids. The GPR responses of air-filled voids were investigated in advance. A void appears as a local 495 
anomaly with high reflection intensity in C-scans. Different ratios of void size and GPR signal wavelength result in different 496 
patterns in B-scans: they can be hyperbolas, cross patterns, bowl shaped patterns and reverberations. A database of void 497 
patterns for both C-scans and B-scans was established, and the pyramid pattern recognition method – with pixel value or 498 
gradient used for feature identification – was used to search for such GPR responses automatically. In this way, a preliminary 499 



knowledge of void location and void size can be obtained without human intervention. Three case experiments were 500 
conducted and produced promising results. Known voids were successfully identified, although some errors existed. In view 501 
of the demanding and heavy workload involved in subsurface health inspections, the workflow has proven to be efficient 502 
and effective. The study result raises the possibility of conducting city-scale full coverage subsurface health inspections.  503 
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