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Abstract

Existing studies suggest “distance decay” as an important geographic property of online social net-
works. Namely, social interactions are more likely to occur among people that are closer in physical
space. However, limited effort has been devoted so far to quantifying the impact of “homophily”
forces on social network structures. In this study, we provide a quantitative understanding of the
joint impact of geographic distance and people’s socioeconomic characteristics on their interaction
patterns. By coupling large scale mobile phone, income and housing price datasets in Singapore,
we reconstruct a spatially embedded social network that captures the cellphone communications
of millions of phone users in the city. By associating phone users with their estimated residence,
we introduce two indicators (communication intensity and friendship probability) to examine the
cellphone interactions among places with various housing price values. Our findings suggest that,
after controlling for distance, similar places tend to have relatively higher communication intensity
than dissimilar ones, confirming a significant “homophily” effect as a determinant of communication
intensity. However, when the analysis is focused on the formation of social ties, the “homophily”
effect is more nuanced. It persists at relatively short distances, while at higher distances a tendency
to form ties with people in the highest social classes prevails. Overall, the results reported in this
study have implications for understanding social segregation in cities. In particular, the physical
separation of social groups in a city (e.g., residential segregation) will have a direct impact on shaping
communication or social network segregation. The study highlights the importance of incorporating
socioeconomic data to the understanding of spatial-social networks.
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1 Introduction

In the past two decades, Internet and telecommunication technologies have permeated almost every
aspect of human life, transforming the ways people conduct their daily activities. One important
dimension of human life that has changed dramatically is social interaction. Technological advance-
ments have created a “virtual space” [1], where new forms of social communications are emerging
and evolving. These new social channels — such as mobile phones, emails, and online social me-
dia — empower people to connect with others who are thousands of miles away. Unlike face-to-face
communications that require people to go out and meet in physical space, social interactions in
virtual space hardly demand any travel, and seem to be not constrained by geographic distance.
On the other hand, the dynamics according to which social ties are created and evolve in an online
network have only started to be unveiled, and it is reasonable to assume that pre-existing social ties
based on face-to-face relationships have a strong influence on the formation of ties in online social
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networks. So, although formally there is no geographic constraint on the formation of ties in online
social networks, it is possible that geographic properties play a role also in online social networks
due to their tight connections with pre-existing (physical) social networks [2, 3, 4].

Debates have emerged on how or whether new information technologies will change the geographic
properties of human social interactions. The reflections on the “death of distance” [5] and “the end
of geography” [6] are among the early works that call for a reconceptualization of space and place
in the information age. Although relevant debates are still ongoing, it is widely acknowledged —
sometimes as common sense — that human social interactions do not occur parallelly in physical
and virtual space. Instead, they are continuously blending into each other. In other words, “only by
maintaining linked, relational conceptions of both new information and communications technologies
and space and place will we ever approach a full understanding of the inter-relationships between
them” [6] (pp. 181).

Inspired by these reflections, scholars started exploring the geographic properties of various
online and mobile social networks, with considerable focus on the “distance decay” effect. This
distance effect has been observed across different types of datasets and networks, such as Facebook
communities [7, 8], networks of bloggers [9], and telecommunications [10, 11, 12]. One consensus
reached by these studies is that the intensity or probability of human communications between places
decays with geographic distance. This observation suggests that the relationship between virtual
and physical space is strong: social interactions are more likely to occur among people that are
closer in physical space.

The research finding is not too surprising because we have fewer opportunities to know someone
who is far away. In other words, the lack of physical interactions has a notable impact on the
geographic dispersal of social networks. One important issue that has not been addressed, however,
is whether the observed distance decay effect is purely a reflection of the decreasing opportunities
for potential human interactions. As human beings, we tend to connect with similar others. The
presence of “homophily” plays an important role in shaping social network structures [13]. Then, an
interesting question worth investigating is how the socioeconomic characteristics of people and their
distribution in physical space — for example, in a city — would affect the geographic properties of
online social networks.

Answering this question has many implications for urban planning. Social segregation — a long
standing research topic in geography and sociology [14, 15, 16, 17, 18] — is a good example. If
online social networks exhibit a distance decay effect, then a city where rich and poor people are
highly separated and meanwhile clustered are likely to suffer from a certain level of segregation.
The implication is beyond the traditional understanding of residential segregation [19]. It would
imply that the physical separation of social groups will directly contribute towards emergence of a
“communication segregation” in the virtual space. Hence, a secondary question worth investigating is
whether the socioeconomic configuration of a city is the sole driving force of online social segregations.
To be more specific, do people connect simply because they are close? When distance being equal,
are people more likely to interact with similar others?

To answer these questions, we perform a case study in Singapore by analyzing a large-scale mobile
phone dataset that captures the communication patterns of 2.6 million people during a period of 50
days. A spatial-social network is established by embedding phone users into geographic space based
on their estimated residence. We explore the geographic properties of the network by examining the
communication intensity and probability of social ties among different places. By further integrating
income data and a high-resolution housing price dataset, we examine whether places with similar
socioeconomic characteristics tend to maintain higher levels of cellphone interactions. Different from
previous studies that focus on the distance decay effect, this study aims to unravel the joint impact
of geographic distance and homophily on the social network structure. We argue that people’s social
interactions are not only affected by their physical proximity, but also by forces of homophily in the
society. The research findings have many implications for policy makings that aim to foster social
integration in cities. The research framework can be applied or extended to better understand other
types of spatial-social networks.
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2 Theoretical Context

The notion of social network provides a structural representation of human relations and interactions.
As a fundamental concept in social science, it has generated broad interests across many disciplines
(e.g., sociology, geography, transportation, physics, and computer sciences). Social networks emerge
as a reflection of personal relations in societies [20]. Such relations are created or maintained through
different kinds of human activities, many of which would take place, or are empowered by what
happened, in physical space. Therefore, studies of social networks often consider a spatial context
of social structure, be it explicit or implicit.

Over the years, many studies have incorporated a spatial dimension into social network analy-
sis [21, 9, 22, 23]. These efforts involve the conceptualization of social actors (i.e., people), relations
(i.e., social ties), and their linkage with built environment. Studies of spatial-social networks often
link social actors with physical locations — like one’s home or neighborhood — such that contextual
information can be leveraged to better understand the factors that contribute to or hamper the
formation of social relationships.

Enabling a spatial view of social networks is essential. A typical example is the discovery of
distance decay effect on social relations [24]. Namely, people tend to socialize more with ones that
are close. As face-to-face interaction is a key form to maintain social relations, the distance effect can
partly be explained by the travel cost that is incurred for conducting social activities. Thus, travel
behavior or mobility is considered as an important dimension that explains the interplay between
social relations and distance [3, 25, 26].

In the past two decades, many online (e.g., Facebook) and mobile social networks have emerged.
Studies found that the chances people form relations in these networks are still notably affected
by geographic distance [9, 7, 8]. Although online social interactions in principle can occur without
a need of traveling in the physical space, the rediscovery of distance effect suggests that online
social networks partly mirror pre-existing social ties, which are shaped by various constraints in the
physical world. Thus, the spatialization of online social networks could provide additional insights
into human interactions in an online-offline setting.

Beyond reflecting existing social structures, social networks have been found to influence future
activities and travels [3]. For example, studies found that telecommunications between phone users
are indicative of their co-location patterns, a reflection of their social interaction potentials [4, 27].
Therefore, mobile and online social networks would have an impact on travel behavior and physical
activities, which in turn further affect network dynamics and evolution. Thus, there is a mutual
effect between human travel and online social interactions.

Social relations are not only constrained by geographic distance. Studies suggest that homophily,
or similarities in people’s sociodemographic characteristics, are catalysts of social interactions [13].
From the perspective of travel behavior, great satisfaction might be obtained from interactions
between people with similar background, and therefore, individuals are “willing to trade-off extra
(travel) cost” (pp.142) for these interactions [24]. As one’s social background can be largely explained
by the underlying built environment (e.g., income, racial makeup), the homophily principle would
imply stronger social connections among locations with similar characteristics.

Although the distance and homophily effects have been studied separately, their joint impact
on social network structures remains underexplored. In particular, there is a lack of research on
quantifying such impact at intra-urban scales and over social networks empowered by modern infor-
mation and communications technologies (ICTs). This is partially due to the difficulty of coupling
large-scale human interactions with fine-grained sociodemographic data. Filling this research gap,
as this study attempts to do, has important implications for cities. For instance, if stronger social
connections (e.g., telecommunications) are observed among similar places (e.g., by income or housing
price) after geographic distance is controlled, this would imply more social travels in the past or more
interaction potential in the future. In other words, socioeconomic configurations in cities would have
an impact on human interactions in the online space, on their future travel behavior (in physical
space), and more importantly, on socioeconomic segregation in the urban environment [28, 15, 18].
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3 Research Design

3.1 From mobile phone data to city-scale social network

The CDR (Call Detail Record) dataset was collected from a major mobile phone operator in Sin-
gapore. The anonymized dataset tracks the communication patterns and location footprints of 4.4
million phone users during a period of 50 days in 2011. When a phone call or text message was ini-
tiated by a user, a record was generated by the telecommunication system, documenting the unique
ID of the caller and the callee, the event type (i.e., call/SMS), the associated timestamp, and the
cell towers that the users were connected to. Such information allows us to not only extract social
network structure, but also infer the frequented locations of users (e.g., home), from which the social
network can be embedded into geographic space.

Note that CDRs are passively generated and the observations for some users can be quite sparse.
By measuring the number of days with records for each user, we find a large variation of the level
of activity across the population (Figure 1A). To control the data sparsity issue, this study focuses
on a subset of users who have at least 10 active days of phone usage. On the one hand, this choice
allows us to focus more on local residents by filtering short-term subscribers such as tourists. On
the other hand, it would ensure that the number of observation days for the retained users are high
enough to support a reliable estimation of home location. After this filtering, we are left with a
dataset of 2.6 million phone users.

We then extract the social network structure by measuring the communication patterns among
cellphone users. Social ties (links) are established between users (nodes) who have at least one
reciprocal contact during the study period. The associated tie strength is measured as the total
number of calls/SMS. Note that we only retain reciprocal contacts because some of the one-way
communications do not necessarily reflect human interactions (e.g., robocalls). Performing this step
gives us a social network with a skewed degree distribution (Figure 1B). The average and median
number of social contacts per person are 9.7 and 7.0, respectively.
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Figure 1: (A) The distribution of number of active days of users; (B) Degree distribution of the
extracted social network.

3.2 Embedding social network into geographic space

We embed the social network into geographic space based on the spatial properties of the nodes.
Previous studies have suggested that social ties are more likely to be observed at shorter distances as
individuals tend to interact more with their spatial neighbors [7, 29]. One usual practice, therefore,
is to assign a “home location” to users in order to embed nodes into geographic space [29]. This
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study adopts this strategy by first estimating the home location of each phone user. The estimated
location is then used as the node property for spatial embedding.

Inferring home location from CDR data has been investigated extensively [30, 31, 32, 27]. In
this study, we adopt the method from [27], which estimates each user’s home location as the most
used cellphone tower before 06:00 and after 19:00. After performing the home location estimation,
we compute the number of phone users in each planning area of Singapore1 and correlate it with the
official census population from the Singapore Department of Statistics (http://www.singstat.gov.sg).
As shown in Figure 2A, we observe a strong correlation between the two variables, which indicates
the robustness of the estimation. Following this step, we perform the spatial embedding by assigning
users to their estimated home cellphone towers (Figure 2B).

Figure 2: (A) By aggregating phone users based on their estimated home location, we compute
the number of users at the level of Singapore’s planning area. The numbers are highly correlated
with the official census population (Pearson’s r = 0.96, p-value < 0.001); (B) The social network is
embedded into geographic space by assigning phone users to their home cellphone tower (Voronoi
cells are used to approximate towers’ service areas).

3.3 Extracting social-spatial properties of the embedded network

We introduce two indicators, namely the normalized communication intensity and friendship prob-
ability, to investigate the spatial properties of social network connections. Given any two cellphone
towers Li and Lj in the embedded network, the normalized communication intensity between them,
I(Li, Lj), is defined as the total communication intensity among all the phone users that are con-
cerned, normalized by the total possible friend pairs between these two locations:

I(Li, Lj) =
Strength(Li, Lj)

N(Li) ∗N(Lj)
(1)

Here Strength(Li, Lj) denotes the total number of calls/SMS exchanged between phone users as-
signed to Li and Lj . Note that within-cell communications are not counted. N(Li) and N(Lj)
refer to the total number of phone users (nodes) assigned to Li and Lj , respectively. In other
words, N(Li) ∗ N(Lj) describe the total possible social links that can be established between the
two locations.

While I(Li, Lj) measures the likelihood of communications between a pair of locations, the value
is largely affected by the tie strength, i.e., communication frequency between social links. Therefore
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we compute another measure, the friendship probability, by considering only the presence of social
ties:

F (Li, Lj) =
Ties(Li, Lj)

N(Li) ∗N(Lj)
(2)

Unlike other online social networks (e.g., Facebook) in which social ties are well defined, cellphone
communications can only provide an indication of people’s social relationships. To address this
challenge, we define social links as cellphone user pairs with at least one reciprocal contact during
the study period. Although this is not a perfect measure, a previous study based on large-scale
telecommunication data suggests that a significant proportion of phone users with at least one
reciprocal contact have shared the same place with each other at the same time [4]. These co-
location patterns are indicative of coordination calls and face-to-face interactions. Therefore, the
definition of social links here provides a reasonable proxy of existing social ties between phone users,
and also excludes one-way communications (e.g., advertisement, robot calls) that do not reflect
interpersonal relationships.

Thus, the Ties(Li, Lj) in equation 2 denotes the total number of social links between phone users
assigned to Li and Lj . Since the distance between cellphone towers can be easily computed, the
two indicators (I and F ) can thus be used to examine the spatial properties (e.g., distance decay)
of social network connections.

3.4 Incorporating socioeconomic characteristics of locations

To evaluate the impact of locations’ socioeconomic similarities on the social network structure, we
consider another housing price dataset. The dataset, which is acquired from a private company in
Singapore, includes information of thousands of residential properties collected between 2011 and
2012. Each record in the dataset documents the information of a single housing property, such as
the property type (condo, landed or HDB2), geographic coordinates (latitude and longitude) and
the total sale price of one housing unit. Since users are assigned to their home locations, the housing
price dataset can be used to reflect the socioeconomic characteristics of places and the corresponding
phone users.

We use the housing price dataset instead of income data collected by census because individual
housing properties provide a fine-grained view of the socioeconomic characteristics of the places.
The dataset can be well integrated with the spatial-social network at the cellphone tower level. The
income data from census is usually reported at a coarser resolution and cannot capture well the
spatial heterogeneity.

Before we use the dataset to label locations in the network, we perform a correlation analysis
between housing price and income at the level of planning areas. The income data is acquired
from the 2011 Household Interview Travel Survey (HITS). By extracting individuals from HITS
who reported their monthly income (12,111 in total), we compute the average monthly income of
respondents in each planning area. We then compute the average sale price of housing units in
each area. We find that the two variables match each other relatively well except for a few outliers
(Figure 3A). Through further exploration, we think this inconsistency is partially caused by the
sampling bias during the household interview survey. For example, only two respondents were
sampled in Southern Islands and both of them reported a monthly income of 500 SGD. However,
the island is well known for its many luxury residential neighborhoods. After removing these three
outliers, the Pearson’s correlation coefficient between the two variables increase to 0.88 (p-value
< 0.001), which suggests that housing price could well indicate the socioeconomic level of places
(Figure 3B).

In this study, we use the average housing price to label each cellphone tower. Since cellphone
towers are point features, we use Voronoi cells to approximate their service areas (Figure 2B). We
then identify the housing properties that fall within each cell and compute the average housing
price to label the corresponding cellphone tower. After this step, each cellphone tower Li will be
labeled using a housing price value Pr(Li). This value empowers us to examine the normalized
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Figure 3: (A) The relationship between mean housing price and average monthly income at the level
of Singapore’s planning area; (B) The correlation between the two variables after removing the three
outliers.

communication frequency and friendship probability between places with varying socioeconomic
characteristics. Note that for each Voronoi cell, we have computed the standard deviation of the
housing price values (within-cell std), and compared it with the overall standard deviation of the
city. We find that the median ratio of with-cell std and overall std is 0.16. The result suggests that
housing price values are relatively homogeneous within the Voronoi cells, and our approach could
capture the heterogeneity of residential housing price in Singapore.

4 Results

4.1 Distance decay effect of cellphone communication network

In this section, we examine the distance decay effect of the cellphone communication network.
Following the definitions of I(Li, Lj) and F (Li, Lj), we measure normalized communication intensity
and friendship probability by aggregating pairs of cellphone towers separated at different distance
values (d). The functions of I(d) and F (d) allow us to explore the impact of geographic distance
on the network structure. As shown in Figure 4, both functions show a linear trend at the log-
log scale, which indicates that each of the two variables (I(d) and F (d)) and geographic distance
(d) generally follow a power law. Fitting the two functions yield an exponent of -0.82 and -0.74,
respectively. In particular, the likelihood of cellphone communications among people who live at
a distance of d follows a distance decay I(d) ∼ d−0.82, while the probability of social ties at a
given distance follows F (d) ∼ d−0.74. Note that the observed exponents (-0.82 and -0.74) are larger
than the ones derived from some other studies using online social networks. For example, a study
finds that friendship probability observed from the LiveJournal network follows a distance decay
p(d) ∼ d−1.2 [9]. Another study based on Facebook data found that friendship probability is inversely
proportional to geographic distance p(d) ∼ d−1.0 [8]. Compared to these online social networks,
cellphone communications observed in this study decay more slowly with geographic distance.

The distance decay effect suggests that cellphone communications (I) or social connections (F )
are more likely to occur among people whose residences are close to each other. An intuitive
interpretation of I(d) ∼ d−0.82 is that neighborhoods separated at a distance of 10km tend to exhibit
only 15% (10−0.82 ≈ 0.15) of the communication strength compared to neighborhoods that are 1km
apart. Similarly, friendship probability between neighborhoods decreases to 18% (10−0.75 ≈ 0.18)
when distance reaches 10km. Note that I(d) decays faster than F (d), meaning that people tend to
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Figure 4: (A) Normalized communication intensity decays with geographic distance. Fitting the
data with power law function yields I(d) ∼ d−0.82; (B) The probability of friendship also shows a
distance decay effect F (d) ∼ d−0.74.

preserve more friendship with distance. However, the intensity of communication with these friends
is weaker than with closer friends (i.e., “good friends are close to home”).

The distance decay effects have notable implications for socioeconomic segregation in cities. If
a city has a high level of residential segregation — namely, residents with similar socioeconomic
characteristics tend to live close to each other — the city is likely to have a certain level of commu-
nication (or social-network) segregation. In other words, information tends to spread among similar
others in a city with severe residential segregation.

0 3 61.5
Kilometers

Planning area of Singapore

Housing Price

Low High

(A) (B)

Figure 5: (A) The spatial patterns of average housing price at the level of Voronoi cells; (B) Global
Moran’s I is computed over the housing prices at these Voronoi cells. The analysis and report are
derived from ESRI’s ArcGIS product.

To better understand the spatial configuration of housing prices in Singapore, we measure the
spatial autocorrelation based on the average housing price derived at the Voronoi cells (Figure 5A). In
particular, we compute the Global Moran’s I using the built-in function provided by ESRI’s ArcGIS
product. We use Euclidean distance to measure the distance between cells and the inverse distance
method to conceptualize their spatial relationships. As shown in Figure 5B, the analysis yields a
Moran’s Index of 0.29 with a z-score of 68.63. This indicates that housing prices — which highly
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reflect the income level of residents (Figure 3B) — are highly clustered. The clustering patterns
suggest that neighborhoods with similar housing price values are generally closer than dissimilar
ones. Given the distance decay effect of cellphone communications, the clustering patterns would
imply more interactions between these similar neighborhoods, which contribute to a certain level of
communication segregation.

4.2 Impact of socioeconomic characteristics on communication intensity

Previous studies have discussed the existence of homophily in social networks, namely, people’s social
connections tend to be homogeneous with regard to many sociodemographic characteristics [13].
Given the distance decay of cellphone communications observed from the mobile phone dataset, an
intriguing question is whether people tend to connect with similar others when geographic distance is
controlled. While this cannot be investigated at individual level due to lack of personal socioeconomic
data, we examine whether places with similar housing prices would have relatively more interactions
with each other that what would be predicted by distance decay effect.

To achieve this, we sort the Voronoi cells based on the average housing price derived in section 3.4.
We divide them into five classes such that each class of cells covers 20% of the population (i.e., phone
users). We label them from C1 to C5, with averaging housing price sorted in ascending order. In
other words, C1 denotes areas with the lowest average housing price while C5 generally points
to the rich neighborhoods. We adopt this classification method instead of other alternatives (e.g.,
separating top 1% of population from others) such that each class covers adequate amounts of phone
users or Voronoi cells. It ensures that we have enough observations of cellphone communications
among different classes at varying distance values.

For each pair of class Ci and Cj , we measure their normalized communication intensity at
different distance values. Figure 6 shows the results. Each subplot demonstrates the communication
intensity from each class to the five classes. Similar to the finding in Figure 4A, the communication
intensity between classes decays with geographic distance. Interestingly though, when looking at
the interactions among classes, we find that cells with similar housing prices tend to have higher
communication intensities when distance is controlled. For instance, C1 tends to interact more with
their own or nearby classes at a variety of distance values (Figure 6A). This homophily effect is
even more obvious when looking at C5 (Figure 6E), which consistently maintain the highest level of
interaction within their own class.
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Figure 6: Normalized communication intensity among the five classes.

To further elaborate this, we visualize, for each class, the classes that have the most and second
most interactions with them at different distance values. The results are shown in Figure 7. As can
be seen, C1 and C2 tend to interact more with their own or nearby classes at most of the distance
values. Again, class C5 exhibits a relatively stronger homophily effect as compared to other classes.
When distance is being controlled, these places will always have the strongest interactions with their
peers. Class C4 present a pattern that is different from the other classes. We find that C4 does
not exhibit the highest level of interaction with themselves. Rather, they tend to interact more
with classes one or two step downward. It is possible that C4, which points to many people in the
upper middle class, tends to interact more with lower socioeconomic classes. For instance, many
occupations that are well paid (e.g., doctors, lawyers) have frequent communications with different
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socioeconomic tiers. While for class C5, which points more to the extreme wealth, a clear “rich
club” effect can be observed. Summarizing, we can conclude that, while homophily seems to have a
significant effect on the intensity of communication, other factors such as social structures are likely
to have a significant, and possibly heterogeneous across social classes, effect as well.

2nd most with Class 1

2nd most with Class 2

Interact most with Class 2

2nd most with Class 3

Interact most with Class 3

2nd most with Class 4

Interact most with Class 4

2nd most with Class 5

Interact most with Class 5

Interact most with Class 1

Figure 7: The classes that interact most and second most with each of the five classes at a given
distance. Size of dot is proportional to the normalized communication frequency between the corre-
sponding classes.

4.3 Formation of social ties

The communication intensities among the five classes have demonstrated the impact of homophily
on the social network structure. Another interesting question is whether the formation of social ties
would follow the homophily principle. To investigate this question, we perform another analysis by
replacing communication intensity (I) with friendship probability (F ), the measure that describes
the formation of social ties. By deriving the friendship probability among the five classes at different
distance values, we find that the effect of homophily still persists, but only when geographic distance
is relatively short (Figure 8). Strikingly, when distance increases to a large value (e.g., over 10km),
the classes that have the highest friendship probability with a given class tend to be C4 or C5. This
observation is reaffirmed by Figure 9, which demonstrates the classes that have the highest and
second highest friendship probability with each of the five classes at a given distance.

The results reveal an interesting aspect of social dynamics beyond the homophily principle.
When people’s residencies are far away from each other, the upper classes in the society are more
likely to know or to be known by others. In other words, the formation of “long-range” ties tend to
favor privileged people. Again, this might be related to the occupations of the upper classes as well
as the overwhelming attentions they receive from other social groups. For example, it is difficult
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Figure 8: Friendship probability among the five classes.

for someone to connect with a regular person who is geographically distant. However, it is easier
for a famous or rich person to be known by others regardless of where he or she resides in a city.
This also connects to Stanley Milgram’s small-world experiment and the theory of six degree of
separation [33]. Namely, it is enough to have a “famous” friend reasonably close to be able to reach
many other people in the world. Our results suggest that this “famous” and well-connected people
is likely to be rich.

2nd most with Class 1

2nd most with Class 2

Most social ties with Class 2

2nd most with Class 3

Most social ties with Class 3

2nd most with Class 4

Most social ties with Class 4

2nd most with Class 5

Most social ties with Class 5

Most social ties with Class 1

Figure 9: The classes that have the highest and second highest friendship probability with each of
the five classes at a given distance. Size of dot is proportional to the friendship probability between
the corresponding classes.

Note that although the formation of long-range ties tend to favor the upper classes, the intensities
of cellphone communications at large distances are still higher among similar social classes (shown in
Figure 6 and Figure 7). This indicates that for the wealthy populations, their connections with the
middle and lower classes are more likely to be weak ties [34], while the majority of their interactions
are still with similar others (e.g., other rich people).
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4.4 Homophily distance

The results so far have demonstrated the joint impact of geographic distance and homophily on
people’s cellphone communications. Given this, it is possible that two neighborhoods with similar
socioeconomic characteristics — but geographically distant — could have a higher communication
intensity than two close neighborhoods with different characteristics. Figure 10A shows an example
of this scenario. To explicitly quantify this effect, we adopt the concept of “homophily distance” [35]
and compute this metric between two classes. Given two classes Ci and Cj , the homophily distance
Dh is defined as the geographic distance such that the communication intensity between Ci and
its peers (Ci) at Dh is roughly equal to the communication intensity between Ci and Cj at the
minimal distance (i.e., when they are in close proximity). A large value of Dh suggests that Ci

would overcome the friction of geographic distance to communicate with similar others. Here, we
define the minimal distance as 1km to reflect the concept of “close proximity”. To calculate Dh of
Ci (from class) and Cj (to class), we fit a linear function of communication intensity with distance at
the log-log scale (Figure 6). The point where the communication intensity at the minimal distance
(1km) intersects with the fitted line gives the value of Dh.

Class 5 
Neighborhood

Class 1 
Neighborhood

Class 5 
Neighborhood

Close

Far away

(A) (B)

Figure 10: (A) Given the effect of distance decay and homophily, it is possible that two neighbor-
hoods with similar socioeconomic characteristics but geographically distant could have a comparable
of even higher communication intensity than two close neighborhoods with different characteristics;
(B) The value of homophily distance for all combination of classes.

We compute Dh for all combinations of classes. The results are shown in Figure 10B. Almost
all the values are above 1km, indicating that places of the same class tend to maintain an adequate
level of communication even when they are far apart. For instance, the homophily distance from
C1 to C5 is 2.25km, meaning that the communication intensity between C1 and its peers that are
Dh = 2.25km away is comparable to the intensity between C1 and C5 at a distance of 1km. This
homophily effect is more pronounced when looking at the value from C5 to C1 (Dh = 3.75km). Note
that the five classes are defined using the average housing price at the Voronoi cells and some of them
could point to mixed-income neighborhoods. Thus, the homophily distances might be even higher if
measured at the household or individual level. However, we are not able to measure this due to lack
of individual level socioeconomic data. The results suggest that co-location or geographic proximity
does not always ensure frequent communications. The socioeconomic similarity between places and
the underlying populations play an equally important role in shaping the structure of the cellphone
communication network.
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5 Discussion and Conclusion

In this study, we establish a spatially embedded social network by coupling large-scale information
on people’s cellphone communications, residential locations, and socioeconomic characteristics. The
findings suggest that cellphone interactions of people in Singapore are not only affected by geographic
proximity, but also how social groups are distributed in the urban environment. We argue that the
spatial organization of social groups in a city, which is often directed by urban planning policies
(e.g., zoning strategies) [36], will have a direct impact on how people communicate in the virtual or
online space.

By embedding phone users into urban space based on their estimated residence, we explore
the geographic properties of the cellphone communication network. The results show that both
communication intensity and friendship probability among places follow a power law decay with
geographic distance. That means communications are more likely to occur among people who live
close to each other. By further exploring the average housing price across places — which highly
reflects the income level of residents in Singapore (Figure 3) — we find that the housing price values
are highly clustered (Figure 5). Such an uneven distribution along with the distance decay effect
tend to cause an imbalance of cellphone communications among social classes. The results indicate
that physical separation of social groups in a city (e.g., residential segregation) will have a direct
impact on shaping communication or social-network segregation.

By further examining cellphone connections among places with different housing price values, we
find that it is not only geographic proximity, but also the principle of homophily that govern people’s
cellphone communications. In particular, places tend to have a higher communication intensity with
ones that have similar housing price values when distance is controlled (Figure 6 and Figure 7). This
homophily effect is reaffirmed by looking at the homophily distances among social classes (Figure 10).
For instance, the communication intensity between the upper class (C5) and its peers at a distance
of 3.75km is comparable to the level between C5 and the lowest class (C1) that are immediately
nearby. That means social classes would overcome the friction of distance or resist the “convenience
of co-location” in order to connect with similar others. Note that we also observe this homophily
effect when examining friendship probability, the indicator that describes the formation of social
ties (Figure 8). Interestingly, though, the homophily effect is observed primarily at short distance
values, or across all distance values for the upper class C5. When distance is large, the middle-upper
classes (C4 and C5) are always the ones that have the most connections with other socioeconomic
tiers (Figure 9). The result reveals a “celebrity effect” on the formation of social ties.

The findings on the homophily effect suggest that neighborhoods with similar characteristics,
even when they are far apart, could contribute to the emergence of social-network segregation.
Therefore, traditional placed-based measures, such as creating mixed income neighborhoods, might
not be enough per se to accomplish a high degree of social mixing in the online space. Novel
online activities that can actively bridge different social classes can possibly promote social cohesion
of cities given the prevalence of social media platforms and the recent public health emergency
(COVID-19) [37] that further restricts physical human interactions.

Our study suggests that geographic proximity and homophily are two notable forces that jointly
shape the structures of social networks. Although the current study focuses on Singapore, we believe
these two forces have a far-reaching impact on human interactions in cities. Since classic spatial
interaction models (e.g., gravity models) have a specific focus on modelling the distance effect,
future work that aims to model or explain spatial-social networks could incorporate socioeconomic
characteristics as a generic factor.

We want to point out a few limitations of this research. First, social ties in this study are defined
as cellphone user pairs with at least one reciprocal contact during the study period. Although this
measure, as suggested by a previous study in Portugal [4], was indicative of face-to-face interactions
and therefore some sort of social relationships, this evidence does not immediately generalize to
the city of Singapore which is the subject of this study. Hence, we acknowledge that the definition
based on reciprocal phone contact provides a coarse indication of social ties in Singapore. Second,
social interactions in this study are measured using phone calls and text messages. Although they

13



This article has been accepted for publication in Annals of the American Association of Geographers, published by Taylor & Francis.

accounted for a notable fraction of human communications in 2011 (when the dataset was collected),
people in Singapore were adopting social media (e.g., Facebook, Twitter) at that time as new
channels of social interactions. In the future, it would be meaningful to examine the robustness
of the findings by incorporating social media usage [38, 39, 40] into the analysis (e.g., Twitter
mentions and follower-followee relationships). For instance, a recent work based on geo-located
Tweets [41] has observed a certain degree of mobility homophily in the city of Stockholm, hinting
to a possible robustness of our findings to social media datasets. Third, this study uses housing
price as the variable to account for homophily. There exist other factors, such as ethnicity, that
would affect people’s communication patterns. Since our analysis is conducted at the cell tower
level, we are not able to obtain information of ethnicity groups at such a fine spatial resolution.
Fortunately, the Singapore government introduced the Ethnic Integration Policy (EIP) in 1989 for
HDB (Housing Development Board) estates. The EIP sets limits on the total percentage of a block
or neighborhood that can be occupied by a certainty ethnicity. Given that HDB estates host more
than 80% of residential population in Singapore, the EIP policy tends to neutralize the impact of
ethnic segregation on our results. But we do think it is important to consider these socioeconomic
variables in future works (e.g., ethnicity and education background) to depict a more holistic picture
of homophily in spatial-social networks.

This study demonstrates the importance of conceptualizing and modeling social networks in ge-
ographic space [23]. It also calls for more efforts on coupling physical and virtual (online) spaces for
studying human dynamics [42]. Although exploratory in nature, the current study points to a few
venues for future research. For instance, it would be meaningful to incorporate socioeconomic simi-
larity of places into spatial interaction models [43, 44, 45] to better predict structures of spatial-social
networks. It is also possible to detect changes of socioeconomic environments (e.g., gentrification) in
cities by monitoring the interactions among neighborhoods and how they evolve through time and
space [46].

Notes

1Planning areas, also known as DGPs, are the primary census divisions of Singapore created by the Urban Rede-
velopment Authority (URA). There are a total of 55 planning areas in Singapore at the time when the CDR data
were collected (https://en.wikipedia.org/wiki/Planning_Areas_of_Singapore).

2HDB, which is short for Housing Development Board, is a type of residential housing property that is publicly
governed and developed in Singapore. The HDB flats were built primarily to provide affordable housing
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