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Abstract  11 

Understanding future drought risks plays a crucial role in developing climate change adaptation 12 

strategies and in enhancing disaster resilience. However, previous studies may lead to biased 13 

conclusions due to the neglect of two factors, including the relative performance of climate 14 

simulations and the uncertainty in drought characterization. In this study, Bayesian model 15 

averaging is used to merge five regional climate model simulations and to project future changes 16 

in hydroclimatic regimes over China under two representative emission scenarios (RCP4.5 and 17 

RCP8.5). Drought characteristics, including drought severity and duration, are extracted using the 18 

Standardized Precipitation Evapotranspiration Index (SPEI). A Bayesian copula approach is used 19 

to uncover underlying interactions of drought characteristics and associated uncertainties across 20 

10 climate divisions of China. The regional return periods of drought characteristics are used to 21 

assess future changes in multidimensional drought risks and the probability of extreme droughts. 22 

Our findings reveal that the variations in drought characteristics are generally underestimated by 23 

the ensemble mean (AEM) simulation. The Bayesian framework improves the reliability and 24 

accuracy of hydroclimate simulations and better reproduces the drought regimes compared to the 25 

AEM simulation. The drought duration and severity are projected to substantially increase for most 26 

areas of China based on the Bayesian framework, but the AEM simulation may lead to multiple 27 

opposite behaviors, especially under RCP4.5. The estimated joint risk from drought duration and 28 

drought severity is expected to increase under both emission scenarios. The likelihood of extreme 29 

droughts is also projected to increase as the radiative forcing increases. 30 
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1. Introduction 34 

Droughts, one of the costliest and most widespread natural hazards, have caused massive economic 35 

losses, environmental degradation, and even loss of human life around the world (Dai 2013; 36 

Samaniego et al. 2018; Su et al. 2018). For example, a severe and prolonged drought episode 37 

during 2009 and 2010 affected millions of people and livestock in northern and southwestern 38 

China with billions of dollars in economic losses (Barriopedro et al. 2012). Considering the 39 

substantial impacts of droughts and the indisputable fact of global warming, assessing the 40 

evolution of drought hazards in a changing climate has received considerable attention in recent 41 

decades (Prudhomme et al. 2014; Cook et al. 2016; Chen et al. 2020). 42 

Global climate models (GCMs) and regional climate models (RCMs) have been widely used 43 

to assess the implications of climate change for future drought hazards (Russo et al. 2013; Van 44 

Huijgevoort et al. 2014; Asadi Zarch et al. 2015; Zhu et al. 2019; Qing et al. 2020). The 45 

Coordinated Regional Downscaling Experiment (CORDEX) archive provides quite a few RCMs 46 

and has played a crucial role in the multi-model ensemble simulations of regional drought events 47 

in recent years (Samouly et al. 2018; Zhai et al. 2019; Li et al. 2020; Spinoni et al. 2020). Since 48 

each climate model has strengths and weaknesses in characterizing the hydroclimatic regimes, a 49 

multi-model ensemble simulation is commonly used to improve the reliability of drought 50 

projections. The arithmetic ensemble mean (AEM) of drought variables (e.g., precipitation) and 51 

the inter-model spread derived from multiple RCMs are widely used to assess climate change 52 

impacts on regional droughts (Parajka et al. 2016; Vidal et al. 2016; Rajsekhar and Gorelick 2017; 53 

Lee et al. 2019). Although the AEM simulation reduces the model bias compared to a single 54 

climate model, the systematic bias cannot be neglected and would hinder reliable projections of 55 

future droughts. An alternative approach of the AEM approach is Bayesian model averaging 56 
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(BMA), which has been proven to be a promising tool for improving multi-model hydroclimate 57 

simulations (Duan and Phillips 2010; Yang et al. 2011; Olson et al. 2016, 2018; Zhang et al. 2016; 58 

Ahmadalipour et al. 2018; Shin et al. 2019; Basher et al. 2020). However, little effort has been 59 

directed towards applying BMA to project future drought characteristics (Ahmadalipour et al. 2018; 60 

Chen et al. 2020; Miao et al. 2020). It is unclear whether the BMA approach can improve the 61 

reliability of climate-induced drought simulations. In addition, it is also unclear whether the AEM 62 

and BMA approaches would lead to different drought projections. It is necessary to elucidate these 63 

issues for better understanding future drought regimes and thus improving the resilience of water 64 

management system.  65 

In addition to climate simulations, drought frequency analysis is also required to assess 66 

climate change impacts on drought hazards (Hao and AghaKouchak 2013; Borgomeo et al. 2015; 67 

Seager et al. 2015; Williams et al. 2015; Liu et al. 2016b). Since drought characteristics (i.e., 68 

drought severity, spatial extent, and duration, etc.) are commonly interdependent, the multivariate 69 

frequency analysis has been widely performed to quantify drought hazards and the potential risks 70 

(Maity et al. 2013; Kam et al. 2014; Ayantobo et al. 2018). Copula has gained remarkable success 71 

in multivariate drought analysis owing to its flexibility in capturing the complicated dependencies 72 

between drought characteristics regardless of their marginal distributions (Salvadori and De 73 

Michele 2004; AghaKouchak et al. 2014; Ganguli and Reddy 2014; Xu et al. 2015; Liu et al. 2016a; 74 

Salvadori et al. 2016; Masud et al. 2017). However, previous studies fail to explicitly address the 75 

underlying uncertainties of copula parameters, thus leading to a potential bias in drought risk 76 

assessment (Yan 2007). Such uncertainty is considerably large since the samples of drought 77 

episodes are typically limited, and ignoring the uncertainty diminishes the scientific credibility in 78 

drought assessments (De Michele et al. 2013; Sadegh et al. 2017). Therefore, it is necessary to 79 
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explicitly address the uncertainty in copula-based multivariate drought assessments for advancing 80 

our understanding of complex mechanisms and potential impacts of droughts. 81 

The aforementioned limitations of the AEM climate simulation and the copula-based drought 82 

characterization may lead to unreliable projections of future drought hazards. Therefore, in this 83 

study, we will develop a probabilistic projection of multidimensional drought hazards through 84 

BMA and Bayesian copula. We hypothesize that the reliability of climate-induced drought hazard 85 

projections can be improved by taking into account the relative performance of climate models 86 

and the uncertainty in drought characterization. Specifically, an ensemble of five regional climate 87 

simulations, including four from the CORDEX East Asia experiment and one from the Providing 88 

REgional Climate Impacts for Studies (PRECIS) simulation will be used to improve the 89 

performance of climate simulations in China based on BMA techniques. Drought episodes will be 90 

detected using the Standardized Precipitation-Evapotranspiration Index (SPEI) in 10 climate 91 

divisions of China (Vicente-Serrano et al. 2010). Drought hazards will be quantified using the joint 92 

return period of duration and severity calculated by a Bayesian copula approach. The hydroclimate 93 

regimes and drought characteristics generated from the BMA simulation will be also compared 94 

with those generated from the AEM simulation.  95 

This paper is divided into four sections. Section 2 will describe models, algorithms, and 96 

datasets used to perform Bayesian multi-model climate simulations and multivariate drought 97 

hazard projections. Section 3 will systematically evaluate the BMA-based hydroclimate 98 

simulations and assess climate change impacts on multidimensional drought hazards. Finally, 99 

Section 4 will provide a summary and conclusions of this study. 100 

 101 
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2. Models, algorithms, and data sources 102 

2.1 Bayesian multi-model climate projection 103 

The PRECIS model developed by the UK Hadley Centre, together with four regional climate 104 

simulations from CORDEX available for the East Asia domain, were used to assess the changes 105 

in hydroclimatic regimes over China. Specifically, the COnsortium for Small-scale MOdelling in 106 

CLimate Mode (CCLM) RCM was used to dynamically downscale four Coupled Model 107 

Intercomparison Project Phase 5 (CMIP5) GCMs (CNRM-CM5, EC-EARTH, HadGEM2-ES, and 108 

MPI-ESM-LR) in the CORDEX East Asia experiment, while the PRECIS model was driven by 109 

the HadGEM2-ES (Rockel et al. 2008; Huang et al. 2018; Shrestha and Wang 2020; Zhu et al. 110 

2021). All the five simulations have the same horizontal resolution of about 0.44° × 0.44° (~ 50 111 

km) but differ in the model domain. The computational domain of the PRECIS simulation is 112 

configured to extend from about 64.68°E–139.04°E and 13.44°N–56.12°N with 109 × 88 50-km 113 

grid points and a lateral buffer zone of 8 grid points (see Fig. 1a). Such a choice of domain size is 114 

made by following relevant studies to capture the large-scale circulation and boundary forcing 115 

which play important roles in China’s regional climatology, such as East Asian winter, summer 116 

and tropical oceanic monsoons (Centella-Artola et al. 2015; Guo et al. 2019; Wu et al. 2021). In 117 

comparison, the CCLM model domain is slightly different with 203×167 horizontal grid points 118 

(see Fig. 1b). The PRECIS climate simulation covers the historical period (1969–2005) and a 119 

future period (2006–2099), while the CCLM climate simulation covers the historical period (1951–120 

2005) and a future period (2006–2100). Future simulations for both PRECIS in this study and 121 

CCLM in the CORDEX East Asia experiment are forced with two emission scenarios, including 122 

RCP4.5 and RCP8.5. The 30-year monthly hydroclimatic variables including precipitation and 123 

potential evapotranspiration (PET) for the historical (1975−2004) and future (2069−2098) periods 124 
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are collected from the five climate projections to assess the impact of climate change on 125 

hydrological regimes. The FAO-56 Penman-Monteith Equation was applied to the calculation of 126 

PET, which was suggested to yield more realistic estimates than the temperature-only-based 127 

Thornthwaite method (Allen et al. 1998; Dai 2013). 128 

Bayesian model averaging (BMA), as an effective tool of correcting under dispersion in 129 

ensemble climate projections, was used to improve the accuracy of monthly precipitation and PET 130 

simulations. Assume that x = x1,…, xK signify the ensemble of all considered climate simulations, 131 

and y denotes the climate observations. pk(y|xk) represents the conditional probability density 132 

function (pdf) of y given xk. The probabilistic forecast pdf of y for the multi-model ensemble can 133 

be expressed as 134 

                                                       1

1

( | ... ) ( | )
K

k k k k

k

p y x x w p y x


  (1) 135 

Where wk is the BMA weight of model k in the ensemble. The sum of all wk values is equal to 1 136 

and they are nonnegative, which reflect how well an individual climate simulation matches the 137 

observations in the training period. Since a certain distribution cannot be appropriate for all climate 138 

variables, the conditional pdf, pk(y|xk), is defined as the copula-based conditional probability 139 

distribution that has a wide range of parametric distribution as 140 

 ( | ) ( , )
kk k k y xp y x c u u p y   (2) 141 

where ( , )
kk y xc u u  represents the joint pdf of y and xk; u represents the cumulative distribution 142 

function; p(y) represents the pdf of y. Details of copulas are described in Section 2.2. The posterior 143 

mean of the BMA simulation can be expressed as  144 

1

1

( | ... )
K

K k k

k

E y x x w x


    (3) 145 
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BMA has been demonstrated to be a powerful approach to combine an ensemble of climate 146 

simulations since it is essentially an “intelligent” weighted average forecast based on the model 147 

performance (Raftery et al. 2005; Madadgar and Moradkhani 2014; Vrugt 2016; Zhang et al. 2016). 148 

Therefore, BMA was applied to monthly precipitation and PET for each grid cell with CRU’s 149 

(Climatic Research Unit) gridded monthly precipitation and PET dataset as reference. The CRU 150 

dataset is a global gauge-based climate variable product with a 0.5° × 0.5° grid resolution based 151 

on thousands of weather stations (Harris et al. 2014). The CRU data is also consistent with the in-152 

situ meteorological observations in terms of capturing drought durations and severities in China 153 

(see Figs. S7 and S8 of the supplementary material). 154 

The BMA weights were estimated using the MCMC simulation instead of the EM algorithm. 155 

The MCMC simulation has been demonstrated to outperform the EM algorithm, which explicitly 156 

samples the posterior distribution of the BMA parameters for uncovering the uncertainty 157 

associated with model weights and thus improving the reliability of climate projections (Duan and 158 

Phillips 2010; Vrugt 2016; Wang et al. 2018a; Wang and Wang 2019). The MCMC simulation is 159 

implemented using the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt 160 

2016). According to the Bayes’ theorem, the posterior distribution p(w|x, y) of the BMA weights 161 

w = (w1,…,wK) given the ensemble simulations x and the observational variable y can be expressed 162 

as 163 

( ) ( , | )
( | , )

( , )

p p y
p y

p y




w x w
w x

x
 (4) 164 

where p(w) and p(w|x, y) denote the prior and posterior distributions of BMA weights, respectively. 165 

p(x, y|w)  L(w|x, y) denotes the likelihood function; p(x, y) denotes the evidence that acts as a 166 

normalization constant, which can be excluded from the Bayesian analysis in practice. Thus, the 167 

formulation of equation 4 can be simplified as 168 
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( | , ) ( ) ( | , )p y p L y w x w w x  (5) 169 

The likelihood function L(·|·) in the MCMC-based BMA projection is commonly logarithmically 170 

transformed to equation 6 for numerical stability and simplicity, where n represents the number of 171 

observations in the training period.  172 

1 1

1 1

( ,..., | ,..., , ) log ( | )
n K

t t

K K k k k

t k

w w x x y w p y x
 

 
  

 
    (6) 173 

The prior distribution is set as a uniform prior distribution of w[0, 1]K. The MCMC simulation 174 

proceeds by running multiple Markov chains simultaneously and proposing a candidate point zp at 175 

each step (Vrugt 2016; Wang and Wang 2019). The acceptance or rejection of the candidate 176 

depends on the Metropolis acceptance probability: 177 

p

accept c p

c

( )
( ) min 1,

( )

p z
p z z

p z

 
   

 
  (7) 178 

where zc represents the current point, and p(‧) represents the probability density. The Markov chain 179 

moves to zp or not, depending on whether the candidate point is accepted. The convergence of 180 

Markov chains indicates that the MCMC evolution can stop, which is commonly monitored 181 

through the multi-chain R̂ diagnostic of Gelman and Rubin (1992). Typically, a R̂-statistic value 182 

below 1.2 indicates that the posterior distribution converges to the stationary distribution. A more 183 

detailed description of the MCMC simulation, together with the DREAM algorithm, is available 184 

in Vrugt et al. (2008) and Vrugt (2016). 185 

2.2 Multidimensional drought risk projection 186 

Copulas are multivariate cumulative distribution functions that enable us to link the marginal 187 

distributions of multiple random variables together to form the joint distribution (Genest and Favre 188 

2007; Zhang et al. 2019). The dependence of drought duration and severity, detected by the 6-189 

month SPEI (SPEI6) over each of the 10 climate divisions in China (see Fig. 1a), was thus 190 

described using copulas in this study, leading to a bivariate return period of drought episodes. The 191 
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SPEI6 is used since it has been demonstrated to be useful for well capturing both short- and long-192 

term meteorological droughts (Masud et al. 2015, 2017; Huang et al. 2018; Lee et al. 2019) and 193 

the duration of most droughts is less than 6 months in China during the 1950–2006 period (Wang 194 

et al., 2011). Drought duration and severity are defined as the number of months and the sum of 195 

the integral area below −1, respectively, when SPEI6 is persistently below −1. And the SPEI6 196 

values below −1 are often considered as suffering from droughts (Ayantobo et al. 2018; Huang et 197 

al. 2018). The 10 climate divisions are created based on the long-term mean temperature and 198 

precipitation as well as the topography in China. Assume that X = X1,…, Xn denote n random 199 

variables, and F1(x1),…, Fn(xn) represent their marginal cumulative distribution functions (CDFs), 200 

the joint CDF F(x1,…, xn) can be expressed as equation 8 according to Sklar’s theorem (Sklar 201 

1959). 202 

1 1 1 1( ,..., ) ( ( ),..., ( )) ( ,..., )n n n nF x x C F x F x C u u    (8) 203 

where C is an n-dimensional copula, i.e., a joint CDF with uniform margins (u1,…,un)[0,1]n. For 204 

the bivariate copula, the joint CDF p of drought severity X and duration Y can be formulated as 205 

( , ) [ ( ), ( )]P X x Y y C F x G y p      (9) 206 

where F(x) = P(X ≤ x) and G(y) = P(Y ≤ y) are the marginal CDFs of drought severity and duration, 207 

respectively. To identify the marginal CDF of drought characteristics, several types of probability 208 

distributions, including Nakagami, exponential, Rayleigh, gamma, inverse Gaussian, t location 209 

scale, generalized Pareto, Birnbaum-Saunders, extreme value, logistic, lognormal, Weibull, log-210 

logistic, Rician, generalized extreme value, and normal distributions were included as the CDF 211 

candidates (Results are shown in Table S1 of the supplementary material). The optimal copula 212 

families were chosen from a total of 10 widely used candidates, including Gaussian, Clayton, 213 

Frank, Gumbel, Joe, Nelson, Marshal-Olkin, BB1, BB5, and Tawn. Formulas of the copula 214 

families are provided in Table 1. Both the marginal CDF and copula families were selected using 215 
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the Akaike information criterion (AIC). In addition, a randomization strategy (also known as 216 

“Jittering”) was used to avoid the potentially adverse impact of repeated drought durations on the 217 

bivariate analysis (De Michele et al. 2013; Chambers et al. 2018). 218 

The copula parameters were estimated through the MCMC simulation in a Bayesian 219 

framework similar to the BMA parameters, leading to the posterior parameter distribution instead 220 

of the deterministic maximum likelihood (ML) estimates. Here, the Multivariate Copula Analysis 221 

Toolbox (MvCAT) was adopted to infer the MCMC-based copula parameters (Sadegh et al. 2017). 222 

The log-likelihood function for copula parameter inference in the MvCAT is expressed as 223 

 
22 2

1

1
( | ) ln(2 ) ln ( )

2 2 2

n

i i

i

n n
y y y    



       (10) 224 

where θ is the copula parameter set; n denotes the total number of observations; σ denotes the 225 

standard deviation of measurement error; ỹi denotes the empirical joint probability of observation 226 

i calculated using Gringorten plotting position (Gringorten 1963); yi(θ) is the joint probability of 227 

observation i calculated by the parametric copula with the given parameter θ. Different from the 228 

BMA parameters, the prior distributions of copula parameters are drawn using Latin Hypercube 229 

Sampling (LHS) which is an efficient sampler and has been widely used for implementing robust 230 

MCMC simulations (Stein 1987; Vrugt 2016; Huang et al. 2018). The Bayesian inference of 231 

copula parameter values requires specifying the initial uncertainty ranges, which are provided in 232 

Table 1. More details about the MCMC-based inference of copula parameters can be found in 233 

Sadegh et al. (2017). The MCMC simulations showed that the Marshall-Olkin copula was optimal 234 

for describing the dependence between drought severity and duration in Divisions 1−3 and 8 235 

according to the AIC values, while the Clayton and Gumbel copulas were chosen for Divisions 236 

4−7 and Divisions 9−10, respectively. Detailed results on the selection of copula families are 237 

provided in Table S2 of the supplementary material. To better assess the performance of the 238 
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MCMC-based copula simulation, the MCMC-based posterior distribution will be compared 239 

against the ML estimates derived by the frequentist approach. 240 

To project the future drought hazards, the joint return period of all the episodes in which 241 

drought severity (S) and duration (D) exceed their respective threshold is computed using inclusive 242 

probability (“OR” and “AND” case) (Salvadori and De Michele 2004). The drought return period 243 

is commonly proportional to the rarity of drought episodes and the relevant losses, and thus 244 

climate-induced drought hazards can be evaluated by comparing the return periods under past and 245 

future climates. The two cases of bivariate return period can be computed using the copula-based 246 

approach as 247 

ˆ1 ( , ) 1 ( , , )
DS

DS DS

T
F D d S s C D d S s

 



  
     

  (11) 248 
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  (12) 249 

where μ denotes the average inter-arrival time between the occurrences of drought episodes (Zhang 250 

et al. 2017). It should be noted that the return period is not deterministic but probabilistic with 251 

uncertainty ranges due to the posterior distribution of BMA weights and copula parameters derived 252 

from the MCMC simulation. 253 

2.3 Performance metrics 254 

In this study, we used several verification measures to evaluate the performance of climate 255 

simulations, including Kling-Gupta efficiency (KGE) and the supportive quantitative scores of 256 

predictive quantile-quantile (Q-Q) plot. KGE is a comprehensive verification measure introduced 257 

by Gupta et al. (2009), which combines correlation (r), bias (β), and variability (γ). It is defined as 258 

follows: 259 

2 2 2KGE 1 ( 1) ( 1) ( 1)r           (13) 260 
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where the correlation component r represents Pearson’s correlation coefficient. The bias 261 

component β represents the ratio of simulated and observed means, while the variability 262 

component γ represents the ratio of the simulated and observed coefficients of variation: 263 

/
and

/

s s s

o o o

  
 

  
    (14) 264 

where μs and μo represent the mean of simulated and observed variable, respectively; σs and σo 265 

represent the standard deviation of simulation and observation, respectively. KGE = r = β = γ = 1 266 

for a perfect simulation.  267 

The predictive Q-Q plot presents a visual comparison between the quantiles in which the 268 

observations fall within the predictive distribution and the cumulative uniform distribution, U[0, 269 

1] (Laio and Tamea 2007; Thyer et al. 2009). Detailed interpretation of the predictive Q-Q plot 270 

can be found in Thyer et al. (2009). Two reliability indices, α and ε, as well as a sharpness index, 271 

π, derived from the Q-Q plot were used to quantitatively assess the reliability and sharpness of 272 

climate simulations. These quantitative scores are defined as follows: 273 

1

1 1 1 1

|1 1 1
1 2 ( ) ( ) , 1 ( ) 1or ( ) 0 ,

|

t t t
T T T

kt t t t

t t t t t t
t t t k

E y x x
P y U y I P y P y

T T T y x x
  

  

                    
     (15) 274 

where Pt(y
t) represents the nonexceedance probability of observation yt using the prediction CDF; 275 

U(yt) represents the nonexceedance uniform probability of observation yt; I represents the indicator 276 

function. 
1[ | ]t t t

kE y x x  and 
1[ | ]t t t

ky x x  represent the expectation and standard deviation, 277 

respectively, of the predictive distribution. The α-index and ε-index vary between 0 (worst 278 

reliability) and 1 (perfect reliability). The simulation with a larger π-index indicates greater 279 

sharpness and is preferred for similarly reliable simulations.  280 

 281 
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3. Results 282 

3.1. Reproduction of historical hydroclimate regimes and drought characteristics 283 

Fig. 2 displays the spatial distributions of the 30-year annual mean precipitation and PET, 284 

respectively. These spatial distributions are derived from the CRU observations, the AEM 285 

simulations, and the BMA ensemble simulations as well as the absolute model bias generated by 286 

the AEM and BMA approaches. In general, there are considerable discrepancies between the AEM 287 

simulations and the CRU observations in reproducing the spatial pattern of annual mean 288 

precipitation and PET. Compared to the AEM simulations, the BMA ensemble simulations better 289 

reproduce the spatial pattern and have significantly lower absolute model biases. For example, the 290 

CRU observation and the BMA simulation generate a similar spatial gradient of precipitation in 291 

Northwest China (Figs. 2a and 2c), but such a gradient is not captured by the AEM simulation. 292 

The AEM simulation tends to underestimate the annual precipitation over Southeast China but 293 

overestimate over the Tibetan Plateau (Fig. 2d), which is congruent with previous studies (Gu et 294 

al. 2018; Zhu et al. 2018). Such biases can be caused by the cumulus convective parameterization 295 

scheme of Tiedtke (1989) used in the COSMO-CLM (CCLM) regional climate model (Giorgi et 296 

al. 2012; Niu et al. 2015; Zhang et al. 2015; Gu et al. 2020). The Tiedtke scheme activates the 297 

convection process less efficiently, leading to the negative bias of summer monsoon precipitation 298 

in Eastern China (Bao 2013). The complex orography is also a major reason for the precipitation 299 

overestimation in the Tibetan Plateau, since the resolution of 50 km is not fine enough to well 300 

describe the topographical effects of complex terrains (Wang et al. 2018b). The bias in the AEM-301 

simulated precipitation would hinder realistic characterization of drought hazards since 302 

precipitation is one of the most important driving factors of droughts. Such model bias has been 303 

largely reduced by the BMA simulation although dry biases remain over Southeast China (Fig. 2e).  304 
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The improvement of the BMA simulation upon the AEM simulation is more significant for 305 

PET than precipitation. The AEM-simulated annual mean PET generally has a positive bias of 306 

over 0.8 mm/day over Northwest and Southeast China, as well as a negative bias of more than 1 307 

mm/day over the Tibetan Plateau. The bias in the AEM-simulated temperature can be a major 308 

reason for the PET bias since temperature is one of the most important input variables for 309 

calculating PET, and previous studies also show a similar spatial pattern of the temperature bias 310 

in China (Yu et al. 2020). This indicates that the AEM-based projection of drought hazards can be 311 

largely overestimated over Southeast China based on the climate simulations currently available 312 

in the CORDEX East Asia experiment due to the overestimated evapotranspiration and the 313 

underestimated precipitation. 314 

To evaluate the accuracy of the AEM- and BMA-based climate simulations, Fig. 3 presents 315 

the bar plots of the KGE score and its components r, β, and γ for the AEM- and BMA-based 316 

simulations of precipitation and PET. Results show that the BMA simulation leads to a higher 317 

KGE score than the AEM simulation for most climate divisions. The AEM and BMA simulations 318 

lead to a quite similar and high correlation with observations. The correlation of the BMA-based 319 

precipitation in Division 8 is relatively low, but it is higher than that for the AEM-based 320 

precipitation. Regarding the bias score and the variability score, the BMA approach is more 321 

effective in matching simulations to observations (i.e., β = 1) and in capturing the variability of 322 

observations (i.e., γ = 1). For example, the AEM-based precipitation in Divisions 3 and 5 (i.e., the 323 

Tibetan Plateau) and the AEM-based PET in Divisions 7−10 (i.e., Southeast China) have the bias 324 

scores and the variability scores higher than 1, but the corresponding BMA-based scores are closer 325 

to 1. This indicates that the BMA simulation improves upon the AEM simulation in terms of the 326 

accuracy of precipitation and PET.  327 
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Fig. 4 presents the predictive Q-Q plots for the precipitation and PET simulations. According 328 

to the guide presented in Thyer et al. (2009), the closer the predictive Q-Q plot is to the uniform 329 

line, the better the climate simulation. The Q-Q plot falls below/above the uniform line, indicating 330 

a positive/negative bias, respectively. Overall, the Q-Q plot indicates the higher reliability and 331 

smaller bias of the BMA simulations as compared with the AEM simulations. For example, there 332 

is a clear negative bias for precipitation (Fig. 4j) and a positive bias for PET (Fig. 4t) in Division 333 

10 based on the AEM simulation. In comparison, the BMA simulation leads to an obviously 334 

smaller area between the Q-Q plot and the uniform line, indicating higher reliability of 335 

precipitation and PET simulations. However, a visual inspection of the Q-Q plot cannot quantify 336 

the relative reliability of climate simulations over all the climate divisions. For example, the AEM- 337 

and BMA-based precipitation simulations are both overconfident in Division 2 (Fig. 4b). Therefore, 338 

two reliability indices (α and ε) derived from the Q-Q plot and a sharpness index (π), were used to 339 

quantitatively evaluate the performance of the AEM and BMA simulations. 340 

Fig. 5 presents the reliability and sharpness of the AEM- and BMA-based simulations for 341 

precipitation and PET over each climate division. It can be seen that the BMA precipitation 342 

simulation is more reliable than the AEM simulation in respect to α for several climate divisions 343 

(i.e., Divisions 2 and 6−10), while the reliability of the AEM- and BMA-based precipitation 344 

simulations is similar for other climate divisions (i.e., Divisions 1 and 3−5). With respect to ε, 345 

BMA performs better than AEM for precipitation over most climate divisions, except for Divisions 346 

1, 3, and 8 where BMA and AEM lead to similar ε. The BMA simulations also improve the 347 

sharpness (π) of the precipitation upon the AEM simulations for most divisions. Regarding PET, 348 

the BMA simulations achieve equal or higher reliability compared to the AEM simulations, 349 

especially for Divisions 3 and 5 where the BMA simulations show large improvements. Although 350 
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there is no large improvement in the reliability of PET for the other divisions, the corresponding 351 

sharpness is largely improved through the BMA application. We can also observe that the BMA 352 

simulation leads to a lower sharpness for precipitation and PET than the AEM simulation for 353 

Divisions 3 and 5. This does not necessarily imply a poor performance of the BMA simulation 354 

since improving the forecast reliability and accuracy is the first priority in hydroclimate 355 

applications (Madadgar and Moradkhani 2014). Therefore, the BMA approach improves upon the 356 

AEM approach in terms of the reliability of precipitation and PET simulations. 357 

Fig. 6 compares drought duration, severity, and frequency generated from the CRU 358 

observation and the AEM simulation for 10 climate divisions in China. Results show that the 359 

variations in drought characteristics are generally underestimated by the AEM simulation. For 360 

example, the interquartile range (IQR) of the drought duration in Division 10 generated from the 361 

AEM simulation is 1.5, while the IQRs generated from the BMA simulation and the CRU 362 

observation are both 4. The longest drought duration generated from the AEM simulation is much 363 

shorter than that generated from the CRU observation. Such a bias suggests that the AEM 364 

simulation fails to capture those megadroughts which are of very high severity and are long-lasting. 365 

In comparison, the BMA simulation greatly enhances the consistency between the observed and 366 

simulated drought characteristics, thereby providing the confidence that future drought projections 367 

are more credible. 368 

3.2 Multidimensional drought risk assessment 369 

To assess the climate-induced drought hazards, the dependence between the drought severity and 370 

duration detected by SPEI6 was simulated through the Bayesian copula. Note that the severity of 371 

a drought event is the sum of minus SPEI6 during a drought event, while the drought duration is 372 

the total number of months that a drought event lasts. Fig. 7 presents the marginal posterior 373 
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distribution of parameters in copulas that describe the dependence between drought severity and 374 

duration for 10 climate divisions in China during 1975−2004. The red asterisk in each panel 375 

denotes the ML estimates derived by the frequentist copula approach. It can be seen that most of 376 

the posterior parameters are well constrained with normal distributions, but some are not, 377 

especially for the second parameter θ2 of the Marshall-Olkin copula (e.g., Figs. 7d and 7f), with a 378 

nearly uniform marginal distribution. Such unconstrained parameter distributions can be due to the 379 

limited samples of drought episodes. In addition, there is generally a plausible consistency between 380 

the posterior distribution of copula parameters inferred by the MCMC simulation and the ML 381 

estimates from the frequentist approach for most copula families, but divergent parameter 382 

estimates exist for several copulas (e.g., Figs. 7c and 7e). Such a divergence does not imply that 383 

the frequentist copula approach provides unreliable simulations, but it indicates that the frequentist 384 

approach gets trapped in local optima and provides only one plausible estimate, thereby leading to 385 

a biased representation of the dependence structure. In comparison, the MCMC-derived posterior 386 

parameter distribution provides multiple scenarios of copula simulations with equal or even higher 387 

likelihood. The uncertainty in copula parameters can lead to substantial uncertainty in drought risk 388 

assessments (see Figs. S3 and S4 of the supplementary material). This indicates that the frequentist 389 

and Bayesian copulas may lead to different drought assessments since the copula parameters 390 

determine the calculation of drought return period, which is commonly invoked in terms of 391 

quantifying and communicating risk (De Michele et al. 2013). 392 

To examine the fit quality of copulas, the joint probability derived from the empirical copulas 393 

and the parametric copulas are compared against each other, as shown in Fig. 8. The comparisons 394 

between the MCMC-based “best” copula and the frequentist copula are distinguished by different 395 

colors. The closer the points are to the diagonal in the diagnostic plot, the better the copula fitting 396 
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is. In general, both the MCMC-based and frequentist approaches provide plausible copula 397 

simulations, especially for Divisions 1 and 9. But the frequentist approach tends to underestimate 398 

the joint probability compared to the empirical joint probability. Such an underestimation does not 399 

necessarily lead to biased copula simulations but can be potentially risky since the frequentist 400 

approach fails to guarantee the global optimization for reproducing the joint distribution of 401 

observations.  402 

3.3 Multi-model drought risk projection 403 

Fig. 9 presents the comparison of drought severity, duration, and frequency detected by the SPEI6 404 

and the run theory between the historical (1975−2004) and future (2069−2098) periods over 10 405 

climate divisions in China. Both the drought severity and duration are projected to increase for 406 

most climate divisions. For example, the median drought durations are approximately 2 months 407 

over Division 5 for the historical period (1975−2004) and are projected to increase to 5 months for 408 

the future period (2069−2098). The increase of the radiative forcing leads to an obvious increase 409 

in the drought duration and severity for most climate divisions. For example, the median drought 410 

duration and severity in Division 2 (Northwest China) are projected to increase from 7 months to 411 

20 months and from 13 to 75, respectively, from RCP4.5 to RCP8.5. On the other hand, the 412 

frequency of drought episodes is projected to increase for most climate divisions. For example, 413 

Division 5 experienced 20 drought episodes during 1975−2004, while the corresponding number 414 

of drought occurrences is expected to increase to 35 under RCP4.5. In addition, the increase in the 415 

radiative forcing shows no significant impacts on the frequency of drought occurrences for most 416 

climate divisions. For example, Division 7 is projected to experience 32 and 31 drought episodes 417 

under RCP4.5 and RCP8.5, respectively. 418 
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To further quantify the climate-induced change in drought risks, the return periods (“AND” 419 

and “OR” cases) of drought episodes based on drought duration and severity are assessed for the 420 

historical and future periods, as shown in Fig. 10. The historical drought duration and severity 421 

were used to construct the parametric copula, which was then used to calculate the return period 422 

for each drought episode under past and future climates, leading to the box-and-whisker plots of 423 

return period in Fig. 10. Results show that the median drought return period does not show a 424 

significant difference between past and future climates for several divisions. However, the 425 

likelihood of megadroughts with long return periods is projected to increase due to the increase in 426 

drought duration and severity over most climate divisions. For example, the percentage of droughts 427 

with the “AND” return period of at least 10 years is 24%, 62%, and 41% under the historical 428 

climate, RCP4.5, and RCP8.5, respectively, over Division 1. This may indicate an elevated 429 

probability of recurrence of the 2014 Northeast China drought which was the worst on record and 430 

led to decreased maize production by 3.93 million tons in the Liaoning province (Wang et al. 2020). 431 

We also observe that the increase in the radiative forcing leads to an obvious amplification of the 432 

likelihood of extreme droughts for most climate divisions. The increase in the likelihood of 433 

droughts with the “AND” return period of at least 10 years is from 24% in Division 4 to 345% in 434 

Division 2 under RCP4.5, while the corresponding increase under RCP8.5 is from 70% in Division 435 

1 to 1,075% in Division 2. Such a great increase may suggest an increased risk of recurrence of 436 

record-breaking drought events, such as the severe drought of 2000 in northern China, which 437 

affected agricultural areas for more than 40 million hectares (Zou et al. 2005). 438 

3.4 Comparison of drought projections 439 

Although the Bayesian simulations better reproduce the historical drought regimes, it is desired to 440 

compare the drought projections generated from the AEM and BMA simulations. Fig. 11 presents 441 
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the box-and-whisker plots of the AEM-based drought duration, severity, and frequency between 442 

past and future climates over the 10 climate divisions. Results show that there is an obvious 443 

difference between the AEM and BMA simulations in projecting future changes of drought 444 

regimes. For example, the AEM-based drought frequency is projected to decrease for most climate 445 

divisions under RCP4.5 (Fig. 11c), but the corresponding number generated from the BMA 446 

simulation is projected to increase for most climate divisions (e.g., Divisions 2 and 4−10 in Fig. 447 

11c). The AEM and BMA simulations can also lead to differences in future changes of drought 448 

severity and duration. Overall, the future drought severity and duration are projected to increase 449 

based on the BMA simulation for most climate divisions, but they are projected to decrease based 450 

on the AEM simulation for several climate divisions, especially under RCP4.5 (e.g., Divisions 451 

5−7). Such differences bewteen the AEM and BMA climate projections lead to different 452 

conclusions on drought risk assessments in China (see Fig. S2 of the supplementary material). 453 

Since the BMA approach improves the reliability of hydroclimate simulations and drought 454 

characterization, and shows an acceptable model transferability based on a split-sample test (see 455 

Figs. S9 and S10), the BMA-based conclusions should be preferred. 456 

To explore the underlying reason for different drought projections based on the AEM and 457 

BMA simulations, Fig. 12 presents the spatial patterns of BMA weights for precipitation and PET. 458 

Results show that the CNRM-CM5 and PRECIS simulations make major contributions to 459 

reproducing the historical distribution of precipitation, while the other three simulations make little 460 

contribution since their BMA weights are close to zero for most divisions. Regarding PET, the 461 

PRECIS simulation makes the largest contribution in East China, while the other four simulations 462 

are relatively capable of reproducing historical PET in Northwest China. The MOHC-HadGEM2-463 

ES and MPI-ESM-LR simulations make little contribution to reproducing historical precipitation 464 
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and PET for most regions. This is inconsistent with the assumption of the AEM approach which 465 

treats each member of the ensemble as an equally likely outcome. Therefore, the AEM approach 466 

assigns equal weights to each member of the ensemble, thus leading to a large bias in precipitation 467 

and PET, but the BMA approach more heavily weights the simulations that perform relatively well 468 

in reproducing historical climate (e.g., the PRECIS simulation in this study). Such a weighted 469 

climate simulation leads to projections of future changes in precipitation and PET different from 470 

the AEM-based projections (see Figs. S5 and S6 of the supplementary material), which can be the 471 

main reason for different drought projections based on the AEM and BMA simulations.  472 

 473 

4. Conclusions 474 

In this study, a probabilistic projection of multidimensional drought risks was developed by 475 

integrating copula with BMA. An ensemble of five regional climate simulations was used to 476 

project future changes in hydroclimatic regimes over China. A Bayesian copula approach was also 477 

introduced to explicitly uncover potential interactions of the SPEI-detected drought characteristics 478 

and associated uncertainties, thereby improving the multidimensional drought risk assessment. We 479 

examined the performance of arithmetic ensemble mean (AEM) and BMA simulations in 480 

reproducing the historical climate and the drought regimes, as well as Bayesian and frequentist 481 

copula approaches used for multidimensional drought simulations. We also compared the AEM- 482 

and BMA-based future changes in drought regimes and discussed possible reasons for the resulting 483 

difference.  484 

The AEM climate simulations show large biases in most areas of China. In comparison, the 485 

BMA climate simulation can largely improve the simulation of precipitation and PET, with a 486 

higher level of reliability and accuracy as well as a smaller bias than the AEM simulation. The 487 
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variations in drought characteristics are generally underestimated by the AEM simulation, but they 488 

are better reproduced by the BMA simulation. The introduced Bayesian copula approach not only 489 

provides equally plausible estimates compared to the frequentist copula approach but also 490 

explicitly uncovers the equifinality in the copula simulation. Such an uncovered equifinality can 491 

improve the multidimensional drought assessment by providing multiple scenarios.  492 

The drought duration and severity are projected to substantially increase for most areas of 493 

China based on the Bayesian framework, but the AEM simulation leads to multiple opposite 494 

behaviors, especially under RCP4.5. Such a discrepancy can be attributed to the systematic bias of 495 

the AEM simulation in reproducing historical hydroclimatic regimes, which propagates into future 496 

drought projections. The BMA-based drought projection should be more credible since it provides 497 

a more accurate simulation of present-day droughts. The estimated joint risk from drought duration 498 

and drought severity in China is expected to increase under both emission scenarios. The likelihood 499 

of extreme droughts (e.g., the 10-year drought) is also projected to increase as the radiative forcing 500 

increases. These findings reveal that China will experience more frequent extreme droughts, and 501 

the associated risks would be elevated due to the increase in the radiative forcing.  502 

It should be noted that although the MCMC-based BMA approach significantly improves the 503 

ensemble mean climate simulation, the potential errors are not completely corrected. It is thus 504 

desired to further improve regional climate simulations using the high-resolution convection-505 

permitting modeling systems in future studies. In addition, the time-invariant BMA weights 506 

determined by the historical data in multi-model climate projections may not well represent the 507 

nonstationary nature of climate dynamics. Although the underlying uncertainty in the BMA 508 

weights was explicitly addressed in this study and previous studies also yielded plausible results 509 
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(Terando et al. 2012; Olson et al. 2016, 2018; Shin et al. 2019), it is desired to develop 510 

nonstationary frameworks to further improve the credibility of climate projections. 511 
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Fig. 1 a The PRECIS model domain with topography and 10 climate divisions including: 1. Cold-775 

temperature and humid zone; 2. Warm-temperature and arid zone; 3. Plateau and semi-arid zone; 776 

4. Warm-temperature and semi-arid zone; 5. Plateau and semi-humid zone; 6. Mid-temperature 777 

and humid zone; 7. Warm-temperature and humid zone; 8. North-subtropical and humid zone; 9. 778 

Mid-subtropical and humid zone; 10. South-subtropical and humid zone. The 10 climate divisions 779 

are generated based on the long-term mean temperature and precipitation as well as the topography 780 

in China. The buffer zone of 8 grids is between red and blue rectangle boxes. b The COnsortium 781 

for Small-scale MOdelling in CLimate Mode (CCLM) model domain with topography 782 

Fig. 2 Spatial patterns of 30-year (1975−2004) annual mean a−e precipitation and f−j PET (unit: 783 

mm/day) generated from the CRU observation, the ensemble mean (AEM) simulation, the BMA 784 

simulation, as well as the absolute model biases for the AEM and BMA simulations. BMA is the 785 

Bayesian model averaging, CRU is the Climatic Research Unit, and AEM is the arithmetic 786 

ensemble mean 787 

Fig. 3 The Kling-Gupta efficiency (KGE) score and its three components: correlation coefficient, 788 

bias, and variability ratio for the AEM- and BMA-based simulations of a−d precipitation and e−h 789 

PET during the historical 30-year period (1975−2004) 790 

Fig. 4 Comparison of predictive QQ plots produced by the AEM- and BMA-based simulations of 791 

a−j precipitation and k−t PET for 10 climate divisions in China during the historical 30-year period 792 

(1975−2004) 793 

Fig. 5 Comparison of the performance of the AEM- and BMA-based climate simulations indicated 794 

by reliability and sharpness for a−c precipitation and d−f PET during the historical 30-year period 795 

(1975−2004) 796 
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Fig. 6 a Drought duration, b severity, and c frequency (i.e., number of drought episodes) generated 797 

from the CRU observation, the ensemble mean (AEM) simulation, and the BMA simulation for 798 

10 climate divisions in China during the historical 30-year period (1975−2004). The thick black 799 

horizontal bars in a and b represent the median value, and the lower and upper edges of the box 800 

represent the 25th (Q1) and 75th (Q3) percentile values, respectively. The upper and lower whiskers 801 

represent the values of Q3 + 1.5 × IQR and Q1 − 1.5 × IQR, respectively, where IQR denotes the 802 

interquartile range that is equal to Q3 – Q1. The values beyond the end of the whiskers are indicated 803 

by outlier points 804 

Fig. 7 The posterior distributions of parameters in copulas that describe the dependence between 805 

drought severity and duration for 10 climate divisions in China during 1975-2004. The red asterisk 806 

in each panel represents the maximum likelihood (ML) estimates derived by the frequentist 807 

approach 808 

Fig. 8 Comparison of the empirical and fitted copula-based joint probability between drought 809 

severity and duration for 10 climate divisions in China during 1975−2004. The fitted joint 810 

probability is separately calculated using copulas inferenced by Bayesian and frequentist 811 

approaches, as represented by the red and blue dots, respectively 812 

Fig. 9 Same as Fig. 6 but generated from the CRU observations (1975−2004) and the BMA-based 813 

projections (2069−2098) over the 10 climate divisions 814 

Fig. 10 The a AND- and b OR-case return periods of all drought episodes for the past (1975−2004) 815 

and future (2069−2098) climates over the 10 climate divisions. The setting of the box-and-whisker 816 

plot is the same as Fig. 6. The return periods are calculated by the parametric copula constructed 817 

for the historical drought duration and severity that are detected by the 6-month SPEI 818 
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Fig. 11 Box-and-whisker plots of the a drought duration, b severity, and c frequency generated 819 

from the CRU observations (1975−2004) and the ensemble mean projections (2069−2098) over 820 

the 10 climate divisions 821 

Fig. 12 Spatial patterns of BMA weights for a−e precipitation and f−j PET 822 

  823 



 

40 

 

 824 

Fig. 1 a The PRECIS model domain with topography and 10 climate divisions including: 1. Cold-825 

temperature and humid zone; 2. Warm-temperature and arid zone; 3. Plateau and semi-arid zone; 826 
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for Small-scale MOdelling in CLimate Mode (CCLM) model domain with topography 832 
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Fig. 2 Spatial patterns of 30-year (1975−2004) annual mean a−e precipitation and f−j PET (unit: 835 

mm/day) generated from the CRU observation, the ensemble mean (AEM) simulation, the BMA 836 

simulation, as well as the absolute model biases for the AEM and BMA simulations. BMA is the 837 

Bayesian model averaging, CRU is the Climatic Research Unit, and AEM is the arithmetic 838 

ensemble mean 839 
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Fig. 3 The Kling-Gupta efficiency (KGE) score and its three components: correlation coefficient, 843 

bias, and variability ratio for the AEM- and BMA-based simulations of a−d precipitation and e−h 844 

PET during the historical 30-year period (1975−2004)   845 
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Fig. 4 Comparison of predictive QQ plots produced by the AEM- and BMA-based simulations of 847 

a−j precipitation and k−t PET for 10 climate divisions in China during the historical 30-year period 848 

(1975−2004) 849 
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Fig. 5 Comparison of the performance of the AEM- and BMA-based climate simulations indicated 853 

by reliability and sharpness for a−c precipitation and d−f PET during the historical 30-year period 854 

(1975−2004) 855 
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Fig. 6 a Drought duration, b severity, and c frequency (i.e., number of drought episodes) generated 859 

from the CRU observation, the ensemble mean (AEM) simulation, and the BMA simulation for 860 

10 climate divisions in China during the historical 30-year period (1975−2004). The thick black 861 

horizontal bars in a and b represent the median value, and the lower and upper edges of the box 862 

represent the 25th (Q1) and 75th (Q3) percentile values, respectively. The upper and lower whiskers 863 

represent the values of Q3 + 1.5 × IQR and Q1 − 1.5 × IQR, respectively, where IQR denotes the 864 
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interquartile range that is equal to Q3 – Q1. The values beyond the end of the whiskers are indicated 865 

by outlier points 866 
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Fig. 7 The posterior distributions of parameters in copulas that describe the dependence between 869 

drought severity and duration for 10 climate divisions in China during 1975−2004. The red asterisk 870 

in each panel represents the maximum likelihood (ML) estimates derived by the frequentist 871 

approach 872 
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Fig. 8 Comparison of the empirical and fitted copula-based joint probability between drought 875 

severity and duration for 10 climate divisions in China during 1975−2004. The fitted joint 876 

probability is separately calculated using copulas inferenced by Bayesian and frequentist 877 

approaches, as represented by the red and blue dots, respectively 878 
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Fig. 9 Same as Fig. 6 but generated from the CRU observations (1975−2004) and the BMA-based 881 

projections (2069−2098) over the 10 climate divisions 882 
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 884 

Fig. 10 The a AND- and b OR-case return periods of all drought episodes for the past (1975−2004) 885 

and future (2069−2098) climates over the 10 climate divisions. The setting of the box-and-whisker 886 

plot is the same as Fig. 6. The return periods are calculated by the parametric copula constructed 887 

for the historical drought duration and severity that are detected by the 6-month SPEI 888 
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Fig. 11 Box-and-whisker plots of the a drought duration, b severity, and c frequency generated 892 

from the CRU observations (1975−2004) and the ensemble mean projections (2069−2098) over 893 

the 10 climate divisions 894 

  895 



 

52 

 

 896 

 897 

Fig. 12 Spatial patterns of BMA weights for a−e precipitation and f−j PET 898 
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Table 1. Summary of 10 copula families and the corresponding initial parameter uncertainty 901 

ranges for the MCMC-based inference 902 
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