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Abstract— A new algorithm to retrieve water vapor from 

MODIS NIR channels using the ensemble-based empirical 

regression model, which was developed based on the North 

Hemisphere (western North America) data, was for the first time 

applied and validated to the South Hemisphere, mainly the 

Australia and its surrounding regions. By employing the empirical 

regression algorithm to retrieve water vapor from MODIS Level 

1 reflectance data, the wet bias of MODIS product has been 

significantly reduced. Validation against GPS water vapor 

observations over the period 1 January 2017 to 31 December 2019 

in and around Australia show that the RMSE of water vapor data 

obtained from MODIS/Terra has reduced by 58.53% from 5.712 

mm to 2.369 mm when using 2-channel ratio transmittance and 

has reduced by 56.14% to 2.505 mm when using 3-channel ratio 

transmittance. For the data obtained from MODIS/Aqua, the 

RMSE has reduced by 49.17% from 5.170 mm to 2.628 mm using 

2-channel ratio transmittance and has reduced by 46.60% to 2.761

mm using 3-channel ratio transmittance, respectively. In addition,

validations of the retrieved water vapor results over such a large

research area (0°-55°S in latitude and 95°-180°E in longitudes)

also show no temporal or spatial dependency, implying that the

algorithm is homogeneous, accurate, and robust.

Index Terms— MODIS, GPS, Water vapor, Australia 

I. INTRODUCTION

ater vapor is one of the most important climate variables 

and it plays a key role in atmospheric processes, 

hydrological circulation, weather formation, and climate 

change [1], [2]. It contributes to about 60% of the natural 

greenhouse effects and provides the largest positive feedback in 

predictive models of climate change [3]. Furthermore, water 

vapor is a parameter often used in remote sensing techniques 

while observing the Earth’s surface [4]. Due to its importance, 

the Global Climate Observing System (GCOS) declared the 

total column water vapor as an essential climate variable (ECV) 

and should meet the observation requirement of stability of 

0.3% per decade and no more than 5% measurement 

uncertainty [5]. 
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A number of different water vapor observation techniques 

have been developed. However, observing water vapor with 

high precision is still challenging as it is highly variable both 

spatially and temporally [6], [7]. Ground-based observations, 

such as radiosonde and Global Navigation Satellite Systems 

(GNSS) / Global Positioning System (GPS) data, are usually 

used as ground-truth in validation analysis because of their high 

observation precision [8], [9]. The radiosonde has a long record 

of historical water vapor observations but it only observes twice 

per day or once daily [8], [10]. The large time difference 

between the radiosonde observation and satellite overpass may 

introduce validation uncertainties [10]. GNSS/GPS provides 

continuous observation in all-weather conditions every hour 

[9], [11], therefore, the GPS derived water vapor data are 

employed as reference data in this study. The space-based 

remote sensing satellite technique is the most cost-effective 

way of observing water vapor globally but it has lower temporal 

resolution and larger uncertainty compared to ground-based 

approach [12]–[14].  

The MODerate resolution Imaging Spectroradiometer 

(MODIS) onboard the Terra and Aqua satellites is probably the 

most widely used space instrument to observe water vapor with 

both near-infrared (NIR) and traditional infrared (IR) bands 

[15]. The operational products of MODIS NIR channels 

(MOD05 for Terra and MYD05 for Aqua) were calculated from 

a pre-calculated look-up table generated from radiative transfer 

models, with an estimated uncertainty of 5% to 10% [15], [16]. 

Evaluations show that the performance of MODIS NIR 

products varies from place to place. For instance, validation 

over Germany shows an overestimation of MODIS against GPS 

by 7% to 14% [17]. Evaluation of MODIS NIR product against 

GPS in mainland China shows that the root mean squares error 

(RMSE) is 5.76 mm [12], while the RMSE between MODIS 

and radiosonde in Hong Kong is 13.09 mm [18]. Research 

shows that the RMSE varies from 5.87 to 9.37 mm at two 

stations in India [19]. Inter-comparison of MODIS against GPS 

over the US shows that the RMSE is 5.05 mm [14]. 

Satellite-based remote sensing of water vapor has its 
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advantages of large coverage and low costs despite its relatively 

low accuracy. Thus, it has been widely used in the research and 

application communities. In order to enhance its accuracy, 

development of improved algorithms for MODIS water vapor 

retrieval in the NIR channels has been carried out in several 

studies. By introducing empirical correction coefficients for 

transmittance calculation, the wet bias of NIR product is 

reduced and the validation on a global scale shows that the 

RMSE is between 0.9 and 2 mm [20]. Localized optimization 

of water vapor measurement in western Iran shows that the 

retrieval accuracy is improved at the local scale and the RMSE 

is reduced to 2.702 mm [21]. An empirical regression method 

has been proposed to improve MODIS NIR water vapor 

retrieval and the new algorithm can reduce RMSE to 2.243 mm 

over the western North America and the RMSE of some global 

stations to 5.946 mm [22]. 

In the past, most of the work was conducted in the North 

Hemisphere. Unfortunately, the performance of the algorithm 

in the Southern Hemisphere has not been well studied. In our 

previous study, our new algorithm was derived based on GPS 

water vapor data from western North America [22]. The 

algorithm was validated to perform well in western North 

America. However, its performance in the other regions, 

particularly in the South Hemisphere where the climate is 

significantly different from western North America, has not 

been validated. 

Australia and its neighboring regions are selected in this 

study for the following reasons: (1) Australia covers a large 

landmass and its diverse weather and climate conditions are 

representative of the South Hemisphere; (2) the Geoscience 

Australia has developed a dense GNSS network across 

Australia and high accuracy water vapor products derived from 

the GNSS data [23] can be used for assessment of our 

developed algorithm; (3) the Australian climate is particularly 

sensitive to El Niño-Southern Oscillation (ENSO) and La Niña 

events, which are strongly related to water vapor distribution 

[24], [25].  

Our previous study have derived an empirical regression 

model for water vapor retrieval from MODIS data, based on the 

water vapor data estimated from the western North America 

GNSS network [22]. In order to evaluate the model’s 

performance in the South Hemisphere, a new set of MODIS 

water vapor data is first retrieved using the coefficients of the 

empirical model. The new water vapor dataset is then validated 

by comparing against the water vapor data derived from 520 

GPS stations across the Australia and its surrounding regions 

such as New Zealand and Pacific Islands. Section 2 provides 

information on the research area. Section 3 gives a detailed 

description of the datasets used in this work, including the 

calculation method of GPS precipitable water vapor (PWV) and 

algorithm of water vapor retrieval from MODIS NIR channels. 

Section 4 discusses the validation results of calibrated water 

vapor data using our algorithm as well as MODIS’s operational 

water vapor product in comparison to the GPS water vapor 

observations. Section 5 presents the conclusion of this research.  

II. STUDY AREA 

The research covers the area in Australia and its neighboring 

regions, with latitudes from 0° S to 55° S, and longitudes from 

95° E to 180° E. The area includes a wide variety of landscapes, 

including the Australian continent, New Zealand, and several 

islands of the Malay Archipelago and the New Guinea. For the 

Australia continent, there are tropical rainforests in the north-

east, mountains in the south-east, and desert in the center. As 

the continent is surrounded by the Indian and Pacific oceans, 

the climate of the research area is significantly influenced by 

ocean currents, such as the Indian Ocean Dipole and the El 

Niño-Southern Oscillation [26], causing the rainfall to vary 

markedly from year to year [24]. The majority part of Northern 

Australia has a tropical, predominantly summer-rainfall, while 

the south-west part of Australia has a Mediterranean climate. 

The south-east has a climate ranging from oceanic to humid-

subtropical, and the interior is arid to semi-arid. There are four 

distinct seasons in this area, which are at opposite times to those 

in the North Hemisphere. The Malay Archipelago and the New 

Guinea have a tropical climate. Except in high elevations, most 

areas have a warm, humid climate throughout the year with 

seasonal variation related to the northeast monsoon [27]. New 

Zealand is predominantly oceanic, with mild temperature and 

humid climate all year round [28]. 

Water vapor data from a total of 520 GPS stations equipped 

with GPS receivers and meteorological observation equipment 

are utilized as reference data in this study. These stations 

provide continuous atmospheric water vapor observations. The 

distribution map of the GPS stations is shown in Figure 1. 

III. DATA DESCRIPTION 

Two types of data observed during 2017~2019 are employed 

in this research, including GPS-derived water vapor data that 

are used as reference data, and MODIS data Level 1 data on 

surface reflectance and geolocation, to which our model is 

applied and from which improved water vapor products are 

retrieved. The MODIS Level 2 water vapor product is also used 

for comparison purpose in this study. The descriptions of the 

data characteristics are listed in Table 1.  

In order to ensure enough data to be used in the model 

validation in the South Hemisphere, the data covers a period of 

three years from 1 January 2017 to 31 December 2019. 

Spatially and temporally collocated GPS and MODIS data 

collected under the cloud-free conditions are used in model 

validation. To reduce the temporal discrepancies between GPS 

and MODIS data, only data pairs with a time difference of less 

than 30 minutes are used in this study. 

A. GPS PWV 

GPS PWV is calculated based on the propagation delays of 

the atmosphere [9]. In this study, the zenith tropospheric delay 

(ZTD) data are obtained from the Asia Pacific Regional 

Geodetic Project (APRGP) GPS Campaign from Geoscience 

Australia (ftp://ftp.ga.gov.au/geodesyoutgoing/gnss/products/ 

troposphere/rapid/). It is a project of the Geodetic Reference 

Frame Working Group of the Regional Committee of the 

United Nations Global Geospatial Information Management for 

ftp://ftp.ga.gov.au/geodesyoutgoing/gnss/products/ troposphere/rapid/
ftp://ftp.ga.gov.au/geodesyoutgoing/gnss/products/ troposphere/rapid/
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Asia and the Pacific (UN-GGIM-AP). The GPS ZTDs were 

processed using Bernese GNSS Software and the GPS solution 

was constrained to the ITRF2008 reference frame [23]. These 

ZTD data are then converted to PWV using the surface 

pressure, temperature and humidity profiles obtained from the 

European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-5 [29]. The ERA-5 data from 00:00, 06:00, 

12:00 and 18:00 UTC of each day were employed. The spatial 

resolution is 0.25° with 37 vertical pressure levels.  

To calculate the zenith hydrostatic delay (ZHD) from GNSS 

stations, the Saastamoinen model [30] is employed: 

ZHD =
0.0022768𝑃0

(1 − 0.00266 cos(2𝜑) − 0.00028ℎ0)
 (1) 

where 𝑃0 represents the air pressure at the height of the station; 

𝜑 is the station latitude, and ℎ0 is the height of the station.  

Because the ZTD is modeled as a sum of ZHD and zenith wet 

delay (ZWD), the ZWD could be calculated using: 

 ZWD = ZTD − ZHD (2) 

The ZWD is then converted to PWV [9]: 

 PWV = Π × ZWD (3) 

where Π  represents the dimensionless constant of 

proportionality. It is calculated using [9]: 

 
Π =

105

461.495(𝑘3 𝑇𝑚 + 𝑘′2⁄ )
 (4) 

where 𝑘3 equals to 3.776×105 K2/hPa; 𝑘′2 equals to 16.52 

K/hPa. And 𝑇𝑚 is the weighted mean temperature [31]:  

 
𝑇𝑚 =

∫ 𝑒 𝑇⁄
∞

𝐻

∫ 𝑒 𝑇2⁄
∞

𝐻

𝑑ℎ (5) 

where 𝐻 represents the height of the GPS station; 𝑇 represents 

the temperature at height ℎ  in degrees Kelvin (T=t+273.15). 

The 𝑒 is the water vapor partial pressure, which is calculated 

using [32], [33]: 

 𝑒

= 6.1121(1.0007 + 3.46 ×  10−6  ×  𝑃)

× 𝑅𝐻

× exp{
[18.729 −

𝑇 − 273.15
227.3

](𝑇 − 273.15)

𝑇 − 15.28
} 

(6) 

 

where 𝑃  is the total pressure (unit: hPa), 𝑅𝐻  represents the 

relative humidity (unitless). It should be noted that the 

geopotential height is approximately equal to geometric height. 

Moreover, a bilinear interpolation procedure is conducted at 

four surrounding grid points for relative humidity and 

temperature using the ERA-5 data to calculate PWV from these 

GPS sites. The Piecewise Cubic Hermite Interpolating 

Polynomial (PCHIP) function [34] is employed to interpolate 

or extrapolate the value in geometric heights. 

The accuracy of GPS-derived water vapor data has been 

evaluated with radiosonde water vapor data. The RMSE for the 

retrieved GPS water vapor against radiosonde observation is 

1.48 mm [25]. Because of the high precision and high temporal 

resolution, the GPS data is suitable to be used as reference data 

in this study. 

B. MODIS NIR PWV 

MODIS is a passive whisk-broom scanning imaging 

spectroradiometer with 36 spectral bands onboard the Terra and 

Aqua satellites operated by NASA. Five NIR channels are used 

for water vapor retrieval, with three water vapor absorption 

channels centered at 905 nm, 936 nm and 940 nm, and two 

window channels centered at 865 nm and 1240 nm [16]. 

Detailed descriptions of the MODIS NIR channels are listed in 

Table 2. 

The amount of water vapor in the atmosphere is estimated at 

each channel through the observation of its effect on absorbing 

radiance when it is transmitted down to the earth surface and 

reflected to the sensor [15]. The transmittance is usually 

estimated by measuring the mean radiance ratio of one 

absorption channel to one or more window channels. For a 

ground surface type of which reflectance varies linearly with 

wavelength, the function using a 2-channel ratio method to 

calculate the transmittance is defined as: 

 
𝑇𝑖 ≅ 𝑅𝑖 = 

𝐿𝑖

𝐿2

 (7) 

where 𝑇𝑖  is the transmittance of channel i, which is 

approximately equal to the reflectance ratio 𝑅𝑖 ; Li  is the 

reflectance in absorption channel i (i=17, 18 and 19); L2 is the 

reflectance in window channel 2 centered at 865 nm. 

For ground surface covers with complex reflectance spectra, 

two window channels (band 2 and band 5) are required to 

calculate the transmittance in the absorption channel. The 3-

channel ratio method is defined as: 

 
𝑇𝑖 ≅ 𝑅𝑖 = 

𝐿𝑖

[𝐶1𝐿2 + 𝐶2𝐿5]
 (8) 

where the coefficients C1 and C2 are prescribed as 0.8 and 0.2, 

respectively. It is assumed that the reflectance ratio around 1 

µm remains the same, or the reflectance ratio varies linearly 

[35]. 

Normally, the inverted amount of water vapor can be 

retrieved through further calculation with either a lookup table 

generated from the radiative transfer model [15], a regression 

method [22], or an artificial neural network [36]. In this article, 

the empirical regression method proposed by He and Liu (2020) 

is employed instead to calculate water vapor over the research 

area. 

1) Operational Products 

In assessing the performance of our new algorithm, the 

current products from MODIS are also employed and compared 

with GPS-derived water vapor. The accuracy of the MODIS 

products will be compared with that of calibrated water vapor 

data estimated from our new algorithm. The operational 

algorithm to calculate water vapor from MODIS NIR channels 

is based on the radiative transfer theory [15]. The relationship 

between the atmospheric transmission and water vapor content 

is simulated using High-Resolution Transmission (HITRAN) 

2000 [15], [16]. The relationship can be simplified by an 

exponential formula written as: 

 𝑇𝑤 = 𝑒𝑥𝑝(𝛼 − 𝛽√𝑊∗) (9) 
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where 𝑇𝑤  is the transmittance of water vapor; 𝛼  and 𝛽  are 

coefficients determined by surface type, and the 𝑊∗ is water 

vapor along the sun-surface-sensor (slant) path [16].  

2) Improved Water Vapor Retrieval 

As the current MODIS product systematically overestimates 

water vapor values, a new algorithm was developed to retrieve 

water vapor from MODIS with improved accuracy based on the 

GPS water vapor data collected in western North America [22]. 

Spatially and temporally collocated GPS and MODIS data 

collected under cloud-free conditions were used for model 

development. Ensemble functions were generated from ten 

resampling training sets that were generated using bootstrap 

method, as the multiple training sets could average prediction 

errors and reduce the bias and variance errors [37]. This 

algorithm model the relationship between atmospheric 

transmittance and water vapor content through an empirical 

regression method. In contrast to operational algorithms, this 

new approach provides an effective way to estimate water vapor 

through MODIS Level 1 reflectance data without pre-observed 

atmospheric profiles. However, the model was previously 

derived with data obtained from the western North America 

region. To study its application in other places such as the South 

Hemisphere, the model and its coefficients are directly 

employed in this research to estimate the water vapor for 

Australia and its neighboring regions in the South Hemisphere.  

The transmittance is firstly calculated using the Level 1 

reflectance data from MODIS absorption channels using both 

2-channel and 3-channel ratio methods. Then the transmittance 

is converted to water vapor on the sun-surface-sensor path using 

the following equation [22]: 

 𝑇𝑤 = 𝑎 exp (𝑏 𝑊𝑖
∗) + 𝑐 exp  (𝑑 𝑊𝑖

∗) (10) 

where the a, b, c and d are the coefficients determined through 

the least squares fitting [22]; Tw is the transmittance of the water 

vapor obtained from MODIS NIR channel i; 𝑊𝑖
∗ is the slant 

water vapor content at the channel i. The vertical total 

precipitable water vapor 𝑊𝑖  for the corresponding absorption 

channel is calculated using: 

 
𝑊𝑖 =  𝑊𝑖

∗ (
1

𝑐𝑜𝑠𝜃
+

1

𝑐𝑜𝑠𝜃0

)⁄  (11) 

where 𝜃  represents the view zenith angle and 𝜃0  is the solar 

zenith angle.  

Water vapor could be estimated at each absorption channel. 

As previous studies show, the three absorption channels have 

different sensitivities under different conditions [15], [22]. To 

get a more accurate water vapor estimation, the weighted mean 

value of the three absorption channels is calculated in this 

research: 

 𝑊 = 𝑓1𝑊17 + 𝑓2𝑊18 + 𝑓3𝑊19 (12) 

where W17 ,  W18  and W19  represent the water vapor values 

estimated from band 17, band 18 and band 19, respectively; f1, 

f2  and f3  are the corresponding weighting parameters 

calculated based on the sensitivity in each band: 

 𝑓𝑖 =
𝜂𝑖

𝜂1 + 𝜂2 + 𝜂3

 (13) 

where ηi  represents the slope of the graph of transmission 

versus water vapor at each water vapor absorption band of 

MODIS. 

By employing the above equations, new sets of ensemble 

members of water vapor are calculated for each absorption 

channel (W17, W18 and W19), and the weighted mean value of 

the three absorption channels is also estimated as the final 

calibrated water vapor value. The ensemble median is used to 

represent the calibrated water vapor for validation analysis.  

An example of water vapor distribution observed on 27 

December 2019, 0035 UTC from MODIS/Terra is displayed in 

Figure 2 with a 1 km * 1 km resolution. The operational product 

MOD05 (Figure 2a) along with the weighted mean value of the 

absorption channels calculated using the new algorithm with 2-

channel ratio transmittance (Figure 2b) and 3-channel ratio 

transmittance (Figure 2c) is presented. Each data point is the 

ensemble median of the ensemble members at the 

corresponding pixels. Generally, the calibrated water vapor 

calculated using both 2-channel and 3-channel ratio 

transmittance are systematically smaller than the operational 

product, especially for area with high water vapor 

concentration. Furthermore, no stripe features appear in either 

of the calibrated water vapor maps, indicating that the algorithm 

is stable for further applications. To further assess the 

performance of the algorithm, validation against GPS reference 

water vapor data collected in Australia and its neighboring 

region is discussed in the following section. 

IV. VALIDATION OF SOUTH HEMISPHERE MODIS WATER 

VAPOR RESULTS 

In the performance assessment of the calibrated MODIS 

PWV in the South Hemisphere, a few statistical metrics are 

employed. They are the coefficient of determination (R2), 

which indicates the relationship strength between the calibrated 

water vapor and the reference GPS PWV; the mean bias (MB), 

which shows the systematic difference between the MODIS and 

GPS water vapor observations; the RMSE, which measures the 

overall agreement of the two datasets. The metrics are written 

as: 

 𝑅2

=

[
 
 
 ∑ (𝑃𝑊𝑉𝑅𝑖

− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�)(𝑃𝑊𝑉𝑂𝑖

− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�)𝑛

𝑖=1

√∑ (𝑃𝑊𝑉𝑅𝑖
− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅

�̅�)
2
(𝑃𝑊𝑉𝑂𝑖

− 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�)

2𝑛
𝑖=1 ]

 
 
 
2

 
(14) 

 
𝑀𝐵 =

1

𝑁
∑(𝑃𝑊𝑉𝑂𝑖

− 𝑃𝑊𝑉𝑅𝑖
)

𝑛

𝑖=1

 (15) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑|𝑃𝑊𝑉𝑂𝑖

− 𝑃𝑊𝑉𝑅𝑖
|
2

𝑁

𝑖=1

 (16) 

where the 𝑃𝑊𝑉𝑅𝑖
 is the reference PWV derived from 

Australian and its neighboring GPS networks; 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�  is the 

mean PWV from GPS; 𝑃𝑊𝑉𝑂𝑖
 is the observed water vapor 

obtained from MODIS, including the existing MODIS products 

and the calibrated water vapor data that are calculated based on 
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the coefficients obtained from the North Hemisphere data 

(western North America) [22]. 

A. Validation against GPS 

The results of validation against GPS PWV observations are 

shown in Figure 3. It shows that the calibrated MODIS PWV 

data calculated using the ensemble-based empirical regression 

method has better accuracy than the MODIS’s own operational 

PWV product. For data obtained from MODIS/Terra shown in 

the upper panel of Figure 3, the RMSE of PWV data has 

reduced by 58.53% from 5.712 mm to 2.369 mm using the 2-

channel ratio transmittance (Figure 3b) and has reduced by 

56.14% to 2.505 mm using the 3-channel ratio transmittance 

(Figure 3c). For data obtained from MODIS/Aqua shown in the 

lower panel of Figure 3, the RMSE has reduced by 49.17% from 

5.170 mm to 2.628 mm using the 2-channel ratio transmittance 

(Figure 3e) and has reduced by 46.60% to 2.761 mm using the 

3-channel ratio transmittance (Figure 3f). It is worth mentioning 

that there are several outliers shown in Figure 3. It might be 

caused by mixed pixels, impact of hazy conditions, or being 

observed over dark surfaces [15]. 

The validation results for water vapor estimated from each 

single absorption band are listed in Table 3. For the 

MODIS/Terra data, water vapor retrieved from band 18 has the 

best results, with an RMSE of 2.617 mm and 2.695 mm for 2-

channel and 3-channel transmittance, respectively. For the 

MODIS/Aqua data, water vapor obtained from band 19 has the 

best agreement with the reference GPS data, with an RMSE of 

2.644 mm and 2.703 mm for 2-channel and 3-channel 

transmittance, respectively. Band 17 has the worst retrieval 

accuracy among the three absorption channels and its RMSE is 

larger than the other two absorption channels. The results also 

confirm that the weighted mean water vapor data of three 

channels have better accuracy than those retrieved from a single 

absorption channel. 

B. Geographical Dependency 

To analyze the geographical dependency of the mean bias, 

distribution maps of the mean bias between GPS PWV and the 

calibrated water vapor retrieved using 2-channel ratio and 3-

channel ratio transmittance for both Terra and Aqua satellites 

are shown in Figure 4. The results show that for the PWV 

retrieved from both satellites have positive biases at most of the 

GPS stations, indicating that the calibrated MODIS PWV on 

average are larger than the GPS PWV. This corresponds to the 

mean biases of all the data points shown in Figure 3. On the 

other hand, although the GPS stations are not evenly distributed 

over the research area, generally the mean bias has no visible 

dependency on the location of GPS stations. It is also worth 

mentioning that there are a few stations near the equator that 

have relatively larger negative biases. These errors are likely 

because of the source error in cloud-mask, reflectance 

measurement error over water, and the limitation on valid data 

pairs obtained from those stations [14], [26]. 

C. Temporal Dependency 

To study the temporal dependency of the retrieval accuracy, 

validation against the reference GPS water vapor data is 

performed on an annual basis for the period 2017 to 2019. The 

results are summarized in Table 4. The calibrated PWV shows 

improvement in all years for both Terra and Aqua platforms. 

The difference in annual RMSE between GPS PWV and 

calibrated PWV is in the range of 0.056 mm to 0.277 mm, 

depending on the use of 2-channel or 3-channel ratio 

transmittance, and the Terra or Aqua satellite platform. This 

implies that the water vapor retrieval algorithm basically has no 

annual dependency. For the MODIS/Terra satellite, the annual 

RMSE for 2-channel ratio transmittance in 2017, 2018 and 

2019 is 2.332 mm, 2.384 mm, and 2.388 mm, respectively; the 

maximum annual difference is 0.056 mm. The RMSE for 3-

channel ratio transmittance in 2017, 2018 and 2019 is 2.441 

mm, 2.567 mm, and 2.510 mm, respectively; the maximum 

annual difference is 0.126 mm. For the MODIS/Aqua satellite, 

the annual RMSE in 2017, 2018 and 2019 is 2.609 mm, 2.759 

mm, and 2.543 mm, respectively, for water vapor estimated 

using 2-channel ratio transmittance; the maximum annual 

difference is 0.216 mm. The RMSE is 2.738 mm, 2.927 mm, 

and 2.650 mm for data calculated using 3-channel ratio 

transmittance in 2017, 2018 and 2019, respectively; the 

maximum annual difference is 0.277 mm. The results show that 

there is no significant annual bias between any two years. The 

retrieval algorithm is consistent during the whole observation 

period. 

Validation result for each season is also discussed to examine 

the seasonal variation of the algorithm. The seasons are defined 

in the following way: September to November are defined as 

spring months, December to February as summer months, 

March to May as autumn months, and June to August as winter 

months. The results in Table 5 show that for the MODIS 

operational PWV products (MOD05 and MYD05), the retrieval 

accuracy varies seasonally from 4.208 mm to 6.795 mm for 

MODIS/Terra product MOD05, while the seasonal RMSE for 

MYD05 products of MODIS/Aqua varies from 3.777 mm to 

6.182 mm. The RMSE values are high in summer and autumn 

seasons and it is small in winter season. The maximum seasonal 

difference is 2.587 mm for MODIS/Terra and 2.405 mm for 

MODIS/Aqua products.  

After the calibration, the seasonal RMSE has significantly 

reduced. For the MODIS/Terra data, the seasonal RMSE varies 

in the range of 2.087 mm to 2.581 mm using 2-channel ratio 

transmittance and it is in the range of 2.094 mm to 2.818 mm 

using 3-channel ratio transmittance. For the MODIS/Aqua data, 

the seasonal RMSE varies in the range of 1.941 mm to 3.210 

mm using 2-channel ratio transmittance and it is in the range of 

1.932 mm to 3.445 mm using 3-channel ratio transmittance. 

The result shows that the maximum seasonal RMSE difference 

has reduced to 0.724 mm for MODIS/Terra data and 1.513 mm 

for MODIS/Aqua data. This indicates that the new retrieval 

algorithm can significantly reduce the seasonal RMSE errors.  

The time series of daily mean PWV obtained from GPS, 

MODIS/Terra, calibrated PWV calculated from Terra using 

both 2-channel ratio and 3-channel ratio transmittance for 2017-

2019 is shown in Figure 5. The GPS PWV data are considered 

as the baseline for water vapor comparison, as they have proved 

to have a better accuracy than remote sensing PWV [13], [14]. 
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The results show that the calibrated daily PWV records have a 

better agreement with GPS PWV compared to the operational 

MODIS products.  

V. CONCLUSION 

Water vapor products from MODIS NIR channel have been 

widely used in research in many research communities. 

However, systematic wet biases have been observed. Many 

different retrieval algorithms have been proposed to improve 

the MODIS water vapor products. But most of the 

modifications were at a local scale. We developed a new 

algorithm to retrieve water vapor using the ensemble-based 

empirical regression algorithm and it showed to significantly 

improve MODIS water vapor accuracy in the North 

Hemisphere [22]. 

In this study we have systematically evaluate the 

performance of our algorithm in the South Hemisphere by using 

water vapor data from 520 ground-based GPS stations in the 

Australia and its surrounding regions. A comprehensive 

validation against the GPS reference water vapor dataset 

reveals that the overall accuracy of the calibrated water vapor 

records has been greatly improved compared to the operational 

product. The weighted mean water vapor data obtained from 

MODIS/Terra has reduced the RMSE by 58.53% from 5.712 

mm to 2.369 mm using 2-channel ratio transmittance and has 

reduced by 56.14% to 2.505 mm using 3-channel ratio 

transmittance. For the data obtained from MODIS/Aqua, the 

RMSE has reduced by 49.17% from 5.170 mm to 2.628 mm 

using 2-channel ratio transmittance and has reduced by 46.60% 

to 2.761 mm using 3-channel ratio transmittance. 

Water vapor data retrieved from the single absorption 

channels also show improved retrieval accuracy compared to 

the operational product. For MODIS/Terra, the RMSE for data 

retrieved from single absorption channel ranges from 2.617 mm 

to 3.061 mm, while for MODIS/Aqua, the RMSE ranges from 

2.644 mm to 3.674 mm. For both platforms, water vapor 

retrieved from band 17 performs the worst. 

The spatial and temporal dependency of retrieval accuracy is 

also studied in this research. The results show that the mean bias 

of the water vapor does not show obvious dependence on the 

stations’ location, though the GPS stations are not evenly 

distributed over the research area. The difference in annual 

RMSE between GPS PWV and calibrated PWV is in the range 

of 0.056 mm to 0.277 mm during 2017-2019. This clearly 

shows the spatial and temporal robustness and homogeneity of 

the algorithm. In terms of seasonal RMSE error, the maximum 

seasonal RMSE difference is 2.587 mm for MODIS/Terra 

MOD05 operational products and 2.405 mm for MODIS/Aqua 

MYD05 products. After the calibration, the maximum seasonal 

RMSE difference is reduced to 0.724 mm for MODIS/Terra 

data and 1.513 mm for MODIS/ Aqua data.  

In short, the three-year results clearly show that the new 

ensemble-based empirical regression model, which was 

developed based on the North Hemisphere GPS water vapor 

and MODIS data, is still valid in the South Hemisphere. The 

model has significantly reduced the error of the MODIS water 

vapor data collected from 2017 to 2019 for Australia and its 

surrounding regions. It has a good property of having no 

temporal or spatial dependency over a large research area. The 

model is straightforward and the coefficients can be easily 

applied to areas of interest. It does not require pre-calculated 

input parameters of atmospheric profiles. Therefore, it is 

reasonable to conclude that this algorithm provides an effective 

way to retrieve water vapor globally under cloud-free 

conditions. It is worth mentioning that although a large number 

of datasets have been employed in the validation analysis, the 

number of data points under extremely wet or arid conditions 

are still limited, which may result in misinterpretation of the 

performance under these circumstances. Analysis with more 

datasets observed under these extreme conditions is needed in 

further studies. 
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