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1 A Multilayer Mobility Network Approach to Inferring Urban Structures Using 
2 Shared Mobility and Taxi Data
3
4
5 Abstract
6 Developing data-driven approaches to understanding urban structures is important for 
7 urban planning. However, it is still challenging to combine different transport datasets 
8 into a unified framework and reveal the dynamics of urban structures with the 
9 emergence of shared mobility. In this study, we propose two empirical multilayer 

10 networks to infer and profile urban structures. First, a temporal network is constructed 
11 using traditional taxi data over years to reveal the urban structures. Second, a 
12 multimodal network is constructed using shared mobility and traditional taxi data over 
13 a year to reveal the urban structures. The proposed networks are tested in New York 
14 City using a large volume of shared bike, shared vehicle, and traditional taxi data. The 
15 multilayer network centralities and community detection enable us to profile the 
16 characteristics of the urban flows and urban structure. The analytical results allow us to 
17 acquire a better understanding of urban structures from a multilayer perspective and 
18 also provide a geocomputation framework that is useful for urban and geographic 
19 researchers.
20
21 Keywords: Urban structure, shared mobility, multimodal transport, multilayer 
22 network.
23
24 1. Introduction
25 Urban structure refers to the spatial arrangement of land use in urban areas. It has been 
26 a subject of interest for geographers and urban planners to explain the urban structure 
27 based on social demographics or environmental settings (Rodrigue et al, 2009). In 
28 recent decades, the knowledge about urban structure has extended due to massive 
29 individual-level and high-frequency mobility data (Zhong et al., 2014; Sarkar et al., 
30 2017; Zhang et al., 2018; Yildirimoglu & Kim, 2018). Based on the new datasets and 
31 analytical approaches, one can observe and infer urban structures that are formed by 
32 diverse types of travel behavior reflected by travel flows, namely orientation-
33 destination (OD) data. Similar to spatial borders formed by physical configurations (e.g., 
34 rivers and mountains), the compound effect of facilities and travel purposes 
35 differentiates one zone from another, which works as an underlying structure (Jiang & 
36 Yao, 2010). Hence, mobility data are important to capture the travel behavior that 
37 emerged due to the underlying urban structure, and vice versa.
38 Relations and interactions between places play a critical role in the process of 
39 inferring the urban structure (Rodrigue et al, 2009). To capture such interactions, 
40 transport flows and mobility patterns have been mostly exploited from a network 
41 perspective (Barthélemy, 2011; Zhong et al., 2014; Zhang et al., 2018). In the context 
42 of network theory, the spatial structure of cities is inferred by modeling travel behavior 
43 using graphs. A graph that represents places as nodes and travel flows between nodes 
44 as edges can be partitioned into subgraphs, each of which is a collection of similar nodes 
45 (e.g., similar places in urban context). In practice, the projection from the network 
46 structure to the urban structure has been empirically tested in large-scale 
47 communication networks (Ratti et al., 2010) and mobility networks (Zhong et al., 2014; 
48 Zhang et al., 2018). However, it should be noted that there are two major challenges 
49 that remain in existing works. First, different mobility data may unveil the urban 
50 structure from different interaction perspectives, but single source data are insufficient 
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51 overall for evaluating the urban structure. Second, those studies that compared travel 
52 patterns of multiple transport data treat and analyze each type of transport flow 
53 separately. Advancing the approach to better integrate and compare multiple data 
54 sources for urban structure inference is necessary to tackle the increasing complexity 
55 of travel behavior. The travel flows of different transport modes at different times are 
56 the multiple facets/layers existing in the same urban space, which will contribute to a 
57 more comprehensive understanding of urban structures.
58 In this study, we adopt the advanced definition and methods of network theory, 
59 i.e., multilayer network analysis, to represent multidimensional travel flows and to
60 understand multilayer urban structures. A multimodal network model consisting of both 
61 shared mobility and traditional taxi data in a year and a temporal network model 
62 consisting of taxi data over six years are proposed and analyzed to explore the urban 
63 structures. Instead of layer-by-layer analysis, we integrate multiple datasets in a 
64 multilayer network, and the node centralities and community detection in this context 
65 make it possible to compare the feature differences among urban locations (i.e., nodes 
66 in network). The novelty of the approach is demonstrated in a case study in New York 
67 City, which aims to make new contributions to the following research questions: (1) 
68 what are the travel patterns in the multilayer mobility network consisting of shared 
69 mobility for traditional taxis, (2) what urban structures are inferred in terms of 
70 multilayer place importance, and (3) what urban structures are inferred and varying in 
71 the different layers (i.e., transport modes and years) of a multilayer network? The 
72 approach used in this study is a new adoption of network theory in the field of urban 
73 structure analysis considering shared mobility, which can be further used as a 
74 geocomputation method when studying other urban issues.
75 The remainder of this work is structured as follows. Section 2 presents the related 
76 work to justify the feasibility of analyzing urban structures based on mobility networks 
77 and summarizes existing knowledge on shared mobility and the advantages of 
78 multilayer network analysis. Section 3 briefly introduces the study area and multisource 
79 transport data. Section 4 presents the methodology of defining the empirical multilayer 
80 network models for the proposed questions and explains the techniques used for 
81 analysis. Section 5 presents the results, and we discuss and conclude the entire study in 
82 Section 6.
83
84 2. Related work
85 The inference of urban structures based on travel patterns has a long history in the 
86 geography research (Handy, 1996). However, the methods and insights are still limited 
87 due to the lack of large-scale location data. In recent decades, ubiquitous GPS-enabled 
88 sensing technologies have made positioning data increasingly available at the 
89 individual level. Such an empirical dataset makes it possible to observe and analyze 
90 human mobility and the underlying urban structure at a finer resolution. Abundant work 
91 has utilized positioning data to investigate travel behavior using spatial-temporal 
92 perspectives (Tao et al., 2014; Luo et al., 2017; Li et al., 2019) and transport mode 
93 choices (Paulssen et al., 2014; Klinger & Lanzendorf, 2016; Li et al., 2019). Several 
94 early studies adopted network analysis to understand the urban structure from the 
95 spatial interactions extracted from mobility data (Zhong et al., 2014; Sarkar et al., 2017; 
96 Zhang et al., 2018). Similarly, researchers in the time geography field have argued that 
97 mobility-related big data make it more feasible and effective to link travel patterns and 
98 urban structures (Chen et al., 2016). Although these studies reveal urban structure 
99 projects based on the properties or topology of mobility networks, the multidimensional 

100 complex interactions cannot be effectively characterized from the analysis of monoplex 
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101 (i.e., single-layer) network. In addition, network communities detected in single-layer 
102 networks are not directly comparable, making it difficult to analyze the variation of 
103 interaction patterns and the associated urban structure.
104 Mobility-related big data of traditional transportation (e.g., travel records of buses 
105 and taxis) have been widely used to proxy urban flows and reveal urban structures 
106 (Zhong et al., 2014; Zhang et al., 2018). However, limited research has extracted urban 
107 flows and related urban structures using shared mobility data. In particular, the possible 
108 changes in the travel context due to the emergence of the new travel modes should be 
109 quantitatively modeled and analyzed. In recent years, the rise of shared mobility 
110 services (e.g., shared taxis and shared bikes) has occurred in many cities due to the wide 
111 use of smartphones and seamless information exchange platforms (Cannon & Summers, 
112 2014). These services have been reported as one of the major travel options besides 
113 traditional transportation systems (Cannon & Summers, 2014; Wallsten, 2015). The 
114 automatic collection of shared mobility data has facilitated urban dynamics research in 
115 various topics. Most literatures are dedicated to evaluating the benefits of shared 
116 transportation for traffic conditions (Shmueli et al., 2015; Alexander & González, 2015; 
117 Li et al., 2016) and exploring travel patterns (Qian et al., 2015; Hochmair, 2016; Xu et 
118 al., 2019). The travel patterns of shared taxis significantly differ from the traditional 
119 patterns in supplementing distant commuting while the travel patterns of shared bikes 
120 are highly associated with public transport stations (Shen et al., 2017; Cao et al., 2019).
121 Follow-up studies consider and compare multiple urban flows of traditional and 
122 shared transportation to study travel behavior. The changes are significant in some ways. 
123 For example, shared bikes particularly reduce bus ridership and work more efficiently 
124 in dense areas than traditional taxis (Campbell & Brakewood, 2017; Faghih-Imani et 
125 al., 2017). There is very limited research on shared mobility flows using graph analysis. 
126 Yang et al. (2019) applied graph-based analysis to shared bike mobility data and 
127 quantified the temporal changes in travel structures, providing empirical evidence on 
128 urban metabolism theory. The study shows that network theory is quite important for 
129 understanding urban structures while the lack of considering multiple mobility flows in 
130 the same framework may not be as complex as the real situation. A more comprehensive 
131 framework to handle the complexity of multidimensional mobility data to understand 
132 travel behavior and urban structure is on the agenda.
133 Urban space bears various travel interactions at the same time, which means that 
134 multiple distinct networks exist and interact simultaneously. The fundamental 
135 advantage of network theory is that the network model and metrics effectively represent 
136 the processes and dynamics in real-world cases (e.g., Barabasi, 2005; Newman, 2006). 
137 In the context of cities, Batty (2013) proposed a new paradigm known as “The new 
138 science of city” that emphasizes the importance of considering flows among different 
139 entities in urban analytics. However, in nature, real-world systems are composed of 
140 multidimensional interactions (e.g., cooccurrence or interdependent interactions), and 
141 a single-layer network may provide biased conclusions for systems that consist of 
142 subsystems (Battiston et al., 2017). Although city and travel transit are similar to such 
143 complex systems, early studies focused more on single networks due to the limited 
144 development in network science (Ferber et al. 2005; Dimitrov & Ceder 2016). A 
145 multilayer network considers the co-occurrence of multiple relationships into the 
146 topology, which fits the real-world scenario and the topic of this paper better.
147 Recent developments in multilayer networks have made substantial progress. 
148 Besides extending the network definition by adding ‘layer’ and ‘aspect’, some network 
149 measures (e.g., centralities) are extended to analyze the structure of a multilayer 
150 network. With the new framework and techniques, Parshani et al. (2011) examined the 
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151 robustness of the two-layer network structure of port and airport networks worldwide. 
152 Halu et al. (2014) model Indian air and train transportation as a multilayer network and 
153 find that the heterogeneity of the two networks enables good navigability performance 
154 of the global network. In recent years, a number of studies have applied multilayer work 
155 in various scenarios such as predicting epidemic transmission (Zhao et al., 2014), 
156 accessibility models (Strano et al., 2015; Aleta et al., 2017), social-physical travel 
157 behavior (Hristova et al., 2014 May; Gao & Tian, 2019), and urban structures 
158 (Yildirimoglu & Kim, 2018). According to the existing literatures, multilayer network 
159 analysis has great potential in modeling human mobility networks while empirical 
160 studies on urban structures are quite limited.
161
162 3. Study area and datasets
163 New York City (NYC), which has a population of approximately 8.4 million, is one of 
164 the largest megacities in the United States. A total of 264 taxi zones are the spatial unit 
165 in this study (Figure 1). Newark, a taxi zone outside the NYC, is not included in the 
166 following analysis, this paper focuses on the zones within five NYC boroughs. Taxi 
167 zones are the official boundaries for pricing and analyzing taxi trips and therefore are 
168 naturally suitable to analyze shared vehicles. Since the taxi zones are relatively dense 
169 in the Manhattan area, where shared bikes play the same important role as other 
170 transport modes in this region (Faghih-Imani et al., 2017), we argue that the selected 
171 spatial unit is suitable to capture human mobility using shared bikes. Using the same 
172 spatial unit, the taxi zones are used to extract the interzone urban flows of different 
173 layers (e.g., modes and years) and regarded as nodes in the multiplex network, which 
174 will be further discussed in Section 4.
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175

176 Figure 1. Study area: Taxi zones in the New York City Boroughs

177 Several open-data initiatives make it easier to access human mobility and transport 
178 datasets. Specifically, three types of trip data are collected from the NYC Taxi and 
179 Limousine Commission (TLC)1, namely, yellow taxi, green taxi, and for-hired vehicle 
180 (FHV) data. As strong competitors to traditional public transport, shared mobility 
181 services have become important alternatives for daily travel in cities. Such datasets are 
182 able to capture human mobility on a large scale with a fine resolution and better spatial 
183 coverage. Yellow taxis are allowed to pick up passengers in any zone while green taxis 
184 are mainly allowed to serve outer boroughs (i.e., districts outside Manhattan). Yellow 
185 taxis and green taxis are integrated and treated together as traditional transport in this 
186 study. FHV data contain the trips made by taking a shared vehicle (e.g., Uber and Lyft). 
187 An FHV is distinguished from traditional taxis in that drivers and passengers are freer 
188 to choose each other and choose orientation-destination pairs via online platforms. In 
189 addition to shared vehicles, shared bikes are another popular mode for commuting in 
190 NYC. We collected bike data from the City Bike data portal2, which is the largest bike 
191 sharing system in the city.
192 The temporal scheme for data collection and analysis is the monthly snapshot of 6 
193 incremental years to decrease the computational complexity. Specifically, the August 
194 data of each year from 2013 to 2018 are collected. We choose these years because the 

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2 https://www.citibikenyc.com/system-data
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195 market share of shared mobility services started to increase during the period, which 
196 may bring changes to the context that was originally dominated by traditional taxis. The 
197 useful attributes of different types of data, including the pick-up and drop-off time and 
198 location of each trip, are similar (Tables 1-4).
199 Few data cleaning and preparation steps are conducted when generating mobility 
200 networks. First, data rows with missing values or values in inconsistent formats are 
201 deleted. Duplicated data rows are also deleted. Because the format of location 
202 information in yellow and green taxis is different from 2016 onwards, trip data with 
203 coordinates are required to be spatially joined to be projected to the taxi zone level. 
204 This step results in OD trips of different data from zone to zone, and such alignment of 
205 the spatial units is important because zones will serve as the same set of nodes in the 
206 multiplex transit network.
207 As this study aims to detect urban structures from the overall multilayer interaction 
208 patterns, the variation in hours or weeks is not included. Hence, the number of trips in 
209 each month of the year is aggregated at the individual level for any pair of zones, which 
210 will determine the interaction strength of the edges in each layer (i.e., intralayer edges). 
211 We believe that the multimodal data spanning from 2013 to 2018 are sufficient to cover 
212 different aspects of the interaction patterns for investigating urban structures.
213
214 Table 1. Sample of yellow taxi dataset

215

pickup_datetime dropoff_datetime pickup_longitude pickup_latitude dropoff_longitude dropoff_latitude

2013/8/28 18:03 2013/8/28 18:05 -74.007819 40.724951 -74.006129 40.735067

2013/8/31 0:26 2013/8/31 0:35 -74.00044 40.732387 -74.005396 40.711376

… … … … … …
2013/8/29 9:26 2013/8/29 9:29 -73.931406 40.760204 -73.920704 40.756749

tpep_pickup_datetime tpep_dropoff_datetime PULocationID DOLocationID

2018/8/1 8:29 2018/8/1 8:35 100 90

2018/8/1 10:07 2018/8/1 10:17 234 234

… … … …
2018/8/1 1:21 2018/8/1 1:23 48 143

Before 2016

From 2016 onwards

216
217 Table 2. Sample of green taxi dataset

218

lpep_pickup_datetime Lpep_dropoff_datetime Pickup_longitude Pickup_latitude Dropoff_longitude Dropoff_latitude

2013/8/28 6:02 2013/8/28 6:13 -73.92948914 40.75686264 -73.92989349 40.75658035

2013/8/26 16:56 2013/8/26 17:05 -73.95521545 40.8044014 -73.97678375 40.7918396

… … … … … …

2013/8/31 18:34 2013/8/31 18:39 -73.94673157 40.83132553 -73.94012451 40.84090805

lpep_pickup_datetime lpep_dropoff_datetime PULocationID DOLocationID

2018/8/3 7:34 2018/8/3 7:43 95 28

2018/8/3 22:13 2018/8/3 22:17 255 255

… … … …
2018/8/2 22:32 2018/8/2 22:39 65 106

Before 2016

From 2016 onwards

219
220
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221 Table 3. Sample of shared bike dataset

222

starttime stoptime start station latitude start station longitude end station latitude end station longitude
2018/8/2 12:52 2018/8/2 13:00 40.73705 -73.99009 40.73650 -73.97809
2018/8/1 18:54 2018/8/1 19:03 40.74916 -73.99160 40.76009 -73.99462

… … … … … …
2018/8/2 13:08 2018/8/2 13:16 40.69128 -73.94524 40.70317 -73.94064

223
224 Table 4. Sample of FHV dataset

225

Pickup_DateTime DropOff_datetime PUlocationID DOlocationID

2018/8/23 23:36 2018/8/24 0:01 255 249
2018/8/1 22:33 2018/8/1 22:42 230 90
… … … …
2018/8/2 11:07 2018/8/2 11:31 50 90

226
227 4. Methodology
228 Considering the emergence of shared mobility services, this paper aims to infer the 
229 urban structure from a multilayer network perspective, namely, layers defined by 
230 temporal changes and multiple transport modes. The number of aspects of the two 
231 multilayer networks in this paper is equal to 1. The following sections explain the key 
232 definitions and methods for constructing and analyzing the multilayer mobility network 
233 for urban structure analysis.
234
235 4.1. Yearly change rate
236 Besides the network analysis, we first calculate a statistical metric, the yearly change 
237 rate, to depict the fundamental aspect of how the number of trips of different transport 
238 modes changes over time. This metric provides first-order characteristics in each zone, 
239 which is helpful in examining the long-term trend of behavioral changes that may be 
240 related to the urban structure. For each zone and each transport mode, the yearly change 
241 rate is calculated using Equation 1.
242

243  (1)𝑌𝑒𝑎𝑟𝑙𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑒 (𝑌𝐶𝑅) = ( (
𝐸𝑇𝑟𝑖𝑝

𝐵𝑇𝑟𝑖𝑝
)

1/𝑌
―   1) ∗  100

244 where  is the total number of trips in the last year of a given period,  is 𝐸𝑇𝑟𝑖𝑝 𝐵𝑇𝑟𝑖𝑝
245 the number of trips in the first year of a given period, and Y is the total number of years. 
246 For example, given a five-year period of a transport mode in a zone,  is the trip 𝐵𝑇𝑟𝑖𝑝
247 volume of the first year (Year 1), and  is the trip volume of the fifth year (Year 5). 𝐸𝑇𝑟𝑖𝑝
248 It is worth noting that we include the part minus 1 to represent the decrease in trip 
249 volume more intuitively by producing a negative value through this equation.
250
251 4.2. Generation of transport multiplex network
252 Network analysis has been widely used in analyzing movement data and understanding 
253 zone-to-zone behavior (Zhong et al., 2014; Sarkar et al., 2017; Zhang et al., 2018). The 
254 recent advancement in network representation and analysis, the multilayer network, has 
255 also proven to be effective at including multiple transport entities or relationships in the 
256 same framework (Ding et al., 2018; Yildirimoglu & Kim, 2018). Inspired by these 
257 works, this study aims to extend the knowledge on multidimensional travel behavior 
258 using a multilayer network framework, which is more accurate for describing complex 
259 transport systems. The general form of a monoplex (single-layer) network is G = (V, 
260 E), where V is the set of nodes and E ⊆ V × V is the set of edges connecting each pair 
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261 of nodes. For the multilayer network, we follow the definition made by Kivelä et al. 
262 (2014), i.e., a multilayer network M = (VM, EM, V, L). Edges are allowed to exist between 
263 any possible pairs of nodes, i.e., EM ⊆ VM × VM. The links between nodes within a layer 
264 are called intralayer edges, and the links across layers are called interlayer edges. Layers 
265 of d aspects are represented by L, where L = {L1, L2, … Ld}. That is, for each aspect, 
266 there can be multiple layers. For each layer, there are nodes belonging to the same set 
267 V. For example, an aspect of layers can represent multiple shared mobility modes while 
268 at the same time another aspect of layers represents multiple public transport modes.
269 In this paper, the multilayer network inferred from empirical transport data is 
270 known as a multiplex network (Nicosia et al., 2013). The aspect equals 1 in this work, 
271 which means that networks integrated in the same framework belong to the same type 
272 (i.e., same year or same mode). Both the orientation-destination direction and trip 
273 volume are considered in the multiplex network model and in the following analysis. 
274 In short, direction is considered in multiplex PageRank and modularity, and the number 
275 of trips among locations determines the intralayer link weights. For the interlayer links, 
276 we use categorical coupling, which represents the adjacency of a node to itself in other 
277 layers, to connect layers (Mucha & Porter, 2010; Kivelä et al., 2014). The most common 
278 weight of the interlayer for the multiplex network is used, and the weight is set to 1 
279 (Kivelä et al., 2014).
280 A multiplex network is a subset of the general multilayer network, and it has been 
281 used to study multisource transport data in several literatures (Cardillo et al., 2013; 
282 Yildirimoglu & Kim, 2018). Compared to the generalized definition of a multilayer 
283 network, a multiplex network reduces to one aspect, i.e., L = {L1}. In the network 
284 sequence , nodes set in different layers are usually the same, i.e., {(𝑉𝛼, 𝐸𝛼)}𝛽

𝛼 =  1 𝑉𝛼
285  for all . It is known as an edge-colored graph because it contains the same = 𝑉𝛽 𝛼 𝑎𝑛𝑑 𝛽
286 set of nodes but different sets of intralayer edges in each layer (Kivelä et al., 2014). 
287 Multimodal transport modes and temporal slices can be effectively represented by 
288 multiplex networks. In general, the following generated networks are directed and 
289 weighted by the travel flows between zones. Different layers share the same set of nodes 
290 (i.e., NYC taxi zones) while intralayer links represent different types of human mobility 
291 interactions between locations.
292

293  
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294 (a)      (b)
295 Figure 2. Thematic representation of the multiplex networks in this study: (a) 
296 Multimodal; (b) Temporal. Note that each layer is a directed graph determined by the 
297 OD direction, and intralayer links are weighted by the OD volume. The common 
298 interlayer link weights equal 1 in this study. The multiplex network can effectively 
299 integrate the occurrence of multi-flows among the same set of locations for analysis.

300 To investigate the impact of on-demand shared transportation, the first multiplex 
301 network is constructed based on multimodal transit: MMode = (Vm, Em, Lm), where Lm = 
302 {Taxi, FHV, Bike} and Em ⊆ Vm × Vm. Time is fixed in 2018, and different modes (i.e., 
303 taxis, bikes, and FHVs) are regarded as layers. The transit interactions among the same 
304 set of zones are therefore considered together in the same framework (Figure 2a). Based 
305 on MMode, the experiment focuses on revealing different travel behaviors related to both 
306 traditional transport (i.e., taxis) and newly emerged modes (i.e., FHVs and shared bikes). 
307 In contrast, the second generated multiplex network only involves traditional transport 
308 and taxis but focuses on the possible change in travel behavior over time: MTime = (Vt, 
309 Et, Lt), where Lt = {2013, 2014,… 2018}, and Et ⊆ Vt × Vt. From 2013 to 2018, the taxi 
310 transit network in each year serves as a layer (Figure 2b). In this period, the context of 
311 NYC transport gradually changed due to the emergence of shared bikes and shared 
312 vehicles. As the context changes, the temporal multiplex network of taxis is useful to 
313 observe whether there is a longitudinal change in travel behavior.
314
315 4.3. Centrality metrics
316 Centrality metrics have been widely used to evaluate the importance of nodes. 
317 Centrality can be regarded as a basic characteristic of a network structure as it indicates 
318 the levels of heterogeneity of node properties. In a human mobility network, nodes with 
319 higher centrality may indicate a transportation hub that bears more daily transit and 
320 activities, which also help to describe the urban structure. In this paper, the degree 
321 centrality and PageRank centrality are calculated. The degree centrality is the basic 
322 metric, and PageRank has been used in transport and urban networks to measure the 
323 attractiveness of a location (Ding et al., 2009; Agryzkov et al., 2016; Jia et al., 2019). 
324 Although PageRank centrality can be calculated in various domains such as informatics 
325 (Page et al., 1999), biology (Yu et al., 2017), and human mobility and transport studies 
326 (Wen, 2015; Xu et al., 2017; Zhou & Qiu, 2018), the network context is still a single 
327 layer. The extension of centrality measures from monoplex networks to multiplex 
328 networks is still in its infancy (Battiston et al., 2014; Halu et al., 2013). This study 
329 depends on the implementation of multiplex centrality measures of MuxViz (De 
330 Domenico et al., 2015a), specifically multilayer degree centrality (De Domenico et al., 
331 2013) and multiplex PageRank centrality (De Domenico et al., 2015b).
332 PageRank is one of most popular algorithms to rank node importance in graphs 
333 and was proposed by one of the cofounders of Google (Page et al., 1999). PageRank 
334 measures a node’s (e.g., website’s) importance based on its outbound links. In the urban 
335 transport context, this metric reflects how a location attracts outbound interactions from 
336 other locations, which can be extracted from massive transit data. Therefore, the 
337 multiplex PageRank extends the capability of this metric in a multilayer context. 
338 Specifically, in this study, this metric indicates the attractiveness of a location 
339 considering multimodal flows.
340 For a node i, it can be calculated as the summation of degree  of each layer, 𝑘𝛼

𝑖
341 which is only suitable for a multilayer network without interlayer links. In this paper, 
342 interlayer links are assumed to exist, that is, the zones on each layer are connected to 
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343 their counterparts on other layers. Therefore, another improved definition of degree 
344 centrality considering the presence of interlayer links is used in our work:
345
346  (2)𝑘𝑖 = 𝑀𝑖𝛼

𝑗𝛽𝑈𝛽
𝛼𝑢𝑗

347
348 where  is the aggregated multilayer degree centrality of node i,  is the 𝑘𝑖 𝑀𝑖𝛼

𝑗𝛽
349 adjacency matrix containing the relationship between node i on layer  and node j on 𝛼
350 layer , L is the total number of layers, N is the total number of unique nodes,  is a 𝛽 𝑢𝑗

351 first-order tensor in which all elements equal 1, and  is a second-order tensor 𝑈𝛽
𝛼 = 𝑢𝛼𝑢𝛽

352 in which all elements equal 1.
353
354 Early work on generalizing the PageRank centrality to a multilayer network was 
355 performed by Halu et al. (2013). However, their metric is mainly feasible for a two-
356 layer empirical network due to the complex layer dependence. Here, we rely on the 
357 multiplex PageRank proposed by (De Domenico et al., 2015b). The key idea of 
358 PageRank is to explore the network using the random walk equation, which produces a 
359 transition matrix that defines ‘walk behavior’. In a multiplex network, the PageRank 
360 centrality of node i is defined as:
361
362  (3)𝜔𝑖 = 𝛺𝑖𝛼𝑢𝛼 = ∑𝐿

𝛼 = 1𝛺𝑖𝛼

363
364 where is the aggregated PageRank centrality of node i, and  is the 𝜔𝑖 𝛺𝑖𝛼
365 eigenvector of tensor .𝑅𝑖𝛼

𝑗𝛽
366
367

368  (4)𝑅𝑖𝛼
𝑗𝛽 = 𝜏𝑇𝑖𝛼

𝑗𝛽 +
(1 ― 𝜏)

𝑁𝐿 𝑢𝑖𝛼
𝑗𝛽

369
370 where is the walking rate that is normally set to a constant value (e.g., 0.85),  𝜏 𝑇𝑖𝛼

𝑗𝛽
371 is the transition tensor containing the jumping probabilities between pairs of nodes in 
372 any layer, N is the total number of unique nodes, L is the total number of layers, and 
373  is a 4th-order tensor in which all elements equal to 1.𝑢𝑖𝛼

𝑗𝛽
374
375 By adopting these two centrality measures on a multimodal transit network and 
376 temporal taxi transit network, the importance of taxi zones will be evaluated in both 
377 layer-by-layer and aggregated manners.
378
379 4.4. Community detection in multilayer network
380 In single-layer network analysis, community detection has been proven to be efficient 
381 in characterizing travel preferences from mobility networks (Zhong et al., 2014; Liu et 
382 al., 2015). Given a network, the community detection process partitions and groups 
383 nodes in a manner that maximizes the intergroup distance and minimizes the intragroup 
384 entity distance. In a mobility network generated by urban flows, a community is a 
385 cluster of locations with similar interaction (e.g., in/out flows) patterns. Given a 
386 multimodal network, communities across nodes and layers can be understood as the 
387 variation of interaction patterns across places and different transport modes. The 
388 interpretation of the community in the temporal multiplex network is similar, indicating 
389 variations in interaction patterns across locations and different times. After projecting 
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390 the network community to geographical space, the interaction-associated urban 
391 structure and its dynamics can be examined.
392 In practice, the most commonly used metric to be maximized is the modularity 
393 (Newman & Girvan, 2004). Despite abundant detection algorithms for monoplex 
394 networks, very few algorithms have been developed in multilayer network frameworks. 
395 Instead of extracting a community layer-by-layer, the multilayer network community 
396 detection algorithm detects the community simultaneously across layers. In this paper, 
397 we utilize the most used multiplex-Infomap algorithm (De Domenico et al., 2015a), 
398 which relies on the refined modularity proposed by Mucha et al (2010).
399

400       (5)𝑄𝑚𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟 =
1

2𝜇∑
𝑖𝑗𝑠𝑟[(𝐴𝑖𝑗𝑠 ― 𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠 )𝛿𝑠𝑟 + 𝛿𝑖𝑗𝜔]𝛿(𝑔𝑖𝑠,𝑔𝑗𝑠)

401   

402 where Aijs is the intralayer edge weight between node i and node j at layer s; the k 
403 of a node is calculated by the sum of the weights of edges attached to this node; kis 
404 represents the total strength (i.e., weighted by trips) for node i at layer s; kjs represents 
405 the total strength of node j at layer s; ; ;  δ 𝑘𝑖𝑠 = ∑

𝑗𝐴𝑖𝑗𝑠 𝜇 =
1
2∑

𝑗𝑟𝑘𝑗𝑟 𝑚𝑠 =
1
2∑

𝑖𝑗𝐴𝑖𝑗𝑠;
406 is the Kronecker delta function, which equals 1 if two variables are the same and 0 
407 otherwise; gis is the community label assigned to node i in layer s;  is a resolution 𝛾𝑠
408 parameter set to 1 by default; and  is the interlayer coupling weight from 0 to 1, which 𝜔
409 equals 1 in this study.
410
411 Most community detection algorithms in networks rely on the concept of 
412 modularity to compress data and find regularities (Grünwald & Grunwald, 2007). The 
413 optimization target is to find the partition structure that minimizes the communication 
414 length. Combining the refined modularity with the classic Infomap algorithm, 
415 multiplex-Infomap can search the community in a multiplex network. In contrast to 
416 single-layer community detection, multiplex-Infomap results in community labels that 
417 are comparable across different layers. For example, zones with the same community 
418 label in different layers (i.e., year or transport mode) indicate that their interaction travel 
419 behaviors are similar, indicating similar urban structures. Therefore, this technique is 
420 efficient in revealing the structure for the first experiment, which investigates the 
421 possible variation between traditional transport (i.e., taxis) and shared transportation 
422 (i.e., bikes and FHVs); and for the second experiment, which explores the variation in 
423 traditional taxis from 2013 to 2018.
424
425 5. Results
426 5.1. Overall trend of multimodal transit in NYC
427 In this section, we examine the basic characteristics of trips by taxis, bikes, and FHVs. 
428 First, the total number of trips in each year of different transport modes is plotted in 
429 Figure 3. A clear trend can be observed in terms of the variation over time. Particularly, 
430 significant variations are found in yellow taxis and FHVs, showing that the number of 
431 trips by yellow taxis has been decreasing since 2013 while that of FHVs is dramatically 
432 increasing. The trip volumes of green taxis and shared bikes are relatively low, and their 
433 variations are weak. Both green taxis and shared bikes are included due to their unique 
434 role in serving specific travel purposes. Green taxis were launched to supplement taxi 
435 services in the outer boroughs, and shared bikes are especially popular in Manhattan 
436 and its surrounding areas. Based on the yearly numbers of trips, a preference shift from 
437 traditional taxis to shared transportation is clearly witnessed.
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438

439
440 Figure 3. Trip variation of three transport modes over the years
441
442 We spatially join the OD trips of all transport modes to the zone level and visualize 
443 them on a map (Figure 4), which illustrates how taxis, bikes, and FHVs are differently 
444 used in space. Taxi and FHV services cover almost all NYC zones while shared bikes 
445 are mainly available in Manhattan and near-Manhattan zones in Brooklyn, Queens, and 
446 Bronx. The profound difference between taxis and FHVs is in the distribution of 
447 medium (i.e., line in blue) and high volume (i.e., line in red) trips. High trip volumes 
448 for taxis are mainly constrained within Manhattan (Figure 4a); in contrast, high trip 
449 volumes for FHVs are spread more widely in both Manhattan and the outer zones 
450 (Figure 4c). It seems that FHVs not only strengthen the commutes from outer zones to 
451 Manhattan but also makes the connections among outer zones stronger.
452 Taxi drivers may spend less time searching for customers in a more populated 
453 dense area (i.e., Manhattan) while the demand-match mechanism in FHVs makes FHVs 
454 more flexible to serve more areas. Based on Figure 4, it is obvious that FHVs play a 
455 more important role in supplementing the unbalanced supply in distant zones. Shared 
456 bikes presents another different spatial pattern, showing that heavy use is mostly in 
457 downtown Manhattan and the Brooklyn zones across the river. Additionally, a decent 
458 number of bike trips with long travel distances are observed, indicating that shared 
459 bikes might be a popular choice for commuting in these areas.
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460
461 Figure 4. Distribution and classification of OD trips: (a) Taxi; (b) Bike; (c) FHVs
462
463 5.2. Node centrality in multimodal and temporal mobility networks
464 We first explored the basic law of travel behavior in the multilayer mobility network.
465 Previous researchers observed a heavy-tailed distribution (e.g., power-law or 
466 exponential distribution) of displacement and elapsed time (Gonzalez et al., 2008; 
467 Liang et al., 2012; Zhao et al., 2015). Using network analysis, Zhong et al. (2014) also 
468 reported the heavy-tailed distribution of nodes (i.e., zones) centrality in different modes 
469 of the mobility network. However, the node centrality distribution in a multilayer 
470 mobility network is limited.
471         We calculate two centrality metrics, the multiplex degree and the multiplex 
472 PageRank, for both the multimodal network and temporal network. Then, we infer the 
473 empirical univariate distribution by using the Python package distfit, which fits 89 
474 models and ranks the models based on the residual sum of squares (RSS). Overall, node 
475 centrality in these two multiplex networks does not follow a power-law or exponential 
476 distribution. Instead, the beta distribution is identified as the best model for the two 
477 centralities in a multimodal network based on the smallest RSS. In multimodal network, 
478 most zones (i.e., nodes) have a strong degree centrality and medium PageRank 
479 centrality (Figure 5a). The intralayer’s centrality (i.e., taxis, bikes, and FHVs) and 
480 aggregated centrality (i.e., multiplex) have relatively similar distributions. A heavy left 

Page 13 of 25 Transactions in GIS



14

481 tail is found in the degree distribution while a slight right tail is found in the PageRank 
482 distribution. In temporal network, most zones (i.e., nodes) have a strong degree 
483 centrality and low PageRank centrality (Figures 5c & 5d). There is significant variance 
484 among the layers (i.e., 2013 to 2018) in terms of the degree centrality. More zones with 
485 higher degrees appear chronologically. The PageRank distributions, which all have 
486 slightly long right tails, are similar among layers.
487

488  
489 (a) (b)
490

491  
492 (c) (d)
493 Figure 5. KDE estimated distribution of node centralities: (a) degree in the 
494 multimodal network; (b) PageRank in the multimodal network; (c) degree in the 
495 temporal network; and (d) PageRank in the temporal network
496
497         Centrality metrics indicate the importance and vibrancy of a location, which may 
498 reflect the underlying urban structure that breeds such activities (Jia et al., 2019). We 
499 project the centralities of zones into geographical space (Figure 6), which helps obtain 
500 a better understanding of the polycentric structure of NYC (Zhong et al., 2014). The 
501 spatial distribution of multimodal network centralities is different when using the 
502 degree and PageRank (Figures 6a & 6b). Extreme high degree centralities are mainly 
503 found in the downtown area of Manhattan while almost all of Manhattan is identified 
504 as having high PageRank centralities. The possible reason for the heavily left skew of 
505 the degree is that the Manhattan zones are quite connected when considering multiple 
506 types of transport modes together (i.e., taxis, bikes, and FHVs). The degree might not 
507 be the best choice to describe the node importance at such a scale while PageRank is 
508 able to capture more variance in this well-connected network. Comparatively, the 
509 spatial distribution of the degree and PageRank centralities of the temporal network 
510 show similar patterns (Figures 6c & 6d). Manhattan is the most ‘important’ district in 
511 terms of the node centralities; moreover, some zones in Brooklyn and Queens show 

Page 14 of 25Transactions in GIS



15

512 high values. The result of the multiplex centralities in New York City provides evidence 
513 on the polycentric urban structure reflecting the travel demand.
514

515  
516 (a) (b)
517

518  
519 (c) (d)
520 Figure 6. Visualization of the node centralities in geographical space: (a) Degree in 
521 the multimodal network; (b) PageRank in the multimodal network; (c) Degree in the 
522 temporal network; and (d) PageRank in the temporal network.
523
524 The relationship between node (i.e., zone) centrality and trip variation is explored, 
525 indicating that the zone importance in the multilayer mobility network is a key indicator 
526 correlated to the yearly change rate. Specifically, the node centrality in the temporal 
527 network of traditional taxis is selected for comparison for two reasons. First, the 
528 multiplex network constructed from taxi data covers the entire city, which provides a 
529 more heterogeneous urban context for analyzing the correlation. Second, nodes with 
530 high multiplex centrality represent truly important zones for vehicle-based transit 
531 because the temporal network takes 6 years of transit patterns in the same framework 
532 for evaluation.
533 In each zone, the yearly change rate is calculated for taxis, FHVs, and bikes, 
534 respectively. In Figure 7, each point represents a zone, the X axis represents the 
535 multiplex degree, and the Y axis represents the yearly change rate of the specific 
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536 transport mode. Contour lines are added by the KDE function to indicate the 
537 concentration patterns, and the dotted horizontal line divides the Y axis into positive or 
538 negative yearly change rates. Overall, both negative and positive change rates of 
539 traditional taxis are observed while the change rates of FHVs and shared bikes are 
540 almost all positive. Similar distribution patterns are observed for taxis and FHVs, which 
541 indicates that the trip variations of these two vehicle-based transportation systems have 
542 similar relations to zone importance. Zones with multiplex degrees of approximately 
543 350 and 450 are dense in Figure 7a and Figure 7b. Yearly change rate of taxi and FHV 
544 are often lower in higher degree zones (i.e., 450). For traditional taxis, the yearly change 
545 rate is even negative in such high degree zones, which means that the number of trips 
546 is decreasing. The number of valid points for shared bikes is less than those for the other 
547 two modes because the bike data are only available in Manhattan and its near zones 
548 (Figure 7c). The 450-degree zones play an important role in shared bikes. The node 
549 centrality of the multiplex mobility network provides a useful indication of location 
550 importance, which is highly correlated to the variation of different transport modes.
551

552
553 (a)       (b)

554
555           (c)
556 Figure 7. Relations between yearly change rate and multiplex node degree: (a) Taxi; 
557 (b) FHV; (C) Bikes
558
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559 5.3. Revealing the variation in the urban structure based on multiplex 
560 community detection
561 We adopt the multiplex-Infomap algorithm to conduct community detection for 
562 multimodal temporal and multiplex networks. Zones with similar interaction patterns 
563 are grouped into a community and assigned a unique label, which is used to evaluate 
564 the travel behavior of nodes/zones of multimodal transport modes over time or modes. 
565 The variation or consistency of community labels directly indicates the variation of the 
566 overall urban structure.
567 The first experiment is conducted on the multimodal network, a directed and 
568 weighted zone-based interaction network of different modes in 2018 on three layers: 
569 {Taxi2018, FHV2018, Bike2018}. This experiment examines whether newly emerged 
570 shared transportation has zone-to-zone interactions similar to those of traditional taxis. 
571 In total, 5 communities were identified in the multimodal network, and labels (0-4) 
572 were given to the nodes on all layers.
573

574
575 Figure 8. Community labels of zone across transport modes. Note that sample zones 
576 are displayed in this figure due to space limitations. There is actually 1 zone with 
577 varied community labels, 57 zones with all-1 community labels across modes, 27 
578 zones with all-2 community labels, 8 zones with all-3 community labels, and 13 zones 
579 with all-4 community labels.
580

Page 17 of 25 Transactions in GIS



18

581
582 Figure 9. Spatial distribution of the communities in the multimodal network
583
584 A community detected in a mobility network indicates a set of nodes (i.e., zones) 
585 with similar interaction patterns. However, different from single-layer community 
586 detection, the obtained community labels in the multiplex network are comparable. For 
587 example, label 0 in the taxi layer and label 0 in the FHV layer indicate the same 
588 community role. Using this method, we are able to evaluate the similarity of the 
589 interaction behavior across transportation modes (i.e., layers). The community 
590 distribution of the multimodal network is shown in a matrix plot (Figure 8), where the 
591 Y axis represents zones (i.e., nodes) and X axis represent transport modes (i.e., taxi, 
592 FHV and bike layers). The spatial structure of the modal-network community is shown 
593 in Figure 9. The spatial clustering of cluster 1 is clearly observed in the central zones 
594 while clusters 2 and 3 are mostly located in distant areas.
595 Sampled zones are visualized in Figure 8 due to limited space, and the actual 
596 number of different types of zones is illustrated in the title note. The zone type is 
597 identified according to the combinations of community labels across layers. In Figure 
598 8, the distribution of interaction behavior in different modes can be examined. 
599 Specifically, the three numbers in each horizontal line represent the community labels 
600 of a zone in each of the three layers (taxis, FHVs and bikes). If the three numbers are 
601 the same, it means the interaction patterns of the three transport modes are similar in 
602 this node (i.e., zone). Taking the second zone as an example, the community labels of 
603 the second zone (Yorkville East) are the same across different modes, which means that 
604 the interaction patterns among zones are similar regardless of whether taxis, FHVs, or 
605 bikes are chosen. In the first zone, Governor’s Island, the community labels are {0, 1, 
606 0}. This means that the interaction behaviors are similar in terms of taking taxis and 
607 bikes while different interaction patterns are shown for FHVs. Interestingly, the 
608 community labels of most zones are consistent among taxis, FHVs, and bikes, 
609 excluding Gowanus (Figure 9). This indicates that the new transportation modes retain 
610 the same travel patterns as traditional taxis; specifically, the interaction patterns in such 
611 a multimodal network are the same.
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612
613 Figure 10. Community labels of zones across years. Note that sample zones are 
614 displayed in this figure due to space limitations. There are actually 3 zones with 
615 varied community labels, 65 zones with all-1 community labels, 62 zones with all-2 
616 community labels, 29 zones with all-3 community labels, 46 zones with all-4 
617 community labels, 37 zones with all-5 community labels, and 18 zones with all-6 
618 community labels.
619
620

621
622 Figure 11. Spatial distribution of the communities in the taxi temporal network
623
624 Multiplex community detection is also conducted in the temporal multiplex 
625 network of traditional taxis. This experiment investigates whether the interaction 
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626 patterns of traditional taxis vary from 2013 to 2018, the period when shared 
627 transportation was greatly expanding in the market. In Figure 10, we demonstrate the 
628 six communities identified across six years/layers, and the associated spatial structure 
629 is shown in Figure 11.
630 The community labels of traditional taxis are consistent across years in all zones 
631 except Country Club, Riverdale, Green-Wood Cemetery, and Gowanus. This result 
632 means that the interaction patterns of most zones remain stable in terms of traveling 
633 using traditional taxis. The result is similar to the findings in the first experiment on the 
634 multimodal network. That is, although there was dramatic variation in the market share 
635 among traditional taxis and shared transportation during these years, the interaction 
636 behavior at the zone level did not significantly change.
637
638 6. Conclusion
639 On-demand shared transportation (i.e., shared vehicles and shared bikes) has 
640 dramatically increased in recent years. In view of the advances in multilayer network 
641 analysis, this paper constructs empirical multiplex network models to explore how city 
642 zones are different from each other due to multidimensional urban flows. Specifically, 
643 this paper investigates travel patterns and associated urban structure in several ways.
644 Two centrality metrics, i.e., the multiplex degree and multiplex PageRank, are 
645 calculated in the multimodal network and temporal network. The centrality values 
646 attached to the spatial units reveal the hierarchical structure of location attractiveness. 
647 In a multimodal network, we found distinct differences between the uptown and 
648 downtown of Manhattan, which is also reported in the literature (Zhou et al., 2019). 
649 What is more interesting is the centrality spatial distribution in the temporal network 
650 across years, which shows that nearly the entirety of Manhattan and near-Manhattan 
651 zones all have the same high interaction flows. The possible reason is the differences 
652 in network layers defined in the multimodal network and temporal network. The results 
653 suggest that the selected layer significantly describes the dimension of variation, that 
654 is, the relatively large variation of the magnitude of the flow across transport modes 
655 while the relatively small variation of the flow across years. Both are valuable as the 
656 lens of multiflow urban structure while providing two different perspectives. The 
657 statistical distribution of network centrality is contrary previous studies that reported 
658 heavy-tailed human mobility patterns (Gonzalez et al., 2008; Liang et al., 2012; Zhao 
659 et al., 2015). In contrast, we observed a left skew of the degree and a slight right skew 
660 of PageRank. This pattern is particularly strong in the multimodal network (Figures 5a 
661 & 5b), which indicates that multimodal transit options make zones more connected to 
662 each other, resulting in a more balanced distribution of transit. Shared mobility may 
663 complement traditional taxis in distant areas but substitute in central areas (Kong et al., 
664 2020).
665 Compared to the layer-by-layer analysis, the findings in community detection in 
666 multilayer analysis enable direct comparison in this study. Although the market share 
667 of traditional taxis has been greatly taken over by FHVs and shared bikes, the identified 
668 interaction behavior shows that most zones are consistent across years and across 
669 modes. This suggests that shared transportation, a strong competitor as a travel mode, 
670 does not change collective travel behavior from zone to zone and may instead be 
671 affected by socioeconomic factors. For example, the interaction between a residential 
672 zone and a working zone remains the same regardless of the transport mode the traveler 
673 takes. The consistency of community patterns across transport modes in NYC agrees 
674 with another study using agent-based simulation (Lokhandwala & Cai, 2018). In this 
675 literature, they quantify the traffic conditions considering both traditional and shared 
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676 mobility services, suggesting that although shared mobility reduces traditional mode 
677 ridership, the overall service level remains the same. In this study, the consistency of a 
678 multimodal community can be understood as the stability of the overall interaction 
679 among places, although the ridership of each change.
680 Against initial expectation interaction variations of traditional taxis, community 
681 detection in taxi temporal networks shows consistent community labels across years. 
682 Although we select a period when shared mobility dramatically increases its market 
683 share, the stability of long-term interaction among places by taking taxis is observed in 
684 this study. A similar result is also reported in Riascos & Mateos (2020) using other 
685 network metrics. Our results may suggest that the long-term human mobility of taxis is 
686 generalizable in other cities, which may support the view that long-term taxi data are 
687 suitable for measuring the nature of human mobility. Another implication of a 
688 consistent community in a temporal network is that environmental factors may play a 
689 more influential role in changing taxi travel behavior rather than the emergence of 
690 shared mobility. As reported in Zhang et al. (2020), residential and commercial land 
691 uses have a significant impact on taxi ridership across many locations.
692 In this study, the relationship between the interaction pattern and land use was not 
693 systematically explored. However, we found some similar indications using network 
694 metrics. The results in Figure 7 provide similar indications that the factors of the urban 
695 context may determine the change in preferences for choosing modes instead of the 
696 emergence of shared transportation. In zones with 350 degrees, both taxis and FHVs 
697 grow in trip volume, although FHVs increase more rapidly. However, in 450-degree 
698 zones, the use of taxis decreases over time. The high degree zones indicate busy places 
699 such as Manhattan, and the drop in traditional taxis may be due to the feasibility and 
700 convenience of taking bikes or FHVs. These zones have a high network degree, which 
701 suggests that traffic jams may occur due to their high importance in a mobility network. 
702 In this context, shared bikes may even have greater roles in commuting. The results 
703 suggest rising travel demand and indicate that traditional taxis and shared vehicles do 
704 not have to be ‘competitors’ but can serve together to make distant transit more 
705 sufficient and diverse. We conclude that shared transportation influences travel choices 
706 in terms of ridership numbers due to its convenience in some areas, but it does not 
707 change the collective interaction patterns among zones compared to other modes.
708 There are some limitations of this work. Public transport flows are not considered 
709 when exploring the travel behavior and urban structure in this study. There are two 
710 major reasons. First, from our point of view, public transport is a fixed-route system 
711 that uses buses, metros, light rails, and other vehicles, which cannot reflect the on-
712 demand mobility that uses mixed operating systems (e.g., offline and online). The on-
713 demand mobility patterns would provide a special perspective to investigate the urban 
714 structure. Second, public transport data in the study area are currently unavailable. It 
715 would be great to use mixed datasets to explore the urban structure in future studies. 
716 However, our work will provide another empirical angle to understand urban dynamics. 
717 In addition, how these multiplex communities (e.g., urban structure) are associated with 
718 socioeconomic factors is also interesting but is out of the scope of this paper. The 
719 quantitative relation between these two is worthy of investigation in future studies.
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