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Abstract 
The development of ground penetrating radar (GPR) in recent decades has promoted the role 

of this popular near-surface geophysical detection method. A step further is its use from a 

prospecting tool of approximate estimation of location of buried objects to an accurate survey 

equipment which then involves understanding of measurement errors/uncertainties. This paper 

firstly discussed the sources of uncertainty of object depth’s measurements with respect to host 

material, instrumentation, data collection method and signal processing. We modelled these 

sources of errors by formulating computation sets based on applying constrained least-square 

algorithm on hyperbolic reflections arisen from buried objects. Based on the computation, 

uncertainty analysis was performed through (1) identification of errors on measurements of 

hyperbolic reflections and (2) conducting error propagation for evaluating the combined 

uncertainty of surveyed depth. At a geophysical test site at IFSTTAR, Nantes, France, sets of 

control experiments were conducted to validate the proposed uncertainty analysis method and 

to investigate the correlation between the evaluated uncertainty and the factors of host material, 

center frequency of antenna, the depth of target and the horizontal and vertical resolution in the 

radargram. Several conclusions were made as follows. Firstly, the uncertainty of the 

centimeter-order of the survey results can be achieved for depth estimation of objects at several 

meters deep at ±2 standard deviation at a 95% confidence interval. Secondly, errors of time 

zero location at different GPR center frequency dominate the evaluation of the uncertainty 

while the resolution of radargram and the noise from scattering doesn’t explicitly affect the 

evaluated uncertainty. 
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1. Introduction 
Ground penetrating radar (GPR), as a well-developed near-surface geophysical method, is 

getting more and more popular for the surveying and mapping of underground utilities. With a 

common-offset setting antenna, GPR signal transmitted by the transmitter of antenna, 

penetrates into underground, spreads downwards in a conical form, and then reflected back 

when encountering objects with significant dielectric contrast to the host materials (Daniels, 

2004; Jol, 2009). The reflected signal is received by the receiver of antenna. As GPR antenna 

is towed across the target pipe along the traverse, it’s obvious that the distance between the 

antenna and the target becomes shorter from position 𝑥𝑖 to position 𝑥0. Hence, such curved 

reflection is formed in radargrams as illustrated in figure 1.  

 
Figure 1 Model of GPR wave travel path (antenna and target as point source) 

Based on this curved reflection, diverse algorithms are proposed and studied to estimate the 

GPR wave velocity and the depth of the target pipe (ASTM, 2011; Ristic, et al., 2009; Sham 

& Lai, 2016; Shihab & Al-Nuaimy, 2005; Xie, et al., 2018). Subsequently, the uncertainties of 

this estimation results become an inevitable discussion and require rising attention to be paid 

from researchers. On the contrary, limited attention (Jacob & Hermance, 2005; Solla, et al., 

2013; Wu et al., 2003) has been drawn on this issue. Standards and specifications from various 

countries and regions (Anspach, 2002; Australia, 2013; CJJ, 2003; HKIUS, 2012, 2014; ICE, 

2014; Malaysia, 2006) provide guidelines for GPR operation. But accuracies are rarely 

mentioned for GPR survey results except PAS 128 (ICE, 2014). This specification suggests an 

accuracy of 40% or 15% of the detected depth in different quality levels. But these requirements 

came from the perception of the practitioners and the clients without scientific evidence which 

bias cannot be avoided. To reduce bias, errors of the estimated object depth by GPR can be 

established with uncertainty/error propagation models. First step of which is to identity the 

sources of uncertainties which are host material, instrumentation, data collection method and 

signal processing. 

 

I. Host material, where the target is buried, has significant effects on the GPR wave’s 

propagation as the electromagnetic wave is sensitive to the dielectric property and water 

content of the propagation medium (Topp, et al., 1980; Chan & Knight, 2001; 

Hugenschmidt & Loser, 2008; Huisman, et al., 2003; Klysz & Balayssac, 2007; Lai, er 

al., 2011a, 2011b; Lai, et al., 2012; Lai, et al., 2006; Lai, et al., 2010; Lai, et al., 2010; 

Lai, et al., 2014; Lai, 2006). The heterogeneity of host material also affects the scattering 

of EM wave and introduce unpredictable noise into the curved reflection resulting from 

the target pipe (Nielsen, et al., 2010; Takahashi, et al., 2011, 2012). 

 

II. Instrumentation: various antenna designs will result in the difference of the GPR wave 

travel paths. Those paths require appliable algorithms to be adopted for velocity and depth 



estimation, for example the mono-static antenna (Lambot, et al., 2004; Lambot, et al., 

2004) and the bi-static antennas including common-offset setting (Sham & Lai, 2016; 

Xie, et al., 2018), common mid-point (Jacob & Urban, 2016; Steelman & Endres, 2012) 

and wide angle reflection (Galagedara, et al., 2005; Klysz, et al., 2004). The center 

frequency of the antenna is also so crucial as the electric and magnetic properties of GPR 

wave are always frequency dependent (Lai, et al., 2011). 

 

III. Data collection method: during data acquisition, the parameters setting (time window, 

scans/meter and samples/A-scan) determines the digital sampling of the odometer and 

radio signals. They are controlled by sampling resolutions which appear in the horizontal 

and vertical axis in the radargram. Better resolution in radargrams is believed to lead to 

less error in measurements with regard to the distances (horizontal axis) and two-way 

travel times (vertical axis). Also, the included angle between the GPR traverse and the 

target pipe alignment also changes the shape of the reflection pattern resulting from the 

target (Xie, et al., 2018). 

 

IV. Signal processing: several algorithms for velocity and depth estimation are developed by 

many researchers to promote the accuracy of survey results by GPR (Sham & Lai, 2016; 

Xie, et al., 2018). Further, the definition of time-zero is the most critical in the GPR 

survey (Lai et al., 2010; Yelf, 2004) as it concerns all measurements of GPR signal’s two-

way travel time. 

 

After identifying the sources of errors, GUM (JCGM, 2008) and Shi (2009) can be referred for 

quantitative error analysis. Remaining content of this paper will first briefly introduce the 

model to estimate the depth of target pipe by GPR. Secondly, errors in the depth estimation 

will be analyzed and evaluated. Thirdly, results of validation experiments will be reported an 

discussed to verify the method of the uncertainty analysis.  

 

2. Modelling GPR wave travel path according to observation of pairs of 

displacement and travel time measurement 
 

 
Figure 2 Refined model of GPR wave travel path 

When the target is out of the Fresnel zone, GPR wave travels in ray path form. Figure 1 presents 

a typical model of that path when common offset setting antenna is utilized for surveying 

(ASTM, 2011). This model is popularly adopted in commercial software of signal processing 



for velocity and depth estimation. But, the disadvantages of this model are obviously the too 

simple assumption about both the antenna and the target pipe as point source. In other words, 

the antenna separation between transmitter and receiver and the radius of the target are ignored 

to simplify the trigonometry for calculation. When either the antenna separation or the target 

radius is of comparable magnitude relative to the cover depth of the target pipe, such ignorance 

will lead to significant errors in estimation results. 

 

The model in figure 2 considers both the antenna separation and the radius of the cylindrical 

target. Solving the complex trigonometry among position 𝑥𝑖, position 𝑥0 and the center of the 

target pipe, following polynomial equation (2-1) can be established (Sham & Lai, 2016; XIE, 

et al., Under Review; Xie, et al., 2018): 

 

𝑣4𝑡𝑖
4 − 4𝑣2𝑡𝑖

2 ∗ ((√(𝐷0 + 𝑟)
2 + 𝑥2 − 𝑟)

2

+ 𝑆2) + 16𝑆2𝑥2(1 −
𝑟

√(𝐷 + 𝑟)2 + 𝑥2
) = 0 (2-1) 

𝐷 = √(
𝑣𝑡0
2
)
2

− 𝑆2 (2-2) 

𝑓𝑖[(𝑥𝑖 , 𝑡𝑖 ); (𝑣, 𝑥0, 𝑡0); (𝑆, 𝑟)]|𝑖=1…𝑛 = 0 (2-3) 

 

where 𝑣 is the GPR wave travel velocity, 𝑥 is the antenna displacement from position 𝑥𝑖  to 

position 𝑥0, 𝑡𝑖, 𝑡0 are the two-way travel time when the GPR antenna is respectively at position 

𝑥𝑖 and 𝑥0, 𝑆 is half of the antenna separation, 𝑟 is the radius of the target pipe, and 𝐷 is the 

cover depth. 

 

 
Figure 3 Interface of the inhouse built LabView program 

An easier representation in functional format is provided as the non-linear equation (2-3). All 

concerned parameters are divided into 3 groups. (𝑥𝑖, 𝑡𝑖 )|𝑖=1…𝑛 are the observations which can 

be directly extracted from the curved reflection resulting from the target pipe by an inhouse 



built LabVIEW program (Sham & Lai, 2016). The interface of the in-house built LabVIEW 

program is presented in Figure 3, as well as the plotting of the extracted (𝑥𝑖 , 𝑡𝑖 )|𝑖=1…𝑛. (𝑆, 𝑟) 
are assumed to be known before survey. 𝑆 , the half of the antenna separation is usually 

indicated by the specification of the antenna from the producer. 𝑟, the radius of the cylindrical 

target pipe can be referred to the as-built record. (𝑣, 𝑥0, 𝑡0) which indicates wave velocity (𝑣) 
travelled above the target pipe at position (𝑥0, 𝑡0) are the variables to be estimated. Then, based 

on which the cover depth can be calculated according to equation (2-2). 

 

The solution of the non-linear relationship in equation (2-3) is done in two steps: 

 

I. Approximation of the non-linear equation (2-3) through first-order Taylor expansion. 

 

𝑓[(𝑥𝑖 , 𝑡𝑖 ); (𝑣, 𝑥0, 𝑡0)] ≈ 𝐴(𝑊 + 𝑤) + 𝐵(𝑈0 + 𝑢) (2-4) 

Let {
𝑊
2𝑛∗1

= (𝑥1, 𝑡1, 𝑥2, 𝑡2, … , 𝑥𝑛 , 𝑡𝑛)
𝑇

𝑤
2𝑛∗1

= (∆𝑥1, ∆𝑡1, ∆𝑥2, ∆𝑡2, … , ∆𝑥𝑛, ∆𝑡𝑛)
𝑇 (2-5) 

And let 

{
 
 

 
 𝑈3∗1

= (𝑣,  𝑥0,  𝑡0)
𝑇 = 𝑈0 + 𝑢

𝑈0
3∗1

= (𝑣0, 𝑥0
0, 𝑡0

0)𝑇

𝑢
3∗1

= (∆𝑣,  ∆𝑥0,  ∆𝑡0)
𝑇

 (2-6) 

Both (𝑆, 𝑟) are assumed to be known and constant before survey, they are therefore excluded 

from the variables in the expansion. 𝑈0 = (𝑣
0, 𝑥0

0, 𝑡0
0)𝑇 in equation (2-6) are the initial values 

of the variables 𝑈 = (𝑣,  𝑥0,  𝑡0)
𝑇, that require to be offered for Taylor expansion in advance. 

To guarantee the first-order Taylor expansion to be a good enough approximation, the initial 

values (𝑈0) should be provided as accurate as possible. As more accurate the initial values of 

𝑈0 are, the smaller the correction matrix 𝑢 = (∆𝑣,  ∆𝑥0,  ∆𝑡0)
𝑇  will be and thus, the higher 

orders of the correction are small enough to be ignored. The velocity estimation method (𝑣 =

2|𝑥𝑖 − 𝑥0|/√𝑡𝑖
2 − 𝑡0

2) from ASTM can be adopted for the determination of the initial value 𝑣0. 

(𝑥0
0, 𝑡0

0) represents the shortest two-way travel time ( min
𝑖=1…𝑛

𝑡𝑖) at the apex of the any curved 

reflection and the corresponding 𝑥𝑖 directly. Substituting equation (2-3) into (2-4), 

 
𝐴𝑤 + 𝐵𝑢 + 𝐹0 = 0 

where 𝐹0
𝑛∗1

= −𝐴𝑊 − 𝐵𝑈0 
(2-7) 

A and B are the first-order derivatives as the coefficient matrix in Taylor expansion, as 

presented in equation (2-8). 

A
𝑛∗2𝑛

=

(

 
 
 

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑡1
0 0

0 0
𝜕𝑓2

𝜕𝑥2

𝜕𝑓2

𝜕𝑡2

0

0
⋱ ⋮

…
𝜕fn

𝜕xn

𝜕fn

𝜕tn)

 
 
 

; B
𝑛∗3

=

(

  
 

𝜕𝑓1

𝜕𝑣

𝜕𝑓1

𝜕𝑥0

𝜕𝑓1

𝜕𝑡0

𝜕𝑓
2

𝜕𝑣

𝜕𝑓
2

𝜕𝑥0

𝜕𝑓
2

𝜕𝑡0

⋮ ⋮ ⋮
𝜕𝑓𝑛

𝜕𝑣

𝜕𝑓𝑛

𝜕𝑥0

𝜕𝑓𝑛

𝜕𝑡0)

  
 

 (2-8) 

II. Constrained least-square solution of the approximation in step I. 

 

Equation (2-7) is an inconsistent equation set (2*n inputs (𝑥𝑖, 𝑡𝑖  )|𝑖=1…𝑛  that constructs ‘n’ 

equations 𝑓𝑖[(𝑥𝑖, 𝑡𝑖  ); (𝑣
0, 𝑥0

0, 𝑡0
0)]|𝑖=1…𝑛 = 0  to solve for 2*n+3 variables in 𝑤  and 𝑢 ). To 

solve this inconsistent equation set, least-square fitting is introduced to minimize the square of 



the Euclidean distance of the correction matrix 𝑤 in equation (2-9). Blue scattering dots are the 

extracted (𝑥𝑖 , 𝑡𝑖 )|𝑖=1…𝑛 and the red curve is the model to be fitted in Figure 4. 

 

{

Aw + Bu + 𝐹0 = 0

𝑚𝑖𝑛∑(∆𝑥𝑖
2 + ∆𝑡𝑖

2) =

𝑛

𝑖=1

𝑤𝑇w = min
 (2-9) 

 
Figure 4 Euclidean distance based least-square 

 

Equation (2-9) represents a constrained least-square problem (the least-square 𝑤𝑇w = min  

with an equality constraint Aw + Bu + 𝐹0 = 0). For solution, Lagrange multiplier K can be 

introduced to construct a new function as: 

 
𝑔 = 𝑤𝑇

1∗2𝑛
∗  𝑤
2𝑛∗1

− 2 𝐾
1∗𝑛
( A
𝑛∗2𝑛

∗ 𝑤
2𝑛∗1

+ B
𝑛∗3

∗  u
3∗1

+ 𝐹0
𝑛∗1

) (2-10) 

 

Because of Aw + Bu + 𝐹0 = 0 , the solution for the least-square 𝑤𝑇w = min  must be the 

stationary point of function 𝑔, as the value of 𝑔 also reaches the minimum. According to the 

definition of the stationary point of a function, where the first-order derivatives should be equal 

to zero, the following equation (2-11) can be established. 

 

{

𝜕𝑔

𝜕𝑤
= 2𝑤𝑇

1∗2𝑛
− 2 𝐾

1∗𝑛
∗ A
𝑛∗2𝑛

= 0

𝜕𝑔

𝜕𝑢
= −2 𝐾

1∗𝑛
∗  B
𝑛∗3

= 0

 (2-11) 

 

Equation (2-11) is a consistent equation set and the unique solution can be obtained. Then after 

solving the Lagrange multiplier K, the solution of the correction matrix 𝑤  and 𝑢  for the 

constrained least-square problem can be developed as equations (2-12) and (2-13). 

 

{
𝑢 = [𝐵𝑇(𝐴𝐴𝑇)−1𝐵]−1[−𝐵𝑇(𝐴𝐴𝑇)−1𝐹0] = 𝑁𝐹0

𝑤 = −𝐴𝑇(𝐴𝐴𝑇)−1(𝐵𝑢 + 𝐹0)
 (2-12) 

𝑈 = (𝑣,  𝑥0,  𝑡0)
𝑇 = 𝑈0 + 𝑢 = (𝑣

0, 𝑥0
0, 𝑡0

0)𝑇 + (∆𝑣,  ∆𝑥0,  ∆𝑡0)
𝑇 (2-13) 

3. Uncertainty/error propagation 
 

Equation (2-3) implies that the (𝑥𝑖 , 𝑡𝑖) are the inputs and the (𝑣, 𝑥0, 𝑡0) are the three variables 

to be estimated for depth measurement. This section studies how the errors propagate from the 



inputs (𝑥𝑖 , 𝑡𝑖 ) to the three variables (𝑣, 𝑥0, 𝑡0) and to the estimated depth according to equation 

(2-2). 

 

3.1. Uncertainties/errors from observation 

 

Observations 𝑥𝑖 are the displacements of antenna when it travels along the traverse, which is 

determined directly from radargrams. The key factor that dictates the errors in observed 𝑥𝑖 is 

the horizontal resolution (scans/meter). For example, if the scans/meter is set as 100, the actual 

value of 𝑥𝑖 is assumed to be equally distributed within 𝑥𝑖  ±
1

2
∗
1𝑚

100
. Such error is subjected to 

the rectangular distribution of equal probability of values between the upper and lower bound. 

Half of the rectangular distribution bound can be denoted as 𝑅𝐷ℎ𝑎𝑙𝑓 𝑏𝑜𝑢𝑛𝑑|𝑥𝑖 =
1

2
∗
1𝑚

100
. GUM 

(JCGM, 2008) instructs the calculation of the observational standard deviation of such error as: 

 

𝑂_𝜎𝑥𝑖 =
𝑅𝐷ℎ𝑎𝑙𝑓 𝑏𝑜𝑢𝑛𝑑|𝑥𝑖

√3
 (3-1) 

 

Because of the independency of measuring each 𝑥𝑖|𝑖=1…𝑛 , the observational covariance 

between arbitrary 𝑥𝑖|𝑖=1…𝑛 and 𝑥𝑗|𝑗=1…𝑛 are equal to zero. 

 
𝑂_𝜎𝑥𝑖𝑥𝑗|𝑖≠𝑗;𝑖,𝑗=1…𝑛 = 0 (3-2) 

 

The indirect determination of two-way travel time 𝑡𝑖 is completed by two steps. Firstly, the 

time of reflection event is directly picked as 𝜏𝑡𝑖 from the radargram. Secondly, the time-zero 

𝜏0 when the GPR signal penetrates the ground surface needs to be defined in A-scan. The two-

way travel time can then be calculated by equation (3-3). 

 
𝑡𝑖 = 𝜏𝑡𝑖 − 𝜏0 (3-3) 

The error of picked 𝜏𝑡𝑖 is decided by the vertical resolution of the radargram. Two factors are 

involved: the length of time window and the setting of ‘samples/scan’ which is the sampling 

rate of the vertical axis. Similar to the derivation in 𝑥𝑖, taking 1024 samples/scan as example, 

half of the rectangular distribution bound of 𝜏𝑡𝑖 is 𝑅𝐷ℎ𝑎𝑙𝑓 𝑏𝑜𝑢𝑛𝑑|𝜏𝑡𝑖
=

1

2
∗
𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 (𝑛𝑠)

1024 𝑠𝑚𝑎𝑝𝑙𝑒𝑠/𝑠𝑐𝑎𝑛
. And 

the calculation of corresponding observational standard deviation 𝑂_𝜎𝜏𝑡𝑖 can refer to equation 

(3-1). 

 
Figure 5 Time-zero in A-scan waveform of GPR signal (Yelf, 2004) 

 

As far as the error of defining time zero 𝜏0 is concerned, there is no agreement about the exact 

position of true time zero in the GPR waveform (Yelf, 2004). It’s assumed that the true time 



zero may be allocated from the first break point (point A in figure 3) to the first positive apex 

(point E) of the first wave (direct wave) in A-scan with equal possibility. In other words, the 

interval from point A to point E defines the bound of the rectangular distribution for the error 

of defining the time-zero. Hence, the standard deviation can be evaluated by equation (3-4). 

 

𝜎𝜏0 =
(
𝜏𝐸 − 𝜏𝐴
2

)

√3
 (3-4) 

 

The calculation in equation (3-3) implies the dependency between 𝑡𝑖|𝑖=1…𝑛  and 𝑡𝑗|𝑗=1…𝑛 

because the time-zero 𝜏0 are always concerned. Their correlation can be represented in below 

matrix form. 

(𝑡𝑖 , 𝑡𝑗)
𝑇
= (

1 0 −1
0 1 −1

) ∗ (

𝜏𝑡𝑖
𝜏𝑡𝑗
𝜏0

) = 𝐶 (

𝜏𝑡𝑖
𝜏𝑡𝑗
𝜏0

) (3-5) 

 

Appling the error propagation law of variance and covariance, the observational variance-

covariance matrix of 𝑡𝑖 , 𝑡𝑗|𝑖≠𝑗;𝑖,𝑗=1…𝑛 can be derived as: 

 

𝑂_𝑉𝑎𝑟
(𝑡𝑖,𝑡𝑗)

𝑇 = (
𝑂__𝜎𝑡𝑖

2 𝑂_𝜎𝑡𝑖𝑡𝑗

𝑂_𝜎𝑡𝑖𝑡𝑗 𝑂_𝜎𝑡𝑗
2 ) 

= 𝐶 ∗ (

𝑂_𝜎𝜏𝑡𝑖
2 0 0

0 𝑂_𝜎𝜏𝑡𝑗
2 0

0 0 𝑂_𝜎𝜏0
2

) ∗ 𝐶𝑇 = (
𝑂_𝜎𝜏𝑡𝑖

2 + 𝜎𝜏0
2 𝜎𝜏0

2

𝜎𝜏0
2 𝑂_𝜎𝜏𝑡𝑖

2 + 𝑂_𝜎𝜏0
2 ) 

(3-6) 

 

It’s apparent in equation (3-6) that the observation variance of 𝑡𝑖 is 𝑂_𝜎𝑡𝑖
2 = 𝑂_𝜎𝜏𝑡𝑖

2 + 𝜎𝜏0
2  and 

the observational covariance of 𝑡𝑖 , 𝑡𝑗|𝑖≠𝑗;𝑖,𝑗=1…𝑛 is 𝑂_𝜎𝑡𝑖𝑡𝑗 = 𝜎𝜏0
2 . 

 

3.2. Uncertainties/errors from scattering 

 

The least-square in figure 4 indicates that the raw observations (𝑥𝑖 , 𝑡𝑖) (red scattering dots) 

need to be corrected by a correction matrix 𝑤 to fit the model established (red curve in Figure 

4). This correction matrix 𝑤 is also a kind of error that will be propagated to the final estimated 

depth, which is mainly caused by the scattering of the host material on the GPR signal. 

 

If the host material is scattering-free, all the measured raw observations (𝑥𝑖, 𝑡𝑖)  should 

perfectly match the model established in equation (2-3). In other words, the expectation for all 

the ∆𝑥𝑖, ∆𝑡𝑖 in correction matrix 𝑤 is equal to zero. Further, in equation (2-3), at least 3 𝑥𝑖 and 

3 𝑡𝑖 should be offered to solve the 3 variables of (𝑣, 𝑥0, 𝑡0), which means the degree of freedom 

for ∆𝑥𝑖|𝑖=1…𝑛 and that for ∆𝑡𝑖|𝑖=1…𝑛 are (𝑛 − 3). 
 

According to the definition of variance, the uncertainties from scattering can be evaluated as: 

𝑆_𝜎𝑥𝑖 =
√
∑ (∆𝑥𝑖 − 0)2
𝑛
𝑖=1

𝑛 − 3
 (3-7) 



𝑆_𝜎𝑡𝑖 =
√
∑ (∆𝑡𝑖 − 0)

2𝑛
𝑖=1

𝑛 − 3
 

(3-8) 

 

Because the observational errors and the errors from scattering are independent, the variance 

and covariance of (𝑥𝑖, 𝑡𝑖) can be combined as: 

 

𝜎𝑥𝑖
2 = 𝑂_𝜎𝑥𝑖

2 + 𝑆_𝜎𝑥𝑖
2 (3-9) 

𝜎𝑡𝑖
2 = 𝑂_𝜎𝑡𝑖

2 + 𝑆_𝜎𝑡𝑖
2 (3-10) 

𝜎𝑡𝑖𝑡𝑗 = 𝑂_𝜎𝑡𝑖𝑡𝑗 = 𝜎𝜏0
2  (3-11) 

Back referring to equation (2-5), the covariance matrix of the observation 𝑊 can be constructed. 

 

𝑉𝑎𝑟𝑊𝑊
2𝑛∗2𝑛

=

(

 
 
 
 
 
 

𝜎𝑥1
2 𝜎𝑥1𝑡1 𝜎𝑥1𝑥2

𝜎𝑡1𝑥1 𝜎𝑡1
2 𝜎𝑡1𝑥2

𝜎𝑥2𝑥1 𝜎𝑥2𝑡1 𝜎𝑥2
2

𝜎𝑥1𝑡1
𝜎𝑥1𝑥𝑛 𝜎𝑥1𝑡𝑛

𝜎𝑡1𝑡2
𝜎𝑡1𝑥𝑛 𝜎𝑡1𝑡𝑛

𝜎𝑥2𝑡2
𝜎𝑥2𝑥𝑛 𝜎𝑥2𝑡𝑛

𝜎𝑡2𝑥1 𝜎𝑡2𝑡1 𝜎𝑡2𝑥2

𝜎𝑥𝑛𝑥1
𝜎𝑡𝑛𝑥1

𝜎𝑥𝑛𝑡1
𝜎𝑡𝑛𝑡1

𝜎𝑥𝑛𝑥2
𝜎𝑡𝑛𝑥2

𝜎𝑡2
2 𝜎𝑡2𝑥𝑛 𝜎𝑡2𝑡𝑛

⋱
𝜎𝑥 𝑡2
𝜎𝑡𝑛𝑡2

𝜎𝑥𝑛
2

𝜎𝑡𝑛
2
)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝜎𝑥1
2 0 0

0 𝜎𝑡1
2 0

0 0 𝜎𝑥2
2

0 0 0
𝜎𝜏0
2 0 𝜎𝜏0

2

0 0 0

0 𝜎𝜏0
2 0

0
0

0
𝜎𝜏0
2

0
0

𝜎𝑡2
2 0 𝜎𝜏0

2

⋱
0
𝜎𝜏0
2

𝜎𝑥𝑛
2

𝜎𝑡𝑛
2
)

 
 
 
 
 
 

 (3-12) 

 

3.3. Propagation of the errors/uncertainties 

 

In equations (2-6) and (2-13), 𝑈0 is the initial values to be offered in advance to perform the 

first-order Taylor expansion and is hence assumed as constant with no errors. Then the 

variances of 𝐹0  and of 𝑈 can be propagated. 

 
𝑉𝑎𝑟𝐹0𝐹0 = 𝐴 ∗ 𝑉𝑎𝑟𝑊𝑊 ∗ 𝐴𝑇  (3-13) 

𝑉𝑎𝑟𝑈𝑈 = 𝑉𝑎𝑟𝑢𝑢 (3-14) 

 

Applying error propagation law to equation (2-12) and then combining with equations (3-13) 

and (3-14), following can be derived. 

 
𝑉𝑎𝑟𝑢𝑢 = 𝑁 ∗ 𝑉𝑎𝑟𝐹0𝐹0 ∗ 𝑁

𝑇 (3-15) 

𝑉𝑎𝑟𝑈𝑈 = (

𝜎𝑣𝑣
2 𝜎𝑣𝑥0 𝜎𝑣𝑡0

𝜎𝑣𝑥0 𝜎𝑥0𝑥0
2 𝜎𝑥0𝑡0

𝜎𝑣𝑡0 𝜎𝑥0𝑡0 𝜎𝑡0𝑡0
2

) = 𝑉𝑎𝑟𝑢𝑢 (3-16) 

 

According to equation (2-2), the first-order derivatives of the cover depth relative to the GPR 

wave velocity 𝑣 and relative to the variable 𝑡0 can be derived as the coefficients for the error 

propagation of the estimated cover depth.  

 

𝑉𝑎𝑟𝐷𝐷 = (
𝜕𝐷

𝜕𝑣

𝜕𝐷

𝜕𝑡0
) ∗ (

𝜎𝑣𝑣
2 𝜎𝑣𝑡0

𝜎𝑣𝑡0 𝜎𝑡0𝑡0
2 ) ∗ (

𝜕𝐷

𝜕𝑣

𝜕𝐷

𝜕𝑡0
) 
𝑇

 (3-17) 

 

 
 



4. Validation experiments 
 

Three sets of control experiments were carried out on the geophysical test site (figure 6) at 

IFSTTAR, Nantes, France to validate the proposed method of uncertainty analysis in section 3 

(Derobert & Pajewski, 2018; Dérobert & Pajewski, 2018). 

 

 
Figure 6 Geophysical test site at IFSTTAR, Nantes, France 

 
Figure 7 Reflections from metal pipes of 400MHz antenna 

 

 



Four trenches were excavated and backfilled with silt, sand, gravel with nominal size of 

aggregates ranging from 1-20mm (namely ‘gravel 1-20’ or well-graded soil) and 14-20mm 

(namely ‘gravel 14-20’, or coarse gravel), respectively. In every trench, 9 pipes (3 metal pipes, 

3 PVC pipes filled with water and 3 PVC pipes filled with air) were buried in the green 

rectangular area. The horizontal and vertical layout of the 9 pipes are presented in the ‘Plan 

view’ and the ‘Section view’ in figure 6. The three metal pipes in each trench (circled by red 

in figure 6) were selected as the target because of their significant dielectric contrast to the host 

material and the strong reflections in radargrams. The GPR traverses followed the yellow arrow 

in ‘Plan view’ to acquire radargrams and were always kept perpendicular to the alignment of 

the pipes. 

 

First set of experiments were conducted on the gravel 14-20 trench. GSSI common offset 

antenna of center frequencies at 200MHz, 270MHz, 400MHz, 500MHz and 900MHz were 

used for data collection with GSSI 4000 control unit. Those reflections were extracted as 
(𝑥𝑖, 𝑡𝑖  ). Then the cover depth was estimated and corresponding uncertainty (standard deviation) 

was also evaluated following the method suggested in previous section (table 1).  

 

   
Table 1 Results of trench gravel 14-20 

Column ‘|Error (m)|’ records the absolute difference between the estimated depth D and the 

actual depth while column ‘|Error (%) (m)|’ is the percentage of the absolute error over the 

estimated depth. Similar to the normalization procedure of a Gaussian distribution, the 

‘Standard score’ is calculated according to below equation (4-1). As the evaluated standard 

deviations are relative to various buried depths of pipes, this normalization can help to regress 

all the evaluated uncertainties to an identical scale for easier later inter-comparison among 

them and for statistical purpose. For example if |𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒| ≤ 2, it represents that the 

actual depth of the target pipe falls in the range of the estimated depth ±2 ∗ 𝑆𝐷. 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  𝐷 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐷
 (4-1) 

 

Second set of experiments used the GSSI common offset antennas of 270MHz, 400MHz and 

900MHz towed over the trenches of well-graded gravel 1-20mm, sand and silt. Typical 

radargrams were presented in figure 7 from 400MHz antenna with clear curved reflections. 

The experimental results are listed in table 2. Because of the severe attenuation and absorption 

of host materials (i.e. silt) and the shallower penetrating depth of GPR signal from higher 

frequency antenna (i.e. 900MHz), the reflections from some deeper pipes were either not 

detected by the GPR or too weak to be recognized and extracted from the radargrams. Thus, 



those results were missed in table 2. Especially for the silt trench, only the results of the 

shallowest metal pipe can be obtained. 

 

  
Table 2 Results of gravel 1-20, sand and silt trenches 

Last set of experiments were conducted with gravel 14-20 trench using 400MHz antenna but 

with various parameters settings (time window, scans/meter, samples/scan) for comparison. 

It’s a replication of the first set experiments. Table 3 and table 4 list the specific settings of 

those three parameters and corresponding details of experimental results, respectively. 

 

 
Table 3 Specific setting of parameters 

  
Table 4 Results of various parameters settings of trench gravel 14-20 (400MHz) 

5. Discussion 
 

5.1. Effects of the host materials 

 

To investigate the effects of the host materials, the observational error and the error from 

defining the time-zero (section 3.1) in (𝑥𝑖, 𝑡𝑖) are ignored first. Only the error from scattering 

(section 3.2) is considered and propagated to evaluate the uncertainties. Those evaluated 

standard deviations of 270MHz and 400MHz antennas are then averaged regarding to the four 

trenches, despite the various depths of the target pipes (table 5 and figure 8). The standard 

deviations of 900MHz are excluded from this average calculation due to the shallow 

penetration depth and limited data obtained, especially in silt trench that even the shallowest 

metal pipe can’t be detected (referring to table 2). 

 



  
Table 5 Specific values of standard deviations (scattering error only) of various trenches 

 
Figure 8 Column chart of average standard deviations (scattering error only) of various trenches 

Figure 8 implies that the evaluated uncertainties for the pipes buried in gravel 14-20 trench and 

in sand trench are higher than these for the pipes buried in trenches of gravel 1-20 and silt, and 

not related to antenna frequency. From the description of the host materials, the particles sizes 

of silt trench and of gravel 1-20 trench are generally smaller than those in trenches of gravel 

14-20 and sand. Larger particle sizes in trenches of gravel 14-20 and sand represent that the 

scattering between the host material and the GPR signal shifts from Rayleigh scattering to Mie 

scattering. In other words, Rayleigh scattering introduces less noises into the reflection data 

resulting from the target pipe, which lead to smaller uncertainties in the estimation results. But 

as a trade-off, shallower penetration depth will be achieved in small-particle trenches (gravel 

1-20 and silt) because of severer signal attenuation. 

 

5.2. Effects of the antenna center frequencies 

 

Furthermore, the evaluated standard deviations are also averaged regarding to the antenna 

frequency. Averaged results are summarized in table 6. Figure 9 plots all the averaged standard 

deviations in column chart categorized by the center frequencies of the antennas. 

 

  
Table 6 Specific values of average standard deviations of various antennas 



  
Figure 9 Column chart of average SD in terms of various antennas 

The trend line (blue dash) in figure 9 explicitly indicates that in each trench, as the center 

frequency of antenna used for data collection increases, the evaluated standard deviation of the 

results decreases, except that of 500MHz antenna on gravel 14-20 trench.  This is because the 

wavelength of higher frequency component is shorter than that of lower frequency. The 

uncertainty of time-zero in figure 3 implies that shorter wavelength can result in narrower 

rectangular bound for the error from defining the time-zero (specific widths of the rectangular 

bounds are identified in A-scan and listed in table 7). When the horizontal and vertical 

resolutions in radargrams are identical, which means the errors from the system digitization in 

observations (𝑥𝑖 , 𝑡𝑖) are constant, the errors from defining the time-zero dictate the evaluation 

of the uncertainty while the scattering errors are not of comparable magnitude. Hence, the 

decline of standard deviation resulting from the increasing of the antenna center frequency 

appears in figure 9 as the errors from defining the time-zero is decreased. 

 

 
Table 7 The width (ns) of the rectangular bound defined in A-scan for time-zero 

 

Transferring the column chart in figure 9 to line chart, following figure 10 is plotted by 

excluding the cases of 200MHz and 500MHz antennas. We can discover that the decline trend 

of evaluated standard deviations as the increase of antenna center frequencies is slighted 

compensated in the cases of gravel 1-20 trench comparing to that in gravel 14-20 trench. And 

for the cases in sand trench, the evaluated uncertainty of 900MHz is even larger than that of 

400MHz. This is because the scattering errors from 900MHz antenna are comparable to the 

evaluated combined uncertainties (considering all the errors from radargram resolution, time-

zero definition and scattering), especially for sand trench (referring to the values in the last row 

in table 6).  

 

Hence, the tradeoff is revealed that as the center frequency of antenna rises, the error from 

defining time-zero decreases but the error from scattering increases. And both of them will 

impact the combined uncertainty of surveyed depth. 



 
Figure 10 Line chart of averaged SD in terms of various antennas 

5.3. Effects of the object depths 

 

Empirically, the tolerance of the survey results by GPR is positively proportional to the depth 

of the target in industrial underground utility survey (XIE & LAI, Under Review), just like the 

accuracy requirement in PAS 128 is defined as a percentage (40% or 15%) of the detected 

depth. The obvious reason is that for deeper target pipes, the GPR signal needs to travel longer 

distance and hence, more scattering happens between the wave and the host material. The 

experimental data in this study also substantiates this empirical judgement. Taking the results 

from sand trench as an example, the errors from scattering only are analyzed and propagated 

with respect to the pipes at various depths. The line chart in figure 11 evidently supports that 

deeper target pipe will lead to high level of scattering noise and result in bigger evaluated 

standard deviations. But this phenomenon is not applicable to the combined uncertainty 

because of the effects of errors from radargram resolution and from time-zero definition. 

 

 
Figure 11 Standard deviation of pipes at various depths in sand trench 

5.4. Effects of the horizontal and vertical resolution of GPR measurements 

 

The error analysis in section 3 reveals that theoretically, the better resolution in horizontal and 

vertical axis in radargrams will lead to higher accuracy of the estimated depth because of 

narrower rectangular distribution bound and smaller errors in observations (𝑥𝑖, 𝑡𝑖  ). However, 

the evaluation results in the third set of control experiments doesn’t support this theoretical 

conclusion. Referring to the data in table 4, the standard deviations from setting2 (best 

resolution in table 3) are not always the smallest relative to those from setting1 and setting3. A 

further calculation was completed to investigate the underlying reason of this phenomenon. 



 
Table 8 Calculated standard deviations with and without considering the errors of defining time-zero 

 

In table 8, the last column ‘SD2 of D’ records the calculated standard deviations without 

considering the errors of defining time-zero (𝜎𝜏0 = 0 in equation (3-4)) and the errors from 

scattering while the column ‘SD of D’ is filled with the standard deviations evaluated following 

the normal procedure in section 3. Comparing those values, it’s obvious that the evaluated 

standard deviations (at the order of centimeters) in column ‘SD of D’ are significantly larger 

than those in column ‘SD2 of D’ (at the order of millimeters). Therefore, although the standard 

deviations in column ‘SD2 of D’ from Setting2 are smaller than those from Setting1 and 

Setting3 (this is consistent with the theoretical analysis),  the difference of the parameters 

settings in table 3 doesn’t significantly influences the final results of the combined standard 

deviation. 

 

5.5. Statistical analysis of the standard score 

 

In terms of the standard score in tables 1, 2 and 4, statistical analysis was performed. Because 

all the standard scores of sand trench are extremely high (the absolute values of those standard 

scores are larger than 2), they are excluded from the statistical analysis. The occurrence of the 

standard scores within each pre-defined interval is showed in table 9, as well as the probability 

(the percentage of the frequency corresponding to each interval over the population, the amount 

of experiment cases). The histogram is also drawn in figure 12 based on the statistical data in 

table 9. 

 
Table 9 Statistical analysis of normalized standard deviations 



 
Figure 12 Histogram of normalized standard deviations VS Gaussian distribution 

According to the normalization calculation in equation (4-1), the intervals of the standard 

scores ‘[-1,1]’ ‘[-2,2]’ and ‘[-3,3]’ correspond to that the actual depth of the target pipe is within 

the estimated depth ±𝑆𝐷 , ±2 ∗ 𝑆𝐷  and ±3 ∗ 𝑆𝐷 , respectively. Referring to the Gaussian 

distribution 𝑦~(�̅�, 𝜎2), the probabilities of coverage |𝑦 − �̅�| ≤ 𝜎, 2𝜎, 3𝜎 are 68%, 95% and 

99%, respectively. Comparing those probabilities with the values in table 9, we found the 

similarity between the distribution of the standard scores and the Gaussian distribution. The 

match between the histogram in figure 12 and the probability density function of a normal 

Gaussian distribution (orange curve) also proves this. So far, it’s reasonable to conclude the 

evaluated uncertainty of the estimated cover depth by GPR is subjected to a Gaussian 

distribution. 

 

6. Conclusion 
 

1) The uncertainty of the measured depth of the underground pipe by GPR (target buried at 

depth 1-3 meters) can achieve the order of several centimeters. What’s more, considering 

the 40% or 15% of detected depth as the accuracy requirement in PAS 128, the overall 

average percentage of the absolute error over the estimated depth in tables 1, 2 and 4 is 

only 3.9%. Such quality and reliability are high enough for industrial underground utility 

survey, which means that GPR can also play the role of an accurate survey equipment in 

terms of underground surveying and mapping rather than just a prospecting tool. 

2) Generally speaking, the center frequency of common offset setting antenna dominates the 

uncertainty evaluation of GPR survey results. Higher frequency of antenna will lead to a 

more accurate survey result, although the scattering noise from high frequency antenna may 

slightly degrade such survey results. This can also instruct the instrumentation selection 

before conducting GPR survey. After considering the trade-off between the antenna 

frequency and the maximum penetration depth which should cover the buried depth of 

target, antenna of as much as high center frequency should be adopted for data collection, 

not only for better resolution of imaged radargram, but also for more reliable survey results. 

3) Attention should not be paid to the parameters setting of the scans/meter and samples/scan. 

Better horizontal and vertical resolution in radargram doesn’t provide either better precision 

(smaller difference between estimated depth and the actual depth) or higher accuracy 

(smaller standard deviation) in estimation results, but expand the volume of data collected 

and slow down the speed of data collection. Therefore, the efficiency of the data acquisition 

should be the first concern for setting those parameters in industrial survey. 



4) Defining the true time-zero accurately is with significant importance for the combined 

uncertainty evaluation of GPR survey results. 

5) The 95% confidence interval is believed to be constructed as ±2 ∗ 𝑆𝐷 for the survey results 

of GPR as the uncertainty of the estimated depth is sensibly assumed to be subjected to the 

Gaussian distribution. 
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