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Tidal phenomenon of the dockless bike-sharing system and its 11 

causes: the case of Beijing 12 

Abstract: Dockless bike-sharing system, as a flexible and eco-friendly solution 13 
to improve urban public transportation, has rapidly expanded in many cities 14 
around the world. The higher flexibility of the dockless bike-sharing system 15 
produces more significant tidal phenomenon that leads to serious traffic 16 
problems. However, as a new travel mode, the spatiotemporal characteristics of 17 
tidal phenomenon of the dockless bike-sharing system is unknown. This study 18 
proposed a method to quantify tidal traffic patterns of shared bikes in Beijing, 19 
the capital and megacity of China, and then applied multinomial logit model to 20 
reveal main causes of these patterns. Five traffic patterns were found on 21 
weekdays, among which three patterns display extreme convergence and 22 
divergence states during morning and evening rush hours. Only three patterns 23 
exist on weekends and the tidal traffic phenomenon becomes less intensive but 24 
lasts longer. Population is the most decisive factor, which determines the 25 
density of total traffic flow. Subsequently, resident-employment ratio controls 26 
the direction of commute flows thus causing tidal traffic on weekdays, while 27 
land use diversity and factors related to leisure activities are more influential on 28 
weekends. With the knowledge of tidal phenomenon of dockless bike-sharing 29 
usage, some operational strategies were suggested, such as optimizing the stock 30 
of the shared bikes in different time and locations, which will benefit bike-31 
sharing enterprises and the local administrators to mitigate problems caused by 32 
tidal traffic and promote the usage and efficiency of dockless bike-sharing 33 
system.  34 
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convergence and divergence; human mobility; transit-oriented development 36 
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1. Introduction  38 

To achieve the goal of sustainable development, transit-oriented development (TOD) 39 

has become the focus of urban planning and management around the world (Cervero 40 

et al., 2002; Duncan, 2011; Nasri & Zhang, 2014), thanks to its advantages in 41 

improving land use efficiency, reducing traffic congestion and greenhouse gas 42 

emissions. The core of TOD is to make full use of the public transportation system, 43 

focusing on improving accessibility to public transportation system. The emerging 44 

bike-sharing (also called bicycle-sharing) system provides a low-cost and flexible 45 

mobility option to supplement public transportation system, especially for short 46 

distance trips (Jäppinen et al., 2013). It plays an important role in TOD and thus has 47 

attracted increasing attention during the past decade. 48 

Currently, the bike-sharing system has been spreading around the world, 49 

which can be generally grouped into two types with and without dock stations (Figure 50 

1). The first type became popular since 2005 (DeMaio, 2009) and has been adopted in 51 

more than 850 cities over the world (Fishman, 2016a), which only allows users to 52 

pick up and return a bike at fixed dock stations that set up in advance. The second 53 

type, known as dockless bike-sharing system has been flourishing since 2015 in 54 

China, Singapore, UK and USA along with the development of GPS-enabled phones, 55 

mobile payment and Internet of Things (IoT) (Shen et al., 2018). More than 19 million 56 

dockless shared bikes have been deployed in about 360 cities in China by 2019 (Chen, 57 

2019). The system uses a smartphone App to locate and unlock bikes, and charging an 58 

hourly rate for use, allowing users to pick and return a bike at any places. 59 

Accordingly, the dockless bike-sharing system not only brings great convenience and 60 

flexibility for selecting start and end point of a short distance trip, but also saves the 61 

capital and urban land for the construction of dock stations. On the other hand, it also 62 



 

 

produces many problems such as indiscriminate parking, deterioration of urban 63 

landscape, obstruction of normal vehicle and pedestrian traffic, low bike utilization 64 

efficiency of over-supply and so on (Zhang et al., 2019). Such problems are further 65 

aggravated during a certain period of a day (e.g. commuting time) and in specific 66 

areas (e.g. metro or subway stations) due to function types of neighborhood and 67 

commuting behaviour of users. For instance, a large number of bikes are piled up in 68 

some metro or subway stations close to the residential area during the morning 69 

commuting peak due to large arrival flow, while it is difficult to find an available bike 70 

in the same stations during the afternoon commuting peak because of greater 71 

departure flow. Such phenomenon occurs periodically and presents a fixed temporal 72 

pattern, and thus is called the tidal phenomenon of a bike-sharing system (Fishman, 73 

2016b). Obviously, the higher flexibility of the dockless bike-sharing system makes 74 

the tidal phenomenon more significant than that of dock-based system, resulting in 75 

more serious traffic problems. In order to alleviate adverse impacts of the dockless 76 

bike-sharing system, it is necessary to quantify the spatially explicit tidal 77 

phenomenon, which will benefit bike-sharing enterprises and the local administrators 78 

to implement effective operation and management strategies, such as optimizing the 79 

supply of the shared bikes in different time and locations and so on.  80 

[Figure 1 near here] 81 

However, the spatiotemporal pattern of tidal phenomenon of dockless bike 82 

sharing system is not explicitly clear. Since traditional docked bike-sharing system 83 

does not present significant tidal phenomenon due to the limited and fixed number of 84 

dock stations, existing studies targeting the traditional docked bike-sharing system 85 

mainly focused on the spatiotemporal patterns of the usage of bike sharing system in 86 

city-level or station-level (Borgnat et al., 2011; Faghih-Imani & Eluru, 2016; Zaltz 87 



 

 

Austwick et al., 2013), travel behaviour of shared-bike users (Faghih-Imani & Eluru, 88 

2015; Fishman et al., 2014), and determinants of bike-sharing trips (El-Assi et al., 89 

2017; Faghih-Imani et al., 2014; Faghih-Imani & Eluru, 2016; Zhang et al., 2017). On 90 

the other hand, as the dockless bike-sharing system based on mobile phones and 91 

mobile payment emerged in recent years, only a few studies conducted quantitative 92 

analysis of dockless bike-sharing data but did not explored the tidal phenomenon. For 93 

example, Shen et al. (2018) examined the spatiotemporal distributions of the dockless 94 

bike-sharing usage as well as the impact of weather conditions on it. Xu et al. (2019) 95 

revealed the temporal usage pattern of dockless bike-sharing at different places using 96 

four-month bike-sharing trip data in Singapore, and identified some built environment 97 

indicators that are correlated with these patterns. He et al. (2018) identified the spatial 98 

clusters of dockless bike-sharing trips by searching for the strongest spatial linkage 99 

for each bike-sharing trip within a certain distance, and found that most of the 100 

clustering results presented a strong spatial linkage with metro stations in a China’s 101 

megacity, Shenzhen. Fortunately, with the emergence of new big data sources (e.g., 102 

social media and mobile phone data) that can reflect human spatiotemporal 103 

behavioural regularity, recent studies have proposed indicators and methods to 104 

characterize the aggregation and dispersion patterns of human beings. For instance, 105 

Liu et al. (2012) linked urban land use to traffic source and sink areas using the taxi 106 

trajectory dataset in Shanghai. The source area was referred to having more taxi pick-107 

up than drop-off, and sink area as having more taxi drop-off than pick-up. Yang et al. 108 

(2016) further defined human convergence as that the number of flowing to a location 109 

is larger than the number of outgoing people, and human divergence as the opposite 110 

situation that the number of leaving people is larger. And then human spatial 111 

convergence and divergences in Shenzhen were subsequently explored using mobile 112 



 

 

phone dataset. Since tidal phenomenon of shared bikes are similar to the convergence 113 

and divergence (or source and sink) of people, these definitions and methods could be 114 

adopted to study tidal phenomenon of dockless bike-sharing system.  115 

Considering the importance of the tidal phenomenon for the dockless bike-116 

sharing system, the study firstly proposed a method to quantify it by defining the 117 

convergence and divergence state of shared bikes and further deriving tidal traffic 118 

patterns. Moreover, we explored the causes of the tidal traffic phenomenon by the 119 

Multinomial Logit Model (MNLM). We selected Beijing city as a case study and 120 

collected the dockless bike-sharing trip dataset in the city during 10th to 16th May 121 

2017. The paper is organized as follows. Section 2 introduces study area and data. 122 

Section 3 describes the analytical framework for quantifying tidal phenomenon. 123 

Section 4 and Section 5 present the tidal traffic patterns and discuss the role of various 124 

influential factors. The final section gives the conclusions. 125 

2. Study area and dataset 126 

As the capital of China and one of the world-class megacities, Beijing has more than 127 

20 million permanent population and a developed public metro network with more 128 

than 20 lines and 300 stations up to 2018 (Beijing Subway, 2018). With the promotion 129 

of TOD, the dockless bike-sharing system has been widely used in recent years, 130 

playing an increasingly significant role in public transport. The bike-sharing dataset 131 

was collected from the Beijing Mobike Technology Co., Ltd, one of the largest 132 

dockless bike-sharing system operators in China. The dataset contains more than 3 133 

million bike-sharing trips from May 10 (Wednesday) to May 16 (Tuesday) 2017, a 134 

period in a favourable season for cycling. The dataset includes the location 135 

coordinates of trip origin and destination, the unlocking and locking time, user ID and 136 
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bike ID. Considering that the metro stations are usually regarded as the pivots of TOD 137 

in Beijing (Lyu et al., 2016; Ma et al., 2017; Zhao & Li, 2018), only trips around 284 138 

metro stations that opened before May 2017 (the origin or destination of trips within a 139 

buffer zone defined in section 3.1) were extracted for the following analysis (Figure 140 

2), which dominates the trips of bike-sharing system in Beijing. 141 

[Figure 2 near here] 142 

Moreover, we also collected demographic and point of interest (POI) data in 143 

2018 (Figure 3), which provide information of possible factors influencing the tidal 144 

phenomenon. The demographic data is gridded data with spatial resolution of 300m, 145 

recording number of people working and residing in each grid, provided by China 146 

Academy of Urban Planning & Design. POI data presents the geographical location of 147 

urban facilities and land use functions, obtained from AutoNavi (www.amap.com), 148 

one of the largest Internet map service providers in China. Certain categories of POIs, 149 

namely resident places, catering services, life services and shops, entertainment and 150 

sports venue, medical services and hospitals, science/education institutions, tourist 151 

attractions and companies, were counted and plotted to roughly illustrate the 152 

distribution of human activities inside the 6th Ring Road in Beijing (Figure 3.c). 153 

[Figure 3 near here] 154 

3. Methodology 155 

3.1 Definition of tidal traffic patterns 156 

The tidal phenomenon can be characterized by tidal traffic patterns, i.e., various 157 

combinations of convergence and divergence state of shared bikes, so we firstly 158 

defined convergence and divergence state respectively referring to previous research 159 



 

 

on human convergence (Yang et al., 2016). Since the origin and destination of each 160 

bike-sharing trip were recorded in the data used in this study, in a designated area, the 161 

arrival flow can be defined as the cumulative arrival trips, whereas the departure flow 162 

can be defined as the cumulative departure trips. Consequently, during a certain time 163 

period t, the net flow in a designated area can be defined as follows: 164 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 − 𝑑𝑑𝑛𝑛𝑑𝑑𝑎𝑎𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡                          (1) 165 

A positive net flow indicates more bikes arriving to the area, defined as convergence 166 

state (Figure 4.a). Conversely, a negative net flow indicates more bikes departing 167 

from the area, defined as divergence state (Figure 4.b). It is obvious that if the 168 

convergence exceeds a certain threshold, a large number of shared bikes will pile up 169 

in the designated area. On the other hand, the divergence may alleviate the mentioned 170 

problems, but a continuous and strong divergence easily leads to a short supply of 171 

shared bikes that influences usage efficiency and user’s satisfaction.  172 

[Figure 4 near here] 173 

To identify the tidal traffic patterns along with time, the arrival flow and 174 

departure flow of bike-sharing trips for each metro station were calculated at intervals 175 

of one hour over one week. For all stations, we constructed the spatiotemporal matrix 176 

A[i, t, k] of arrival flow and matrix D[i, t, k] of departure flow in Beijing, here i 177 

represents metro station index (i = 1,…, 284) and t represents hour of a day (t = 1, …, 178 

24) and k represents day of a week (k = 1, …, 7). Considering the great difference of 179 

bike-sharing trips on weekdays and weekends (Faghih-Imani & Eluru, 2015), the 180 

spatiotemporal matrixes were decoupled into weekdays and weekends and further 181 

averaged according to Eqs. (2)-(5). 182 



 

 

�̅�𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = Ave (𝐴𝐴[𝑎𝑎, t, k]),𝑘𝑘 = 1,2,3,4,5                                (2) 183 

𝐷𝐷�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = Ave (𝐷𝐷[𝑎𝑎, t, k]), 𝑘𝑘 = 1,2,3,4,5                                (3) 184 

�̅�𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = Ave (𝐴𝐴[𝑎𝑎, t, k]), 𝑘𝑘 = 6,7                                    (4) 185 

𝐷𝐷�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = Ave (𝐷𝐷[𝑎𝑎, t, k]),𝑘𝑘 = 6,7                                    (5) 186 

Based on Eq. (1), the convergence-divergence matrix (CDM) can be calculated 187 

following Eqs. (6)-(7):  188 

𝐶𝐶𝐷𝐷𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = �̅�𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] − 𝐷𝐷�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛]                          (6) 189 

𝐶𝐶𝐷𝐷𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = �̅�𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] − 𝐷𝐷�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛]                          (7) 190 

Figure 4.c illustrates CDM variation and corresponding tidal traffic patterns. At time t 191 

and station i, the positive element value of CDM represents a convergence state of 192 

shared bikes, while the negative element value of CDM represents a divergence state 193 

of shared bikes, and the element value of CDM approximating zero suggests dynamic 194 

equilibrium for the arrival flow and departure flow.  195 

Besides the net flow, the total flow (TF) that is the sum of arrival flow and 196 

departure flow of shared bikes is also essential to reflect the intensity of bike-sharing 197 

trips around a metro station. Similarly, TF on weekdays and weekends were 198 

calculated respectively at each hour t and each metro station i by using Eq. (8)-(9). 199 

𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] + 𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛]                           (8) 200 

𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] = 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛] + 𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤[𝑎𝑎, 𝑛𝑛]                           (9) 201 



 

 

For calculating arrival flow, departure flow and net flow, the size of the 202 

designated area needs to be defined. As shown in Figure 5, the size of a designated 203 

area for each station is outlined as a buffer zone around a metro station with radius r 204 

that covers all exits of the metro station and is within an acceptable walking distance 205 

for finding available bikes (blue area in Figure 5, named station cell). Since the speed 206 

of a normal walker is generally 60-80m/min, 300m is considered as an appropriate 207 

walking distance for finding an available bike (Zhang et al., 2017), so that the radius r 208 

was set to 300m around a station.  209 

[Figure 5 near here] 210 

3.2 Cluster analysis  211 

 Based on CDM and TF on weekdays and weekends, K-means cluster method 212 

(Dangeti, 2017) was employed to classify all stations into several groups. The elbow 213 

method and prior knowledge about traffic flow were combined to determine the 214 

optimal number of clusters (k). First, calculate the within-cluster-sum of squared 215 

Errors (SSE) for each value of k, and then the optimal k should be the one for which 216 

SSE stops sharp falls, i.e., adding another cluster does not distinctly decrease SSE. 217 

However, the elbow method sometimes gives ambiguous SSE dropping trend. Thus, 218 

in practice, we first determine a reasonable range of k based on the elbow method, and 219 

then draw all the clustering results to ascertain the optimal k according to prior 220 

knowledge on human mobility in cities. The specific convergence and divergence 221 

patterns for each group were further analyzed in the results section.  222 

3.3 Deriving the influential factors 223 

To figure out causes of tidal traffic patterns, several possible factors in term of 224 



 

 

demographic attribution, traffic conditions and land use were considered according to 225 

the previous studies (Etienne & Latifa, 2014; Faghih-Imani et al., 2014; Gu et al., 226 

2019; Nasri & Zhang, 2014; Shen et al., 2018; Vogel et al., 2011; Yang et al., 2019; 227 

Zhang et al., 2018, 2017). To derive these factors, the bike-sharing coverage area was 228 

firstly defined and all the influential factors were calculated within the coverage area. 229 

Here the bike-sharing coverage area is defined as a larger buffer zone with radius R 230 

covering most possible trips from/to the station (orange area in Figure 5). Since riding 231 

distance of over 80% bike-sharing trips in Beijing are within 1000m according to our 232 

trip data, the radius R of bike-sharing coverage area was set to 1000m, which not only 233 

covers most of the shared bicycle trips at each station, but also ensures that the 234 

overlap area between any two stations is minimal.  235 

Four factors were selected to indicate demographic attribute, i.e., population 236 

density, resident density, employment density and resident-employment ratio. 237 

Resident density and employment density in each bike-sharing coverage area were 238 

calculated from population dataset recording number of people residing and working 239 

in the grid. Population density is the sum of resident density and employment density 240 

in each bike-sharing coverage area, while the resident-employment ratio is resident 241 

density divided by employment density. Meanwhile, four factors related to traffic 242 

conditions are: length of roads (excluding highways and viaducts), representing basic 243 

cycling infrastructure; intersection density, representing network connectivity; density 244 

of bus stops and number of exits of a metro station, both representing public transport 245 

accessibility.  246 

A total of 13 factors were calculated using the POI data to reflect the 247 

influences of land use, include land use diversity, land use density, and density of 248 

urban facilities with 11 specific functions (restaurants, pubs/bars, theaters, shops, 249 



 

 

parks, universities and others in Table 1). Land use diversity (𝐿𝐿𝐿𝐿𝑤𝑤) within a coverage 250 

area was calculated using Shannon's diversity index:  251 

𝐿𝐿𝐿𝐿𝑤𝑤 = −∑ 𝑃𝑃𝑤𝑤ln (𝑃𝑃𝑤𝑤)𝑤𝑤
𝑤𝑤=1                                                   (10) 252 

where 𝑃𝑃𝑤𝑤 is the proportion of POI type k in one bike-sharing coverage area, i.e., the 253 

ratio of POI type k to the total number of POIs in the area. Land use density is 254 

represented by the amount of all kinds of POIs within the coverage area. To get a 255 

more representative value to reflect the size of facilities, we did not merge the details 256 

POIs within universities and parks. For example, for a university with 20 buildings 257 

marked as POIs in a bike-sharing coverage area, the land use density of this university 258 

was counted as 20 rather than 1. Table 1 lists all possible factors and descriptive 259 

statistics for 284 bike-sharing coverage areas in Beijing. 260 

[Table 1 near here] 261 

3.4 Multinomial logit model  262 

The Multinomial Logit Model (MNLM) was employed to quantify contributions of 263 

abovementioned factors respectively, considering that the MNLM can generalize 264 

logistic regression to multi-category problems and is often used to predict 265 

probabilities of different possible outcomes for the given dependent variables 266 

(Greene, 2003). The fundamental formula of the MNLM is described as follows, 267 

supposed that there are K explanatory variables 𝑋𝑋1, 𝑋𝑋2, … ,𝑋𝑋𝐾𝐾  and the outcome 268 

variable is Y with J category. 269 

lnΩ𝑗𝑗|𝑏𝑏(X) = ln Pr�𝑦𝑦 = 𝑗𝑗�𝑿𝑿�
Pr�𝑦𝑦 = 𝑏𝑏�𝑿𝑿� = 𝛽𝛽𝑗𝑗0 + 𝛽𝛽𝑗𝑗1𝑋𝑋1 + 𝛽𝛽𝑗𝑗2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑗𝑗K𝑋𝑋𝐾𝐾  for j=1, …, J  (11) 270 

where lnΩ𝑗𝑗|𝑏𝑏(X)  is the log-odd of category m compared to base category b. The 271 



 

 

coefficient 𝛽𝛽𝑗𝑗k means a logit change with one-unit increase of the explanatory variable 272 

𝑋𝑋𝑤𝑤 under the condition of other variables unchanged. A base category b is usually 273 

designated among J categories so that the probabilities of other J-1 categories can be 274 

compared to the probability of base category b, thus J-1 logit equations were obtained. 275 

The probabilities of J categories can be predicted by solving J equations according to 276 

Eq. (12) with the maximum likelihood method. 277 

Pr(𝑦𝑦 = 𝑗𝑗|X) = exp�𝑿𝑿𝛽𝛽𝑗𝑗|𝑏𝑏�

∑ exp�𝑿𝑿𝛽𝛽𝑗𝑗|𝑏𝑏�
𝐽𝐽
𝑗𝑗=1

  for 𝑗𝑗 = 1, … , 𝐽𝐽                              (12) 278 

Then Relative Risk Ratio (RRR), the most widely used parameter for MNLM 279 

model interpretation, can be calculated using Eq. (13): 280 

𝑅𝑅𝑅𝑅𝑅𝑅 = Pr�𝑦𝑦 = 𝑗𝑗�X�
Pr�𝑦𝑦 = 𝑏𝑏�X� = exp�𝛽𝛽𝑗𝑗0 + ∑ 𝛽𝛽𝑗𝑗k𝑋𝑋𝐾𝐾𝐾𝐾

𝑤𝑤=1 �                            (13) 281 

RRR is a ratio of two probabilities as an exponential function with regression 282 

coefficients. RRR larger than 1 shows a relatively larger chance that the outcome 283 

falling in j category rather than base category b and this relative chance grows with 284 

the increases of explanatory variable values, indicating a positive effect. Conversely, 285 

RRR less than 1 represents a negative effect. The variables with RRR≈1 would not be 286 

considered as vital decisive factors due to relative weak effects on the probability ratio 287 

of category j to b. Note that the estimated parameters and RRR will change with the 288 

base category selected to interpret the logit model from different perspectives. In our 289 

study, all categories will be selected as base category by rotating.  290 

Several pseudo R-squared indexes (range from 0 to 1) have been developed to 291 

evaluate the goodness-of-fit because the equivalent statistic to R-squared does not 292 

available for logistic models. Nagelkerke R2 is one of the goodness-of-fit indicators 293 



 

 

that have a likelihood of 1 when the full model perfectly predicts the outcome. Apart 294 

from that, count R2 gives predictive accuracy of the model, which is the number of 295 

correct predictions divided by total counts. 296 

4. Results  297 

4.1 Tidal traffic patterns on weekdays 298 

Based on the calculated CDM and TF of 284 public transit stations in Beijing, the 299 

tidal traffic patterns of dockless bike-sharing trips were identified by using K-means 300 

cluster analysis method. There are five patterns for weekdays and three patterns for 301 

weekends, names of these patterns and proportion of stations belonging to each 302 

pattern were listed in Table 2.  303 

[Table 2 near here] 304 

To intuitively visualize tidal traffic patterns of dockless bike-sharing trips in 305 

different stations, the hourly profiles of CDM and TF for different patterns were 306 

plotted and the corresponding stations belonging to each pattern were highlighted in 307 

the map (Figure 6). Both N-N-HF (Figure 6.a) and N-N-LF patterns (Figure 6.b) have 308 

no significant convergence and divergence states, indicating the arrival and departure 309 

flow of bike-sharing trips are in dynamic equilibrium. Accordingly, these two patterns 310 

can be considered as non-tidal patterns. Stations with C-D-HF pattern (Figure 6.c) 311 

witness dramatic convergence of shared bikes in the morning rush hours and 312 

considerable divergence in evening rush hours both with high total flows, while the 313 

D-C-HF pattern (Figure 6.d) is just opposite to C-D-HF pattern in terms of 314 

convergence and divergence in the morning and evening peaks. Unlike the above two 315 

patterns, CD-CD-HF (Figure 6.e) has a more complicated pattern with convergence 316 

followed by divergence in both morning and evening rash hours.  317 



 

 

[Figure 6 near here] 318 

As illustrated in Figure 6 and compared with Figure 3, the N-N-HF stations 319 

are mainly distributed in the centre of Beijing, where a large number of jobs, 320 

residential buildings and public services are concentrated, which may result in 321 

frequent bike sharing trips during the daytime. N-N-LF stations are mostly distributed 322 

in the suburbs with low population density, while partly located in the less populated 323 

regions of old downtown where scenic spots and administrative agencies are 324 

concentrated. C-D-HF stations are mainly located around large residential 325 

communities outside the city centre. In contrast, the D-C-HF stations are closer to the 326 

city centre and the high-tech industry/business parks. The number of CD-CD-HF 327 

stations is relatively small, and they are scattered in the mixed areas with both mature 328 

residential and commercial facilities.  329 

4.2 Tidal traffic patterns on weekends 330 

Figure 7 shows the hourly profile of CDM and TF of the three patterns on weekends 331 

as well as the corresponding stations. It can be found that more stations were grouped 332 

into N-N-HF and N-N-LF patterns than that of weekdays. The C-D-HF pattern still 333 

exists at some stations, but its convergence and divergence are less intensive and last 334 

for longer time than that on weekdays, i.e., the convergence remains from morning 335 

peak hours to the afternoon, while the divergence lasts from 19:00 until midnight. It is 336 

obvious that the tidal phenomenon is attenuated during the weekends because of 337 

reduced commuting flows. 338 

[Figure 7 near here] 339 

The spatial distributions of the three patterns on weekends are similar to that in 340 

weekdays. N-N-LF stations are mainly located in the areas with less population 341 



 

 

density, while the N-N-HF stations are correspondingly distributed in the centre of 342 

Beijing. C-D-HF pattern only happens in large residential communities. 343 

4.3 Influential factors of tidal traffic patterns on weekdays 344 

The MNLM was employed to identify the key factors and their contributions to the 345 

formation of different tidal traffic patterns. The results of the MNLM for weekdays 346 

are shown in Table 3. Nagelkerke’s R2 and count R2 are 0.67 and 0.66 respectively, 347 

suggesting that the model gives a good explanation and a high predictive accuracy. As 348 

stated in section 2.3, a base category should be designated in the MNLM and 349 

interpretation of the model is based on the comparisons of the other categories with 350 

the base category. Accordingly, the N-N-HF pattern was selected as the first base 351 

category of the MNLM because it is the most common patterns, and the other patterns 352 

were successively taken as the base category in turn. Table 3 lists the estimated results 353 

of effective comparisons (only when the new comparison brought some unknown 354 

differences) and the influential factors with significant levels at 0.001, 0.01 and 0.05 355 

for different base categories. 356 

[Table 3 near here] 357 

According to the results in Table 3, N-N-LF pattern is significantly negative 358 

correlated to population density while not significantly different with N-N-HF pattern 359 

in resident-employment ratio, indicating the low population density is a vital decisive 360 

factor of N-N-LF pattern. In addition, the probability of N-N-LF relative to N-N-HF 361 

pattern would  decrease with the number of metro station exits if other variables 362 

remain unchanged, which implies that the metro system has a positive effect on 363 

promoting bike-sharing trips on weekday. Note that some variables (such as restaurant 364 



 

 

density and land use density) are significantly related to N-N-LF, but their influences 365 

are very limited since the RRR is approximately equal to 1. 366 

For C-D-HF pattern compared to N-N-HF pattern, it has a significant positive 367 

correlation with resident-employment ratio. It is plausible that the numerous residents 368 

ride shared bikes going or leaving metro stations for commuting, causing the 369 

convergence and divergence of bike-sharing trips in morning and evening peaks 370 

respectively. For D-C-HF pattern compared to N-N-HF pattern, it has significant 371 

negative correlation with resident-employment ratio, showing that much more job 372 

opportunities are provided in the bike-sharing coverage area than housings, prompting 373 

more people riding from metro stations to workplaces in morning peak and further 374 

causing the divergence of bike-sharing trips. In addition, land use density and 375 

restaurant density have rather limited positive effect on D-C-HF, while university 376 

density shows a negative one. If C-D-HF pattern replaces N-N-HF as the base 377 

category, the RRR of resident-employment ratio decreased, indicating a stronger 378 

negative effect on D-C-HF pattern. In addition, an increase in university density 379 

would decrease the probability of pattern D-C-HF relative to C-D-HF. 380 

Since CD-CD-HF pattern is the most complicated one among five tidal traffic 381 

patterns, the influential factors were comprehensively analyzed in the case of taking 382 

different patterns as the base category of MNLM. Population density has a positive 383 

effect on CD-CD-HF when compared with N-N-HF, but shows positive effect while 384 

set C-D-HF or D-C-HF as the base category.  It is also demonstrated that the 385 

probability of CD-CD-HF relative to C-D-HF pattern would decrease with the 386 

resident-employment ratio if other variables stay unchanged, suggesting if plenty of 387 

citizens move to and live around metro stations with CD-CD-HF pattern, then tidal 388 

traffic patterns around the station may convert to C-D-HF. 389 



 

 

4.4 Influential factors of tidal traffic patterns on weekends 390 

The significant results of MNLM for weekends are shown in Table 4. Nagelkerke’s 391 

R2 is 0.49 and count R2 is 0.66, indicating good performance of the estimated model. 392 

The base category of this model was originally set to N-N-LF, the most common 393 

pattern on weekends, and some other patterns were successively taken as the base 394 

category in turn in order to explain the model from multiple perspectives.  395 

[Table 4 near here] 396 

As demonstrated in Table 4, N-N-HF pattern is positively related to the 397 

resident density, metro station exits, pub/bar density and having a shopping mall 398 

nearby the station. Obviously, high resident density lays the foundation of massive 399 

bike-sharing flow, and convenient metro promotes more people ride shared bikes 400 

from or to the metro stations. Having a shopping mall means abundant concentrated 401 

shopping, leisure and entertainment functions, thus the arrivals and departures of bike-402 

sharing are both frequent in these districts and contribute to the state of dynamic 403 

equilibrium.  404 

As for the C-D-HF compared to N-N-LF, factors such as resident density, the 405 

number of metro station exits, having a shopping mall nearby the station have positive 406 

effect on it, while land use diversity and intersection density show a highly negative 407 

effect. Furthermore, C-D-HF pattern was analyzed in the case of taking N-N-HF 408 

pattern as the base category. Model result suggests that the resident density has a 409 

positive effect on C-D-HF pattern while land use diversity and pub/bar density are 410 

negatively correlated with it. That implies C-D-HF pattern is more likely to appear at 411 

metro stations surrounded by densely populated area with poor land use diversity.  412 



 

 

5. Discussion 413 

5.1 Comparison of tidal traffic on weekdays and weekends 414 

In this work, we ascertained the bike-sharing tidal patterns appeared on weekdays and 415 

weekends in Beijing based on the arrival and departure flow derived from one-week 416 

trip data. Five tidal traffic patterns were found around the metro stations on weekdays, 417 

namely N-N-LF, N-N-HF, C-D-HF, D-C-HF and CD-CD-HF. Three among them 418 

remained on weekends, N-N-LF, N-N-HF and C-D-HF, while D-C-HF and CD-CD-419 

HF patterns disappeared. We further analyzed how the pattern of a station changes 420 

from weekdays to weekends. As illustration as Figure 8, all the N-N-LF stations on 421 

weekdays maintain the same pattern on weekends (Figure 8.a), while some stations 422 

belonging to other patterns on weekdays also changed to N-N-LF type on weekends 423 

(Figure 8.b-d), especially for N-N-HF and D-C-HF stations. The remarkable change 424 

from high flow stations (HF) to low flow stations (LF) suggested that the total flows 425 

were significantly reduced on weekends because of weekend downtime. With the 426 

decrease of commuting flows on weekends, the stations belonging to D-C-HF, CD-427 

CD-HF no longer existed and converted to other patterns on weekends (Figure 8.d and 428 

e), because stations of both D-C-HF and CD-CD-HF patterns in weekdays are close to 429 

business districts providing massive employment opportunities. The abovementioned 430 

changes indicated that most non-equilibrium patterns on weekdays (e.g., C-D-HF, D-431 

C-HF and CD-CD-HF) in Beijing were produced by commuting flows, which can be 432 

greatly mitigated on weekends. However, it should be noted that as one type of non-433 

equilibrium pattern, C-D-HF stations still existed near large residential quarters on 434 

weekends, suggesting that other activities, such as shopping, extra-curricular schools 435 

and recreational activities, can also drive convergence or divergence. Compared with 436 

other studies performed in other cities, similar to Singapore (Shen et al., 2018), 437 



 

 

Beijing displayed distinction between weekdays and weekends driven by commuting 438 

activities, while no remarkable differences were found in Nice and Suzhou (O’Brien 439 

et al., 2014), probably due to different working-life style, travel behaviour, type of 440 

bike-sharing system (with and without docks), and amount of bike supply. 441 

[Figure 8 near here] 442 

5.2 Decisive factors of tidal traffic patterns 443 

The modeling results illustrated that population is the most decisive factor to 444 

differentiate high-flow patterns from the low-flow pattern. On weekdays, all the four 445 

high-flow patterns have an RRR greater than 1 when compared to N-N-LF (Figure 446 

9.a), thus population density determines whether a substantial convergence or 447 

divergence can be formed. This conclusion is further confirmed by comparing 448 

population density and resident-employment ratio for five patterns (Figure 10.a and b) 449 

on weekdays. It can be found that the population density around the low-flow stations 450 

is evidently lower than high-flow stations, which is similar to research in other cities 451 

such as New York and Shenzhen (Faghih-Imani & Eluru, 2016; Zhang et al., 2017). 452 

On weekends, resident density is considered as the key factor to distinguish high- and 453 

low-flow stations according to the RRR (Figure 9.b), and as illustrated in Figure 10.b, 454 

N-N-LF stations are likely with less resident density.  455 

[Figure 9 near here] 456 

[Figure 10 near here] 457 

For those high-flow patterns, resident-employment ratio further regulates the 458 

timing of the convergent and divergent tidal flow on weekdays, as illustrated in Figure 459 

9.c, C-D-HF has an RRR of resident-employment ratio greater than 1 when compared 460 



 

 

to station with no sever tidal traffic (N-N-HF), while D-C-HF has an RRR of resident-461 

employment ratio below 1. These results suggest that higher resident-employment 462 

ratio can enhance C-D-HF pattern due to commuting trips, especially in residential 463 

areas. While lower resident-employment ratio is conducive to the formation of D-C-464 

HF patterns, especially in job quarters, and the moderate resident-employment ratio 465 

boosts CD-CD-HF accordingly (Figure 10.c). 466 

Factors regarding land use characteristics are verified to collectively contribute 467 

to distinct the high-flow patterns, especially on weekends. According to the RRR 468 

values listed in Table 4, three land use variables, namely land use diversity, pub/bar 469 

density and shopping mall are crucial for the formation of tidal traffic patterns on 470 

weekends. Land use diversity represents diverse functions existing in the bike-sharing 471 

coverage area and thus affects the number of people flowing in. Shopping malls near 472 

metro stations may attract a large number of citizens to shopping and entertain on 473 

weekends. Hence, higher land use diversity, shopping malls and night spots like bars 474 

help N-N-HF stations keep high arrival and departure flows all day; stations located in 475 

less-functional districts but adjacent to a shopping mall more likely present a C-D-HF 476 

pattern. On weekdays, land use factors also contribute to separating tidal traffic 477 

patterns, such as land use diversity and density, restaurant density and university 478 

density, but their implications are slight and restricted to some specific comparisons.  479 

As a component of public transportation system, other modes of public 480 

transportation and attributes of road network also affect the traffic flow of bike-481 

sharing. The number of metro station exits shows a positive effect on most high-flow 482 

patterns, implying that the high convenience of metro stations promotes more people 483 

to ride shared bicycles from or to the metro stations (Figure 11.a).  Density of road 484 

intersections has a negative impact on bike-sharing traffic flow on weekends but not 485 

https://cn.linguee.com/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/%E7%BF%BB%E8%AD%AF/implications.html


 

 

weekdays (Figure 11.b), suggesting people are more sensitive to road conditions when 486 

traveling by bicycle on weekends. 487 

[Figure 11 near here] 488 

5.3 Mitigation of tidal phenomenon  489 

With the knowledge of tidal traffic patterns of dockless bike-sharing usage, associated 490 

problems could be identified and alleviated to some extent. Totally five tidal traffic 491 

patterns were found around the metro stations in Beijing. N-N-LF and N-N-HF 492 

patterns indicate dynamic equilibrium between the arrival flow and departure flow, it 493 

can be regarded as effective utilization of the sharing bicycle without problems. 494 

Consequently, only the non-equilibrium patterns (e.g., C-D-HF, D-C-HF and CD-CD-495 

HF) should be improved, and some operational and controllable solutions should be 496 

implemented   497 

Firstly, according to spatial distribution and temporal characteristics of the 498 

non-equilibrium stations, rebalancing strategy can be applied by adjusting the stock of 499 

bicycles in different stations or in specific periods to maintain an optimal stock 500 

distribution across the city. The rebalancing strategy was demonstrated to be effective 501 

to against tidal flows (Fishman, 2016b) . Figure 12 lists a weekly rebalancing scheme 502 

for the non-equilibrium stations, where additional management (e.g., delivery bikes 503 

from or to other places in advance, optimizing bus schedules and locations of bus 504 

stops) is required on specific days and periods of the day, taking into account the time 505 

characteristics of significant convergence and divergence states. Obviously, knowing 506 

where and when to implement additional management, as well as developing a weekly 507 

rebalancing strategy schedule, can help mitigate the problems induced by tide 508 

phenomenon.  509 



 

 

[Figure 12 near here] 510 

Second, fortunately there are stations with two opposite tidal traffic patterns 511 

(i.e., C-D-HF and D-C-HF) during peak hours on weekdays, accordingly shipping-in 512 

and shipping-out rebalancing strategy can be performed between these stations with 513 

opposite tidal patterns if they are adjacent to each other. Figure 13 shows the stations 514 

that can implement shipping-in and shipping-out strategy. Based on the spatial 515 

distribution of these stations, shipping-in and shipping-out stations can be optimally 516 

paired to balance the stock of bikes among these stations but with the shortest distance 517 

cost (e.g., the stations were paired within each the red dash area in Figure 13). The 518 

dynamic optimization of pairing shipping-in and shipping-out stations should be a 519 

promising solution and should be further studied in the future to mitigate problems 520 

induced by the tide phenomenon. 521 

[Figure 13 near here] 522 

Third, after identifying the main causes of the tide traffic patterns, in the long 523 

run, adjusting the population and its composition, traffic conditions and land use 524 

mixture is the fundamental solution to alleviate the tide phenomenon, although some 525 

of the measures are not practical in the short term due to the constraints of the fixed 526 

land use planning. At least, our study suggests that it is possible to predict the tidal 527 

traffic pattern of a station according to the demographic, traffic condition and land use 528 

characteristics within the bike-sharing coverage area. It is helpful to develop a 529 

rebalancing strategy in advance according to the tidal traffic pattern of specific 530 

stations.  531 

6. Conclusions  532 

In this work, we proposed a method to quantify the tidal phenomenon of dockless 533 



 

 

bike-sharing and further explored the possible influential factors of these tidal traffic 534 

patterns. Five patterns were found on weekends, namely N-N-LF, N-N-HF, C-D-HF, 535 

D-C-HF and CD-CD-HF, extreme convergence and divergence mainly emerge at 536 

morning and evening rash hours. Two of the patterns (D-C-HF and CD-CD-HF) do 537 

not occurred on weekends, and the tidal traffic phenomenon becomes less intensive 538 

but lasts longer. Model results show that population is the most decisive factor in 539 

Beijing, which determines the level of traffic flow on both weekdays and weekends. 540 

Resident-employment ratio further determines the direction of commute flows, thus 541 

leading to regular convergence and divergence on weekdays. Land use diversity and 542 

some specific POIs related to leisure activities (e.g., shopping malls, pub/bar) are 543 

verified to be critical influential factors on weekends, whereas most land-use-related 544 

factors are less influential on weekdays due to the heavy commuting 545 

trips. Transportation and road network conditions also involved in bike-sharing travel 546 

behaviour, better accessibility to the metro stations promotes dockless bike-sharing 547 

usage on both weekdays and weekends, while users may concern more about the road 548 

conditions on weekends and prefer biking in areas with fewer intersections. The 549 

results acquired in the study improved our knowledge of residents' travel 550 

characteristics on a kilometer-scale, and will further help us improve the first- or last-551 

mile public transportation, which may include but not limited to bike-sharing in the 552 

future. 553 

Although the proposed analytical framework was applicable to study the tidal 554 

phenomenon and causes of the dockless bike-sharing usage, several limitations should 555 

be further considered. First, delimiting a station cell is crucial for exploring the tidal 556 

phenomenon of bike-sharing usage, but the delimiting criteria may be adjusted 557 

according to the local urban planning, public transit conditions and people’s travel 558 



 

 

behaviour. The criteria used by our study in Beijing can be used as a reference for 559 

other cities. Second, this study focused on the spatiotemporal pattern on weekdays and 560 

weekends because the bike-sharing dataset used in this study only recorded trips within 561 

one week. However, bike-sharing trip dataset over long periods may provide new 562 

insights into tidal phenomenon of bike-sharing usage. For example, annual variations 563 

on tidal traffic may reflect changes in public transport network as well as travel 564 

behaviour over periods crossing multiple years. Last, due to the limitation of data 565 

availability, other factors such as the travel behaviour of bike-sharing users, the initial 566 

stock of shared bikes within the coverage area of each metro station, and the weather 567 

conditions were not considered in the cause analysis, which should be explored in 568 

future studies.  569 
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Figure 1. (a) An example of the bike-sharing system with docks (photographed by 

Xiaoyue Tan); (b) An example of the dockless bike-sharing system (photographed by 

Xiaolin Zhu); (c) Screenshot of a smartphone app for the dockless bike-sharing system 

that shows locations of available shared bikes; (d) Unlocking a shared bike by scanning 

the QR code for the dockless bike-sharing system (photographed by Xiaolin Zhu). 

  



 

Figure 2. Location of study area in Beijing (b), the capital city of China (a). The public 

metro network and distribution of bike-sharing trips (sum of departures and arrivals in 

one week), mainly within the Sixth Ring Road in Beijing city (c).  

  



 

Figure 3. Density of people (a) working and (b) living within the Sixth Ring Road in 

Beijing city, (c) POI density.  

  



 

Figure 4. Schematic diagrams of convergence (a) and divergence (b) in a metro station, 

the changes of arrival flow, departure flow and corresponding convergence-divergence 

matrix (CDM) during a day (c). 

  



 

Figure 5. Schematic diagram of a station cell (blue) and corresponding bike-sharing 

coverage area (orange) along the metro lines (green and yellow). 

  



 

Figure 6. Metro station distribution of pattern N-N-HF (a), N-N-LF (b), C-D-HF (c), D-

C-HF (d), CD-CD-HF (e) on weekdays, and corresponding hourly profile of CDM 

(blue) and TF (grey). 



 

Figure 7. Metro station distribution of pattern N-N-HF (a), N-N-LF (b), C-D-HF (c) on 

weekends, and corresponding hourly profile of CDM (orange) and TF (grey) 

  



 

Figure 8. Corresponding tidal pattern on weekends for stations with pattern (a) N-N-LF, 

(b) N-N-HF, (c) C-D-HF, (d) D-C-HF and (e) CD-CD-HF on weekdays. 

  



 

 

Figure 9. RRR values of (a) population density compared to N-N-LF on weekdays, (b) 

resident density compared to N-N-LF on weekends, (c) resident-employment ratio 

compared to N-N-HF on weekdays. Bars not shown in the histogram indicate that the 

impact is not significant. 

  



 

 

Figure 10. Statistics of influential factors in bike-sharing coverage area of each pattern: 

(a) population density based on weekday pattern, (b) resident density based on weekend 

pattern, (c) resident-employment ratio based on weekday pattern. 

  



 

 

Figure 11. RRR of traffic condition factors compared to N-N-LF on (a) weekdays and 

(b) weekends, bars not shown in the histogram indicate that the impact is not 

significant. 

  



 

Figure 12. Arrangements for additional management and corresponding tidal traffic 

patterns on weekdays and weekends.  

  



 

Figure 13. Rebalancing arrangement on weekday morning peaks, inside the red ellipse 

are some possible shipping-in and shipping-out pairs. 

 



Table1. Descriptive statistics of the influential factors 

Factors Mean Std Min Max 

Demographic     
  Population density (thousand people/km2)  29.19  16.20  0.43  91.81  
  Resident density (thousand people/km2) 18.46  10.38  0.34  78.94  
  Employment density (thousand people/km2) 10.72  8.18  0.09  44.49  
  Resident-employment ratio 2.23  1.22  0.29  7.55  
Traffic condition     
  Length of roads (km/km2) 5.56  2.20  0.62  10.48  
  Intersection density (per km2) 11.69  6.68  0.00  34.06  
  Bus stop density (per km2) 5.06  2.38  0.32  18.14  
  Numbers of metro station exits 4.13  1.82  1.00  12.00  
land use     
  Land use diversity (per km2) 1.77  0.22  0.52  2.07  
  Land use density (per km2) 495.45  384.39  0.95  2663.30  
  Restaurant density (per km2) 80.21  59.26  0.32  329.45  
  Entertainment venue density (per km2) 3.52  2.82  0.00  14.96  
  Pub/Bar density (per km2) 1.63  4.04  0.00  36.61  
  Shop density (per km2) 125.89  169.94  0.38  2390.51  
  Shopping mall (have=1, not=0) 0.14  0.34  0.00  1.00  
  Park density (per km2) 0.69  1.25  0.00  16.55  
  Scenic spot density (per km2) 3.75  8.71  0.00  62.71  
  Outdoor recreational place density (per km2) 0.77  0.74  0.00  4.14  
  Elementary and secondary school density (per km2) 5.17  3.19  0.00  13.05  
  University density (per km2) 8.68  15.30  0.00  114.59  
  Government agency and institution density (per km2) 17.86  14.60  0.00  56.98  

 

  



Table 2. Tidal traffic patterns for weekdays and weekends 

Patterns N-N-HF N-N-LF C-D-HF D-C-HF CD-CD-HF 

Weekdays 34.86% 29.93% 15.14% 17.96% 2.11% 

Weekends 44.37% 38.73% 16.90% - - 

* All patterns were named as three segments according to their CDM and TF characteristics. The first two 

segments represent state of tidal traffic in morning and evening respectively and the third segment represents 

the level of total flow. N: No obvious convergence and divergence; C: Convergence; D: Divergence; CD: 

Convergence followed by divergence; HF: high total flow; LF: low total flow. 



Table 3. The estimated results of MNLM on weekdays 

Explanatory variables 

N-N-LF C-D-HF D-C-HF D-C-HF  CD-CD-HF CD-CD-HF  CD-CD-HF  

(base: N-N-HF) (base: N-N-HF) (base: N-N-HF) (base: C-D-HF） (base: N-N-HF） (base: C-D-HF) (base: D-C-HF) 

RRR z1 RRR z RRR z RRR z RRR z RRR z RRR z 

Population density 0.82*** -3.90 1.00 -0.14 1.05 1.67 1.06 1.50 1.10* 2.05 1.10* 2.21 1.04* 2.27 
Resident-employment 
ratio 1.34 1.04 2.62*** 3.45 0.34*** -3.08 0.13*** -5.13 0.44 -1.6 0.17*** -3.52 1.31 0.48 

Numbers of metro station 
exits 0.63** -2.55 1.08 0.64 1.05 0.46 0.97 -0.22 0.81 -0.49 0.75 -0.67 0.77 -0.59 

Land use diversity 0.19 -1.16 0.28 -0.7 0.05* -2.01 0.17 -1.14 0.06 -1.15 0.23 -0.62 1.36 0.14 

Land use density 1.00 -1.36 1.00 -0.91 1.00* -2.24 1.00 -0.73 0.99** -2.87 0.99* -1.97 1.00 -1.54 

Restaurant density 1.03*** 2.86 1.02 1.58 1.02* 2.03 1.00 -0.12 1.04 1.86 1.02 1 1.02 1.09 
Elementary and 
secondary school density 0.84 -1.28 0.93 -0.61 0.98 -0.2 1.05 0.33 1.31 0.99 1.40 1.25 1.34 1.05 

University density 0.99 -0.19 0.99 -0.72 0.98* -2.12 0.99 -0.50 0.75 -1.44 0.76 -1.38 0.77 -1.33 
Government agency and 
institution density 1.03 0.23 0.96 -1.42 0.97 -1.2 1.01 0.32 0.95 -1.17 0.99 -0.29 0.98 -0.5 

(constant) 1843.35** 2.78 0.49 -0.22 545.22* 2.43 112.87** 2.63 42.08 0.91 86.51 1.08 0.08 -0.69 

*** Significant at the 0.001 level. 
** Significant at the 0.01 level. 
* Significant at the 0.05 level. 
1 z is score for Z-Test of corresponding coefficient   

  



Table 4. The estimated results of MNLM on weekends 

Explanatory variables 

N-N-HF  

(base: N-N-LF)  

C-D-HF  

(base: N-N-LF)  

C-D-HF 

(base: N-N-HF) 

RRR z   RRR z   RRR z 

Resident density  1.26*** 6.83  1.34*** 6.43  1.06* 2.11 

Intersection density 0.95* -1.98  0.92* -1.98  0.97 -0.95 

Numbers of metro station exits 1.45*** 3.70  1.52*** 3.28  1.04 0.46 

Land use diversity 0.66 -0.38  0.18* -2.30  0.27* -2.32 

Land use density 1.00 0.62  0.99* -2.40  0.99** -2.95 

Restaurant density 0.99 -1.82  1.02 1.70  1.03** 2.86 

Pub/Bar density 1.05* 2.09  0.82 -1.80  0.78* -2.22 

Shopping mall  1.99* 2.15  3.89* 2.26  1.96 1.39 

(constant) 0.02* -2.13  0.05 -1.43  2.38 0.35 

*** Significant at the 0.001 level. 
** Significant at the 0.01 level. 
* Significant at the 0.05 level. 
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