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Abstract 

Satellite remote sensing has been extensively utilized for monitoring dust storms in space and time. Dust 
storm detection using satellite observations is important to analyze the dust storm trajectories and sources. 
This paper reviews the algorithms for dust storm detection used in multispectral satellite sensors, spanning 
visible to thermal wavelengths. Four categories of dust detection algorithms are summarized, namely, dust 
spectral index algorithms, temporal anomalous detection algorithms, spatial coherence tested algorithms 
(physical-based algorithms) and machine learning-based algorithms. Following discussions of dust storm 
detection algorithms, the dust presence validation methods are also reviewed. Future developments for dust 
storm detection are focused upon three aspects: detection of dust storms at nighttime; development of more 
efficient machine learning methods for retrieval; and integrating physical and machine learning methods for 
satellite images. 
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1. Introduction 

According to the World Meteorological Organization, a dust storm is defined as ‘strong winds that lift 

large quantities of dust particles and reduce visibility to less than 1000 m’ (Goudie and Middleton, 2006). 

Dust storms play a significant role in global climate change and have become a major environmental concern. 

It also creates substantial adverse impacts on human health and ecosystems, which could result in losses in 

economy and human life (Ackerman and Chung, 1992; Meskhidze et al., 2005; Slanina, 2007; Weger et al., 

2018). Therefore, it is necessary to derive timely and accurate information on dust storms. Satellite remote 

sensing has been extensively applied to dust storm monitoring due to its distinctive advantages of large 

coverage and continuous observations. This technique can identify the extent and intensity of dust storms. 

Dust extent or presence is mainly identified using dust detection algorithms that identify dust pixels on a 

satellite image.  

In recent decades, many dust storm detection methods have been developed. To date, there have only been 

two studies which reviewed dust storm detection methods (Muhammad et al., 2012; Shao and Dong, 2006). 

Both papers cover a very wide range of dust storm research, such as dust storm climates, modeling and 

monitoring (Shao and Dong, 2006), and dust storm detection techniques and technologies (Muhammad et al., 

2012). However, in these two review papers, the summary of dust storm detection algorithm is not 

comprehensive. Moreover, an abundance of new methods has been developed since 2012. These algorithms 
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were generally classified by spectral range such as visible near-infrared, thermal-infrared, ultraviolet and 

microwave.  Our current study will summarize the algorithms used in dust detection, and new algorithms can 

also be developed based on the modification of these algorithms for new sensors. 

Many satellites or sensors have been applied to dust storm detection along with the development of 

corresponding methods, such as ultraviolet sensor TOMS, and OMI with the ultraviolet absorption aerosol 

algorithms (Chiapello et al., 1999; Torres et al., 1998; Torres et al., 2007; Varga et al., 2014), visible to 

thermal-infrared sensors MODIS, GEOS, AVHRR and dust indices (Ackerman, 1989, 1997; Norton et al., 

1980; Prata, 1989; She et al., 2018; Verge-Depre et al., 2006; Wald et al., 1998; William and Robert, 1974), 

and microwave sensors TRMM, AMSU,AMSR-E, AMSR2 and their polarization indices (El-Askary et al., 

2006; El-Askary et al., 2003; Ge et al., 2008; Huang et al., 2007; Kim et al., 2017). Generally, the algorithms 

developed for the three spectrums using either spectral, spatial or temporal information. One exception in 

microwave sensors is that polarization information is also used. The most significant drawback of dust storm 

detection using ultraviolet and microwave sensors is the coarse spatial resolution. Thus, in this paper, we will 

focus on reviewing the algorithms in the visible to thermal-infrared spectrum. We shall conduct a 

comprehensive review of dust storm detection algorithms from 1970 to 2020, with representative algorithms 

being selected and discussed. The algorithms are classified into three categories based on their spectral, 

temporal, and spatial characteristics.  

The paper is structured as follows: Section 2 reviews current multispectral sensors/satellite used for dust 

storm detection. Then, Section 3 and 4 summarizes current dust storm detection algorithms and dust presence 

validation data, respectively. Section 5 states the limitations or problems exist in the present dust detection 

algorithms, and Section 6 presents some future development directions. 

2. Satellites and Sensors

Multispectral sensors are mainly onboard two types of satellites, namely polar orbiting satellites and 

geostationary satellites. The MODIS (Terra & Aqua), AVHRR (NOAA), and MERSI2 (FY-3D) are onboard 

polar orbiting satellites. The SEVIRI (Meteosat 8-10), GEOS Imager (GEOS 8-15), MTSAT-2 Imager 

(MTSAT-2), AHI (Himawari 8/9), AGRI (FY-4A), ABI (GEOS 16, 17), AMI (GK-2A) and the future FCI 

(MTG-I1 to MTG-I4) are onboard geostationary satellites (GEO). The detailed spectral response function 

(SRF) and spatial resolution information of ten sensors are illustrated in Fig. 1. FCI is excluded because its 

SRF is not yet available. Polar orbiting satellites provides low temporal resolution but high spatial and 

spectral resolution for earth observations. Geostationary satellites orbit at high altitude and they remain 

stationary with reference to the Earth. Thus, sensors onboard GEO observe the Earth in high temporal 

resolutions (30 min for GEOS and MTSAT, 15 min for SEVIRI and AGRI, 10 min for ABI, AHI, AMI and 

FCI of full disk) with low spatial and spectral resolution. Geostationary satellites allow continuous 

observations, hence being capable of monitoring the formation and transportation of dust storms. 
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Fig. 1. Spectral Response Function and spatial resolution of commonly used optical sensors for dust detection  

MODIS has been extensively used in dust storm studies in previous decades because of its higher spatial 

resolution and spectral resolution (Baddock et al., 2009; Butt and Mashat, 2018b; Filonchyk et al., 2018; 

Kazi A et al., 2018; Liu et al., 2013; Park et al., 2014; Prachi and Pravin, 2014; Roskovensky and Liou, 2005; 

Samadi et al., 2014; Su et al., 2017; Xu et al., 2011a; Yue et al., 2017; Zhao et al., 2010).  However, dust 

storms have a short lifetime (sometimes even last within hours) but large spatial coverage. Thus, 

geostationary satellites are capable of capturing the temporal variations of dust storms; especially in recent 

years, when the new generation of geostationary satellites have been launched with more channels, and 

improved spatial and temporal resolution (e.g., Fengyun-4A, Himawari8/9, GEOS16/17, GEO-KOMPSAT-

2A). This type of satellites is mainly used for meteorological applications (Ashpole and Washington, 2012; 

Cecchi et al., 1998; Evan et al., 2006; Hong, 2009; Hu et al., 2008; Legrand et al., 2001; Sannazzaro et al., 

2014; She et al., 2018; Tramutoli, 2007; Tramutoli et al., 2010; Verge-Depre et al., 2006). 

3. Dust Detection Algorithms 

In medium spatial resolution satellite images, dust contaminated pixels need to be distinguished from 

cloud pixels, dark land surface pixels, bright land surface pixels, and water surface pixels. As distinguished 

by Shahrisvand and Akhoondzadeh (2013), there are basically two methods for dust detection: empirical 

physical-based, and machine learning-based methods. The empirical methods are physical, radiance-based 

approaches that depend on the physical properties and spectral signature of dust particles in the visible, near-

infrared and thermal bands (Yan et al., 2020). Physical-based algorithms are more mature in their state of 

development and are commonly used. However, this type of method is limited by their dependence on 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



thresholds which can be a function of land cover types, dust aerosol properties and illumination geometries. 

The machine learning-based approach is more flexible, and does not require a presumed threshold, but it may 

be complex in structure design of some ML algorithm, such as maximum likelihood classification (MLA), 

support vector machine (SVM) and artificial neural network (ANN). Both physical-based and machine 

learning-based methods will be reviewed in this paper.  

Physical-based methods utilize the spectral, spatial and temporal information to distinguish dust from 

cloud and clear-day surface. The reflectance of dust storms is often greater than that of clear-day land or 

water surface, while dust storm temperature is often cooler than the underlying surface. The spectral signature 

of dust is thus distinctive from surface and cloud. Dust storms also tend to be more homogeneous than the 

underlying land surfaces in both visible near-infrared (VIR) and thermal infrared (TIR) images. These 

properties have been utilized to develop a variety of threshold test to distinguish dust from clear-day surfaces 

and clouds. The threshold value, in general, is determined using histograms or scatterplots of the samples 

from satellite observations. According to these properties, physical-based dust detection algorithms can be 

further classified into three categories based on different information used, namely, spectral index algorithm, 

temporal anomalous algorithm, and spatial coherence test algorithm. The details of these algorithms will be 

discussed in the following sections. We will only briefly summarize the machine learning algorithms being 

used in the present literature, whereas in-depth discussion of machine learning algorithms is beyond the scope 

of this paper.  

 

Fig. 2. Spectral signature of different features at (a) visible near-infrared channels and (b) thermal-infrared 

channels. The spectral signature curves of the eight features are sampled from AHI (onboard Himawari 

satellite) observations. 

3.1.  Dust Spectral Index Method 

The Dust Spectral Index Method utilizes the spectral signature of dust storms. Different features have 

different spectral signatures that describe their absorption and scattering ability at different wavelengths. 

Three major features can be visually distinguished from medium spatial resolution (e.g. 0.5 km ~ 1 km for 

MODIS) images: clear-sky surface (land, ocean), clouds and aerosols (e.g. dust storm, volcanic ash, smoke). 

The dust indices separate different features by expressing the major differences in the spectral signature of 

features in both solar reflectance bands and infrared emissivity bands. We take samples of eight features from 

AHI (Advanced Himawari Imager) observations to illustrate spectral signature of different features (Fig. 2 

(a) and (b), respectively). Fig. 2(a) shows that clouds generally have high reflectance in the visible bands and 

low reflectance in the near-infrared bands, but dust generally shows low reflectance at visible bands but high 

reflectance in the near-infrared bands. Fig. 2(b) shows that in the thermal spectrum spanning from 10 µm to 

12 µm, dust exhibits an increasing brightness temperature, while clouds and other background features 

exhibit decreasing brightness temperatures. The brightness temperature difference (BTD) (Ackerman, 1997; 

Prata, 1989) and Normalized Dust Difference Index (NDDI) (Qu et al., 2006) are two major dust detection 

algorithms that utilize the spectral signature in the thermal and visible to near-infrared regions, respectively. 

Enhanced methods are developed to employ the merits of BTDs and NDDI including the Brightness 

(a) (b) 
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Temperature Adjusted Dust Index (BADI) (Yue et al., 2017); Three-band Volcanic Ash Product (TVAP) 

(Ellrod et al., 2003); Normalized Dust Layer Index (NDLI) (Kazi A et al., 2019). Other dust indices include 

the Thermal-infrared Dust Index (TDI) (Hao and Qu, 2007), MEDI (Karimi et al., 2012), and D-parameter 

(Roskovensky and Liou, 2003). These indices are constructed using the sensitive channels to dust, which are 

wavelengths around 0.65, 0.86, 2.3, 3.7, 8.6, 9.6, 11, and 12µm. Most of these indices only use the thermal 

bands except the D-parameter, which uses both thermal and visible bands. The 𝐵𝑇𝐷𝑖−𝑗, 𝐵𝑇𝑖 and 𝑅i in the 

following sections stand for BTD between band i and band j, brightness temperature at band i and reflectance 

at band i, respectively. 

3.1.1. Brightness Temperature Difference 

The BTD technique (or split window technique) is the most widely used technique. It utilizes the unique 

spectral signature of dust in the TIR region. Silicate exhibits a “V” shape in the spectral region from 8.3 µm 

to 12.0 µm, and it composes a large part of dust. This technique was primarily developed for volcanic aerosol 

detection (Prata, 1989) which utilizes the BTD of 11 µm and 12 µm. It was later applied for dust detection 

due to the similarities between mineral dust aerosol and volcanic aerosol (i.e. the silicate component is 

contaminated by both dust and volcanic ash). The BTD technique is based on the principle that dust particles 

extinct more radiation at 11 µm than 12 µm while reverse effect observed for cloud, leading a negative value 

of BTD11-12 for dust and positive value for cloud (Potts, 1993; Prata, 1989). BT11 further decreases as dust 

layer rises, thus, results in more negative BTD11-12. Generally, BTD11-12 is sensitive to high-density and high-

altitude dust storms which can lead to more negative BTD11-12, while being less sensitive to low-density or 

low-altitude dust cases (Kazi A et al., 2019). BTD11-12 is near zero for most underlying surfaces (except for 

bright surfaces, e.g., deserts). Despite the simplicity, the magnitude and sign of BTD are not only determined 

by dust mineral composition, dust optical thickness, dust layer altitude, but they also vary with the surface 

emissivity and view zenith angle (Bin Abdulwahed et al., 2019). A dust/non-dust threshold of zero for BTD11-

12 is not explicitly presented. However, negative differences in BTD11-12 for dust storms were observed, 

implying a universal threshold of BTD11-12 < 0 for dust (Ackerman, 1997). Darmenov and Sokolik (2005) 

found the thresholds of BTD can be set as 0.5, -0.2, -1.0, -0.4 K for Gobi/Taklimakan desert, Australian 

desert, Nubian, and Thar desert. It is impossible to determine a definite threshold for the universal 

applications. 

The brightness temperature difference at 3.7 µm and 11 µm was also applied to dust storm detection, 

according to the principle that the BTD of dust between 3.7 and 11 µm was enhanced by a dust reflection of 

3.7 µm solar radiation (Ackerman, 1989). BTD3-11 is sensitive to dust loading and thus also feasible for AOT 

retrieval. In addition, BTD11-12 alone may misclassify bright surfaces (e.g., deserts, arid, or semi-arid regions) 

as dust storms, when combined with BTD8-11, it can identify dust more robustly (Ackerman, 1997) as BTD8-

11 is sensitive to dust loading over sandy surfaces, and is insensitive to dust height (Wald et al., 1998). Larger 

amounts of airborne dust indicate more negative values of BTD8-11. These above mentioned BTD algorithms 

are denoted with the following functions: 

 

 𝐵𝑇𝐷11−12 = 𝐵𝑇~11.2 − 𝐵𝑇~12.4 ( 3-1 ) 

 𝐵𝑇𝐷3−11 = 𝐵𝑇~3.9 − 𝐵𝑇~11.2 ( 3-2 ) 

 𝐵𝑇𝐷8−11 = 𝐵𝑇~8.6 − 𝐵𝑇~11.2 ( 3-3 ) 

 

Although the BTD technique is effective, there are still some limitations (Prata et al., 2001). Negative 

BTD11- 12 could be caused by strong surface-based temperature inversions, barren surfaces such as deserts, 

volcanic ash and clouds over the tropopause, instrument noise and channel misregistration. Thick dust storms 

appear to have positive BTD11-12 values, and high-water burdens (such as over tropical area or ocean) could 

also mask the negative BTD11-12 when viewing an actual dust cloud, which most often occurs in the tropics 

(Prata et al., 2001). 
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3.1.2. Normalized Difference Dust Index  

Another classic dust index is the NDDI, which uses the spectral characteristics in the visible (near 0.469 

µm) and near-infrared bands (near 2.13 µm) (Qu et al., 2006). This algorithm is expressed as follows: 

 

 𝑁𝐷𝐷𝐼 =
𝜌2.3𝜇𝑚 − 𝜌0.47𝜇𝑚

𝜌2.3𝜇𝑚 − 𝜌0.47𝜇𝑚
 ( 3-4 ) 

 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectrum library is 

utilized by  Qu et al. (2006) to analyze the spectral signature of seven features. Over visible to near-infrared 

spectrum (i.e., 0.4 to 2.5 µm), the spectral signature of dust in the reflectance spectrum generally shows an 

increasing pattern, peaking at ~2.13 µm; whereas cloud shows the opposite trend with the highest point at 

~0.469 µm and the lowest point at ~2.13 µm. Therefore, NDDI is generally positive for dust pixels, negative 

for clouds, and near-zero for clear-sky surface. This indicates that NDDI can distinguish dust storms from 

clouds. However, the NDDI is neither sensitive to dust density nor dust altitude, thereby shows low values 

even at high-density dust storm. It is also deficient over bright surfaces as they show similar spectral pattern 

with dust spanning visible to near-infrared spectrum. Therefore, NDDI has difficulty in distinguishing dust 

from these bright surfaces (Qu et al., 2006; Xu et al., 2011b). NDDI is generally used to detect dust along 

with BTD, which can eliminate ground surface (Kazi A et al., 2019; Xu et al., 2011b). 

3.1.3. Thermal Infrared Dust Index 

The TDI algorithm utilizes four MODIS thermal bands to detect dust (Hao and Qu, 2007). This algorithm 

has potential for nighttime dust detection and indication of dust density, as it can derive the index for AOT 

at 550 nm. TDI can be used as a proxy variable for estimating dust intensity, and allows for the separation of 

Sahara dust storms from background aerosols. This algorithm is denoted as follows: 

 

 TDI=C0+C1×BT3.7+C2×BT9.7+C3×BT11+C4×BT12 ( 3-5 ) 

 

Where the coefficients 𝐶0 , 𝐶1 , 𝐶2 , 𝐶3  and 𝐶4  are set as -7.937, 0.1227, 0.0260, -0.7068 and 0.5883 

respectively (Hao and Qu, 2007). Coefficients are estimated by constructing regression relationship between 

AOD and BTs. Effectively, TDI is the weighted summary of the four BTs with the largest weight on BT11 

and then follows with BT12 and BT3.7. BT9.7 gets the least weight in TDI which is rarely used for constructing 

dust index as it is also sensitive to ozone (Coheur et al., 2005; Landgraf and Hasekamp, 2007). The TDI can 

detect dust during both day and night, as it uses only the thermal wavelengths, but it can only be applied over 

oceans. 

3.1.4. Middle East Dust Index (MEDI) 

The MEDI combines wavelength at around 8.55, 11 and 12 µm to distinguish between dust and desert 

surfaces (Karimi et al., 2012) and was designed specifically for dust detection over Middle East areas. The 

MEDI can identify dust plumes, dust sources and desert surfaces, and is defined as follows: 

 

 MEDI =
𝐵𝑇11 − 𝐵𝑇8.5
𝐵𝑇12 − 𝐵𝑇8.5

 ( 3-6 ) 

 

MEDI values greater than 0.6 indicates being dust-contaminated. The main challenge for dust detection 

is misclassifying desert surfaces as dust pixels (Ackerman, 1997; Roskovensky and Liou, 2005). The MEDI 

is designed to address this problem and it has been shown to be capable of separating dust from desert surfaces 

(Karimi et al., 2012). 
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3.1.5. Three-band Volcanic Ash Product 

TVAP was originally developed for volcanic ash detection (Ellrod et al., 2003). It integrates BTD12-11 and 

BTD3-11, therefore being able to indicate both dust presence and dust intensity. This technique calculates the 

sum of two BTDs by assigning different weights to these BTDs. The TVAP is defined as follows: 

 

 TVAP = 60 + 10(𝐵𝑇12.4 − 𝐵𝑇11.2) + 3(𝐵𝑇3.9 − 𝐵𝑇11.2) ( 3-7) 

   

At daytime, the brightness temperature near 3.7 µm contains both solar reflectance and terrestrial emission. 

At night, reflective component weakens, so the emissivity and transmittance characteristics dominates. Such 

characteristics lead to pronounced diurnal variations of BT3.7, and further derivation of TVAP. Therefore, 

specific thresholds of TVAP that distinguish dust storms and non-dust features should be established on a 

case-by-case basis.  

3.1.6. Brightness temperature Adjusted Difference Index 

The BADI enhances BTD methods by synthesizing two BTDs (BTD3-11 and BTD11-12) (Yue et al., 2017) 

based on the principle that BTD11-12 can be used to detect the dust extent, and BTD3-11 can indicate dust 

density. A higher BTD3-11 value indicates a higher dust density. Thus, the BADI can simultaneously detect 

dust storm extent and density. Several dust storms that occurred between year 2000 and 2011 over northeast 

Asia were used to test this algorithm, and the results were compared to the existing dust indices, such as the 

BTD11-12 and NDDI (Yue et al., 2017). The comparison results showed that BADI performs better in 

capturing the spatial extent and density of dust storms. 

 

 BADI =
2

π
× arctan (

BDI

𝐵𝐷𝐼0.95
) ( 3-8 ) 

where BDI= (𝐵𝑇𝐷3.9−11.2)
2 × 𝐵𝑇𝐷12.4−11.2. 

3.1.7. D-parameter algorithms 

The P-parameter index was first developed to detect thin cirrus clouds,  by combing the ratio (R1.38/R0.65) 

and BTD8-11 (Roskovensky and Liou, 2003). The D-parameter index was then developed to further separate 

dust storms from cirrus clouds by combining the distinct features at both visible to near-infrared spectrum 

and thermal spectrum (Roskovensky and Liou, 2005). The D-parameter integrates the BTD11-12 with a 

reflectance ratio (R0.54/R0.86). Pixels where the D-parameters are greater than 1.0 are defined as dust-

contaminated. The combination of the D-parameter and P-parameter is genuinely robust enough to accurately 

distinguish dust from cirrus clouds on satellite images (Roskovensky and Liou, 2005). The P-parameter and 

D-parameter are expressed as follows: 

 

 P − parameter = exp (−(
𝑅1.38
𝑅0.65

+ (𝑇𝐵,8.6 − 𝑇𝐵,11) − b)) ( 3-9 ) 

 D − parameter = exp (−(
𝑅0.54
𝑅0.86

+ (𝑇𝐵,11 − 𝑇𝐵,12) − b)) ( 3-10 ) 

 

Dust indices are simple and efficient in most cases. However, there is evidence suggesting that dust 

properties vary significantly among dust sources. Darmenov and Sokolik (2005) demonstrated that 

mineralogical composition is a crucial factor affecting the radiative properties of dust and suggested variable 

dust thresholds which can be comprehensively determined by dust loading, dust mineralogical composition, 

dust vertical distribution, and dust size. 
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3.2. The anomalous dust detection method 

  Disturbances such as cloud, smoke, biomass burning, hurricane and land cover change can be well-

detected by anomalous detection methods. Generally, the anomaly caused by cloud disturbance is the largest, 

followed by natural disasters such as dust storms, volcanic eruptions, hurricanes, and natural land cover 

changes. By defining different thresholds, a dust storm can be differentiated from clouds as well as clear-sky 

surfaces in a very general way. Normally, this type of algorithms should be combined with other detection 

algorithms for dust detection. 

The anomalous detection algorithms use time series images that capture the scene at the same location 

and time period. The algorithm assumes a steady Earth-atmosphere system (i.e. the water vapor effect is not 

considered). Therefore, anomalies appearing on the observation images are likely to be caused by the 

presence of a variable atmosphere, owing to cloudiness, dust storms, or other natural hazards. The anomalous 

algorithms can be applied to any wavelengths and any indices which are sensitive to dust storms. The 

representative anomalous dust detection algorithms are as follows: 

 The Infrared Difference Dust Index (IDDI) (Legrand et al., 2001) uses the brightness temperature 

depression at 11 µm: 

  

 𝐼𝐷𝐷𝐼 = 𝐵𝑇𝑟𝑒𝑓 − 𝐵𝑇 ( 3-11 ) 

 

 The Minimum Reflectance (MR) developed by Herman and Celarier (1997) which uses ultraviolet 

bands, and then modified by (Wong et al., 2011), which uses the reflectance increment in the visible 

band: 

 𝑀𝑖𝑛𝑅𝑒𝑓 = R − 𝑅𝑟𝑒𝑓  ( 3-12 ) 

 

 The BTD anomalous BTDanom (Ashpole and Washington, 2012) and the Dynamic Reference 

brightness temperature difference DRBTD (Liu et al., 2013), both uses the deviation of dust BTD 

from reference BTD (or surface BTD). Large deviation of BTD indicates high possibility of dust.  

 The Robust Satellite Technique (RST) performs robustly and can be extended to different 

geographical and seasonal conditions (Cecchi et al., 1998; Sannazzaro et al., 2014; Tramutoli, 2007; 

Tramutoli et al., 2010). 

 

Although both BTDanom and DRBTD use the BTD anomaly information, the BTDanom composites the 

reference image by calculating the mean BTD values from previous data under cloud and dust-free 

conditions, while DRBTD composites the reference image by establishing the relationship between BT11 

and BTD under clear conditions. The RST is more complex and more robust. This algorithm differs from 

other anomalous detection algorithms by incorporating a normalization process using standard deviation. 

Temporal anomalous dust detection algorithms are generally used by sensors aboard geostationary 

satellites, because of their fixed observation areas and high temporal resolution. Some sensors aboard polar 

orbiting satellites can also use this algorithm, but only by registering and rectifying the time series images in 

advance. These types of algorithms are very efficient due to their high sensitivity. However, the disadvantage 

is that some anomalies that are not of interest, such as land cover changes and temperature changes, may also 

be detected. 

3.3. Spatial coherence test method 

Since heavy dust storms and thin clouds such as cirrus have very similar spectral signature,  algorithms 

based on spectral information may have difficulties separating clouds and heavy dust storms (Martins et al., 

2002).  Scene uniformity can be used as a tool for discriminating heavy dust storms from clouds, especially 

cirrus or cloud edges. Clouds show a highly heterogeneous spatial structure, while aerosols show a highly 

uniform spatial structure on the scale from a hundred meters to a few kilometers (Coakley and Bretherton, 

1982). The spatial coherence test method is based on this physical difference. Spatial coherence test also 

known as spatial variability test or uniformity test is normally represented by standard deviation. 
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Generally, a 3 × 3 standard deviation (3×3-STD) algorithm is used as a spatial coherence test. High STD 

values normally indicate clouds, while low STD values can be represented by aerosols or clear sky (Martins 

et al., 2002). A spatial coherence test was originally conducted with infrared bands (11 µm) for cloud masking 

(Coakley and Bretherton, 1982). A similar method was later applied to separate dust from clear-sky surfaces 

and clouds using Meteosat images (Jankowiak and Tanré, 1992). A 3×3-STD at infrared can be applicable 

for cloud masking at both daytime and nighttime. However, it could work in visible wavelengths and may 

not be very sensitive to spatial variability in near-infrared wavelengths. Martins et al. (2002) found that over 

ocean, a 3×3-STD at 0.55 µm is most suitable to distinguish aerosols and clear area from cloud. Most cloud 

contaminated pixels can be screened out by the 3×3-STD with a constrained and a relaxed threshold of 

0.0025 and 0.038 respectively. However, a 3×3-STD at 0.47 µm may not be applicable over ocean because 

of its high reflectance of ocean and large variability caused by chlorophyll. Zhao et al. (2010) applied a 3×3-

STD at 0.86 µm to detect dust and smoke over ocean and applied a 3×3-STD at 0.64 µm  to detect smoke 

over land, therein STD0.86 less than 0.005 being dust or smoke and STD0.64 less than 0.04 being smoke over 

ocean. 

The spatial coherence test has advantages of being simple, less influenced by calibration errors, being not 

strongly dependent on wavelength, easily transferrable to other sensors. Spatial coherence test is mainly used 

to screen out clouds which have similar spectral properties as dusts. It has been demonstrated to be effective 

for discriminating homogeneous dust layers from heterogeneous clouds, especially over oceans. However, 

this type of methods can only be used along with spectral index method and anomalous detection method. 

3.4.  Machine learning-based algorithms 

Machine learning-based methods are data-driven methods, which can detect dust presence by self-learning 

from the given training dataset. The main limitation of physical threshold-based methods is the threshold 

determination, which has high variation in respect to the variation of land covers (Rivas-Perea et al., 2010a). 

Machine learning-based methods can overcome this limitation, and have proven to be useful for dust storm 

detection (Shi et al., 2019; Shi et al., 2018). Physical-based dust detection methods are relatively mature, 

while the Machine learning-based methods still require more study. There are three aspects that need to be 

carefully considered when using machine learning-based methods. These include input data, data for labeling, 

and machine learning algorithms. Input data are mainly from satellite observation data, including reflectance, 

brightness temperature, satellite illumination and observation geometries, and dust indices. Some literature 

also used ancillary data as input, such as land surface type and altitude. The input data need to be carefully 

selected, and redundant features should be deleted to avoid decrease in prediction accuracy. An independent 

set of data should be used for labeling which shows whether a pixel is dust contaminated or not. This set of 

data can be obtained from manual interpretation (Rivas-Perea et al., 2010a). Rivas-Perea et al. (2010a) 

manually classified dust pixels into dust storm, blowing dust, smoke and background. It can also be 

determined from MODIS AOT, CALIPSO VFM, OMI AI and AAOT, and AERONET AOT and angstrom 

exponent products. The labeled data is also used as the validation data, and the detailed discussion of 

validation dataset can be found in Section 4. As for training algorithms, several machine learnings used for 

classification and regression are applicable for dust storm detection. Generally, the Maximum Likelihood 

classifier (ML), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Artificial 

Neural Network (ANN) and Probabilistic Neural Network (PNN), have been applied for dust storm detection 

(Rivas-Perea et al., 2010a; Rivas-Perea et al., 2013; Rivas-Perea et al., 2010b; Shahrisvand and 

Akhoondzadeh, 2013; Shi et al., 2019; Shi et al., 2018; Souri and Vajedian, 2015). The machine learning 

algorithms are inter-compared. Rivas-Perea et al. (2010b) indicated improved classification performance of 

PNN than ML classifier. Shahrisvand and Akhoondzadeh (2013) stated that SVM performed better than 

decision tree and ANN. Rivas-Perea et al. (2013) showed SVR outperforms other neural network-based 

classifier. Machine learning algorithms used in dust detection need to be carefully selected and compared. 

Ensemble methods are also recommended to combine several machine learning results to strengthen the weak 

predictors. 
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3.5. Comparison between different methods 

Four types of dust detection methods discussed above have their own merits and limitations. The three 

physical-based methods are complementary to each other. Most of the dust storm or dust plume pixels can 

be detected with spectral index method. BTD algorithms especially BTD11-12  are very effective and has been 

widely used in all kinds of situations. At visible to near-infrared (VIR) spectrum, NDDI as the most 

representative algorithm, is effective to distinguish dust from clouds. The concept of other ratio algorithms 

is similar with NDDI which also take advantage of the spectral difference between dusts and clouds in visible 

to near-infrared spectrum. Both BTD and NDDI are available for most of multispectral sensors. With simple 

mathematical calculations, this type of algorithms is able to detect most of dust pixels. It is simple, effective, 

efficient and can be applied to sensors onboard both geostationary and polar orbiting satellite. Temporal 

anomalies and spatial coherence test method are not suggested to be solely used in the dust detection. Dust 

spectral index mainly utilizes the spectral pattern of dust to distinguish it from other features, thereby being 

unable to cope with features having similar spectral patterns with dusts, e.g., desert or arid surface. Temporal 

anomalies algorithms can handle these situations by compositing a reference image as the background image 

or clear-sky image from time-series images. This type of algorithms requires a period (e.g. 15, 30 or 60 days) 

of time-series images which capture sceneries at same location, therefore it is more applicable to 

geostationary satellites. This method may not be worked if there is no clear day, or the surface 

temperature/reflectance has large variations during the period of time. Spatial coherence test is mainly used 

to screen out clouds which have similar spectral properties as dusts. It has been demonstrated to be effective 

in discriminating homogeneous dust layers from heterogeneous clouds, especially over oceans. This type of 

algorithms is less influenced by calibration errors and not strongly dependent on wavelength thus can being 

easily transferrable to other sensors. Both temporal anomalies detection and spatial coherence test methods 

are not capable of accurately detecting dust pixels by their own but could be incorporated along with spectral 

index algorithms. From the above discussion, it can be noticed that for physical-based methods, accurate dust 

detection requires considering all the three methods since they are capable of tackling different dust detection 

issues. Moreover, existing physical-based methods are generally threshold-based which are of great 

complexity and uncertainty, since different sensors, backgrounds, dust aerosol properties can lead to large 

threshold variances. Machine learning method is more and more preferable by researchers in remote sensing 

discipline. This method is data-driven and do not require the pre-requisite of threshold setting. It learns from 

classification rules from a given dataset and can integrate data from different sensors for retrieving 

information. However, this type of method is highly depended on its training dataset. If the training dataset 

is biased, the classification results are likely to be biased as well. Table 1 summarizes four methods with 

representative algorithms, references and application scenarios. Although the algorithms listed in this table 

focused on dust storm detection, some of the algorithms are not originally designed for but are later 

introduced into dust storm detection (e.g., TVAP, Min_Ref, STDs).  

 

Table 1. Summary of dust detection algorithms.  

Algorithm 

type 

Algorithm 

name 

Application scenarios Reference 

Dust spectral 

index 

BTD11-12 the most effective algorithm under most situations 

but shows limited ability over desert surfaces 

(Ackerman, 1997) 

BTD3-11 effective at daytime and having the potential to infer 

optical depth of dust 

(Ackerman, 1989) 

BTD8-11 sensitive to dust loading over desert background and 

insensitive to dust height 

(Ackerman, 1997; 

Wald et al., 1998) 

NDDI effective to distinguish dust pixels from cloud pixels (Qu et al., 2006) 

TVAP sensitive to both dust presence and intensity (Ellrod et al., 2003) 

BADI same as TVAP Yue et al. (2017) 

NDLI being able to indicate the phase (e.g. originating, 

blowing) of dust storm 

(Kazi A et al., 2019) 
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TDI being sensitive to dust intensity (Hao and Qu, 2007) 

MEDI effective over desert surfaces, especially Middle East (Karimi et al., 2012) 

D_parameters accurately distinguish dust from cirrus (Roskovensky and 

Liou, 2005) 

Temporal 

anomalous 

detection 

IDDI effective over desert (Legrand et al., 2001) 

Min_Ref effective over surfaces having large color contrast 

with dust storm (e.g. ocean, vegetated area) 

(Herman and Celarier, 

1997; Wong et al., 

2011) 

RST performs well over all situations but is more effective 

with geostationary satellite data 

(Cecchi et al., 1998; 

Tramutoli et al., 2010) 

BTDanom same with RST (Ashpole and 

Washington, 2012) 

DRBTD same with RST (Liu et al., 2013) 

Spatial 

coherence 

test 

STD_11µm being able to distinguish dust from cloud at both day 

and night detection 

(Coakley and 

Bretherton, 1982) 

STD_0.55µm being able to distinguish dust from cloud over ocean  (Martins et al., 2002) 

STD_0.86 µm same as STD_0.55µm (Zhao et al., 2010) 

STD_0.64 µm being able to distinguish dust from smoke over land (Zhao et al., 2010) 

Machine-

learning 

based 

LR 

being able to handle complex situations but being 

largely dependent on training dataset 

(Shi et al., 2018) 

SVR (Rivas-Perea et al., 

2013) 

SVM (Shi et al., 2019) 

ML (Rivas-Perea et al., 

2010b) 

RF (Souri and Vajedian, 

2015) 

ANN (Shi et al., 2018) 

PNN (Rivas-Perea et al., 

2010b) 

 

 

4. Validation of dust presence 

Validating dust presence results requires reference data of dust presence. The reference data are also used 

as labeling data in machine learning-based method. The dust storm detection results can be assessed visually  

(Miller et al., 2017; Xie et al., 2017; Yan et al., 2020; Yue et al., 2017), and validated against MODIS AOD 

products (Yan et al., 2020; Yue et al., 2017), OMI Ultra Violet Aerosol Index (UVAI) (Xie et al., 2017), 

CALIPSO dust type (Prachi and Pravin, 2014; Shi et al., 2018; Xie et al., 2017), AERONET products (Bin 

Abdulwahed et al., 2018; Butt and Mashat, 2018a), or local meteorological station-based observation using 

visibility data (Albugami et al., 2018; Butt and Mashat, 2018a; Miller et al., 2017; Samadi et al., 2014; 

Taghavi et al., 2017).  

True-color image comparison through visual assessment is a qualitative validation method. The location 

of dust events can be clearly seen on true color image.  Manual selection of dust storm area by experts from 

the true-color image can also be used for quantitative validation. The other four validation data types can all 

be used as quantitative validation. MODIS AOD products can be used to indicate dust presence. Considering 

that dust aerosol is normally over bright surfaces, the MODIS Deep Blue along with Dart Target (DTB) 

AOD product is adopted. The OMI onboard Aura is a hyperspectral sensor which can capture signals in the 

ultraviolet to visible spectrum at a spatial resolution of 13 km × 24 km. It is originally designed for ozone 
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and other atmospheric components monitoring, and later applied to the discrimination of absorbing (dust, 

smoke) and non-absorbing aerosols by utilizing Absorbing Aerosol Optical Depth (AAOD) and Aerosol 

Index (AI). Specifically, high AAOD explains high possibility of dust presence and positive AI generally 

represents absorbing aerosols (e.g., dust aerosols) with non-absorbing aerosols (e.g., clouds) being negative. 

The OMI products (OMAERUV AAOD and AI) can be download at Goddard Earth Sciences Data and 

Information Services Center (https://ssw.gsfc.nasa.gov/SSW/). Park et al. (2014) determined dust pixels by 

using AAOD > 0.4 and AI > 0.7. The low spatial resolution can be one of the limitations in OMI AAOD for 

validation. AERONET is a global aerosol observation network which measures radiance at eight wavelengths 

(340, 380, 440, 500, 675, 870, 940 and 1020 nm). It provides aerosol property products including AOT, 

angstrom exponent (α), aerosol size distribution, single scattering albedo, asymmetry factor, and complex 

refractive index. These data are freely accessible at NASA’s AERONET website 

(https://aeronet.gsfc.nasa.gov/). Dust and non-dust can be coarsely separated with angstrom exponent. The 

value of angstrom exponent less than 1 indicates a dominance of coarse mode aerosols such as dust and sea 

salt (Marchese et al., 2017; Schuster et al., 2006). AERONET sites are sparsely distributed, and thus can only 

provide point data for validation. CALIOP onboard CALIPSO is a two-wavelength (532nm and 1064nm) 

polarization Lidar designed to measure aerosol vertical profiles. The CALIPSO footprint, overlaying the 

multispectral sensor observation scene, can be used as validation. The CALIPSO product Vertical Feature 

Mask (VFM) provides aerosol type information, which classifies the aerosol into clean marine, dust, polluted 

continental/smoke, clean continental, polluted dust, elevated smoke and dusty marine (Man-Hae et al., 2018) 

where dust, polluted dust and dusty marine aerosols are clustered as dust and other types as non-dust (Shi et 

al., 2018). The CALIPSO VFM product description can be found in the NASA CALIPSO website  

(https://www-calipso.larc.nasa.gov/) and the data are accessible at the website of Earthdata Search 

(https://search.earthdata.nasa.gov/search). The CALIPSO product can offer more precise dust information 

by utilizing its vertical profile but it is extremely limited by its narrow swath measurement, i.e. validating 

limited dust pixels along its strip-shape footprints. 

5. Limitations in the existing dust detection algorithms 

There are five issues that pose difficulty in implementing physical-based algorithms. First, most dust 

detection indices are not applicable over bright surfaces (e.g., desert and barren lands). These bright surfaces, 

especially desert surfaces, have similar spectral signature as dust storm. Second, thresholds of dust indices 

can be highly variable. The thresholds of dust detection indices can be influenced by dust properties (e.g., 

optical thickness, particle size, complex refractive index), dust layer height, and land cover type (Darmenov 

and Sokolik, 2005). Spectral signature of different sensors can also result in threshold difference for the same 

dust indices. Take BTD11_12 as an example, the center wavelength of the two thermal channels are 11 and 12 

μm for MODIS, 10.8 and 12 μm for AVHRR and MTSAT, 11.2 and 12.4 μm for AHI. Detailed Spectral 

Response Function (SRF) of commonly used sensors can be referred to Fig. 1. Incorrect threshold value could 

result in large, undetected or falsely detected dust pixels. Therefore, case-by-case determination of thresholds 

are necessary. Third, cirrus have similar characteristics as dust storm; thus, cirrus can be easily interpreted as 

dust. Fourth, nighttime dust detection can be difficult in terms of less information and reduced spectral 

difference. Reflectance at visible to near-infrared wavelength is no longer available and only brightness 

temperatures can be obtained at thermal wavelength. Besides as surface temperature cools down, the 

brightness temperature difference between clear-day surface and dust are significantly reduced. Fifth, water 

vapor can mask the dust signals. Especially in tropical areas, water absorbs more radiation at 12 µm than 11 

µm, i.e., BTD11-12 being positive over areas with high density of water vapor. Such characteristics can 

definitely mask the negative BTD value of dust. 

Apart from five issues mentioned above, definite separation of dust storm, clear sky and cloud can be 

unrealistic. Ambiguity is likely to occur when the value of a dust index is around and close to the threshold 

values. It is impractical to classify pixels as dust-contaminated, cloud-contaminated, clear-sky definitely, 

because in nature the optical thickness of dust storm varies continuously in space with a vague margin. 

Especially, dust storms are often found to swirl with clouds. The cloud contamination in dust pixels could 

result in errors (generally increasing the AOT value). Depending on the application scenario, the thresholds 

of dust index can be relaxed or constrained to incorporate more dust-like pixels or to purify the dust category 

with the identified dust pixels in high confidence.  
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6. Future development and perspective 

Present dust detection literature mainly uses polar orbiting satellite (such as MODIS) for dust storm 

detection, since these are sun-synchronous, thereby, detecting dust storms mainly during daytime. With the 

launch of the new generation geostationary satellites, more attention will be paid on GEOs as it can offer 

continuous earth observation as well as higher resolution (compared with old generation GEOs). 

Theoretically, present infrared-based dust detection algorithms can be applied to dust storm detection at night, 

but it is impractical to obtain accurate dust presence product. First, the low surface temperature at night can 

weaken the dust signal, thus, decreasing the signal-to-noise ratio (SNR) and making the detection difficult. 

Second, very few validation datasets are available at night. Therefore, dust storm detection at sunset, dawn 

and nighttime requires more attention and consideration. This issue can be tackled by incorporating useful 

information from multiple sensors, and this leads to a call for data combination. Machine learning-based 

method is good at fusing data from different data sources by simply taking them as input data. Additional 

data such as wind speed could also have an impact on dust storm formation and deposition, and may also be 

considered in the input dataset (Yan et al., 2020). However, more features do not always lead to higher 

classification accuracy as redundancy and noise can also be leveled up. Only with more informative features 

can we generate more trustworthy detection results. For machine learning-based methods, both input features 

and training algorithms require more consideration. Machine learning methods in computer science are 

currently undergoing rapid development, and thus more machine learning methods for dust detection may be 

introduced in the future. Integration of physical-based and machine learning-based methods to improve 

detection accuracy may be another way forward in the future.  
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