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Abstract 

Real-time population data are vital for urban planning and resource management 

for sustainable development. To complement satellite-based population estimation methods, 

geospatial social media data provide additional opportunities to estimate the distribution of 

population with high levels of efficacy and accuracy. Thus, this study attempts to assess the 

performance of various sensing data to disaggregate population data in China; the tested data 

include Tencent location-based service (LBS) data (about 0.8 billion users), satellite-derived 

land use/cover data, and nightlight imagery data. With the use of census data for validation, 

the experimental results show that Tencent LBS data are much better than satellite-derived 

land use/cover data and nightlight satellite data for mapping the population distribution. The 

overall mapping accuracy at the city level using Tencent LBS data was 88.9%, whereas the 

accuracy using land use/cover data was 87.1% and that using nightlight satellite data was 

85.5%. The experimental results also indicate that LBS data and remote sensing data could 

both be well integrated to map the population distribution in China. Thus, a population 

spatialization model was further developed using all of the tested indicators; this model 

allowed the overall population estimation accuracy at the city level to reach 90.4%. This 

model could help determine the population distribution on various spatial scales quickly and 

efficiently, and the developed tool and the provided population estimates may be vital for the 

sustainable development of cities and regions for which population data are lacking. 
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1. Introduction 

Demographic data show the aggregation and distribution of people at a specific time and 

space. Up-to-date urban population data are crucial for urban planning, environmental 

protection, and resource allocation. Demographic data are traditionally obtained from field 

surveys. Taking the census data of China as an example, a national household survey is 

conducted every 10 years, and a 1% sample survey is conducted every 5 years. The census 

data for the remaining years are therefore obtained by performing extrapolation and 

smoothing operations based on the census data from the survey years (Cai et al., 2008). Due 

to the long time interval needed to obtain real demographic data, it is difficult to determine 

the current population size and its spatial distribution due to human movement. Accurate 

assessment of the latest population data benefits the implementation of forward-looking 

urban planning and resource management, particularly for developing countries like China, in 

which an unequal distribution of population and great mobility have led to considerable 

public security and resource constraints (Wu et al., 2019). 

The development of geospatial technology has led to the extensive application of 

contactless remote sensing data in population mapping studies due to the rapid and extensive 

coverage they provide (Chen et al., 2019; Wang et al., 2018; Tan et al., 2018). Two types of 

remote sensing data are currently used in population estimation studies: nightlight satellite 

data and conventional optical satellite data. The nightlight data express the richness of 

people's social and economic activities as the nightlight intensity, from which the population 

information can be inferred (Yu et al., 2017). Some widely used nightlight satellite data sets 

include the National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer 

Suite (NPP/VIIRS) and its predecessor Defense Meteorological Program Operational Line-

Scan System (DMSP/OLS) from the United States National Aeronautics and Space 

Administration (NASA) and the Luojia 1-01 (LJ 1-01) nightlight satellite data from China 

(Zhang et al., 2019). Due to their coarse spatial resolution and restricted radiometric 

resolution, the DMSP/OLS nightlight data were mainly used to explore the population size at 

the country level rather than the city level. Elvidge et al. (1999) investigated the use of 

DMSP/OLS nightlight data to detect population differences within a city and found that the 

oversaturated brightness value from the DMSP/OLS data makes it difficult to express spatial 

differences in the population within the city center. Sutton et al. (2001) explored the use of 

the same data to estimate the distribution of the world's population and found that countries 



can be classified into three categories (high, low, and middle income) according to the 

statistical relationship between population and luminous intensity. 

Advances in luminous technology have endowed the NPP/VIIRS nightlight data currently in 

wide use with higher spatial and radiometric resolutions than that of their predecessor 

DMSP/OLS. Based on an experiment with African cities, Chen et al. (2015) confirmed that 

the NPP/VIIRS nightlight data can achieve more accurate population estimates than the 

DMSP/OLS nightlight data. Wang et al. (2018) used NPP/VIIRS luminous data and 

a nonlinear model to explore the relationship between the nightlight data and the populations 

of some Chinese cities and found that the indicator of total nightlight intensity performs much 

better than other indicators, such as the luminous coverage area or average nightlight 

intensity. Zeng et al. (2011) compared nightlight and land cover data to disaggregate 

population and found that land use/cover data performed slightly better than the nightlight 

satellite data. Li et al. (2018) used NPP/VIIRS nightlight data to simulate the spatial 

distribution of the population of Beijing and found that the overall estimation accuracy 

achieved with nightlight data was about 62% as calculated with reference to the census data. 

In addition to nightlight satellite data, intermediate-to high-resolution optical satellite data are 

also often used to estimate the population distribution by monitoring human settlements on 

the ground (Lung et al., 2013). In contrast to luminous satellite data, human physical 

settlements, such as residences and buildings, are the most important features to exploit for 

estimation of the population distribution (Ye et al., 2019). Stevens et al. (2015) used satellite 

data and open-source Geographic Information Systems data to estimate the worldwide 

population, which is also well known as the WorldPop program. Similarly, the Gridded 

Population of the World program initiated by Columbia University explored the integration 

of remote sensing and open geographic information data to produce information regarding the 

global population distribution. Moreover, Freire et al. (2018) explored the use of low- and 

medium-resolution satellite data to obtain the Global Human Settlement Layer and then 

combined the spectral and textural information from satellite images with the Global Human 

Settlement Layer data to generate a global population distribution map. 

However, the current population estimation accuracy of remote sensing-based methods is 

generally not high; some studies confirmed that the overall accuracies of four existing 

population estimation products for China based on satellite data are about 60% (Bai et al., 

2018; Li et al., 2018), which limits their wide application. Compared with conventional 

remote sensing methods, location-based service (LBS) data from mobile applications such as 



social media (e.g., Facebook, Twitter), crowd-sourced reviews (e.g., Yelp, TripAdisor, and 

Meituan-Dianping), and transportation services (e.g., Uber, Didi), can reflect the social 

activities of individuals within a city from the perspective of social instead of physical 

evidence in space, which indicates that LBS data may have great potential in mapping the 

distribution of people within a city (França et al., 2016; Patel et al., 2017). Based on the 

spatial attribute of mobile phone data, Deville et al. (2014) estimated the population 

distribution and noted that mobile phone data are more effective in areas with a sparse 

population and a lack of census data. Patel et al. (2017) used geospatial information from 

Twitter to successfully simulate the spatial distribution of population in Indonesia. Other than 

spatial attribute, LBS data also has a high degree of time continuity, thus, some scholars even 

explored the use of LBS data in detecting spatio-temporal patterns of human activities as well 

as migration flows (Lai et al., 2019; Santa et al., 2019; Song et al., 2019; Song et al., 2020). 

These studies indicated that LBS data have great potential in estimating the population 

distribution within cites. 

Based on the rich research about population mapping with the use of geospatial data from 

multiple sources, this study aims to 1) perform a comparative analysis and evaluation of the 

performance of various data in mapping population, including Tencent LBS data, nightlight 

satellite data, and satellite-based land use/cover data; 2) combine remote sensing and LBS 

data to assess various population spatialization simulation methods and technologies to 

achieve precise population estimations for China and verify its accuracy. The results and 

quantitative simulation tools could provide important population data and technical support 

for the long-term plans for countries and regions for which population data are lacking. 

2. Study area and datasets 

2.1. Study area 

China's vast population of more than 1.3 billion has an uneven distribution within various 

administrative units. As a result, coarse administrative units (e.g., the province level and 

prefectural level) may not adequately describe the complex pattern of population in China. 

Thus, the finest administrative level—the county, of which more than 2000 exist—was 

selected for this study, in which open datasets from multiple sources were investigated to 

obtain population estimations for China. Fig. 1(a) shows the spatial distribution of China's 

entire population based on census data from the statistics bureau of China; red indicates a 

larger population, and green indicates a smaller population. The population map shows that 



more people are crowded in the eastern part of China, especially in the southeast coastal 

areas. The most densely populated areas include the southern Pearl River Delta area and the 

eastern Yangtze River Delta area. According to the demographic data, the top five provinces 

in terms of population are Guangdong, Shandong, Henan, Sichuan, and Jiangsu, with more 

than 80 million in each province, which is consistent with the distribution map in Fig. 1(a). 

Over the past 30 years, China's population has increased from 1.15 billion in 1990 to 1.40 

billion in 2018, with an average annual growth rate of about 0.4%. Meanwhile, the total 

urban area increased from 12,855 square kilometers in 1990 to 58,455 square kilometers in 

2018, with an average growth rate of about 5.5%. The urbanization rate thus far exceeds the 

population growth rate, and the rapid urbanization process has greatly altered the living 

environment of most regions in China. Quick and accurate assessment of the population 

distribution is conducive to accurate assessment of the human-earth relationship and to the 

execution of appropriate spatial planning and environmental protection strategies to 

achieve sustainable development. 

 

Fig. 1. Study area and collected datasets. (a) Counties/districts of China by population; (b) 

Satellite-derived built-up urban area at county level; (c) Overall NPP/VIIRS night-light 

intensity at county level; and (d) Tencent LBS records at county level. 

2.2. Data and research idea 



The collected data include census data, night-time images, satellite-derived land cover 

products, and Tencent LBS records (hereafter “LBS data”) at the county and prefecture level; 

all datasets were collected for 2015. The census data were obtained from the demographic 

yearbooks of the statistical department of each county. Land use/cover data were obtained 

from the standardized global land use/cover products provided by the European Space 

Agency using satellite data. Because the original land use/cover product covers the entire 

world, the boundary data of China were used to draw its land cover map (see Fig. 1 (b)). 

Night-time satellite data were obtained from the yearly averaged NPP/VIIRS nightlight data 

product provided by NASA, in which the effects of clouds have been eliminated (shown 

in Fig. 1 (c)). Because Tencent is one of the largest Internet service providers in China, the 

location-based service records from Tencent's active uses were collected through the method 

introduced in Song et al. (2018) for this study. This dataset includes data from a total of about 

0.8 billion online users between January 1, 2015 and December 31, 2015, and it is projected 

on a map based on the spatial location of each LBS record (shown in Fig. 1(d)). Thus, this 

map can reflect the spatial distribution of people in China with an online presence. To ensure 

that the various datasets are consistent and comparable, all datasets were projected into a 

unified geographic coordinate system with the same spatial resolution. 

Herein, the census data at the county and city levels were used as prior information to 

establish population modeling and to assess accuracy, whereas the obtained remote 

sensing data and LBS data were used as the prediction factors to simulate the population for 

each county. The census data are vector-based data based on administrative boundaries, 

unlike the raster-based indicators from the satellite or social sensor. To ensure that the census 

data were consistent with the indicators, an area-based statistical method was adopted to 

aggregate the sum of each indicator on each county. Given that China has 2868 counties, if 

three different indicators (e.g., land cover data, nightlight data, and LBS data) are used in this 

study, the predictor size will be 2868 × 3. Furthermore, the relationship between the 

population and the indicators can be modeled. To ensure that the obtained model is 

representative and adaptive, data from all 2868 counties were used to build the population 

estimation model, whereas the census data for 344 cities were used to verify the model. 

3. Methods and results 

The tested methods include correlation analysis, stepwise regression analysis, and 

geographical regression analysis. Correlation analysis was used to detect the association 

between population and some potential indicators. On this basis, three important indicators—



the total sum of LBS records, the total built-up area, and the sum of the nightlight intensity—

were selected from various potential variables, including but not limited to some possible 

indicators such as the average nightlight intensity and the total sum of agricultural land. 

The correlation coefficients between population and the obtained indicators were 0.78, 0.72, 

and 0.65, respectively. Thus, these three indicators—the total sum of LBS records, the total 

built-up area, and the sum of the nightlight intensity—were selected as predictors and used in 

this study. 

Making use of the selected population indicators, a stepwise regression method was adopted 

to conduct significance analysis. The results indicated that each of the three indicators was 

selected in the model. Given the huge spatial differences in population and China's 

imbalanced development, a geographically weighted regression (GWR) model was adopted 

in this study, and its effectiveness is addressed in the Discussion. 

Referring to Huang et al. (2010), the following geographically weighted model can be 

constructed by making use of all obtained data for each 

county:(1)Pi=β0(ui,vi)+β1(ui,vi)QQi+β2(ui,vi)LCi+β3(ui,vi)NLi+εiwhere Pi reflects the 

population of county i; QQi, LCi, and NLi reflect the three indicators used (i.e., the sum of 

Tencent's users, the total built-up area, and the sum of the nightlight intensity) for county i; 

and βj=0,1,2,3(ui,vi) reflects the jth regression coefficient for county (ui,vi). Herein, each 

county should have a group of different regression coefficients. 

Based on the GWR model in formula (1), the population data and the three corresponding 

indicators (LBS, land cover, and nightlight data) for 2868 counties were used to solve the 

model's regression coefficients and obtain a population estimate for each county. The 

regression results show that the model's goodness of fit (R2) value reaches 0.88, which 

indicates that the three predictors can adequately explain the population at the county 

level. Fig. 2 (a) shows the distribution of population at the county level using the proposed 

model. For comparison, the real population data are also provided in Fig. 2 (b). A comparison 

of the estimates with the census data shows that the estimates for some eastern counties 

(prefectures) tended to be overestimated or underestimated, whereas the errors for some 

western counties were relatively small. This finding indicated that the proposed approach 

tended to have a larger bias for the eastern parts of China with a highly dense population, 

whereas the estimates are likely more accurate in the western counties with fewer people. 

Based on the census data from various administration levels, the population estimation errors 

at the provincial, city, and county levels were 2.7%, 9.6%, and 26.0%, respectively. 



 

Fig. 2. Distribution of population in China based on: (a) Our proposed population estimation 

model using both LBS and remote sensing data; (b) Census data at county level (for 

validation). 

Moreover, the population estimations at cities in China using the proposed method was 

compared with the estimations from four mainstream global population datasets, including 

GPW, GHS, LandScan and WorldPop (Tatem, 2017; Freire et al., 2018; Xu et al., 2020). 

Two accuracy indices, including mean average error (MAE) and root mean square 

error (RMSE) were used to conduct an accuracy assessment by comparing population 

estimations from different products with the real census data for all 344 cities in China. Table 

1 shows the accuracy statistics of the population estimations from different data sets, based 

on which the results indicated that our proposed model using both LBS and remote 

sensing data performs better than the four mainstream population datasets over China, as 

MAE of the proposed method is 9.6%, which is lower than the figures from other data sets, 

including WorldPop (10%), LandScan (10.9%), GPW (11.6%), and GHS (11.7%). The 

results also indicated that among four existing products, both WorldPop and LandScan have 

slightly better performance than GPW and GHS in mapping population in China, as the 

RMSEs from WorldPop and LandScan were 586850 and 558050, respectively, which are less 

than the figures from GPW (600050) and GHS (608850). Nevertheless, all the tested 

population products have high population estimation accuracy (above 88%) for cities in 

China. 

Table 1. Accuracy assessment for the population estimations from different products. 

 
WorldPop LandScan GPW GHS Ours 

MAE (%) 10.0 10.9 11.6 11.7 9.6 

RMSE (people) 586850 558050 600050 608850 473550 

 



4. Discussion 

4.1. Impact of various indicators on population estimates 

The performance of various types of data, including Tencent LBS data, the nightlight remote 

sensing data, and the satellite-derived land cover data, on population estimates was assessed 

via correlation and regression analysis methods. 

Fig. 3 shows the performance of various indicators in mapping county level population based 

on the cumulative percent of real population and different indicators (including Tencent LBS 

data, nightlight data, and land cover data), in which three curves with different colors 

correspond to the results obtained using different indicators. For each curve, the more the 

scattered points are concentrated in a linear pattern, the more effective the use of this 

indicator to estimate population. These results show that the use of Tencent LBS data (red 

curve shown in Fig. 3) performed better than the use of other kinds of data, including 

nightlight data (blue curve shown in Fig. 3) and land cover data (green curve shown in Fig. 

3), because the scattered points from the LBS data are more concentrated along a centered 

line than the points from either the nightlight or land cover data, in which some points tend to 

deviate greatly from their centered lines. This finding indicates that a larger population 

estimation error might be obtained with the use of either nightlight or land cover data. The 

correlation analysis result also indicated the superiority of LBS data to the others; 

the correlation coefficient between Tencent LBS data and the population was 0.78, whereas 

those for nightlight data and land cover data were 0.72 and 0.65, respectively. 

 



Fig. 3. Comparison of different indicators in mapping population using the cumulative 

percent of real population and different indicators at all counties in China. 

The GWR model was applied to model the relationships between population and various 

indicators. Given that three kinds of data were available (Tencent LBS data, total built-up 

area, and nightlight intensity), three regression models were built, with each indicator used to 

build a single model. Table 2 shows the results of the built model using each of the three 

indicators. Tencent LBS data performed best (overall accuracy, 88.9%), followed by the land 

cover data (87.1%) and the nightlight data (85.5%). The corresponding R2 values for the 

established models based on the three indicators were 0.82, 0.79, and 0.74, respectively. 

These results indicate that the currently widely popular LBS data (such as Tencent LBS data) 

perform well in simulating population because their overall accuracy for various cities can be 

improved by 3–5 percentage points when compared with the use of nightlight or satellite-

derived land cover data. 

Table 2. Statistical results using spatial regression model with three indicators. 

 
Model 1 (Tencent LBS 

data) 

Model 2 (Total built-up 

area) 

Model 3 (Nightlight 

intensity) 

Constant 248580 236650 334290 

F1: Tencent LBS data 10.3 – – 

F2: Total built-up 

area 

– 4606.8 – 

F3: Nightlight 

intensity 

– – 30.0 

R2 0.82 0.79 0.74 

Accuracy (%) 88.9 87.1 85.5 

 

4.2. Performance of different models 

The performances of the conventional ordinary least squares regression (OLS) method and 

the GWR method were assessed and compared with the tested indicators. The performances 

of the indicators in predicting the population of various administrative units were tested with 

both methods. Fig. 4 shows the distribution of the population estimation error with various 

combinations of indicators using either the OLS or GWR method; orange indicates that the 

population is overestimated, and blue indicates that it is underestimated. The simulation 

results in Fig. 4 show that the GWR method performs much better than the OLS method, 

because the colors in Fig. 4(d)-4(f) with the GWR method are much lighter than those (Fig. 



4(a)–(c)) using the OLS method; this means that a smaller prediction error (better prediction 

result) was obtained with the GWR method, regardless of which indicator was used. 

 

Fig. 4. Distribution of population estimation error with OLS and GWR methods using 

different indicators (Tencent LBS data, land use/cover data, nightlight data). (a) OLS model 

with nightlight data; (b) OLS model with land use/cover data; (c) OLS model with Tencent 

LBS data; (d) GWR model with nightlight data; (e) GWR with land use/cover data; (f) GWR 

model with Tencent LBS data. 

Quantitative indices, such as the average percentage error, can be obtained by comparing the 

population estimates with the actual census data. Table 3 shows the average percentage error 

with the various indicators using either the OLS or GWR method. The results indicate that 

the GWR method always performed much better than the conventional OLS method, 



regardless of which indicator was used. The average percentage errors with the GWR method 

were all below 15%, whereas those with the OLS method were all above 28%; thus, the 

average improvement with the GWR method can reach to 20 percentage points. For example, 

if only the nightlight data were used, the overall prediction errors with the OLS and GWR 

methods were 37.4% and 14.5%, respectively. In this case the improvement is 23 percentage 

points. The testing results also indicate that the best result can be reached with the use of all 

of the tested indicators, including land use/cover data, Tencent LBS data, and nightlight data; 

the overall prediction error was 9.6%, which means that the overall prediction accuracy with 

all indicators was 90.4%. The results indicate that the use of Tencent LBS data performs 

much better than the use of nightlight data or land use/cover data and thus these data have 

great potential for the rapid and efficient estimation of an urban population. 

Table 3. Population estimation error based on various strategies combining a method and 

indicator(s). 

Method Indicator 1 error 

(Tencent LBS data) 

Indicator 2 error (Built-

up area data) 

Indicator 3 error 

(Nightlight data) 

All indicators error 

(1, 2, & 3) 

OLS 29.4% 35.3% 37.4% 28.1% 

GWR 11.1% 12.9% 14.5% 9.6% 

 

4.3. Population mapping implications 

Differences in economic levels and the uneven population distribution in China can lead to 

some uncertainties in its population mapping, including overall accuracy and spatial 

differences. Improved characterization of the spatial difference in population mapping and 

improvements in the use of various indicators to simulate the population distribution are 

discussed in this section. Given the ability of the GWR method to handle spatial differences, 

the regression coefficient of the GWR method can be used to reflect the spatial characteristics 

of the population distribution. Fig. 5(a)-(c) show the standardized regression coefficients (Z-

Scores) by GWR method using various indicators, including Tencent LBS data, land cover 

data, and nightlight data; larger regression coefficients are in red, and smaller regression 

coefficients are in blue. The results show that nearly all of the obtained regression coefficient 

in the central (e.g., Hunan province) and western (e.g., Tibet) parts of China tend to have a 

larger regression coefficient (shown in red), which means that these factors might have great 

impact on population estimation for these areas. In particular, the use of Tencent LBS data 

tends to show great population estimation effect in western and northern China and in the 



border areas of the central provinces, which means that these areas might have scarce signal 

transmission equipment and low social media usage. For the land use/cover data, large 

regression coefficients also tend to be obtained for some central (e.g., Hunan province) and 

western (e.g., Tibet) areas, possibly because these regions have low urbanization rates due to 

their geographic location (e.g., mountainous areas) and for historical reasons. The results with 

the use of nightlight imagery are similar to those with LBS data, where large regression 

coefficients are obtained in the western, northeastern, and some border areas of China's 

central provinces, possibly due to the low economic levels in these areas; thus, the per capita 

luminous usage (including industrial and domestic electricity consumption) is lower than in 

other areas. The results obtained with various indicators indicate that the signal station 

distribution, economic level, and urbanization rate all contribute to the overall population 

estimation accuracy. Thus, the appropriate selection of indicators can effectively improve the 

spatial uncertainties of population estimation in China due to regional differences, such as in 

the western, central, and northeastern parts of China. 

 

Fig. 5. Z-Scores of regression coefficient with GWR method using different population 

indicators: (a) Tencent LBS data; (b) land use/cover data; (c) nightlight image data. 

 

5. Conclusions 



This study investigated the use of up-to-date LBS data and conventional multisource remote 

sensing data to map the distribution of China's population to facilitate intelligent urban 

resource management and spatial planning. The study compares and evaluates the 

performance of various data sources in population estimation and shows that LBS data have 

great potential for mapping the distribution of China's population. The study compares and 

analyzes the performance of various sources of geospatial data on population disaggregation 

and shows that LBS data can effectively reflect the spatial distribution of China's population 

and have good population prediction ability. An experiment using census data from 344 

prefectures in China found that the overall prediction accuracy using Tencent LBS data can 

reach 89%, which is much better than the results using either satellite-derived land cover data 

(87%) or nightlight imagery data (85%). The results indicate that Tencent LBS data are 

superior to both conventional land use/cover data and nightlight imagery data. It has high 

population modeling and prediction capabilities, which can help to achieve rapid monitoring 

and management of human resources in China. 

Based on a comparative analysis, this study further investigates the use of multiple sources of 

sensor data (e.g., LBS and remote sensing data) to map China's population via various 

methods. The experimental results indicate that the nonlinear GWR method performs much 

better than the conventional OLS method at population mapping, regardless of whether a 

single factor or multiple factors are used. The overall prediction accuracy using the GWR 

method can achieve an improvement of more than 20 percentage points over the use of the 

conventional OLS method. The results also indicate that multiple factors can achieve a better 

result than a single factor, regardless of which method is used, and the overall improvement 

can reach 3 to 5 percentage points. This finding indicates that the use of multiple data sources 

with the GWR model is much preferred in the task of population mapping in China. 

Due to the restriction of available datasets, this study focuses on static population simulation 

and estimation, so this method has not been verified or applied to dynamic tasks with rapid 

population movement. The possible integration of real-time LBS data and satellite data to 

obtain up-to-date population estimations will be among our further pursuits. Moreover, this 

study focuses mainly on population estimates at the city and county level due to the limited 

spatial resolution of the datasets; thus, the population at the community and street levels 

within a city is not considered. Because future LBS data are projected to be more precise, 

rich, and open (e.g., geotagged position information, mobile communication data, social 

media), the use of these highly precise open data sources to monitor urban population 



mobility and to predict the behavior of various citizens at the street level will be beneficial for 

intelligent urban planning and community management, which requires further investigation. 
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