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Abstract—Spatiotemporal data fusion is a cost-effective way to 

produce remote sensing images with high spatial and temporal 

resolutions using multi-source images. Using spectral unmixing 

analysis and spatial interpolation, the Flexible Spatiotemporal 

DAta Fusion (FSDAF) algorithm is suitable for heterogeneous 

landscapes and capable of capturing abrupt land-cover changes. 

However, the extensive computational complexity of FSDAF 

prevents its use in large-scale applications and mass production. 

Besides, the domain decomposition strategy of FSDAF causes 

accuracy loss at the edges of sub-domains due to the insufficient 

consideration of edge effects. In this study, an enhanced FSDAF 

(cuFSDAF) is proposed to address these problems, and includes 

three main improvements: (1) The TPS interpolator is replaced by 

an accelerated inverse distance weighted interpolator to reduce 

computational complexity. (2) The algorithm is parallelized based 

on the Compute Unified Device Architecture (CUDA), a widely 

used parallel computing framework for graphics processing units 

(GPUs). (3) An adaptive domain decomposition method is 

proposed to improve the fusion accuracy at the edges of sub-

domains, and to enable GPUs with varying computing capacities 

to deal with datasets of any size. Experiments showed while 

obtaining similar accuracies to FSDAF and an up-to-date deep-

learning-based method, cuFSDAF reduced the computing time 

significantly and achieved speed-ups of 140.3–182.2 over the 

original FSDAF program. cuFSDAF is capable of efficiently 

producing fused images with both high spatial and temporal 

resolutions to support applications for large-scale and long-term 

land surface dynamics. Source code and test data available at 

https://github.com/HPSCIL/cuFSDAF. 

Index Terms—CUDA, multi-source satellite images, parallel 

computing, spatiotemporal data fusion 

I. INTRODUCTION

HE dense time series of satellite images with high spatial 

resolutions are critical for monitoring land surface

dynamics in heterogeneous landscapes. In recent years, 

satellites with advanced sensors, such as the microsatellites by 

Planet Labs, WorldView-4, and GF-2 [1], can acquire images 

with high spatial and temporal resolutions to compose dense 

time series. However, the high cost of data acquisition from 

these sensors limits their applications for large-scale land 

surface dynamics. Furthermore, these sensors are unable to 
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trace long-term historical dynamics. Compared with advanced 

satellite sensors, long-running satellite sensors can provide 

long-term, large-scale, and free-of-charge satellite imagery 

from the past several decades, such as Landsat and MODIS. 

However, these historical images have either lower spatial 

resolutions or lower temporal resolutions, limited by hardware 

technologies [2] and atmospheric conditions [3]. For instance, 

Landsat provides images with spatial resolutions ranging from 

15 m to 60 m and a revisit cycle of 16 days. MODIS provides 

images with spatial resolutions of 250 m to 1 km, and the revisit 

cycle is 1–2 days. Given that these satellite images do not meet 

the requirements of long-term and large-scale applications of 

land surface dynamics, spatiotemporal data fusion provides a 

feasible method for the production of remote sensing images 

with both high spatial and temporal resolutions. 

Spatiotemporal data fusion algorithms combine the spatial 

information from high spatial resolution images with the 

temporal information from high temporal resolution images to 

generate images with both high spatial and temporal 

resolutions. Existing spatiotemporal data fusion algorithms can 

be divided into five categories: unmixing-based, weight 

function-based, Bayesian-based, learning-based, and hybrid 

fusion [4]. Unmixing-based algorithms assume that each mixed 

pixel in low spatial resolution images is a combination of 

various endmembers [5-9] so that it can be unmixed using the 

mixing theory. In weight function-based algorithms, fusion 

images are generated using input images through weight 

functions [10-19]. A typical example is the spatial and temporal 

adaptive reflectance fusion model (STARFM) [10]. Bayesian-

based algorithms use Bayesian estimation theory to generate 

fusion images [20-22]. The key to Bayesian-based algorithms 

is to model the relationship between observed and unobserved 

images. Learning-based algorithms fuse multi-source images 

through machine learning methods [23], such as dictionary-pair 

learning [24-27], artificial neural networks [28-30], and 

extreme learning machines [31]. Hybrid spatiotemporal data 

fusion algorithms integrate at least two of the above methods to 

obtain fusion images [32-37]. 

The Flexible Spatiotemporal Data Fusion (FSDAF) is a 

hybrid spatiotemporal data fusion algorithm and uses an 

unmixing analysis and a thin plate spline (TPS) interpolator to 
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generate images with high spatial and temporal resolutions [34]. 

FSDAF is suitable for heterogeneous landscapes and can 

effectively capture land cover changes. In recent years, FSDAF 

has been used in a number of applications, such as monitoring 

dynamics of impervious surface [38], wetland [39], land surface 

temperature [40], and vegetation [41]. Moreover, FSDAF 

provides a framework for addressing both gradual and abrupt 

land-cover changes during the spatiotemporal fusion process. 

Several improved variants based on FSDAF have been 

developed in the last few years, such as the improved flexible 

spatiotemporal data fusion model [42-44], the enhanced 

flexible spatiotemporal data fusion model [45], the enhanced 

FSDAF model considering sub-pixel class fraction change 

information [46], the FSDAF 2.0 [47], and the improved 

FSDAF to generate suspended particulate matter concentrations 

[48]. 

However, FSDAF and many other spatiotemporal data fusion 

algorithms have focused on the accuracy of fused images rather 

than the computational efficiency of algorithms. When dealing 

with a large amount of data, the computing time of a fusion 

algorithm can be extensive, greatly limiting its applications in 

monitoring long-term and large-scale land surface dynamics. 

Despite using fewer input images than many other algorithms, 

FSDAF is still subject to computationally intensive procedures 

that use neighborhood information, such as TPS interpolation. 

In addition, the domain decomposition strategy of FSDAF leads 

to accuracy loss at the edges of sub-domains because the pixels 

at edges do not have sufficient information for the 

neighborhood-scope procedures. Therefore, improving 

computational efficiency is an urgent task for promoting the 

practical value of FSDAF and other spatiotemporal fusion 

methods. 

Parallel computing, which uses multiple processing units to 

collaborate on a common task [49], is a promising solution for 

processing massive remotely sensed data [50, 51]. In parallel 

computing, the computing task is decomposed into subtasks, 

which can be processed simultaneously by multiple processing 

units. The key to parallelization is whether the computing task 

can be divided and carried out concurrently. Raster is the 

primary data structure for remote sensing images. Raster data 

are typically organized as matrices of pixels, which can be 

divided into groups and processed in parallel; raster data are 

thus highly suitable for parallel computing. In recent years, the 

advancement of geospatial technologies has generated large-

scale geospatial databases with high spatial resolutions, such as 

the global land cover mapping at 30 m resolution [52], the 

SEN12MS dataset with resolutions of 10–500 m [53], and the 

FROM-GLC10 dataset at 10 m resolution [54]. Meanwhile, 

with the introduction of advanced statistical and machine 

learning techniques for the processing and analysis of remote 

sensing images, remote sensing algorithms are becoming more 

complex and computationally intensive. High data intensity and 

computational intensity greatly increase computing capacity 

requirements; therefore, parallel computing has been used in 

many geospatial algorithms and models for better efficiency, 

such as cluster analysis [55, 56], spatial interpolation [57, 58], 

change detection [59], relative radiometric normalization [60], 

urban growth simulation [61, 62], remote sensing image 

classification [63], and watershed modeling [64]. 

A graphics processing unit (GPU) is a processor for 

rendering computer graphics [65]. With rapid performance and 

capability advancements, modern GPUs can not only handle 

graphics processing tasks but also general-purpose computation 

[66, 67]. A general-purpose graphics processing unit (GPGPU) 

is a GPU that capable of processing general-purpose 

computation. Compared with central processing units (CPUs), 

GPGPUs have much higher memory bandwidths and more 

computing cores, thus exhibiting highly improved computing 

performance. They have been used for the processing and 

analysis of remotely sensed data, including hyperspectral image 

classification [68], hyperspectral unmixing [69], target 

detection [70], and compressive sensing [71]. Therefore, 

parallelization on GPUs is a promising solution for overcoming 

the computational constraints of FSDAF and improving 

computational performance, in addition to the feasibility and 

scalability of FSDAF, especially in reference to large-scale 

applications. 

To address the aforementioned limitations of FSDAF, this 

paper proposes an enhanced FSDAF algorithm parallelized 

using GPUs, named cuFSDAF; the objective is to improve the 

computational efficiency while maintaining the accuracy. In 

cuFSDAF, the TPS interpolator is replaced by an accelerated 

inverse distance weighted (IDW) interpolator to reduce 

computational complexity. The computationally intensive 

procedures are parallelized using the Compute Unified Device 

Architecture (CUDA), a parallel computing framework for 

GPUs. Moreover, an adaptive domain decomposition method is 

proposed to adaptively adjust the size of sub-domains according 

to the hardware properties and ensure accuracy at the edges of 

sub-domains. Real satellite images were used to assess the 

performance of cuFSDAF, and the results were compared with 

those of the original FSDAF and the sensor-bias driven spatio-

temporal fusion model based on Convolutional Neural 

Networks (BiaSTF) [30], a latest deep-learning-based 

spatiotemporal fusion algorithm. 

II. METHOD  

A.  Brief introduction to FSDAF 

As shown in Fig. 1, FSDAF requires a pair of images at t1 

and an image with low spatial resolution (hereafter called the 

coarse image) at t2 as the input data, and the output is an image 

with high spatial resolution (hereafter called the fine image) at 

t2. The image pair at t1 includes one fine image and another 

coarse image from different sensors. 

FSDAF includes four main steps: (1) predicting a fine image 

at t2 using unmixing analysis, (2) predicting a fine image at t2 

by TPS interpolation, (3) distributing the residuals of two 

predicted images, and (4) mitigating errors using neighborhood 

information.  

In the first step, FSDAF assumes that each pixel in a fine 

image (hereafter called the fine pixel) is an endmember, and a 

pixel in a coarse image (hereafter called the coarse pixel) 

consists of multiple fine pixels. According to linear mixing 

theory, the reflectance of a coarse pixel is 

𝐶(𝑥𝑗 , 𝑦𝑗) =  
1

𝑁
∑ 𝐹(𝑥𝑖 , 𝑦𝑖)

𝑁
𝑖 +  𝜉,        (1) 

where 𝐶(𝑥𝑗 , 𝑦𝑗) and 𝐹(𝑥𝑖 , 𝑦𝑖) are the reflectance of the coarse 

pixel (𝑥𝑗 , 𝑦𝑗) and fine pixel (𝑥𝑖 , 𝑦𝑖), 𝑁  is the number of fine 

pixels inside (𝑥𝑗 , 𝑦𝑗), and 𝜉 is the systematic difference 
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Fig. 1. Flowchart for the FSDAF algorithm (modified from [34]). 

 

between the two sensors. The unmixing analysis assumes that 

the temporal changes of fine pixels with the same class are 

equal and that no land-cover changes occur from t1 to t2. 

Therefore, the temporal change of the coarse pixel (𝑥𝑗 , 𝑦𝑗) from 

t1 to t2 can be represented by the mixing equation: 

𝐶𝑡2
(𝑥𝑗 , 𝑦𝑗) − 𝐶𝑡1

(𝑥𝑗 , 𝑦𝑗) =  ∑ Δ𝐹
𝑁𝑐
𝑘 (𝑘) × 𝑓𝑘(𝑥𝑗 , 𝑦𝑗),  (2) 

where 𝑁𝑐  is the number of classes in (𝑥𝑗 , 𝑦𝑗) , Δ𝐹(𝑘)  is the 

reflectance change of land-cover class k from t1 to t2, and 

𝑓𝑘(𝑥𝑗 , 𝑦𝑗) is the fraction of class k in the coarse pixel (𝑥𝑗 , 𝑦𝑗). 

Δ𝐹(𝑘) can be calculated by solving the set of mixing equations 

in (2), and the prediction of a fine pixel (𝑥𝑖 , 𝑦𝑖) is its reflectance 

at t1 plus the temporal change of class 𝑘 if it belongs to class 𝑘: 

𝐹𝑡2
′ (𝑥𝑖 , 𝑦𝑖) = 𝐹𝑡1

(𝑥𝑖 , 𝑦𝑖) +  Δ𝐹(𝑘),     (3) 

where 𝐹𝑡2
′ (𝑥𝑖 , 𝑦𝑖) is the prediction of fine pixel (𝑥𝑖 , 𝑦𝑖) using 

unmixing analysis and 𝐹𝑡1
(𝑥𝑖 , 𝑦𝑖) is the reflectance of (𝑥𝑖 , 𝑦𝑖) 

at t1. 

The TPS interpolator is a spatial interpolation method for 

point data based on spatial dependence [72]. In FSDAF, TPS is 

used to capture land-cover changes and local variability. The 

function of TPS is 

𝑓𝑡𝑝𝑠(𝑥𝑖 , 𝑦𝑖) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑦𝑖 +
1

2
∑ 𝑏𝑗𝑟𝑗

2𝑙𝑜𝑔𝑟𝑗
2𝑁

𝑗=1 ,  (4) 

where 𝑓𝑡𝑝𝑠(𝑥𝑖 , 𝑦𝑖) is the prediction of a fine pixel (𝑥𝑖 , 𝑦𝑖), N is 

the number of known points, and 𝑟𝑗 is the Euclidean distance 

between (𝑥𝑖 , 𝑦𝑖)  and the 𝑗 th known point (𝑥𝑗 , 𝑦𝑗) . As 

mentioned above, one coarse pixel consists of multiple fine 

pixels and has one known point. In FSDAF, the known point of 

a coarse pixel is the central fine pixel within the coarse pixel. 

These two predictions have their own disadvantages. Unlike 

the basic assumptions of unmixing analysis, land-cover changes 

and within-class variation in real-world applications cause 

residuals between the prediction of unmixing analysis and true 

reflectance. The interpolator behaves well in the homogeneous 

area, whereas the interpolation result is too smooth to represent 

spatial details in heterogeneous landscapes. In the third step, 

FSDAF distributes the residuals of prediction using unmixing 

analysis with the guidance of TPS prediction and homogeneity 

of landscapes. The prediction of the fine pixel (𝑥𝑖 , 𝑦𝑖) is the 

sum of the prediction using unmixing analysis and the 

distributed residual: 

𝐹𝑡2
(𝑥𝑖 , 𝑦𝑖) = 𝐹𝑡2

′ (𝑥𝑖 , 𝑦𝑖) + 𝑟(𝑥𝑖 , 𝑦𝑖).    (5) 

where 𝐹𝑡2
(𝑥𝑖 , 𝑦𝑖) is the prediction of the fine pixel (𝑥𝑖 , 𝑦𝑖), and 

𝑟(𝑥𝑖 , 𝑦𝑖) is the distributed residual. 

Like STARFM [10] and ESTARFM [13], the final step of 

FSDAF uses neighborhood information to mitigate the 

uncertainty resulting from previous computing procedures and 

noise in input images. The final prediction of a fine pixel 
(𝑥𝑖 , 𝑦𝑖) is the weighted average prediction of its surrounding 

similar pixels: 

�̅�𝑡2
(𝑥𝑖 , 𝑦𝑖) =

1

∑ 𝑤𝑘
𝑁
𝑘

 ∑ 𝑤𝑘𝐹𝑡2
(𝑥𝑖 , 𝑦𝑖)

𝑁
𝑘 ,    (6) 

where �̅�𝑡2
(𝑥𝑖 , 𝑦𝑖) is the final prediction of the fine pixel (𝑥𝑖 , 𝑦𝑖) 

at t2, 𝑁 is the number of similar pixels, and 𝑤𝑘 is the weight of 

the 𝑘th similar pixel (𝑥𝑘, 𝑦𝑘). The similar pixels around the 

target pixel have similar spectral characteristics to the target 

pixel. The pixel weight is associated with the spatial distance 

between the target pixel and the similar pixel. 

One of the key limitations of FSDAF that prevents its use in 

large-scale applications and mass production is its extensive 

computational intensity. As described above, the procedures of 

FSDAF are complicated and computationally expensive. 

Firstly, the time complexity of TPS is O(n3), given that the 

number of known points is n [73]. To make TPS 

computationally feasible, it has been suggested that the number 

of known points should be no larger than 2000 [74]. However, 

when using large-sized input images, the number of known 

points can easily exceed 2000, leading to extremely extensive 

computing time for the TPS interpolation, which greatly 

reduces the feasibility and applicability of FSDAF. Therefore, 

FSDAF splits the entire spatial domain into multiple sub-

domains and processes them one at a time. By manually setting 

the maximum size, each sub-domain can be small enough to 

process within a feasible period. Nevertheless, even with the 

domain decomposition strategy, FSDAF is still 

computationally intensive, given the computational complexity 

of TPS and large number of sub-domains to be processed when 

dealing with large images. 

Secondly, several procedures in FSDAF are implemented 

using a moving window to acquire neighborhood information, 

leading to high demands for computing resources. For instance, 

the last step of FSDAF is to ensure the spatial continuity of 

fused images using neighborhood information. Although such 

a strategy can effectively reduce the uncertainties of fusion 

results, significant levels of computation are required. 

Similarly, other procedures using neighborhood information in 

FSDAF, such as the TPS interpolation and calculating the 

homogeneity of pixels, are also computationally intensive [34]. 

 In addition to computational intensity, the domain 

decomposition strategy of FSDAF means that certain 

procedures using neighborhood information fail to acquire 

sufficient neighboring pixels for the target pixels at the edges 

of sub-domains; therefore, the fusion results at the edges of sub-

domains may be less accurate. 
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Fig. 2.  Flowchart for the cuFSDAF algorithm. 

 

B. cuFSDAF 

The enhanced FSDAF algorithm parallelized using CUDA 

(cuFSDAF) proposed in this study is enhanced as follows: (1) 

The TPS interpolator is replaced by an accelerated IDW 

interpolator to reduce computational complexity. (2) The 

algorithm is parallelized based on CUDA to utilize multi- 

threading of GPUs. (3) An adaptive domain decomposition 

method is proposed to improve the fusion accuracy at the edges 

of sub-domains and to enable various GPUs to handle datasets 

of any size. 

As shown in Fig. 2, the heterogeneous parallel computing 

framework is adopted in cuFSDAF, which includes a CPU and 

a GPU. The data input and output (I/O) are handled by the CPU, 

and the computing procedures are carried out by the CPU or 

GPU. Procedures with low computational intensities (e.g., 

unmixing analysis and residual distribution) are handled by the 

CPU, and the GPU manages parallelizable and computationally 

expensive procedures (i.e., interpolation, calculating the 

homogeneity of pixels, and mitigating errors using 

neighborhood information). Before the actual computation, the 

input images are decomposed adaptively into sub-domains 

according to the device properties of GPU (e.g., memory size) 

and the dimensions of the input images, such that any CUDA-

enabled GPU can be utilized in its maximum capacity to handle 

a dataset of any size. 

1) Accelerated IDW Interpolator 

In FSDAF, the TPS interpolator is used to capture the spatial 

details of land cover changes and local variability [34]. The 

FSDAF uses a domain decomposition strategy to make the TPS 

feasible. However, given the computational complexity of TPS, 

the total computing time is particularly lengthy for large 

images. In addition, the matrix inversion procedure in TPS 

requires extensive computation and is difficult to parallelize. 

Therefore, an accelerated IDW interpolator is used in cuFSDAF 

to replace the TPS interpolator. 

The IDW interpolator assumes that each pair of points are 

related to each other [75], and the relevance corresponds to their 

distance apart. For a target point (𝑥0, 𝑦0) , the interpolation 

result is the weighted sum of every known point: 

𝑓𝐼𝐷𝑊(𝑥0, 𝑦0) = ∑ 𝑤𝑖𝑓(𝑥𝑖 , 𝑦𝑖)
𝑁
𝑖=1 ,    (7) 

where N is the number of known points. Similar to FSDAF, the 

known point of a coarse pixel in cuFSDAF is the central fine 

pixel within the coarse pixel. 𝑤𝑖  is the weight of the known 

point (𝑥𝑖 , 𝑦𝑖) and is often defined as 

𝑤𝑖 =
𝑑𝑖

−𝑛

∑
𝑁

𝑖=1
𝑑𝑖

−𝑛
,           (8) 

where 𝑑𝑖  is the Euclidean distance between the target point 

(𝑥0, 𝑦0) and the known point (𝑥𝑖 , 𝑦𝑖), and 𝑛 is a positive power 

parameter with recommended values of 1–3. The optimal value 

of n can be determined by the homogeneity of the landscapes. 

In general, higher values (e.g., >2) can be used for areas with 

high heterogeneity to reserve neighboring spatial details. In 

practice, the value of n can be determined by comparing the 

interpolated result with the fine image reserved for validation 

purposes. 

For known points far from a target point, the weights are 

often too light. To enhance the computational efficiency, 

cuFSDAF only considers those known points within a certain 

distance r from the target point. This strategy reduces the 

computation, but the distances between the target point and 

every known point should be calculated. In cuFSDAF, this 

traversal operation was avoided by preliminary selection. For 

the target point (𝑥0, 𝑦0), the known points are located in a circle 

with a radius of r, and the coordinate ranges of the minimum 

enclosing square of the circle are calculated as 

𝑥𝑖 ∈ [𝑥0 − 𝑟, 𝑥0 + 𝑟],          (9) 

and 

𝑦𝑖 ∈ [𝑦0 − 𝑟, 𝑦0 + 𝑟].       (10) 

Next, the known points of the square are selected for distance 

calculation. Through such a modification, the time complexity 

of the IDW interpolator is O(n), where n is the number of target 

points. 

The IDW interpolation result may not be as accurate as that 

of TPS. The TPS interpolation is replaced by the accereated 

IDW for several reasons. First, IDW can generate high-quality 

interpolation results when using evenly distributed known 

points [75], which is the case with FSDAF/cuFSDAF. Second, 

compared to TPS, whose time complexity is O(n3), the 

accelerated IDW, with time complexity O(n), is much more 
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Fig. 3.  Domain decomposition method in FSDAF and cuFSDAF. (a) Sub-

domain in FSDAF. (b) Sub-domain in cuFSDAF. 

 

 
Fig. 4.  Two-level neighborhood at sub-domain edges. (a) Neighborhood for the 

first level. (b) Neighborhood for the second level. 

 

efficient and therefore suited to large-scale interpolation tasks. 

Third, IDW can be easily parallelized, whereas the matrix 

inversion in TPS makes parallelization problematic. Although 

Sharma et al. parallelized matrix inversion using CUDA [76], 

this requires n2 threads, given that n is the size of the matrix. In 

large-scale applications for land cover dynamics, the matrix 

size can be too large for a GPU to provide sufficient threads; 

thus, parallel matrix inversion is still infeasible. In contrast, the 

IDW interpolation for a particular point is independent from the 

interpolations for other points; thus, the computing task can be 

compartmentalized easily into sub-tasks and processed 

simultaneously. 

 

2) Parallelization on GPU 

Several procedures in cuFSDAF require information about 

the neighborhood of each target pixel. For example, the IDW 

interpolation requires the reflectance of its neighboring pixels 

when estimating the value of the target pixel. In addition, the 

homogeneity index (HI) is calculated to measure the 

homogeneity of a fine pixel and is used for the distribution of 

residuals. In cuFSDAF, HI equals the fraction of neighboring 

pixels with the same land cover type, and this fraction is 

calculated according to the land cover type of neighboring 

pixels around the target. Moreover, the weighted average of the 

predictions for neighboring pixels with similar spectral 

characteristics is used to further mitigate errors in the fused 

images. Although these procedures are computationally 

intensive and require extensive computing time when dealing 

with large images, they are all parallelizable, as the computation 

for a given pixel is independent from the computations for other 

pixels in these procedures. General-purpose parallel 

frameworks, such as the CUDA by Nvidia, enable GPUs to 

perform general-purpose computations using multiple threads 

simultaneously [77, 78]. In cuFSDAF, all three procedures 

mentioned above (i.e., IDW interpolation, HI calculation, and 

error mitigation using neighboring pixels) are parallelized using 

GPU through CUDA. 

It is important to note that the parallel procedures in 

cuFSDAF are separate from each other (Fig. 2). When a 

procedure is finished (e.g., IDW interpolation), the GPU will 

reset and all threads are re-assigned for the next procedure (e.g., 

HI calculation). Maintaining their independence makes them 

portable for the parallelization of other spatiotemporal fusion 

algorithms if they use similar operations as FSDAF, such as 

those variants of FSDAF. 

 

3) Adaptive domain decomposition 

Domain decomposition is still necessary in cuFSDAF, 

especially when dealing with large images and the GPU 

memory is not sufficient to accommodate all of the data at once. 

An adaptive domain decomposition (ADD) method is proposed 

for cuFSDAF. 

Compared with the original domain decomposition method 

in FSDAF, ADD has two enhancements. First, the maximum 

size of the sub-domain is determined automatically according 

to the hardware specifications of the GPU (e.g., the available 

video memory). The domain decomposition method in FSDAF 

decomposes images into squares with an user-specified size 

(Fig. 3a). The ADD in cuFSDAF uses a row-wise 

decomposition strategy and divides the domain into rectangular 

sub-domains with widths equal to the widths of the input 

images. The maximum height of a sub-domain is determined 

adaptively, such that a sub-domain contains as many pixels as 

the GPU can handle at one time (Fig. 3b). In other words, 

cuFSDAF can automatically adapt to GPUs with different 

memory capacities and maximize the memory utilization and 

computing capacity of the GPU. In general, the sub-domain size 

determined by the ADD of cuFSDAF is much larger than the 

size used in FSDAF, resulting in fewer sub-domains and, 

therefore, quicker data transfer between the CPU and GPU. 

The second enhancement is the adaptive determination of the 

neighborhood size. For target pixels at the edges of sub-

domains, FSDAF extends extra ‘halo’ pixels [49] for the TPS 

interpolator to preserve edge details [79]; thus, a sub-domain is 

larger than the block of target pixels (Fig. 3a). However, this 

strategy does not include sufficient neighboring halo pixels of 

an edge pixel for other neighborhood-scope procedures besides 

interpolation (e.g., HI calculation and error mitigation using 

neighborhood pixels), which may undermine the fusion 

accuracy for pixels on the edges of sub-domains. 

A sub-domain generated by the ADD of cuFSDAF not only 

holds the target pixels for processing but also holds valuable 

neighboring pixels (i.e., halo pixels) for all neighborhood-scope 

procedures (Fig. 3b). In cuFSDAF, the width of the 
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neighborhood is calculated adaptively, according to the 

demands of neighborhood-scope calculations and unmixing 

analysis. Two levels of neighborhood-scope calculations exist 

in the cuFSDAF. The first level includes the IDW interpolator 

and HI calculation (Fig. 4a). To ensure that all target pixels can 

retrieve necessary neighborhood information, the width of the 

neighborhood is the maximum between the searching radius of 

IDW and the neighborhood width for HI calculation: 

𝑤1 =  𝑚𝑎𝑥{𝑟𝐼𝐷𝑊, 𝑤𝐻𝐼}.       (11) 

A neighborhood with width 𝑤1  ensures accurate prediction 

before error mitigation using neighborhood information. 

The second level of neighborhood-scope calculation is to 

mitigate errors. As shown in Fig. 4b, the width of the window 

for searching similar pixels is 𝑤2 , and the potential farthest 

similar pixel may be located at the edge of the neighborhood. 

To ensure the accuracy of the first-level calculations for these 

pixels, the total neighborhood width needs to expand 𝑤1 . 

Therefore, the width of the neighborhood for neighborhood-

scope calculations should be the sum of the widths of the two 

levels: 

𝑤𝑛 =  𝑤1 + 𝑤2.        (12) 

Moreover, the total width of the neighborhood in cuFSDAF 

may be larger than the neighborhood width for neighborhood-

scope calculations, because 𝑤𝑛 may not be enough to mitigate 

the block effect effectively if the sub-domain size is too large. 

The unmixing analysis in FSDAF is independent across sub-

domains, thus the pixels on different sides of a sub-domain edge 

will have different temporal changes, despite belonging to the 

same class of endmembers. Extending ‘halo’ pixels regarding 

the sub-domain size can reduce such block effect resulted from 

the unmixing analysis. The neighborhood width for unmixing 

analysis is: 

𝑤𝑢 =  𝑎𝑊,             (13) 

where 𝑊 is the height of sub-domains, and 𝑎 is the ratio of 𝑊 

ranging from 0 to 1. Therefore, the width of the neighborhood 

in cuFSDAF equals the maximum between the neighborhood 

width for neighborhood-scope calculations and the width for 

unmixing analysis:  

𝑤 =  𝑚𝑎𝑥{𝑤𝑛, 𝑤𝑢}.             (14) 

III. EXPERIMENTS 

The cuFSDAF was implemented using the C++ 

programming language and CUDA, and the source code is 

publicly available at https://github.com/HPSCIL/cuFSDAF. To 

provide the baselines for accuracy and efficiency assessments, 

a serial FSDAF was implemented using C++, which can 

generate the same results as the IDL-implemented FSDAF 

(https://xiaolinzhu.weebly.com/open-source-code.html), but 

1.6–2.0 times faster on a workstation computer equipped with 

an Intel Xeon W-2133 CPU @ 3.6 GHz and 16 GB of main 

memory. To evaluate the performance of cuFSDAF in large-

scale and long-term spatiotemporal data fusion tasks, one of the 

newest deep-learning-based spatiotemporal fusion algorithms, 

the sensor-bias driven spatio-temporal fusion model based on 

Convolutional Neural Networks (BiaSTF) [30], was also used 

in the experiments for comparison. 

A. Testing dataset and environment 

To assess the prediction accuracy and computational 

performance of cuFSDAF, we selected three sets of satellite 

images (Table I and Fig. 5) from the benchmark datasets for 

spatiotemporal fusion provided by Li et al. [80], including the 

AHB, Tianjin, and Daxing datasets. Each dataset includes eight 

pairs of images, and each pair consists of a MODIS and a 

Landsat image as the coarse and fine images. The time gap 

between the first image pair and the last pair in each dataset is 

around 1.5-2 years. The necessary atmospheric correction, 

geometric transformation, resampling, and band rearrangement 

were applied to these datasets. Considering the strip noises in 

the short-wave infrared bands in the MODIS images [80], we 

used four bands (i.e., blue, green, red, and near-infrared band of 

Landsat 8 OLI and their corresponding bands of MODIS) from 

these images. 

Except for the unique parameters of cuFSDAF (i.e., 

searching radius and power for IDW), the same parameter 

settings were used for both cuFSDAF and FSDAF. For BiaSTF, 

we used the parameters recommended by the authors of 

BiaSTF. In our experiments, we used the image pairs 1-5 and 8 

for CNN training and predicted fine images on the dates of 

image pairs 6 and 7. In cuFSDAF and FSDAF, a pair of images 

on the base date, a coarse image on the prediction date, and a 

classified image by the ISODATA classifier [81] (based on the 

fine image on the base date) were used as the input to predict a 

fine-resolution image on the prediction date. BiaSTF requires a 

former image pair and a later image pair for a fusion image [30]. 

Therefore, we picked one pair closest to the fusion date as the  

https://github.com/HPSCIL/cuFSDAF
https://xiaolinzhu.weebly.com/open-source-code.html
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Fig. 5.  Image pairs of three datasets. (a) Landsat image on June 21, 2015 in the AHB dataset. (b) Landsat image on October 1, 2018 in the Tianjin dataset. (c) 

Landsat image on April 8, 2018 in the Daxing dataset. (d) MODIS image on June 21, 2015 in the AHB dataset. (e) MODIS image on October 1, 2018 in the 

Tianjin dataset. (f) MODIS image on April 8, 2018 in the Daxing dataset. 

 

TABLE I 

TEST DATASETS FOR COMPARATIVE EXPERIMENTS. 

 AHB Tianjin  Daxing  

Study area Ar Horqin Banner of Inner Mongolia province, 

China 

Tianjin municipality, China Daxing district of Beijing city, China 

Area characteristics Heterogeneous area with phenological changes Urban area with phenological changes Area with land-cover changes 

Dates of image pairs 

2014/4/15 2014/9/6 2015/3/17 2015/5/4 

2015/6/21 2015/7/7 2015/9/25 2016/4/20 

2017/7/10 2017/9/12 2017/11/15 

2018/2/3 2018/4/8 2018/10/1 

2018/12/4 2019/1/21 

2017/7/10 2017/9/12 2017/10/30 

2017/11/15 2018/2/3 2018/4/8 

2018/10/1 2018/12/4 

Image size 2480×2480×4 1920×1920×4 1640×1640×4 

 

TABLE II 

HARDWARE AND SOFTWARE ENVIRONMENTS FOR EXPERIMENTS. 

CPU Intel Xeon W-2133 @3.6GHz 

GPU Nvidia GeForce GTX 1080ti 

Main memory 12 GB 

Video memory 11 GB 

Operating system Windows 10 x64 

CUDA version 9.1 

TensorFlow-gpu version 1.9.0 

 

input image pair for FSDAF/cuFSDAF, and picked two pairs 

closest to the fusion date as input images for BiaSTF. For 

instance, when generating the fusion image on July 7, 2015 

using the AHB dataset, the image pairs on June 21, 2015 and 

September 25, 2015 were input to BiaSTF, and the image pair 

on June 21, 2015 were input to both FSDAF and cuFSDAF. 

The resultant image was compared visually and 

quantitatively with the corresponding true images. The 

accuracy indices used in the experiments include the root mean 

square error (RMSE), the correlation coefficient (CC), the 

structure similarity (SSIM) [82], the spectral angle mapper 

(SAM) [83] , and the erreur relative globale adimensionnelle de 

synthese (ERGAS) [84]. Besides, the computing time of each 

experiment was recorded as an indicator of computational 

performance. Additional experiments were conducted using the 

AHB dataset to compare the fusion result by TPS with that by 

IDW, to assess the variation at the edges of sub-domains with 

and without the proposed ADD method, and to compare 

cuFSDAF and FSDAF when using input images with different 

time intervals. 
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Fig. 6.  Actual and fusion images for the AHB dataset: Landsat image on (a) July 7, 2015 and (e) September 25, 2015, fusion image by BiaSTF on (b) July 7, 

2015 and (f) September 25, 2015, fusion image by FSDAF on (c) July 7, 2015 and (g) September 25, 2015, fusion image by cuFSDAF on (d) July 7, 2015 and 

(h) September 25, 2015. 

 

 
Fig. 7.  Actual and fusion images for the Tianjin dataset: Landsat image on (a) October 1, 2018 and (e) December 4, 2018, fusion image by BiaSTF on (b) 

October 1, 2018 and (f) December 4, 2018, fusion image by FSDAF on (c) October 1, 2018 and (g) December 4, 2018, fusion image by cuFSDAF on (d) October 

1, 2018 and (h) December 4, 2018. 

 

The same testing environments (hardware and software) 

were used for all experiments. The experiments were conducted 

on a workstation computer equipped with an Intel Xeon W-

2133 CPU @3.6GHz, and a Nvidia GeForce GTX 1080ti GPU 

with 3,584 CUDA cores and 11 GB of video memory. Other 

hardware and software information is shown in Table II. 

B. Experimental results 
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Fig. 8.  Actual and fusion images for the Daxing dataset: Landsat image on (a) April 8, 2018 and (e) October 1, 2018, fusion image by BiaSTF on (b) April 8, 

2018 and (f) October 1, 2018, fusion image by FSDAF on (c) April 8, 2018 and (g) October 1, 2018, fusion image by cuFSDAF on (d) April 8, 2018 and (h) 

October 1, 2018. 

 

Fig. 6 shows the fusion results using the AHB dataset 

including the actual Landsat image (Fig. 6a and Fig. 6e), fusion 

images by BiaSTF (Fig. 6b and Fig. 6f), FSDAF (Fig. 6c and 

Fig. 6g), and cuFSDAF (Fig. 6d and Fig. 6h). The results of the 

Tianjin and Daxing datasets are shown in Fig. 7 and Fig.8; 

quantitative indices for all three datasets are shown in Table III. 

Both visual comparison and quantitative analysis indicated that 

the accuracy of cuFSDAF is very similar to those of FSDAF 

and BiaSTF. 

The quantitative indices of FSDAF and cuFSDAF in Table 

III vary slightly. Two reasons may have caused the variations. 

The first reason is related to the unmixing analysis, in which 

both FSDAF and cuFSDAF estimate the temporal changes 

using linear regression. Compared with the sub-domains in 

FSDAF, the sub-domains in cuFSDAF are larger. With the 

expansion of the sub-domain size, the coarse pixels chosen for 

linear regression in cuFSDAF changed, which resulted in the 

accuracy differences. More specifically, the temporal changes 

of fine pixels of the same class may vary, but the unmixing 

analysis assumes their temporal changes are equal given that 

they belong to the same sub-domain. Therefore, it is harder to 

capture the local intra-class variations when using larger-sized 

sub-domains. The second reason is related to the adaptive 

domain decomposition (ADD) method of cuFSDAF, which 

reduces the block effects and increases the accuracy at the edge 

of sub-domains. As shown in Table IV, replacing TPS with 

IDW did not result in obvious accuracy loss, which proved our 

analysis. Compared with the Daxing dataset, the sub-domains 

for the AHB and Tianjin dataset had larger sizes, so cuFSDAF 

performed slightly worse than FSDAF due to more accuracy 

loss resulted from intra-class variations. On the contrary, 

cuFSDAF performed better for the Daxing dataset.  

In cuFSDAF, the ADD method often generates larger-sized 

sub-domains than those by the original FSDAF that may lead to 

some accuracy loss, but it would bring more benefits. First, the 

accuracy loss resulted from intra-class variations is slight and 

acceptable. Second, larger sub-domain sizes result in quicker 

data transfer between the CPU and GPU, which improves the 

computational efficiency. Third, larger size helps reduce the 

block effects. The larger sub-domain size, the fewer sub-

domains as well as slighter block effects. 

The accuracies of FSDAF and cuFSDAF were as good as the 

accuracy of BiaSTF in our experiments. Compared with the 

datasets used by Li et al. [29], the time series of datasets we 

used are sparser. For instance, the AHB dataset consists of 8 

image pairs, and the time span of them is about 2 years. The 

LGC dataset used by Li et al. [29] consists of 14 image pairs, 

and the time span is about 1 year. Datasets with denser time 

series help BiaSTF better capture reflectance changes, which 

may result in better performance than FSDAF and FSDAF-like 

methods. Nevertheless, in many cloudy regions, the time series 

of satellite images may not be dense enough to show the 

superiority of BiaSTF. Besides, the experiments by Li et al. [70] 

showed that BiaSTF achieved higher accuracy than FSDAF 

when predicting one fusion image using two image pairs as the 

training data. For producing long-term time series by 

spatiotemporal fusion technology, retraining BiaSTF for 

predicting each fusion image is unlikely feasible because of the 

large time consumption for model training. 
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Table III 

ACCURACY ASSESSMENTS OF THE PREDICTED IMAGES BY BIASTF, FSDAF AND CUFSDAF. UNITS ARE REFLECTANCE. (RMSE = ROOT 

MEAN SQUARE ERROR, CC = CORRELATION COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE MAPPER, ERGAS = 

ERREUR RELATIVE GLOBALE ADIMENSIONNELLE DE SYNTHESE). 

Dataset Date Model RMSE CC SSIM SAM ERGAS 

AHB 

2015/7/7 

BiaSTF 0.042 0.700 0.757 0.201 1.501 

FSDAF 0.028 0.752 0.813 0.158 0.852 

cuFSDAF 0.031 0.722 0.783 0.174 0.933 

2015/9/25 

BiaSTF 0.056 0.668 0.737 0.227 2.605 

FSDAF 0.063 0.702 0.701 0.199 3.126 

cuFSDAF 0.064 0.699 0.698 0.200 3.128 

Tianjin 

2018/10/1 

BiaSTF 0.043 0.775 0.769 0.313 2.980 

FSDAF 0.037 0.786 0.781 0.354 2.270 

cuFSDAF 0.039 0.744 0.755 0.373 2.364 

2018/12/4 

BiaSTF 0.028 0.824 0.862 0.226 1.329 

FSDAF 0.034 0.775 0.805 0.282 1.840 

cuFSDAF 0.035 0.768 0.796 0.296 1.909 

Daxing 

2018/4/8 

BiaSTF 0.033 0.809 0.840 0.178 1.125 

FSDAF 0.027 0.793 0.834 0.195 1.048 

cuFSDAF 0.027 0.803 0.835 0.196 1.046 

2018/10/1 

BiaSTF 0.048 0.745 0.725 0.321 3.085 

FSDAF 0.034 0.749 0.790 0.312 1.919 

cuFSDAF 0.034 0.755 0.795 0.306 1.869 

 

 
Fig. 9. Fusion images using FSDAF with different interpolators. (a) Fusion 

image by FSDAF-TPS. (b) Fusion image by FSDAF-IDW. 

 

TABLE IV 

ACCURACY ASSESSMENT OF THE FUSION IMAGES BY FSDAF-TPS AND 

FSDAF-IDW. UNITS ARE REFLECTANCE. (RMSE = ROOT MEAN SQUARE 

ERROR, CC = CORRELATION COEFFICIENT, SSIM = STRUCTURE SIMILARITY, 

SAM = SPECTRAL ANGLE MAPPER, ERGAS = ERREUR RELATIVE GLOBALE 

ADIMENSIONNELLE DE SYNTHESE). 

FSDAF-TPS 

 RMSE CC SSIM SAM ERGAS 

Band 1 0.047 0.737 0.788 0.138 

3.126 
Band 2 0.050 0.777 0.758 0.186 

Band 3 0.062 0.771 0.707 0.261 

Band 4 0.095 0.524 0.549 0.209 

FSDAF-IDW 

 RMSE CC SSIM SAM ERGAS 

Band 1 0.047 0.737 0.788 0.138 

3.126 
Band 2 0.050 0.777 0.758 0.186 

Band 3 0.062 0.771 0.707 0.261 

Band 4 0.095 0.524 0.549 0.209 

C. Additional experiments 

In the first additional experiment on the AHB dataset, we 

fused the image on September 25, 2015 using the original 

FSDAF with TPS (FSDAF-TPS) and the modified FSDAF with 

IDW (FSDAF-IDW) to evaluate the change induced by 

replacing TPS with IDW. Both quantitative indices (Table IV) 

and visual comparison (Fig. 9) indicate that the replacement of 

TPS by IDW had no obvious impact on the accuracy of the 

fusion results. 

 
Fig. 10. Enlarged actual and fusion images from a sub-domain edge. (a) Landsat 

image on September 25, 2015. (b) Fusion image by cuFSDAF. (c) Fusion image 

by FSDAF-IDW-FDD. (d) Fusion image by FSDAF-IDW-ADD. 
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TABLE V 

ACCURACY ASSESSMENT OF FUSION RESULTS BY FSDAF-IDW-FDD AND 

FSDAF-IDW-ADD AT THE EDGES OF SUB-DOMAINS. UNITS ARE 

REFLECTANCE (RMSE = ROOT MEAN SQUARE ERROR, CC = CORRELATION 

COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE 

MAPPER, ERGAS = ERREUR RELATIVE GLOBALE ADIMENSIONNELLE DE 

SYNTHESE). 

FSDAF-IDW-FDD 

 RMSE CC SSIM SAM ERGAS 

Band 1 0.051 0.740 0.774 0.143 

3.591 
Band 2 0.054 0.727 0.695 0.210 

Band 3 0.072 0.723 0.662 0.315 

Band 4 0.088 0.656 0.749 0.188 

FSDAF-IDW-ADD 

 RMSE CC SSIM SAM ERGAS 

Band 1 0.051 0.739 0.777 0.143 

3.577 
Band 2 0.054 0.735 0.705 0.207 

Band 3 0.072 0.734 0.685 0.309 

Band 4 0.086 0.651 0.740 0.190 

 
Table VI 

ACCURACY ASSESSMENTS OF THE PREDICTED IMAGES BY FSDAF AND 

CUFSDAF ON SEPTEMBER 25, 2015 USING DIFFERENT BASE PAIRS. UNITS ARE 

REFLECTANCE. (RMSE = ROOT MEAN SQUARE ERROR, CC = CORRELATION 

COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE 

MAPPER, ERGAS = ERREUR RELATIVE GLOBALE ADIMENSIONNELLE DE 

SYNTHESE). 

2015/7/7 

 RMSE CC SSIM SAM ERGAS 

FSDAF 0.063 0.702 0.701 0.199 3.126 

cuFSDAF 0.064 0.699 0.698 0.200 3.128 

2015/6/21 

 RMSE CC SSIM SAM ERGAS 

FSDAF 0.066  0.612  0.633  0.236  3.175  

cuFSDAF 0.067  0.602  0.621  0.241  3.194  

2015/5/4 

 RMSE CC SSIM SAM ERGAS 

FSDAF 0.053  0.583  0.596  0.391  2.608  

cuFSDAF 0.054  0.562  0.583  0.392  2.631  

2015/3/17 

 RMSE CC SSIM SAM ERGAS 

FSDAF 0.060  0.460  0.412  0.550  3.347  

cuFSDAF 0.061  0.456  0.404  0.548  3.375  

 

The second additional experiment was to evaluate the 

effectiveness of the proposed ADD strategy. To exclude the 

differences caused by the TPS and IDW interpolators, we 

compared the results of FSDAF with IDW using the fixed 

domain decomposition (FSDAF-IDW-FDD) with those 

obtained using the ADD strategy (FSDAF-IDW-ADD). Given 

that the ADD method increases the size of sub-domains 

significantly, the edges of sub-domains in FDD are no longer 

the edges of sub-domains in ADD. To assess the performance 

of ADD at the edges of sub-domains, the sizes of the sub-

domains of FSDAF-IDW-ADD were set manually, but the 

neighborhood width was determined using the adaptive method 

of ADD. 

The quantitative comparisons between FSDAF-IDW-FDD 

and FSDAF-IDW-ADD at the edges of the sub-domains are 

presented in Table V, which shows that the accuracy was 

improved slightly by ADD. For better observation of the visual 

details, we enlarged an edge of the sub-domains in the fusion 

images by FSDAF-IDW-FDD and FSDAF-IDW-ADD. We 

also enlarged the same area in the Landsat image on September 

25, 2015 and the fusion image by cuFSDAF for comparison 

(Fig. 10). Compared with FSDAF-IDW-FDD (Fig. 10c), the 

enlarged FSDAF-IDW-ADD image (Fig. 10d) shows that the 

block effects at the edges of sub-domains were diminished 

considerably by the ADD method. As mentioned above, the 

pixels on different sides of a sub-domain edge will have 

different temporal changes, despite belonging to the same class 

of endmembers. Therefore, the block effects at the edges of the 

sub-domains cannot be completely resolved if domain 

decomposition is applied. In cuFSDAF, domain decomposition 

can be avoided automatically when the memory of the GPU is 

large enough to accommodate the entire spatial domain, in 

which case the block effects can be removed completely (Fig. 

10b). 

The third additional experiment was to compare cuFSDAF 

and FSDAF when using input images with different time 

intervals. We predicted the fusion image on September 25, 2015 

using different image pairs (i.e. July 7, 2015, June 21, 2015, 

May 4, 2015, and March 17, 2015) in the AHB dataset as the 

base pair of FSDAF/cuFSDAF. The time intervals of input 

images varied from 2 to 6 months. The quantitative indices 

(Table VI) showed that cuFSDAF achieved similar accuracies 

as FSDAF. 

D. Computational performance 

Crucially, the experiments showed that compared with 

FSDAF, cuFSDAF significantly reduced the computing time 

and improved the computational efficiency (Fig. 11), while 

maintaining the fusion accuracy (see Table III). We fused six 

fusion images using the AHB, Tianjin, and Daxing datasets 

(two images were fused in each dataset). Without data I/O, 

cuFSDAF achieved speed-ups of 140.3–182.2 over the IDL-

implement FSDAF, and achieved speed-ups of 84.9–93.6 over 

the C++-implemented FSDAF (Fig. 11a). The data 

transmission between CPU and GPU often consumes extra 

time, which may affect the computational performance of 

cuFSDAF. For instance, the data transmission consumed 0.1, 

0.1, and 0.3 second for the interpolating, calculating HI, and 

error mitigation when predicting the fusion image on June 21, 

2015 for the AHB dataset. Considering that FSDAF has no such 

data transmission, the time of data transmission between CPU 

and GPU was included in the computing time of cuFSDAF (Fig. 

11). 

We also recorded the computing time for each parallel 

procedure in cuFSDAF and the C++-implemented FSDAF 

(hereafter called FSDAF). First, the CUDA-enabled parallel 

IDW in cuFSDAF was 1807.4, 1685.1, 1426.4, 1392.4, 1064.6, 

and 1105.1 times faster than the TPS in FSDAF, for the six 

fusion tasks respectively (Fig. 11b), which induced a significant 

improvement in computational efficiency. Second, for 

calculating HI, cuFSDAF was 34.7, 35.0, 23.7, 22.2, 16.7, and 

17.5 times faster than FSDAF (Fig. 11c). Third, for error 

mitigation using neighborhood, cuFSDAF was 79.3, 82.7, 92.1, 

97.6, 91.2, and 102.0 times faster than FSDAF (Fig. 11d). 



 

 

12 

 Fig. 11.  Computing time for FSDAF and cuFSDAF without data I/O. (a) Total time for IDL-implemented FSDAF, C++-implemented FSDAF and cuFSDAF. 

(b) Time for TPS in C++-implemented FSDAF and CUDA-enabled IDW (cuIDW) in cuFSDAF. (c) Time for calculating homogeneity index in C++-

implemented FSDAF (HI) and cuFSDAF (cuHI). (d) Time for error mitigation using neighborhood in C++-implemented FSDAF (ME) and in cuFSDAF (cuME). 

 

 
Fig. 12. Computing time and speed-ups of fusing the fusion image on September 25, 2015 using clipped AHB images with different image size. (a) Trend of 

computing time and number of pixels for FSDAF. (b) Trend of computing time and number of pixels for cuFSDAF. (c) Speed-ups of cuFSDAF over FSDAF. 

 

 
Fig. 13. Running time for BiaSTF, FSDAF, and cuFSDAF. 

 

TABLE VII 

HARDWARE AND SOFTWARE ENVIRONMENTS FOR FLEXIBILITY EXPERIMENTS. 

  
Tianhe-2 

supercomputer 
Laptop computer 

CPU 
Intel Xeon E5-2660 

@2.6GHz 

Intel Core I5-7400 

@3.00GHz 

GPU Nvidia Tesla K80 Nvidia Geforce GTX 1050 

Main memory 256 GB 8 GB 

Video memory 11,441 MB 4 GB 

Operating System Linux x86_64 Windows 10 x64 

CUDA version CUDA 8.0 CUDA 10.2 
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TABLE VIII 

COMPUTING TIME AND SPEED-UP FOR CUFSDAF WITHOUT DATA I/O ON THE 

TIANHE-2 SUPERCOMPUTER AND THE LAPTOP COMPUTER. 

Tianhe-2 supercomputer 

Dataset Date 
FSDAF 

(seconds)  

cuFSDAF 

(seconds) 
Speed-ups 

AHB 
2015/7/7 4260.2 62.7 67.9 

2015/9/25 4240.1 60.7 69.9 

Tianjin 
2018/10/1 2457.4 35.1 70.0 

2018/12/4 2468.9 35.0 70.5 

Daxing 
2018/4/8 1640.8 26.6 61.7 

2018/10/1 1643.6 25.8 63.7 

Laptop computer 

Dataset Date 
FSDAF 

(seconds) 

cuFSDAF 

(seconds) 
Speed-ups 

AHB 
2015/7/7 1230.1 38.7 31.8 

2015/9/25 1243.7 35.6 34.9 

Tianjin 
2018/10/1 775.5 18.3 42.5 

2018/12/4 742.9 16.9 44.1 

Daxing 
2018/4/8 535.1 12.3 43.4 

2018/10/1 531.1 11.9 44.7 

 

Notably, the speed-ups for interpolation and HI calculation 

were demonstrably different for three datasets. The computing 

time of these procedures in cuFSDAF was too short to show 

differences among these three datasets, unlike FSDAF. 

Although the extra time for data transmission between CPU and 

GPU was also very short, it impacted the stability of speed-ups 

in these procedures more significantly than error mitigation. 

Besides, three procedures yielded different speedups using the 

same dataset. For instance, the speed-ups for interpolation, 

calculating HI, and error mitigation are 1807.4, 34.7, and 79.3 

times when predicting the fusion image on July 7, 2015 for the 

AHB dataset. First, we replaced the TPS interpolator with the 

accelerated IDW interpolator, which greatly reduced the time 

complexity of the interpolation. Therefore, the modification of 

the interpolator achieved more significant speed-ups than other 

parallel procedures. Second, the computing time of 

interpolating and calculating HI in cuFSDAF was so short that 

the time of data transmission affected the speed-ups for these 

procedures. 

We also conducted additional experiments to investigate the 

trend of computing time in terms of the image size by clipping 

the images from the AHB dataset into different sizes. As shown 

in Fig. 12, the computing time of both FSDAF and cuFSDAF 

matched the linear trend with the increasing number of pixels. 

The speed-up of cuFSDAF over FSDAF remained stable when 

the images were large enough (i.e., when the image size was 

equal to or greater than 1250× 1250), in which case the 

computing time of serial procedures and data transmission 

between CPU and GPU only took neglectable proportion of the 

total computing time. 

Considering the distinct variations in algorithm principle, we 

recorded the total running time of BiaSTF, FSDAF, and 

cuFSDAF using the AHB, Tianjin, and Daxing dataset (Fig. 

13). Because BiaSTF trained one model to predict two fusion 

images for each dataset, the total running time of BiaSTF 

includes the time of data processing, model training, and result 

predicting for two fusion images. For FSDAF and cuFSDAF, 

the total running time includes the running time for two fusion 

images. In our experiments, cuFSDAF was 1332.8, 1346.5, and 

1359.9 times faster than BiaSTF for the three datasets, 

respectively. Considering cuFSDAF achieved similar accuracy 

and much better efficiency compared with FSDAF and BiaSTF, 

cuFSDAF is a better choice for large-scale and long-term 

spatiotemporal fusion tasks. 

E. Computational performance using various GPUs 

To further assess the flexibility of cuFSDAF on GPUs with 

different computing capacities, we conducted a series of 

experiments using two other computers. The first computer was 

a computing node of the Tianhe-2 supercomputer, equipped 

with an Intel Xeon E5-2660 v3 CPU @2.6GHz, and a Nvidia 

Tesla K80 GPU with 2,496 CUDA cores and 11,441 MB video 

memory. The second was a laptop computer with an Intel Core 

I5-7400 CPU @3.00GHz, and a Nvidia Geforce GTX 1050 

GPU with 640 CUDA cores and 4 GB of video memory. The 

hardware and software environments of these two computers 

are shown in Table VII. 

Compared with the C++-implemented FSDAF (hereafter 

called FSDAF), the cuFSDAF significantly improved the 

computational efficiency on both the Tianhe-2 supercomputer 

and the laptop computer (Table VIII). Experimental results 

showed that cuFSDAF performed well in various hardware and 

software environments if a CUDA-enabled GPU was available. 

The higher the computing capacity of the GPU, the higher the 

performance of the cuFSDAF. 

 

IV. CONCLUSION 

Spatiotemporal data fusion algorithms are cost-efficient 

methods of obtaining remote sensing images with high spatial 

and temporal resolutions. Compared with other algorithms, the 

flexible spatiotemporal data fusion (FSDAF) algorithm closely 

captures the reflectance changes caused by land cover 

conversions and requires only one fine-resolution image as 

input. However, FSDAF faces several challenges when dealing 

with large-scale and long-term land surface dynamics because 

of its computational inefficiency. Moreover, block effects at the 

edges of sub-domains are often inevitable in FSDAF fusion 

results. This study proposes an enhanced FSDAF algorithm 

parallelized using GPUs (cuFSDAF) to improve computational 

performance without losing accuracy. 

The main enhancements of cuFSDAF include the following: 

(1) The TPS interpolator is replaced by an accelerated inverse 

distance weighted (IDW) interpolator to reduce computational 

complexity. (2) The algorithm is parallelized based on the 

Compute Unified Device Architecture (CUDA), a widely used 

parallel computing framework for GPUs. (3) An adaptive 

domain decomposition method is proposed to improve the 

fusion accuracy at the edges of sub-domains and to enable 

GPUs with different computing capacities to deal with datasets 

of any size. 

The performance of cuFSDAF was evaluated through a 

series of experiments using three sets of satellite images. 

Compared with FSDAF, cuFSDAF significantly improved the 

computational performance while maintaining the accuracy. 

Also, cuFSDAF achieved similar accuracies compared to one 

of the latest deep-learning-based algorithms, BiaSTF, and much 

higher computational efficiency. cuFSDAF also performed 

better than popular algorithms such as STARFM and ESTRFM 
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in areas with abrupt land cover changes in both accuracy and 

computational efficiency (results not shown). Such an 

improvement in computational efficiency greatly increases the 

feasibility and applicability of cuFSDAF to applications for 

large-scale long-term land surface dynamics and mass 

production. The code and test data of cuFSDAF are freely 

available at https://github.com/HPSCIL/cuFSDAF. 

It is worth noting that besides IDW, other interpolators such 

as bilinear and bicubic can also be used to replace the TPS 

interpolator for FSDAF. In this study, IDW was used because 

it is easy to implement and parallelize, and the experiments 

showed that the accelerated IDW can achieve similar accuracy 

as TPS for FSDAF. Other interpolators can also be used if they 

can achieve equivalent or better accuracy than IDW. 

The parallelization framework and strategies (e.g., adaptive 

domain decomposition) proposed in our study not only can 

greatly increase the computational efficiency of FSDAF, but 

also can be used in other similar algorithms to enhance their 

computational efficiency and eventually improve their 

applicability in long-term and large-scale fusion tasks. For 

example, the variants of FSDAF can easily adopt the proposed 

parallelization framework and strategies to achieve much 

higher efficiency because these FSDAF-like methods share 

similar principles and procedures. Moreover, other 

spatiotemporal fusion algorithms that include similar 

procedures/operations as FSDAF can also benefit from the 

proposed parallelization strategies. As a matter of fact, we have 

also parallelized three other spatiotemporal fusion algorithms, 

including STARFM [10], ESTARFM [13], and STNLFFM 

[18], (the source codes and test datasets are freely available at 

https://github.com/HPSCIL), which achieved significant 

improvements of computational efficiency on various GPUs. 

Also, this study has several implications for the future 

development of spatiotemporal fusion. First, as shown in our 

experiments, the parallel procedures in cuFSDAF showed 

significant improvements in efficiency. Therefore, parallel 

computing on GPUs is a promising solution to enhance the 

efficiency of spatiotemporal fusion algorithms. Second, if the 

input images are decomposed before calculation, algorithms 

should take into account the multilevel neighborhood-scope 

calculations to avoid block effects at the edges of sub-domains. 

Enlarging the size of sub-domains and extending extra ‘halo’ 

pixels should be considered. Third, for large-scale and long-

term applications, algorithms should find a balance between 

accuracy and efficiency. When dealing with large-scale and 

long-term applications, the computational efficiency of the 

algorithm is as important as its accuracy. When enhancing 

existing algorithms, replacing computationally intensive 

procedures with more efficient procedures may be advisable as 

long as the variation in accuracy is acceptable. 
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