
1

Abstract—Spatiotemporal data fusion is a cost-effective way to

produce remote sensing images with high spatial and temporal

resolutions using multi-source images. Using spectral unmixing

analysis and spatial interpolation, the Flexible Spatiotemporal

DAta Fusion (FSDAF) algorithm is suitable for heterogeneous

landscapes and capable of capturing abrupt land-cover changes.

However, the extensive computational complexity of FSDAF

prevents its use in large-scale applications and mass production.

Besides, the domain decomposition strategy of FSDAF causes

accuracy loss at the edges of sub-domains due to the insufficient

consideration of edge effects. In this study, an enhanced FSDAF

(cuFSDAF) is proposed to address these problems, and includes

three main improvements: (1) The TPS interpolator is replaced by

an accelerated inverse distance weighted interpolator to reduce

computational complexity. (2) The algorithm is parallelized based

on the Compute Unified Device Architecture (CUDA), a widely

used parallel computing framework for graphics processing units

(GPUs). (3) An adaptive domain decomposition method is

proposed to improve the fusion accuracy at the edges of sub-

domains, and to enable GPUs with varying computing capacities

to deal with datasets of any size. Experiments showed while

obtaining similar accuracies to FSDAF and an up-to-date deep-

learning-based method, cuFSDAF reduced the computing time

significantly and achieved speed-ups of 140.3–182.2 over the

original FSDAF program. cuFSDAF is capable of efficiently

producing fused images with both high spatial and temporal

resolutions to support applications for large-scale and long-term

land surface dynamics. Source code and test data available at

https://github.com/HPSCIL/cuFSDAF.

Index Terms—CUDA, multi-source satellite images, parallel

computing, spatiotemporal data fusion

I. INTRODUCTION

HE dense time series of satellite images with high spatial

resolutions are critical for monitoring land surface

dynamics in heterogeneous landscapes. In recent years,

satellites with advanced sensors, such as the microsatellites by

Planet Labs, WorldView-4, and GF-2 [1], can acquire images

with high spatial and temporal resolutions to compose dense

time series. However, the high cost of data acquisition from

these sensors limits their applications for large-scale land

surface dynamics. Furthermore, these sensors are unable to

This work was supported in part by the National Natural Science Foundation

of China under Grants 41671408, 41801306, 42022060, and U1711267 and in

part by the Special Fund for Foundation and Frontier of Applications of Wuhan

under Grant 2018010401011293. (*Corresponding Author: Qingfeng Guan.)

H. Gao, Q. Guan, X. Yang, Y. Yao, W. Zeng, and X. Peng are with the

School of Geography and Information Engineering, and the National

Engineering Research Center of GIS, China University of Geosciences, Wuhan

trace long-term historical dynamics. Compared with advanced

satellite sensors, long-running satellite sensors can provide

long-term, large-scale, and free-of-charge satellite imagery

from the past several decades, such as Landsat and MODIS.

However, these historical images have either lower spatial

resolutions or lower temporal resolutions, limited by hardware

technologies [2] and atmospheric conditions [3]. For instance,

Landsat provides images with spatial resolutions ranging from

15 m to 60 m and a revisit cycle of 16 days. MODIS provides

images with spatial resolutions of 250 m to 1 km, and the revisit

cycle is 1–2 days. Given that these satellite images do not meet

the requirements of long-term and large-scale applications of

land surface dynamics, spatiotemporal data fusion provides a

feasible method for the production of remote sensing images

with both high spatial and temporal resolutions.

Spatiotemporal data fusion algorithms combine the spatial

information from high spatial resolution images with the

temporal information from high temporal resolution images to

generate images with both high spatial and temporal

resolutions. Existing spatiotemporal data fusion algorithms can

be divided into five categories: unmixing-based, weight

function-based, Bayesian-based, learning-based, and hybrid

fusion [4]. Unmixing-based algorithms assume that each mixed

pixel in low spatial resolution images is a combination of

various endmembers [5-9] so that it can be unmixed using the

mixing theory. In weight function-based algorithms, fusion

images are generated using input images through weight

functions [10-19]. A typical example is the spatial and temporal

adaptive reflectance fusion model (STARFM) [10]. Bayesian-

based algorithms use Bayesian estimation theory to generate

fusion images [20-22]. The key to Bayesian-based algorithms

is to model the relationship between observed and unobserved

images. Learning-based algorithms fuse multi-source images

through machine learning methods [23], such as dictionary-pair

learning [24-27], artificial neural networks [28-30], and

extreme learning machines [31]. Hybrid spatiotemporal data

fusion algorithms integrate at least two of the above methods to

obtain fusion images [32-37].

The Flexible Spatiotemporal Data Fusion (FSDAF) is a

hybrid spatiotemporal data fusion algorithm and uses an

unmixing analysis and a thin plate spline (TPS) interpolator to

430078, China (e-mails: ghcug14@cug.edu.cn; guanqf@cug.edu.cn;

aurora@cug.edu.cn; yaoy@cug.edu.cn; zengwen@cug.edu.cn; and

994684265@qq.com, respectively).

X. Zhu is with the Department of Land Surveying and Geo-Informatics, The

Hong Kong Polytechnic University, Hong Kong, China (e-mail:

xlzhu@polyu.edu.hk).

cuFSDAF: An enhanced flexible spatiotemporal

data fusion algorithm parallelized using

graphics processing units

Huan Gao, Xiaolin Zhu, Qingfeng Guan*, Xue Yang, Yao Yao, Wen Zeng, and Xuantong Peng

T

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The following publication Gao, H., Zhu, X., Guan, Q., Yang, X., Yao, Y., Zeng, W., & Peng, X. (2021). cuFSDAF: An enhanced flexible
spatiotemporal data fusion algorithm parallelized using graphics processing units. IEEE Transactions on Geoscience and Remote Sensing,
60, 1-16 is available at https://doi.org/10.1109/TGRS.2021.3080384.

This is the Pre-Published Version.

mailto:ghcug14@cug.edu.cn
mailto:guanqf@cug.edu.cn
mailto:aurora@cug.edu.cn
mailto:yaoy@cug.edu.cn
mailto:zengwen@cug.edu.cn

2

generate images with high spatial and temporal resolutions [34].

FSDAF is suitable for heterogeneous landscapes and can

effectively capture land cover changes. In recent years, FSDAF

has been used in a number of applications, such as monitoring

dynamics of impervious surface [38], wetland [39], land surface

temperature [40], and vegetation [41]. Moreover, FSDAF

provides a framework for addressing both gradual and abrupt

land-cover changes during the spatiotemporal fusion process.

Several improved variants based on FSDAF have been

developed in the last few years, such as the improved flexible

spatiotemporal data fusion model [42-44], the enhanced

flexible spatiotemporal data fusion model [45], the enhanced

FSDAF model considering sub-pixel class fraction change

information [46], the FSDAF 2.0 [47], and the improved

FSDAF to generate suspended particulate matter concentrations

[48].

However, FSDAF and many other spatiotemporal data fusion

algorithms have focused on the accuracy of fused images rather

than the computational efficiency of algorithms. When dealing

with a large amount of data, the computing time of a fusion

algorithm can be extensive, greatly limiting its applications in

monitoring long-term and large-scale land surface dynamics.

Despite using fewer input images than many other algorithms,

FSDAF is still subject to computationally intensive procedures

that use neighborhood information, such as TPS interpolation.

In addition, the domain decomposition strategy of FSDAF leads

to accuracy loss at the edges of sub-domains because the pixels

at edges do not have sufficient information for the

neighborhood-scope procedures. Therefore, improving

computational efficiency is an urgent task for promoting the

practical value of FSDAF and other spatiotemporal fusion

methods.

Parallel computing, which uses multiple processing units to

collaborate on a common task [49], is a promising solution for

processing massive remotely sensed data [50, 51]. In parallel

computing, the computing task is decomposed into subtasks,

which can be processed simultaneously by multiple processing

units. The key to parallelization is whether the computing task

can be divided and carried out concurrently. Raster is the

primary data structure for remote sensing images. Raster data

are typically organized as matrices of pixels, which can be

divided into groups and processed in parallel; raster data are

thus highly suitable for parallel computing. In recent years, the

advancement of geospatial technologies has generated large-

scale geospatial databases with high spatial resolutions, such as

the global land cover mapping at 30 m resolution [52], the

SEN12MS dataset with resolutions of 10–500 m [53], and the

FROM-GLC10 dataset at 10 m resolution [54]. Meanwhile,

with the introduction of advanced statistical and machine

learning techniques for the processing and analysis of remote

sensing images, remote sensing algorithms are becoming more

complex and computationally intensive. High data intensity and

computational intensity greatly increase computing capacity

requirements; therefore, parallel computing has been used in

many geospatial algorithms and models for better efficiency,

such as cluster analysis [55, 56], spatial interpolation [57, 58],

change detection [59], relative radiometric normalization [60],

urban growth simulation [61, 62], remote sensing image

classification [63], and watershed modeling [64].

A graphics processing unit (GPU) is a processor for

rendering computer graphics [65]. With rapid performance and

capability advancements, modern GPUs can not only handle

graphics processing tasks but also general-purpose computation

[66, 67]. A general-purpose graphics processing unit (GPGPU)

is a GPU that capable of processing general-purpose

computation. Compared with central processing units (CPUs),

GPGPUs have much higher memory bandwidths and more

computing cores, thus exhibiting highly improved computing

performance. They have been used for the processing and

analysis of remotely sensed data, including hyperspectral image

classification [68], hyperspectral unmixing [69], target

detection [70], and compressive sensing [71]. Therefore,

parallelization on GPUs is a promising solution for overcoming

the computational constraints of FSDAF and improving

computational performance, in addition to the feasibility and

scalability of FSDAF, especially in reference to large-scale

applications.

To address the aforementioned limitations of FSDAF, this

paper proposes an enhanced FSDAF algorithm parallelized

using GPUs, named cuFSDAF; the objective is to improve the

computational efficiency while maintaining the accuracy. In

cuFSDAF, the TPS interpolator is replaced by an accelerated

inverse distance weighted (IDW) interpolator to reduce

computational complexity. The computationally intensive

procedures are parallelized using the Compute Unified Device

Architecture (CUDA), a parallel computing framework for

GPUs. Moreover, an adaptive domain decomposition method is

proposed to adaptively adjust the size of sub-domains according

to the hardware properties and ensure accuracy at the edges of

sub-domains. Real satellite images were used to assess the

performance of cuFSDAF, and the results were compared with

those of the original FSDAF and the sensor-bias driven spatio-

temporal fusion model based on Convolutional Neural

Networks (BiaSTF) [30], a latest deep-learning-based

spatiotemporal fusion algorithm.

II. METHOD

A. Brief introduction to FSDAF

As shown in Fig. 1, FSDAF requires a pair of images at t1

and an image with low spatial resolution (hereafter called the

coarse image) at t2 as the input data, and the output is an image

with high spatial resolution (hereafter called the fine image) at

t2. The image pair at t1 includes one fine image and another

coarse image from different sensors.

FSDAF includes four main steps: (1) predicting a fine image

at t2 using unmixing analysis, (2) predicting a fine image at t2

by TPS interpolation, (3) distributing the residuals of two

predicted images, and (4) mitigating errors using neighborhood

information.

In the first step, FSDAF assumes that each pixel in a fine

image (hereafter called the fine pixel) is an endmember, and a

pixel in a coarse image (hereafter called the coarse pixel)

consists of multiple fine pixels. According to linear mixing

theory, the reflectance of a coarse pixel is

𝐶(𝑥𝑗 , 𝑦𝑗) =
1

𝑁
∑ 𝐹(𝑥𝑖 , 𝑦𝑖)

𝑁
𝑖 + 𝜉, (1)

where 𝐶(𝑥𝑗 , 𝑦𝑗) and 𝐹(𝑥𝑖 , 𝑦𝑖) are the reflectance of the coarse

pixel (𝑥𝑗 , 𝑦𝑗) and fine pixel (𝑥𝑖 , 𝑦𝑖), 𝑁 is the number of fine

pixels inside (𝑥𝑗 , 𝑦𝑗), and 𝜉 is the systematic difference

3

Fig. 1. Flowchart for the FSDAF algorithm (modified from [34]).

between the two sensors. The unmixing analysis assumes that

the temporal changes of fine pixels with the same class are

equal and that no land-cover changes occur from t1 to t2.

Therefore, the temporal change of the coarse pixel (𝑥𝑗 , 𝑦𝑗) from

t1 to t2 can be represented by the mixing equation:

𝐶𝑡2
(𝑥𝑗 , 𝑦𝑗) − 𝐶𝑡1

(𝑥𝑗 , 𝑦𝑗) = ∑ Δ𝐹
𝑁𝑐
𝑘 (𝑘) × 𝑓𝑘(𝑥𝑗 , 𝑦𝑗), (2)

where 𝑁𝑐 is the number of classes in (𝑥𝑗 , 𝑦𝑗) , Δ𝐹(𝑘) is the

reflectance change of land-cover class k from t1 to t2, and

𝑓𝑘(𝑥𝑗 , 𝑦𝑗) is the fraction of class k in the coarse pixel (𝑥𝑗 , 𝑦𝑗).

Δ𝐹(𝑘) can be calculated by solving the set of mixing equations

in (2), and the prediction of a fine pixel (𝑥𝑖 , 𝑦𝑖) is its reflectance

at t1 plus the temporal change of class 𝑘 if it belongs to class 𝑘:

𝐹𝑡2
′ (𝑥𝑖 , 𝑦𝑖) = 𝐹𝑡1

(𝑥𝑖 , 𝑦𝑖) + Δ𝐹(𝑘), (3)

where 𝐹𝑡2
′ (𝑥𝑖 , 𝑦𝑖) is the prediction of fine pixel (𝑥𝑖 , 𝑦𝑖) using

unmixing analysis and 𝐹𝑡1
(𝑥𝑖 , 𝑦𝑖) is the reflectance of (𝑥𝑖 , 𝑦𝑖)

at t1.

The TPS interpolator is a spatial interpolation method for

point data based on spatial dependence [72]. In FSDAF, TPS is

used to capture land-cover changes and local variability. The

function of TPS is

𝑓𝑡𝑝𝑠(𝑥𝑖 , 𝑦𝑖) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑦𝑖 +
1

2
∑ 𝑏𝑗𝑟𝑗

2𝑙𝑜𝑔𝑟𝑗
2𝑁

𝑗=1 , (4)

where 𝑓𝑡𝑝𝑠(𝑥𝑖 , 𝑦𝑖) is the prediction of a fine pixel (𝑥𝑖 , 𝑦𝑖), N is

the number of known points, and 𝑟𝑗 is the Euclidean distance

between (𝑥𝑖 , 𝑦𝑖) and the 𝑗 th known point (𝑥𝑗 , 𝑦𝑗) . As

mentioned above, one coarse pixel consists of multiple fine

pixels and has one known point. In FSDAF, the known point of

a coarse pixel is the central fine pixel within the coarse pixel.

These two predictions have their own disadvantages. Unlike

the basic assumptions of unmixing analysis, land-cover changes

and within-class variation in real-world applications cause

residuals between the prediction of unmixing analysis and true

reflectance. The interpolator behaves well in the homogeneous

area, whereas the interpolation result is too smooth to represent

spatial details in heterogeneous landscapes. In the third step,

FSDAF distributes the residuals of prediction using unmixing

analysis with the guidance of TPS prediction and homogeneity

of landscapes. The prediction of the fine pixel (𝑥𝑖 , 𝑦𝑖) is the

sum of the prediction using unmixing analysis and the

distributed residual:

𝐹𝑡2
(𝑥𝑖 , 𝑦𝑖) = 𝐹𝑡2

′ (𝑥𝑖 , 𝑦𝑖) + 𝑟(𝑥𝑖 , 𝑦𝑖). (5)

where 𝐹𝑡2
(𝑥𝑖 , 𝑦𝑖) is the prediction of the fine pixel (𝑥𝑖 , 𝑦𝑖), and

𝑟(𝑥𝑖 , 𝑦𝑖) is the distributed residual.

Like STARFM [10] and ESTARFM [13], the final step of

FSDAF uses neighborhood information to mitigate the

uncertainty resulting from previous computing procedures and

noise in input images. The final prediction of a fine pixel
(𝑥𝑖 , 𝑦𝑖) is the weighted average prediction of its surrounding

similar pixels:

�̅�𝑡2
(𝑥𝑖 , 𝑦𝑖) =

1

∑ 𝑤𝑘
𝑁
𝑘

 ∑ 𝑤𝑘𝐹𝑡2
(𝑥𝑖 , 𝑦𝑖)

𝑁
𝑘 , (6)

where �̅�𝑡2
(𝑥𝑖 , 𝑦𝑖) is the final prediction of the fine pixel (𝑥𝑖 , 𝑦𝑖)

at t2, 𝑁 is the number of similar pixels, and 𝑤𝑘 is the weight of

the 𝑘th similar pixel (𝑥𝑘, 𝑦𝑘). The similar pixels around the

target pixel have similar spectral characteristics to the target

pixel. The pixel weight is associated with the spatial distance

between the target pixel and the similar pixel.

One of the key limitations of FSDAF that prevents its use in

large-scale applications and mass production is its extensive

computational intensity. As described above, the procedures of

FSDAF are complicated and computationally expensive.

Firstly, the time complexity of TPS is O(n3), given that the

number of known points is n [73]. To make TPS

computationally feasible, it has been suggested that the number

of known points should be no larger than 2000 [74]. However,

when using large-sized input images, the number of known

points can easily exceed 2000, leading to extremely extensive

computing time for the TPS interpolation, which greatly

reduces the feasibility and applicability of FSDAF. Therefore,

FSDAF splits the entire spatial domain into multiple sub-

domains and processes them one at a time. By manually setting

the maximum size, each sub-domain can be small enough to

process within a feasible period. Nevertheless, even with the

domain decomposition strategy, FSDAF is still

computationally intensive, given the computational complexity

of TPS and large number of sub-domains to be processed when

dealing with large images.

Secondly, several procedures in FSDAF are implemented

using a moving window to acquire neighborhood information,

leading to high demands for computing resources. For instance,

the last step of FSDAF is to ensure the spatial continuity of

fused images using neighborhood information. Although such

a strategy can effectively reduce the uncertainties of fusion

results, significant levels of computation are required.

Similarly, other procedures using neighborhood information in

FSDAF, such as the TPS interpolation and calculating the

homogeneity of pixels, are also computationally intensive [34].

 In addition to computational intensity, the domain

decomposition strategy of FSDAF means that certain

procedures using neighborhood information fail to acquire

sufficient neighboring pixels for the target pixels at the edges

of sub-domains; therefore, the fusion results at the edges of sub-

domains may be less accurate.

4

Fig. 2. Flowchart for the cuFSDAF algorithm.

B. cuFSDAF

The enhanced FSDAF algorithm parallelized using CUDA

(cuFSDAF) proposed in this study is enhanced as follows: (1)

The TPS interpolator is replaced by an accelerated IDW

interpolator to reduce computational complexity. (2) The

algorithm is parallelized based on CUDA to utilize multi-

threading of GPUs. (3) An adaptive domain decomposition

method is proposed to improve the fusion accuracy at the edges

of sub-domains and to enable various GPUs to handle datasets

of any size.

As shown in Fig. 2, the heterogeneous parallel computing

framework is adopted in cuFSDAF, which includes a CPU and

a GPU. The data input and output (I/O) are handled by the CPU,

and the computing procedures are carried out by the CPU or

GPU. Procedures with low computational intensities (e.g.,

unmixing analysis and residual distribution) are handled by the

CPU, and the GPU manages parallelizable and computationally

expensive procedures (i.e., interpolation, calculating the

homogeneity of pixels, and mitigating errors using

neighborhood information). Before the actual computation, the

input images are decomposed adaptively into sub-domains

according to the device properties of GPU (e.g., memory size)

and the dimensions of the input images, such that any CUDA-

enabled GPU can be utilized in its maximum capacity to handle

a dataset of any size.

1) Accelerated IDW Interpolator

In FSDAF, the TPS interpolator is used to capture the spatial

details of land cover changes and local variability [34]. The

FSDAF uses a domain decomposition strategy to make the TPS

feasible. However, given the computational complexity of TPS,

the total computing time is particularly lengthy for large

images. In addition, the matrix inversion procedure in TPS

requires extensive computation and is difficult to parallelize.

Therefore, an accelerated IDW interpolator is used in cuFSDAF

to replace the TPS interpolator.

The IDW interpolator assumes that each pair of points are

related to each other [75], and the relevance corresponds to their

distance apart. For a target point (𝑥0, 𝑦0) , the interpolation

result is the weighted sum of every known point:

𝑓𝐼𝐷𝑊(𝑥0, 𝑦0) = ∑ 𝑤𝑖𝑓(𝑥𝑖 , 𝑦𝑖)
𝑁
𝑖=1 , (7)

where N is the number of known points. Similar to FSDAF, the

known point of a coarse pixel in cuFSDAF is the central fine

pixel within the coarse pixel. 𝑤𝑖 is the weight of the known

point (𝑥𝑖 , 𝑦𝑖) and is often defined as

𝑤𝑖 =
𝑑𝑖

−𝑛

∑
𝑁

𝑖=1
𝑑𝑖

−𝑛
, (8)

where 𝑑𝑖 is the Euclidean distance between the target point

(𝑥0, 𝑦0) and the known point (𝑥𝑖 , 𝑦𝑖), and 𝑛 is a positive power

parameter with recommended values of 1–3. The optimal value

of n can be determined by the homogeneity of the landscapes.

In general, higher values (e.g., >2) can be used for areas with

high heterogeneity to reserve neighboring spatial details. In

practice, the value of n can be determined by comparing the

interpolated result with the fine image reserved for validation

purposes.

For known points far from a target point, the weights are

often too light. To enhance the computational efficiency,

cuFSDAF only considers those known points within a certain

distance r from the target point. This strategy reduces the

computation, but the distances between the target point and

every known point should be calculated. In cuFSDAF, this

traversal operation was avoided by preliminary selection. For

the target point (𝑥0, 𝑦0), the known points are located in a circle

with a radius of r, and the coordinate ranges of the minimum

enclosing square of the circle are calculated as

𝑥𝑖 ∈ [𝑥0 − 𝑟, 𝑥0 + 𝑟], (9)

and

𝑦𝑖 ∈ [𝑦0 − 𝑟, 𝑦0 + 𝑟]. (10)

Next, the known points of the square are selected for distance

calculation. Through such a modification, the time complexity

of the IDW interpolator is O(n), where n is the number of target

points.

The IDW interpolation result may not be as accurate as that

of TPS. The TPS interpolation is replaced by the accereated

IDW for several reasons. First, IDW can generate high-quality

interpolation results when using evenly distributed known

points [75], which is the case with FSDAF/cuFSDAF. Second,

compared to TPS, whose time complexity is O(n3), the

accelerated IDW, with time complexity O(n), is much more

5

Fig. 3. Domain decomposition method in FSDAF and cuFSDAF. (a) Sub-

domain in FSDAF. (b) Sub-domain in cuFSDAF.

Fig. 4. Two-level neighborhood at sub-domain edges. (a) Neighborhood for the

first level. (b) Neighborhood for the second level.

efficient and therefore suited to large-scale interpolation tasks.

Third, IDW can be easily parallelized, whereas the matrix

inversion in TPS makes parallelization problematic. Although

Sharma et al. parallelized matrix inversion using CUDA [76],

this requires n2 threads, given that n is the size of the matrix. In

large-scale applications for land cover dynamics, the matrix

size can be too large for a GPU to provide sufficient threads;

thus, parallel matrix inversion is still infeasible. In contrast, the

IDW interpolation for a particular point is independent from the

interpolations for other points; thus, the computing task can be

compartmentalized easily into sub-tasks and processed

simultaneously.

2) Parallelization on GPU

Several procedures in cuFSDAF require information about

the neighborhood of each target pixel. For example, the IDW

interpolation requires the reflectance of its neighboring pixels

when estimating the value of the target pixel. In addition, the

homogeneity index (HI) is calculated to measure the

homogeneity of a fine pixel and is used for the distribution of

residuals. In cuFSDAF, HI equals the fraction of neighboring

pixels with the same land cover type, and this fraction is

calculated according to the land cover type of neighboring

pixels around the target. Moreover, the weighted average of the

predictions for neighboring pixels with similar spectral

characteristics is used to further mitigate errors in the fused

images. Although these procedures are computationally

intensive and require extensive computing time when dealing

with large images, they are all parallelizable, as the computation

for a given pixel is independent from the computations for other

pixels in these procedures. General-purpose parallel

frameworks, such as the CUDA by Nvidia, enable GPUs to

perform general-purpose computations using multiple threads

simultaneously [77, 78]. In cuFSDAF, all three procedures

mentioned above (i.e., IDW interpolation, HI calculation, and

error mitigation using neighboring pixels) are parallelized using

GPU through CUDA.

It is important to note that the parallel procedures in

cuFSDAF are separate from each other (Fig. 2). When a

procedure is finished (e.g., IDW interpolation), the GPU will

reset and all threads are re-assigned for the next procedure (e.g.,

HI calculation). Maintaining their independence makes them

portable for the parallelization of other spatiotemporal fusion

algorithms if they use similar operations as FSDAF, such as

those variants of FSDAF.

3) Adaptive domain decomposition

Domain decomposition is still necessary in cuFSDAF,

especially when dealing with large images and the GPU

memory is not sufficient to accommodate all of the data at once.

An adaptive domain decomposition (ADD) method is proposed

for cuFSDAF.

Compared with the original domain decomposition method

in FSDAF, ADD has two enhancements. First, the maximum

size of the sub-domain is determined automatically according

to the hardware specifications of the GPU (e.g., the available

video memory). The domain decomposition method in FSDAF

decomposes images into squares with an user-specified size

(Fig. 3a). The ADD in cuFSDAF uses a row-wise

decomposition strategy and divides the domain into rectangular

sub-domains with widths equal to the widths of the input

images. The maximum height of a sub-domain is determined

adaptively, such that a sub-domain contains as many pixels as

the GPU can handle at one time (Fig. 3b). In other words,

cuFSDAF can automatically adapt to GPUs with different

memory capacities and maximize the memory utilization and

computing capacity of the GPU. In general, the sub-domain size

determined by the ADD of cuFSDAF is much larger than the

size used in FSDAF, resulting in fewer sub-domains and,

therefore, quicker data transfer between the CPU and GPU.

The second enhancement is the adaptive determination of the

neighborhood size. For target pixels at the edges of sub-

domains, FSDAF extends extra ‘halo’ pixels [49] for the TPS

interpolator to preserve edge details [79]; thus, a sub-domain is

larger than the block of target pixels (Fig. 3a). However, this

strategy does not include sufficient neighboring halo pixels of

an edge pixel for other neighborhood-scope procedures besides

interpolation (e.g., HI calculation and error mitigation using

neighborhood pixels), which may undermine the fusion

accuracy for pixels on the edges of sub-domains.

A sub-domain generated by the ADD of cuFSDAF not only

holds the target pixels for processing but also holds valuable

neighboring pixels (i.e., halo pixels) for all neighborhood-scope

procedures (Fig. 3b). In cuFSDAF, the width of the

6

neighborhood is calculated adaptively, according to the

demands of neighborhood-scope calculations and unmixing

analysis. Two levels of neighborhood-scope calculations exist

in the cuFSDAF. The first level includes the IDW interpolator

and HI calculation (Fig. 4a). To ensure that all target pixels can

retrieve necessary neighborhood information, the width of the

neighborhood is the maximum between the searching radius of

IDW and the neighborhood width for HI calculation:

𝑤1 = 𝑚𝑎𝑥{𝑟𝐼𝐷𝑊, 𝑤𝐻𝐼}. (11)

A neighborhood with width 𝑤1 ensures accurate prediction

before error mitigation using neighborhood information.

The second level of neighborhood-scope calculation is to

mitigate errors. As shown in Fig. 4b, the width of the window

for searching similar pixels is 𝑤2 , and the potential farthest

similar pixel may be located at the edge of the neighborhood.

To ensure the accuracy of the first-level calculations for these

pixels, the total neighborhood width needs to expand 𝑤1 .

Therefore, the width of the neighborhood for neighborhood-

scope calculations should be the sum of the widths of the two

levels:

𝑤𝑛 = 𝑤1 + 𝑤2. (12)

Moreover, the total width of the neighborhood in cuFSDAF

may be larger than the neighborhood width for neighborhood-

scope calculations, because 𝑤𝑛 may not be enough to mitigate

the block effect effectively if the sub-domain size is too large.

The unmixing analysis in FSDAF is independent across sub-

domains, thus the pixels on different sides of a sub-domain edge

will have different temporal changes, despite belonging to the

same class of endmembers. Extending ‘halo’ pixels regarding

the sub-domain size can reduce such block effect resulted from

the unmixing analysis. The neighborhood width for unmixing

analysis is:

𝑤𝑢 = 𝑎𝑊, (13)

where 𝑊 is the height of sub-domains, and 𝑎 is the ratio of 𝑊

ranging from 0 to 1. Therefore, the width of the neighborhood

in cuFSDAF equals the maximum between the neighborhood

width for neighborhood-scope calculations and the width for

unmixing analysis:

𝑤 = 𝑚𝑎𝑥{𝑤𝑛, 𝑤𝑢}. (14)

III. EXPERIMENTS

The cuFSDAF was implemented using the C++

programming language and CUDA, and the source code is

publicly available at https://github.com/HPSCIL/cuFSDAF. To

provide the baselines for accuracy and efficiency assessments,

a serial FSDAF was implemented using C++, which can

generate the same results as the IDL-implemented FSDAF

(https://xiaolinzhu.weebly.com/open-source-code.html), but

1.6–2.0 times faster on a workstation computer equipped with

an Intel Xeon W-2133 CPU @ 3.6 GHz and 16 GB of main

memory. To evaluate the performance of cuFSDAF in large-

scale and long-term spatiotemporal data fusion tasks, one of the

newest deep-learning-based spatiotemporal fusion algorithms,

the sensor-bias driven spatio-temporal fusion model based on

Convolutional Neural Networks (BiaSTF) [30], was also used

in the experiments for comparison.

A. Testing dataset and environment

To assess the prediction accuracy and computational

performance of cuFSDAF, we selected three sets of satellite

images (Table I and Fig. 5) from the benchmark datasets for

spatiotemporal fusion provided by Li et al. [80], including the

AHB, Tianjin, and Daxing datasets. Each dataset includes eight

pairs of images, and each pair consists of a MODIS and a

Landsat image as the coarse and fine images. The time gap

between the first image pair and the last pair in each dataset is

around 1.5-2 years. The necessary atmospheric correction,

geometric transformation, resampling, and band rearrangement

were applied to these datasets. Considering the strip noises in

the short-wave infrared bands in the MODIS images [80], we

used four bands (i.e., blue, green, red, and near-infrared band of

Landsat 8 OLI and their corresponding bands of MODIS) from

these images.

Except for the unique parameters of cuFSDAF (i.e.,

searching radius and power for IDW), the same parameter

settings were used for both cuFSDAF and FSDAF. For BiaSTF,

we used the parameters recommended by the authors of

BiaSTF. In our experiments, we used the image pairs 1-5 and 8

for CNN training and predicted fine images on the dates of

image pairs 6 and 7. In cuFSDAF and FSDAF, a pair of images

on the base date, a coarse image on the prediction date, and a

classified image by the ISODATA classifier [81] (based on the

fine image on the base date) were used as the input to predict a

fine-resolution image on the prediction date. BiaSTF requires a

former image pair and a later image pair for a fusion image [30].

Therefore, we picked one pair closest to the fusion date as the

https://github.com/HPSCIL/cuFSDAF
https://xiaolinzhu.weebly.com/open-source-code.html

7

Fig. 5. Image pairs of three datasets. (a) Landsat image on June 21, 2015 in the AHB dataset. (b) Landsat image on October 1, 2018 in the Tianjin dataset. (c)

Landsat image on April 8, 2018 in the Daxing dataset. (d) MODIS image on June 21, 2015 in the AHB dataset. (e) MODIS image on October 1, 2018 in the

Tianjin dataset. (f) MODIS image on April 8, 2018 in the Daxing dataset.

TABLE I

TEST DATASETS FOR COMPARATIVE EXPERIMENTS.

 AHB Tianjin Daxing

Study area Ar Horqin Banner of Inner Mongolia province,

China

Tianjin municipality, China Daxing district of Beijing city, China

Area characteristics Heterogeneous area with phenological changes Urban area with phenological changes Area with land-cover changes

Dates of image pairs

2014/4/15 2014/9/6 2015/3/17 2015/5/4

2015/6/21 2015/7/7 2015/9/25 2016/4/20

2017/7/10 2017/9/12 2017/11/15

2018/2/3 2018/4/8 2018/10/1

2018/12/4 2019/1/21

2017/7/10 2017/9/12 2017/10/30

2017/11/15 2018/2/3 2018/4/8

2018/10/1 2018/12/4

Image size 2480×2480×4 1920×1920×4 1640×1640×4

TABLE II

HARDWARE AND SOFTWARE ENVIRONMENTS FOR EXPERIMENTS.

CPU Intel Xeon W-2133 @3.6GHz

GPU Nvidia GeForce GTX 1080ti

Main memory 12 GB

Video memory 11 GB

Operating system Windows 10 x64

CUDA version 9.1

TensorFlow-gpu version 1.9.0

input image pair for FSDAF/cuFSDAF, and picked two pairs

closest to the fusion date as input images for BiaSTF. For

instance, when generating the fusion image on July 7, 2015

using the AHB dataset, the image pairs on June 21, 2015 and

September 25, 2015 were input to BiaSTF, and the image pair

on June 21, 2015 were input to both FSDAF and cuFSDAF.

The resultant image was compared visually and

quantitatively with the corresponding true images. The

accuracy indices used in the experiments include the root mean

square error (RMSE), the correlation coefficient (CC), the

structure similarity (SSIM) [82], the spectral angle mapper

(SAM) [83] , and the erreur relative globale adimensionnelle de

synthese (ERGAS) [84]. Besides, the computing time of each

experiment was recorded as an indicator of computational

performance. Additional experiments were conducted using the

AHB dataset to compare the fusion result by TPS with that by

IDW, to assess the variation at the edges of sub-domains with

and without the proposed ADD method, and to compare

cuFSDAF and FSDAF when using input images with different

time intervals.

8

Fig. 6. Actual and fusion images for the AHB dataset: Landsat image on (a) July 7, 2015 and (e) September 25, 2015, fusion image by BiaSTF on (b) July 7,

2015 and (f) September 25, 2015, fusion image by FSDAF on (c) July 7, 2015 and (g) September 25, 2015, fusion image by cuFSDAF on (d) July 7, 2015 and

(h) September 25, 2015.

Fig. 7. Actual and fusion images for the Tianjin dataset: Landsat image on (a) October 1, 2018 and (e) December 4, 2018, fusion image by BiaSTF on (b)

October 1, 2018 and (f) December 4, 2018, fusion image by FSDAF on (c) October 1, 2018 and (g) December 4, 2018, fusion image by cuFSDAF on (d) October

1, 2018 and (h) December 4, 2018.

The same testing environments (hardware and software)

were used for all experiments. The experiments were conducted

on a workstation computer equipped with an Intel Xeon W-

2133 CPU @3.6GHz, and a Nvidia GeForce GTX 1080ti GPU

with 3,584 CUDA cores and 11 GB of video memory. Other

hardware and software information is shown in Table II.

B. Experimental results

9

Fig. 8. Actual and fusion images for the Daxing dataset: Landsat image on (a) April 8, 2018 and (e) October 1, 2018, fusion image by BiaSTF on (b) April 8,

2018 and (f) October 1, 2018, fusion image by FSDAF on (c) April 8, 2018 and (g) October 1, 2018, fusion image by cuFSDAF on (d) April 8, 2018 and (h)

October 1, 2018.

Fig. 6 shows the fusion results using the AHB dataset

including the actual Landsat image (Fig. 6a and Fig. 6e), fusion

images by BiaSTF (Fig. 6b and Fig. 6f), FSDAF (Fig. 6c and

Fig. 6g), and cuFSDAF (Fig. 6d and Fig. 6h). The results of the

Tianjin and Daxing datasets are shown in Fig. 7 and Fig.8;

quantitative indices for all three datasets are shown in Table III.

Both visual comparison and quantitative analysis indicated that

the accuracy of cuFSDAF is very similar to those of FSDAF

and BiaSTF.

The quantitative indices of FSDAF and cuFSDAF in Table

III vary slightly. Two reasons may have caused the variations.

The first reason is related to the unmixing analysis, in which

both FSDAF and cuFSDAF estimate the temporal changes

using linear regression. Compared with the sub-domains in

FSDAF, the sub-domains in cuFSDAF are larger. With the

expansion of the sub-domain size, the coarse pixels chosen for

linear regression in cuFSDAF changed, which resulted in the

accuracy differences. More specifically, the temporal changes

of fine pixels of the same class may vary, but the unmixing

analysis assumes their temporal changes are equal given that

they belong to the same sub-domain. Therefore, it is harder to

capture the local intra-class variations when using larger-sized

sub-domains. The second reason is related to the adaptive

domain decomposition (ADD) method of cuFSDAF, which

reduces the block effects and increases the accuracy at the edge

of sub-domains. As shown in Table IV, replacing TPS with

IDW did not result in obvious accuracy loss, which proved our

analysis. Compared with the Daxing dataset, the sub-domains

for the AHB and Tianjin dataset had larger sizes, so cuFSDAF

performed slightly worse than FSDAF due to more accuracy

loss resulted from intra-class variations. On the contrary,

cuFSDAF performed better for the Daxing dataset.

In cuFSDAF, the ADD method often generates larger-sized

sub-domains than those by the original FSDAF that may lead to

some accuracy loss, but it would bring more benefits. First, the

accuracy loss resulted from intra-class variations is slight and

acceptable. Second, larger sub-domain sizes result in quicker

data transfer between the CPU and GPU, which improves the

computational efficiency. Third, larger size helps reduce the

block effects. The larger sub-domain size, the fewer sub-

domains as well as slighter block effects.

The accuracies of FSDAF and cuFSDAF were as good as the

accuracy of BiaSTF in our experiments. Compared with the

datasets used by Li et al. [29], the time series of datasets we

used are sparser. For instance, the AHB dataset consists of 8

image pairs, and the time span of them is about 2 years. The

LGC dataset used by Li et al. [29] consists of 14 image pairs,

and the time span is about 1 year. Datasets with denser time

series help BiaSTF better capture reflectance changes, which

may result in better performance than FSDAF and FSDAF-like

methods. Nevertheless, in many cloudy regions, the time series

of satellite images may not be dense enough to show the

superiority of BiaSTF. Besides, the experiments by Li et al. [70]

showed that BiaSTF achieved higher accuracy than FSDAF

when predicting one fusion image using two image pairs as the

training data. For producing long-term time series by

spatiotemporal fusion technology, retraining BiaSTF for

predicting each fusion image is unlikely feasible because of the

large time consumption for model training.

10

Table III

ACCURACY ASSESSMENTS OF THE PREDICTED IMAGES BY BIASTF, FSDAF AND CUFSDAF. UNITS ARE REFLECTANCE. (RMSE = ROOT

MEAN SQUARE ERROR, CC = CORRELATION COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE MAPPER, ERGAS =

ERREUR RELATIVE GLOBALE ADIMENSIONNELLE DE SYNTHESE).

Dataset Date Model RMSE CC SSIM SAM ERGAS

AHB

2015/7/7

BiaSTF 0.042 0.700 0.757 0.201 1.501

FSDAF 0.028 0.752 0.813 0.158 0.852

cuFSDAF 0.031 0.722 0.783 0.174 0.933

2015/9/25

BiaSTF 0.056 0.668 0.737 0.227 2.605

FSDAF 0.063 0.702 0.701 0.199 3.126

cuFSDAF 0.064 0.699 0.698 0.200 3.128

Tianjin

2018/10/1

BiaSTF 0.043 0.775 0.769 0.313 2.980

FSDAF 0.037 0.786 0.781 0.354 2.270

cuFSDAF 0.039 0.744 0.755 0.373 2.364

2018/12/4

BiaSTF 0.028 0.824 0.862 0.226 1.329

FSDAF 0.034 0.775 0.805 0.282 1.840

cuFSDAF 0.035 0.768 0.796 0.296 1.909

Daxing

2018/4/8

BiaSTF 0.033 0.809 0.840 0.178 1.125

FSDAF 0.027 0.793 0.834 0.195 1.048

cuFSDAF 0.027 0.803 0.835 0.196 1.046

2018/10/1

BiaSTF 0.048 0.745 0.725 0.321 3.085

FSDAF 0.034 0.749 0.790 0.312 1.919

cuFSDAF 0.034 0.755 0.795 0.306 1.869

Fig. 9. Fusion images using FSDAF with different interpolators. (a) Fusion

image by FSDAF-TPS. (b) Fusion image by FSDAF-IDW.

TABLE IV

ACCURACY ASSESSMENT OF THE FUSION IMAGES BY FSDAF-TPS AND

FSDAF-IDW. UNITS ARE REFLECTANCE. (RMSE = ROOT MEAN SQUARE

ERROR, CC = CORRELATION COEFFICIENT, SSIM = STRUCTURE SIMILARITY,

SAM = SPECTRAL ANGLE MAPPER, ERGAS = ERREUR RELATIVE GLOBALE

ADIMENSIONNELLE DE SYNTHESE).

FSDAF-TPS

 RMSE CC SSIM SAM ERGAS

Band 1 0.047 0.737 0.788 0.138

3.126
Band 2 0.050 0.777 0.758 0.186

Band 3 0.062 0.771 0.707 0.261

Band 4 0.095 0.524 0.549 0.209

FSDAF-IDW

 RMSE CC SSIM SAM ERGAS

Band 1 0.047 0.737 0.788 0.138

3.126
Band 2 0.050 0.777 0.758 0.186

Band 3 0.062 0.771 0.707 0.261

Band 4 0.095 0.524 0.549 0.209

C. Additional experiments

In the first additional experiment on the AHB dataset, we

fused the image on September 25, 2015 using the original

FSDAF with TPS (FSDAF-TPS) and the modified FSDAF with

IDW (FSDAF-IDW) to evaluate the change induced by

replacing TPS with IDW. Both quantitative indices (Table IV)

and visual comparison (Fig. 9) indicate that the replacement of

TPS by IDW had no obvious impact on the accuracy of the

fusion results.

Fig. 10. Enlarged actual and fusion images from a sub-domain edge. (a) Landsat

image on September 25, 2015. (b) Fusion image by cuFSDAF. (c) Fusion image

by FSDAF-IDW-FDD. (d) Fusion image by FSDAF-IDW-ADD.

11

TABLE V

ACCURACY ASSESSMENT OF FUSION RESULTS BY FSDAF-IDW-FDD AND

FSDAF-IDW-ADD AT THE EDGES OF SUB-DOMAINS. UNITS ARE

REFLECTANCE (RMSE = ROOT MEAN SQUARE ERROR, CC = CORRELATION

COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE

MAPPER, ERGAS = ERREUR RELATIVE GLOBALE ADIMENSIONNELLE DE

SYNTHESE).

FSDAF-IDW-FDD

 RMSE CC SSIM SAM ERGAS

Band 1 0.051 0.740 0.774 0.143

3.591
Band 2 0.054 0.727 0.695 0.210

Band 3 0.072 0.723 0.662 0.315

Band 4 0.088 0.656 0.749 0.188

FSDAF-IDW-ADD

 RMSE CC SSIM SAM ERGAS

Band 1 0.051 0.739 0.777 0.143

3.577
Band 2 0.054 0.735 0.705 0.207

Band 3 0.072 0.734 0.685 0.309

Band 4 0.086 0.651 0.740 0.190

Table VI

ACCURACY ASSESSMENTS OF THE PREDICTED IMAGES BY FSDAF AND

CUFSDAF ON SEPTEMBER 25, 2015 USING DIFFERENT BASE PAIRS. UNITS ARE

REFLECTANCE. (RMSE = ROOT MEAN SQUARE ERROR, CC = CORRELATION

COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE

MAPPER, ERGAS = ERREUR RELATIVE GLOBALE ADIMENSIONNELLE DE

SYNTHESE).

2015/7/7

 RMSE CC SSIM SAM ERGAS

FSDAF 0.063 0.702 0.701 0.199 3.126

cuFSDAF 0.064 0.699 0.698 0.200 3.128

2015/6/21

 RMSE CC SSIM SAM ERGAS

FSDAF 0.066 0.612 0.633 0.236 3.175

cuFSDAF 0.067 0.602 0.621 0.241 3.194

2015/5/4

 RMSE CC SSIM SAM ERGAS

FSDAF 0.053 0.583 0.596 0.391 2.608

cuFSDAF 0.054 0.562 0.583 0.392 2.631

2015/3/17

 RMSE CC SSIM SAM ERGAS

FSDAF 0.060 0.460 0.412 0.550 3.347

cuFSDAF 0.061 0.456 0.404 0.548 3.375

The second additional experiment was to evaluate the

effectiveness of the proposed ADD strategy. To exclude the

differences caused by the TPS and IDW interpolators, we

compared the results of FSDAF with IDW using the fixed

domain decomposition (FSDAF-IDW-FDD) with those

obtained using the ADD strategy (FSDAF-IDW-ADD). Given

that the ADD method increases the size of sub-domains

significantly, the edges of sub-domains in FDD are no longer

the edges of sub-domains in ADD. To assess the performance

of ADD at the edges of sub-domains, the sizes of the sub-

domains of FSDAF-IDW-ADD were set manually, but the

neighborhood width was determined using the adaptive method

of ADD.

The quantitative comparisons between FSDAF-IDW-FDD

and FSDAF-IDW-ADD at the edges of the sub-domains are

presented in Table V, which shows that the accuracy was

improved slightly by ADD. For better observation of the visual

details, we enlarged an edge of the sub-domains in the fusion

images by FSDAF-IDW-FDD and FSDAF-IDW-ADD. We

also enlarged the same area in the Landsat image on September

25, 2015 and the fusion image by cuFSDAF for comparison

(Fig. 10). Compared with FSDAF-IDW-FDD (Fig. 10c), the

enlarged FSDAF-IDW-ADD image (Fig. 10d) shows that the

block effects at the edges of sub-domains were diminished

considerably by the ADD method. As mentioned above, the

pixels on different sides of a sub-domain edge will have

different temporal changes, despite belonging to the same class

of endmembers. Therefore, the block effects at the edges of the

sub-domains cannot be completely resolved if domain

decomposition is applied. In cuFSDAF, domain decomposition

can be avoided automatically when the memory of the GPU is

large enough to accommodate the entire spatial domain, in

which case the block effects can be removed completely (Fig.

10b).

The third additional experiment was to compare cuFSDAF

and FSDAF when using input images with different time

intervals. We predicted the fusion image on September 25, 2015

using different image pairs (i.e. July 7, 2015, June 21, 2015,

May 4, 2015, and March 17, 2015) in the AHB dataset as the

base pair of FSDAF/cuFSDAF. The time intervals of input

images varied from 2 to 6 months. The quantitative indices

(Table VI) showed that cuFSDAF achieved similar accuracies

as FSDAF.

D. Computational performance

Crucially, the experiments showed that compared with

FSDAF, cuFSDAF significantly reduced the computing time

and improved the computational efficiency (Fig. 11), while

maintaining the fusion accuracy (see Table III). We fused six

fusion images using the AHB, Tianjin, and Daxing datasets

(two images were fused in each dataset). Without data I/O,

cuFSDAF achieved speed-ups of 140.3–182.2 over the IDL-

implement FSDAF, and achieved speed-ups of 84.9–93.6 over

the C++-implemented FSDAF (Fig. 11a). The data

transmission between CPU and GPU often consumes extra

time, which may affect the computational performance of

cuFSDAF. For instance, the data transmission consumed 0.1,

0.1, and 0.3 second for the interpolating, calculating HI, and

error mitigation when predicting the fusion image on June 21,

2015 for the AHB dataset. Considering that FSDAF has no such

data transmission, the time of data transmission between CPU

and GPU was included in the computing time of cuFSDAF (Fig.

11).

We also recorded the computing time for each parallel

procedure in cuFSDAF and the C++-implemented FSDAF

(hereafter called FSDAF). First, the CUDA-enabled parallel

IDW in cuFSDAF was 1807.4, 1685.1, 1426.4, 1392.4, 1064.6,

and 1105.1 times faster than the TPS in FSDAF, for the six

fusion tasks respectively (Fig. 11b), which induced a significant

improvement in computational efficiency. Second, for

calculating HI, cuFSDAF was 34.7, 35.0, 23.7, 22.2, 16.7, and

17.5 times faster than FSDAF (Fig. 11c). Third, for error

mitigation using neighborhood, cuFSDAF was 79.3, 82.7, 92.1,

97.6, 91.2, and 102.0 times faster than FSDAF (Fig. 11d).

12

 Fig. 11. Computing time for FSDAF and cuFSDAF without data I/O. (a) Total time for IDL-implemented FSDAF, C++-implemented FSDAF and cuFSDAF.

(b) Time for TPS in C++-implemented FSDAF and CUDA-enabled IDW (cuIDW) in cuFSDAF. (c) Time for calculating homogeneity index in C++-

implemented FSDAF (HI) and cuFSDAF (cuHI). (d) Time for error mitigation using neighborhood in C++-implemented FSDAF (ME) and in cuFSDAF (cuME).

Fig. 12. Computing time and speed-ups of fusing the fusion image on September 25, 2015 using clipped AHB images with different image size. (a) Trend of

computing time and number of pixels for FSDAF. (b) Trend of computing time and number of pixels for cuFSDAF. (c) Speed-ups of cuFSDAF over FSDAF.

Fig. 13. Running time for BiaSTF, FSDAF, and cuFSDAF.

TABLE VII

HARDWARE AND SOFTWARE ENVIRONMENTS FOR FLEXIBILITY EXPERIMENTS.

Tianhe-2

supercomputer
Laptop computer

CPU
Intel Xeon E5-2660

@2.6GHz

Intel Core I5-7400

@3.00GHz

GPU Nvidia Tesla K80 Nvidia Geforce GTX 1050

Main memory 256 GB 8 GB

Video memory 11,441 MB 4 GB

Operating System Linux x86_64 Windows 10 x64

CUDA version CUDA 8.0 CUDA 10.2

13

TABLE VIII

COMPUTING TIME AND SPEED-UP FOR CUFSDAF WITHOUT DATA I/O ON THE

TIANHE-2 SUPERCOMPUTER AND THE LAPTOP COMPUTER.

Tianhe-2 supercomputer

Dataset Date
FSDAF

(seconds)

cuFSDAF

(seconds)
Speed-ups

AHB
2015/7/7 4260.2 62.7 67.9

2015/9/25 4240.1 60.7 69.9

Tianjin
2018/10/1 2457.4 35.1 70.0

2018/12/4 2468.9 35.0 70.5

Daxing
2018/4/8 1640.8 26.6 61.7

2018/10/1 1643.6 25.8 63.7

Laptop computer

Dataset Date
FSDAF

(seconds)

cuFSDAF

(seconds)
Speed-ups

AHB
2015/7/7 1230.1 38.7 31.8

2015/9/25 1243.7 35.6 34.9

Tianjin
2018/10/1 775.5 18.3 42.5

2018/12/4 742.9 16.9 44.1

Daxing
2018/4/8 535.1 12.3 43.4

2018/10/1 531.1 11.9 44.7

Notably, the speed-ups for interpolation and HI calculation

were demonstrably different for three datasets. The computing

time of these procedures in cuFSDAF was too short to show

differences among these three datasets, unlike FSDAF.

Although the extra time for data transmission between CPU and

GPU was also very short, it impacted the stability of speed-ups

in these procedures more significantly than error mitigation.

Besides, three procedures yielded different speedups using the

same dataset. For instance, the speed-ups for interpolation,

calculating HI, and error mitigation are 1807.4, 34.7, and 79.3

times when predicting the fusion image on July 7, 2015 for the

AHB dataset. First, we replaced the TPS interpolator with the

accelerated IDW interpolator, which greatly reduced the time

complexity of the interpolation. Therefore, the modification of

the interpolator achieved more significant speed-ups than other

parallel procedures. Second, the computing time of

interpolating and calculating HI in cuFSDAF was so short that

the time of data transmission affected the speed-ups for these

procedures.

We also conducted additional experiments to investigate the

trend of computing time in terms of the image size by clipping

the images from the AHB dataset into different sizes. As shown

in Fig. 12, the computing time of both FSDAF and cuFSDAF

matched the linear trend with the increasing number of pixels.

The speed-up of cuFSDAF over FSDAF remained stable when

the images were large enough (i.e., when the image size was

equal to or greater than 1250× 1250), in which case the

computing time of serial procedures and data transmission

between CPU and GPU only took neglectable proportion of the

total computing time.

Considering the distinct variations in algorithm principle, we

recorded the total running time of BiaSTF, FSDAF, and

cuFSDAF using the AHB, Tianjin, and Daxing dataset (Fig.

13). Because BiaSTF trained one model to predict two fusion

images for each dataset, the total running time of BiaSTF

includes the time of data processing, model training, and result

predicting for two fusion images. For FSDAF and cuFSDAF,

the total running time includes the running time for two fusion

images. In our experiments, cuFSDAF was 1332.8, 1346.5, and

1359.9 times faster than BiaSTF for the three datasets,

respectively. Considering cuFSDAF achieved similar accuracy

and much better efficiency compared with FSDAF and BiaSTF,

cuFSDAF is a better choice for large-scale and long-term

spatiotemporal fusion tasks.

E. Computational performance using various GPUs

To further assess the flexibility of cuFSDAF on GPUs with

different computing capacities, we conducted a series of

experiments using two other computers. The first computer was

a computing node of the Tianhe-2 supercomputer, equipped

with an Intel Xeon E5-2660 v3 CPU @2.6GHz, and a Nvidia

Tesla K80 GPU with 2,496 CUDA cores and 11,441 MB video

memory. The second was a laptop computer with an Intel Core

I5-7400 CPU @3.00GHz, and a Nvidia Geforce GTX 1050

GPU with 640 CUDA cores and 4 GB of video memory. The

hardware and software environments of these two computers

are shown in Table VII.

Compared with the C++-implemented FSDAF (hereafter

called FSDAF), the cuFSDAF significantly improved the

computational efficiency on both the Tianhe-2 supercomputer

and the laptop computer (Table VIII). Experimental results

showed that cuFSDAF performed well in various hardware and

software environments if a CUDA-enabled GPU was available.

The higher the computing capacity of the GPU, the higher the

performance of the cuFSDAF.

IV. CONCLUSION

Spatiotemporal data fusion algorithms are cost-efficient

methods of obtaining remote sensing images with high spatial

and temporal resolutions. Compared with other algorithms, the

flexible spatiotemporal data fusion (FSDAF) algorithm closely

captures the reflectance changes caused by land cover

conversions and requires only one fine-resolution image as

input. However, FSDAF faces several challenges when dealing

with large-scale and long-term land surface dynamics because

of its computational inefficiency. Moreover, block effects at the

edges of sub-domains are often inevitable in FSDAF fusion

results. This study proposes an enhanced FSDAF algorithm

parallelized using GPUs (cuFSDAF) to improve computational

performance without losing accuracy.

The main enhancements of cuFSDAF include the following:

(1) The TPS interpolator is replaced by an accelerated inverse

distance weighted (IDW) interpolator to reduce computational

complexity. (2) The algorithm is parallelized based on the

Compute Unified Device Architecture (CUDA), a widely used

parallel computing framework for GPUs. (3) An adaptive

domain decomposition method is proposed to improve the

fusion accuracy at the edges of sub-domains and to enable

GPUs with different computing capacities to deal with datasets

of any size.

The performance of cuFSDAF was evaluated through a

series of experiments using three sets of satellite images.

Compared with FSDAF, cuFSDAF significantly improved the

computational performance while maintaining the accuracy.

Also, cuFSDAF achieved similar accuracies compared to one

of the latest deep-learning-based algorithms, BiaSTF, and much

higher computational efficiency. cuFSDAF also performed

better than popular algorithms such as STARFM and ESTRFM

14

in areas with abrupt land cover changes in both accuracy and

computational efficiency (results not shown). Such an

improvement in computational efficiency greatly increases the

feasibility and applicability of cuFSDAF to applications for

large-scale long-term land surface dynamics and mass

production. The code and test data of cuFSDAF are freely

available at https://github.com/HPSCIL/cuFSDAF.

It is worth noting that besides IDW, other interpolators such

as bilinear and bicubic can also be used to replace the TPS

interpolator for FSDAF. In this study, IDW was used because

it is easy to implement and parallelize, and the experiments

showed that the accelerated IDW can achieve similar accuracy

as TPS for FSDAF. Other interpolators can also be used if they

can achieve equivalent or better accuracy than IDW.

The parallelization framework and strategies (e.g., adaptive

domain decomposition) proposed in our study not only can

greatly increase the computational efficiency of FSDAF, but

also can be used in other similar algorithms to enhance their

computational efficiency and eventually improve their

applicability in long-term and large-scale fusion tasks. For

example, the variants of FSDAF can easily adopt the proposed

parallelization framework and strategies to achieve much

higher efficiency because these FSDAF-like methods share

similar principles and procedures. Moreover, other

spatiotemporal fusion algorithms that include similar

procedures/operations as FSDAF can also benefit from the

proposed parallelization strategies. As a matter of fact, we have

also parallelized three other spatiotemporal fusion algorithms,

including STARFM [10], ESTARFM [13], and STNLFFM

[18], (the source codes and test datasets are freely available at

https://github.com/HPSCIL), which achieved significant

improvements of computational efficiency on various GPUs.

Also, this study has several implications for the future

development of spatiotemporal fusion. First, as shown in our

experiments, the parallel procedures in cuFSDAF showed

significant improvements in efficiency. Therefore, parallel

computing on GPUs is a promising solution to enhance the

efficiency of spatiotemporal fusion algorithms. Second, if the

input images are decomposed before calculation, algorithms

should take into account the multilevel neighborhood-scope

calculations to avoid block effects at the edges of sub-domains.

Enlarging the size of sub-domains and extending extra ‘halo’

pixels should be considered. Third, for large-scale and long-

term applications, algorithms should find a balance between

accuracy and efficiency. When dealing with large-scale and

long-term applications, the computational efficiency of the

algorithm is as important as its accuracy. When enhancing

existing algorithms, replacing computationally intensive

procedures with more efficient procedures may be advisable as

long as the variation in accuracy is acceptable.

ACKNOWLEDGMENT

 We sincerely thank Dr. Jun Li at Sun Yat-sen University for

kindly providing the software of BiaSTF.

REFERENCES:

[1] X. Gu and X. Tong, “Overview of China Earth

Observation Satellite Programs [Space Agencies],” IEEE

Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 113–129,

Sep. 2015.

[2] B. Zhukov, D. Oertel, F. Lanzl, and G. Reinhackel,

“Unmixing-based multisensor multiresolution image

fusion,” IEEE Trans. Geosci. Remote Sensing, vol. 37, no.

3, pp. 1212–1226, May 1999.

[3] M. Racault, S. Sathyendranath, and T. Platt, “Impact of

missing data on the estimation of ecological indicators

from satellite ocean-colour time-series,” Remote Sens.

Environ., vol. 152, pp. 15–28, Sep. 2014.

[4] X. Zhu, F. Cai, J. Tian, and T. K. Williams,

“Spatiotemporal fusion of multisource remote sensing

data: literature survey, taxonomy, principles, applications,

and future directions,” Remote Sens., vol. 10, no. 4, p. 527,

Mar. 2018.

[5] J. J. Settle and N. A. Drake, “Linear mixing and the

estimation of ground cover proportions,” Int. J. Remote

Sens., vol. 14, no. 6, pp. 1159–1177, Apr. 1993.

[6] R. Zurita-Milla, J. G. Clevers and M. E. Schaepman,

“Unmixing-based Landsat TM and MERIS FR data

fusion,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp.

453–457, Jul. 2008.

[7] M. Wu, Z. Niu, C. Wang, C. Wu, and L. Wang, “Use of

MODIS and Landsat time series data to generate high-

resolution temporal synthetic Landsat data using a spatial

and temporal reflectance fusion model,” J. Appl. Remote

Sens., vol. 6, no. 1, p. 063507, Mar. 2012.

[8] J. Amorós-López, L. Gómez-Chova, L. Alonso, L.

Guanter, R. Zurita-Milla, J. Moreno, and G. Camps-Valls,

“Multitemporal fusion of Landsat/TM and

ENVISAT/MERIS for crop monitoring,” Int. J. Appl.

Earth Obs., vol. 23, pp. 132–141, Aug. 2013.

[9] W. Zhang, A. Li, H. Jin, J. Bian, Z. Zhang, G. Lei, Z. Qin,

and C. Huang, “An enhanced spatial and temporal data

fusion model for fusing Landsat and MODIS surface

reflectance to generate high temporal Landsat-like data,”

Remote Sens., vol. 5, no. 10, pp. 5346–5368, Oct. 2013.

[10] F. Gao, J. Masek, M. Schwaller, and F. Hall, “On the

blending of the Landsat and MODIS surface reflectance:

predicting daily Landsat surface reflectance,” IEEE Trans.

Geosci. Remote Sensing, vol. 44, no. 8, pp. 2207–2218,

Aug. 2006.

[11] D. P. Roy, J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen,

and E. Lindquist, “Multi-temporal MODIS--Landsat data

fusion for relative radiometric normalization, gap filling,

and prediction of Landsat data,” Remote Sens. Environ.,

vol. 112, no. 6, pp. 3112–3130, Jun. 2008.

[12] T. Hilker, M. A. Wulder, N. C. Coops, J. Linke, G.

McDermid, J. G. Masek, F. Gao, and J. C. White, “A new

data fusion model for high spatial-and temporal-resolution

mapping of forest disturbance based on Landsat and

MODIS,” Remote Sens. Environ.,

vol. 113, no. 8, pp. 1613–1627, Aug. 2009.

[13] X. Zhu, J. Chen, F. Gao, X. Chen, and J. G. Masek, “An

enhanced spatial and temporal adaptive reflectance fusion

https://github.com/HPSCIL/cuFSDAF
https://github.com/HPSCIL

15

model for complex heterogeneous regions,” Remote Sens.

Environ., vol. 114, no. 11, pp. 2610–2623, Nov. 2010.

[14] T. Hwang, C. Song, P. V. Bolstad, and L. E. Band,

“Downscaling real-time vegetation dynamics by fusing

multi-temporal MODIS and Landsat NDVI in

topographically complex terrain,” Remote Sens. Environ.,

vol. 115, no. 10, pp. 2499–2512, Oct. 2011.

[15] Q. Weng, P. Fu and F. Gao, “Generating daily land surface

temperature at Landsat resolution by fusing Landsat and

MODIS data,” Remote Sens. Environ., vol. 145, pp. 55–

67, Apr. 2014.

[16] P. Wu, H. Shen, L. Zhang, and F.-M. Göttsche, “Integrated

fusion of multi-scale polar-orbiting and geostationary

satellite observations for the mapping of high spatial and

temporal resolution land surface temperature,” Remote

Sens. Environ., vol. 156, pp. 169–181, Jan. 2015.

[17] Q. Wang, G. A. Blackburn, A. O. Onojeghuo, J. Dash, L.

Zhou, Y. Zhang, and P. M. Atkinson, “Fusion of Landsat

8 OLI and Sentinel-2 MSI data,” IEEE Trans. Geosci.

Remote Sensing, vol. 55, no. 7, pp. 3885–3899, Jul. 2017.

[18] Q. Cheng, H. Liu, H. Shen, P. Wu, and L. Zhang, “A

spatial and temporal nonlocal filter-based data fusion

method,” IEEE Trans. Geosci. Remote Sensing,

vol. 55, no. 8, pp. 4476–4488, Aug. 2017.

[19] M. Belgiu and A. Stein, “Spatiotemporal image fusion in

remote sensing,” Remote Sens., vol. 11, no. 7, p. 818, Apr.

2019.

[20] A. Li, Y. Bo, Y. Zhu, P. Guo, J. Bi, and Y. He, “Blending

multi-resolution satellite sea surface temperature (SST)

products using Bayesian maximum entropy method,”

Remote Sens. Environ., vol. 135, pp. 52–63, Aug. 2013.

[21] H. Shen, X. Meng and L. Zhang, “An integrated

framework for the spatio-temporal-spectral fusion of

remote sensing images,” IEEE Trans. Geosci. Remote

Sensing, vol. 54, no. 12, pp. 7135–7148, Dec. 2016.

[22] J. Xue, Y. Leung, and T. Fung, “A Bayesian data fusion

approach to spatio-temporal fusion of remotely sensed

images,” Remote Sens., vol. 9, no. 12, p. 1310, Dec. 2017.

[23] Y. Ke, J. Im, S. Park, and H. Gong, “Downscaling of

MODIS One kilometer evapotranspiration using Landsat-

8 data and machine learning approaches,” Remote Sens.,

vol. 8, no. 3, p. 215, Mar. 2016.

[24] B. Huang and H. Song, “Spatiotemporal reflectance fusion

via sparse representation,” IEEE Trans. Geosci. Remote

Sensing, vol. 50, no. 10, pp. 3707–3716, Oct. 2012.

[25] B. Huang, H. Zhang, H. Song, J. Wang, and C. Song,

“Unified fusion of remote-sensing imagery: generating

simultaneously high-resolution synthetic spatial-temporal-

spectral earth observations,” Remote Sens. Lett., vol. 4, no.

6, pp. 561–569, Jun. 2013.

[26] H, Song and B. Huang, “Spatiotemporal satellite image

fusion through one-pair image learning”, IEEE Trans.

Geosci. Remote Sensing, vol. 51, no. 4, pp. 1883–

1896, Apr. 2013.

[27] B. Wu, B. Huang, and L. Zhang, “An error-bound-

regularized sparse coding for spatiotemporal reflectance

fusion,” IEEE Trans. Geosci. Remote Sensing, vol. 53, no.

12, pp. 6791–6803, Dec. 2015.

[28] V. Moosavi, A. Talebi, M. H. Mokhtari, S. R. F. Shamsi,

and Y. Niazi, “A wavelet-artificial intelligence fusion

approach (WAIFA) for blending Landsat and MODIS

surface temperature,” Remote Sens. Environ., vol. 169, pp.

243–254, Nov. 2015.

[29] H. Song, Q. Liu, G. Wang, R. Hang, and B. Huang,

“Spatiotemporal satellite image fusion using deep

convolutional neural networks,” IEEE J. Sel. Top. Appl.

Earth Observ. Remote Sens., vol. 11, no. 3, pp. 821–

829, Mar. 2018.

[30] Y. Li, J. Li, L. He, J. Chen, and A. Plaza, “A new sensor

bias-driven spatio-temporal fusion model based on

convolutional neural networks,”

Sci. China Inf. Sci., vol. 63, no. 4, p. 140302, Apr. 2020.

[31] X. Liu, C. Deng, S. Wang, G. Huang, B. Zhao, and P.

Lauren, “Fast and accurate spatiotemporal fusion based

upon extreme learning machine,” IEEE Geosci. Remote

Sensing Lett., vol. 13, no. 12, pp. 2039–2043, Dec. 2016.

[32] C. M. Gevaert and F. J. García-Haro, “A comparison of

STARFM and an unmixing-based algorithm for Landsat

and MODIS data fusion,” Remote Sens. Environ.,

vol. 156, pp. 34–44, Jan. 2015.

[33] Y. Rao, X. Zhu, J. Chen, and J. Wang, “An improved

method for producing high spatial-resolution NDVI time

series datasets with multi-temporal MODIS NDVI data

and Landsat TM/ETM+ images,” Remote Sens.,

vol. 7, no. 6, pp. 7865–7891, Jun. 2015.

[34] X. Zhu, E. H. Helmer, F. Gao, D. Liu, J. Chen, and M. A.

Lefsky, “A flexible spatiotemporal method for fusing

satellite images with different resolutions,” Remote Sens.

Environ., vol. 172, pp. 165–177, Jan. 2016.

[35] J. Quan, W. Zhan, T. Ma, Y. Du, Z. Guo, and B. Qin, “An

integrated model for generating hourly Landsat-like land

surface temperatures over heterogeneous landscapes,”

Remote Sens. Environ., vol. 206, pp. 403–423, Mar. 2018.

[36] Q. Wang and P. M. Atkinson, “Spatio-temporal fusion for

daily Sentinel-2 images,” Remote Sens. Environ., vol. 204,

pp. 31-42, Jan. 2018.

[37] Q. Wang, Y. Tang, X. Tong, and P. M. Atkinson, “Virtual

image pair-based spatio-temporal fusion,” Remote Sens.

Environ., vol. 249, p. 112009, Nov. 2020.

[38] L. Zhang, Q. Weng and Z. Shao, “An evaluation of

monthly impervious surface dynamics by fusing Landsat

and MODIS time series in the Pearl River Delta, China,

from 2000 to 2015,” Remote Sens. Environ., vol. 201, pp.

99–114, Sep. 2017.

[39] Y. Cai, S. Liu and H. Lin, “Monitoring the Vegetation

Dynamics in the Dongting Lake Wetland from 2000 to

2019 Using the BEAST Algorithm Based on Dense

Landsat Time Series,” Appl. Sci., vol. 10, p. 4209, Jun.

2020.

[40] H. Yang, C. Xi, X. Zhao, P. Mao, Z. Wang, Y. Shi, T. He,

and Z. Li, “Measuring the Urban Land Surface

Temperature Variations Under Zhengzhou City Expansion

Using Landsat-Like Data,” Remote Sens., vol. 12, p. 801,

Mar. 2020.

[41] J. Zhou, J. Chen, X. Chen, X. Zhu, Y. Qiu, H. Song, Y.

Rao, C. Zhang, X. Cao, and X. Cui, “Sensitivity of six

typical spatiotemporal fusion methods to different

influential factors: A comparative study for a normalized

difference vegetation index time series reconstruction,”

Remote Sens. Environ., vol. 252, p. 112130, Jan. 2021

16

[42] M. Liu, W. Yang, X. Zhu, J. Chen, X. Chen, L. Yang, and

E. H. Helmer, “An Improved Flexible Spatiotemporal

DAta Fusion (IFSDAF) method for producing high

spatiotemporal resolution normalized difference

vegetation index time series,” Remote Sens. Environ., vol.

227, pp. 74–89, Jun. 2019.

[43] X. Xie and A. Li, “Development of a topographic-

corrected temperature and greenness model (TG) for

improving GPP estimation over mountainous areas,”

 Agric. For. Meteorol., vol. 295, p. 108193, Dec. 2020.

[44] R. Li, M. Xu, Z. Chen, B. Gao, J. Cai, F. Shen, X. He, Y.

Zhuang, and D. Chen, “Phenology-based classification of

crop species and rotation types using fused MODIS and

Landsat data: The comparison of a random-forest-based

model and a decision-rule-based model,” Soil Tillage Res.,

vol. 206, p. 104838, Feb. 2021.

[45] C. Shi, X. Wang, M. Zhang, X. Liang, L. Niu, H. Han, and

X. Zhu, “A comprehensive and automated fusion method:

the enhanced flexible spatiotemporal data fusion model for

monitoring dynamic changes of land surface,” Appl. Sci.,

vol. 9, no. 18, p. 3693, Sep. 2019.

[46] X. Li, G. M. Foody, D. S. Boyd, Y. Ge, Y. Zhang, Y. Du,

and F. Ling, “SFSDAF: An enhanced FSDAF that

incorporates sub-pixel class fraction change information

for spatio-temporal image fusion,” Remote Sens. Environ.,

vol. 237, p. 111537, Feb. 2020.

[47] D. Guo, W. Shi, M. Hao, and X. Zhu, “FSDAF 2.0:

Improving the performance of retrieving land cover

changes and preserving spatial details,” Remote Sens.

Environ., vol. 248, p. 111973, Oct. 2020.

[48] P. Li, Y. Ke, D. Wang, H. Ji, S. Chen, M. Chen, M. Lyu,

and D. Zhou, “Human impact on suspended particulate

matter in the Yellow River Estuary, China: Evidence from

remote sensing data fusion using an improved

spatiotemporal fusion method,” Sci. Total Environ., vol.

750, p. 141612, Jan. 2021.

[49] Q. Guan and K. C. Clarke, “A general-purpose parallel

raster processing programming library test application

using a geographic cellular automata model,” Int. J.

Geogr. Inf. Sci., vol. 24, no. 5, pp. 695–722, Apr. 2010.

[50] C. Yang, M. Sun, K. Liu, Q. Huang, Z. Li, Z. Gui, Y. Jiang,

J. Xia, M. Yu, C. Xu, P. Lostritto, and N. Zhou,

“Contemporary computing technologies for processing

big spatiotemporal data,” in Space-Time Integration in

Geography and GIScience, M.-P. Kwan, D. Richardson,

D. Wang, and C. Zhou, Eds. Dordrecht: Springer

Netherlands, 2015, pp. 327–351.

[51] B. Zhang, Z. Chen, D. Peng, J. A. Benediktsson, B. Liu, L.

Zou, J. Li, and A. Plaza, “Remotely sensed big data:

evolution in model development for information

extraction [point of view],” Proc. IEEE, vol. 107, no. 12,

pp. 2294–2301, Dec. 2019.

[52] J. Chen, J. Chen, A. Liao, X. Cao, L. Chen, X. Chen, C.

He, G. Han, S. Peng, M. Lu, W. Zhang, X. Tong and J.

Mills, “Global land cover mapping at 30m resolution: a

POK-based operational approach,” ISPRS-J.

Photogramm. Remote Sens., vol. 103, pp. 7–27, May 2015.

[53] M. Schmitt, L. H. Hughes, C. Qiu and X. X. Zhu,

“SEN12MS–a curated dataset of georeferenced multi-

spectral Sentinel-1/2 imagery for deep learning and data

fusion,” ISPRS Ann. Photogramm. Remote Sens. Spatial

Inf. Sci., vol. IV-2/W7, pp. 153–160, Sep. 2019.

[54] P. Gong, H. Liu, M. Zhang, C. Li, J. Wang, H. Huang, N.

Clinton, L. Ji, W. Li, Y. Bai, B. Chen, B. Xu, Z. Zhu, C.

Yuan, H. Ping Suen, J. Guo, N. Xu, W. Li, Y. Zhao, J.

Yang, C. Yu, X. Wang, H. Fu, L. Yu, I. Dronova, F. Hui,

X. Cheng, X. Shi, F. Xiao, Q. Liu and L. Song, “Stable

classification with limited sample: transferring a 30-m

resolution sample set collected in 2015 to mapping 10-m

resolution global land cover in 2017,” Sci. Bull., vol. 64,

no. 6, pp. 370–373, Mar. 2019.

[55] B. Li, H. Zhao and Z. Lv, “Parallel ISODATA clustering

of remote sensing images based on MapReduce,” in 2010

International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery, Huangshan, China,

Oct. 2010, pp. 380–383.

[56] Z. Lv, Y. Hu, H. Zhong, J. Wu, B. Li, and H. Zhao,

“Parallel k-means clustering of remote sensing images

based on MapReduce,” in Web Information Systems and

Mining, vol. 6318, F. L. Wang, Z. Gong, X. Luo, and J.

Lei, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 162–170.

[57] Q. Guan, P. C. Kyriakidis, and M. F. Goodchild, “A

parallel computing approach to fast geostatistical areal

interpolation,” Int. J. Geogr. Inf. Sci., vol. 25, no. 8, pp.

1241–1267, Aug. 2011.

[58] X. Shi and F. Ye, “Kriging interpolation over

heterogeneous computer architectures and systems,”

 GISci. Remote Sens., vol. 50, no. 2, pp. 196–211, Apr.

2013.

[59] H. Zhu, Y. Cao, Z. Zhou, and M. Gong, “Parallel multi-

temporal remote sensing image change detection on

GPU,” in 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD

Forum, Shanghai, China, May 2012, pp. 1898–1904.

[60] C. Chen, Z. Chen, M. Li, Y. Liu, L. Cheng, and Y. Ren,

“Parallel relative radiometric normalisation for remote

sensing image mosaics,” Comput. Geosci., vol. 73, pp. 28–

36, Dec. 2014.

[61] B. C. Pijanowski, A. Tayyebi, J. Doucette, B. K. Pekin, D.

Braun, and J. Plourde, “A big data urban growth

simulation at a national scale: Configuring the GIS and

neural network based Land Transformation Model to run

in a High Performance Computing (HPC) environment,”

Environ. Modell. Softw., vol. 51, pp. 250–268, Jan. 2014.

[62] Q. Guan, X. Shi, M. Huang, and C. Lai, “A hybrid parallel

cellular automata model for urban growth simulation over

GPU/CPU heterogeneous architectures,” Int. J. Geogr. Inf.

Sci., vol. 30, no. 3, pp. 494–514, Mar. 2016.

[63] J. Lopez-Fandino, P. Quesada-Barriuso, D. B. Heras, and

F. Arguello, “Efficient ELM-based techniques for the

classification of hyperspectral remote sensing images on

commodity GPUs,” IEEE J. Sel. Top. Appl. Earth Observ.

Remote Sens., vol. 8, no. 6, pp. 2884–2893, Jun. 2015.

[64] L. Zhu, J. Liu, C. Qin, and A. Zhu, “A modular and

parallelized watershed modeling framework,” Environ.

Modell. Softw., vol. 122, p. 104526, Dec. 2019.

[65] J. Fung and S. Mann, “Computer vision signal processing

on graphics processing units,” in 2004 IEEE International

17

Conference on Acoustics, Speech, and Signal Processing,

Montreal, Que., 2004, vol. 5, pp. V-93.

[66] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.

Stone, and J. C. Phillips, “GPU computing,” Proc. IEEE,

vol. 96, no. 5, pp. 879-899, May 2008.

[67] J. Nickolls and W. J. Dally, “The GPU computing era,”

IEEE Micro, vol. 30, no. 2, pp. 56–69, Apr. 2010.

[68] M. E. Paoletti, J. M. Haut, X. Tao, J. P. Miguel, and A.

Plaza, “A new GPU implementation of support vector

machines for fast hyperspectral image classification,”

Remote Sens., vol. 12, no. 8, p. 1257, Apr. 2020.

[69] J. A. G. Jaramago, M. E. Paoletti, J. M. Haut, R.

Fernandez-Beltran, A. Plaza, and J. Plaza, “GPU parallel

implementation of dual-depth sparse probabilistic latent

semantic analysis for hyperspectral unmixing,” IEEE J.

Sel. Top. Appl. Earth Observ. Remote Sens., vol. 12, no. 9,

pp. 3156–3167, Sep. 2019.

[70] S. Bernabé, C. García, F. D. Igual, G. Botella, M. Prieto-

Matías, and A. Plaza, “Portability study of an OpenCL

algorithm for automatic target detection in hyperspectral

images,” IEEE Trans. Geosci. Remote. Sens., vol. 57, no.

11, pp. 9499–9511, 2019.

[71] S. Bernabé, G. Martín, J. M. P. Nascimento, J. M. Bioucas-

Dias, A. Plaza, and V. Silva, “Parallel hyperspectral coded

aperture for compressive sensing on GPUs,” IEEE J. Sel.

Top. Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp.

932–944, Feb. 2016.

[72] O. Dubrule, “Comparing splines and kriging,” Comput.

Geosci., vol. 10, no. 2–3, pp. 327–338, Jan. 1984.

[73] G. Donato and S. Belongie, “Approximate thin plate spline

mappings,” in European conference on computer vision,

2002, pp. 21–31.

[74] P. A. Hancock and M. Hutchinson, “Spatial interpolation

of large climate data sets using bivariate thin plate

smoothing splines,” Environ. Modell. Softw., vol. 21, no.

12, pp. 1684–1694, Dec. 2006.

[75] G. Y. Lu and D. W. Wong, “An adaptive inverse-distance

weighting spatial interpolation technique,” Comput.

Geosci., vol. 34, no. 9, pp. 1044–1055, Sep. 2008.

[76] G. Sharma, A. Agarwala and B. Bhattacharya, “A fast

parallel Gauss Jordan algorithm for matrix inversion using

CUDA,” Comput. Struct., vol. 128, pp. 31–37, Nov. 2013.

[77] J. Sanders and E. Kandrot, CUDA by example: an

introduction to general-purpose GPU programming,

portable documents. Addison-Wesley Professional, 2010.

[78] S. Cook, CUDA programming: a developer's guide to

parallel computing with GPUs. Newnes, 2012.

[79] L. Rodrigues, D. Leandro Borges, and L. Marcos

Gonalves, “A locally adaptive edge-preserving algorithm

for image interpolation,” in Proceedings. XV Brazilian

Symposium on Computer Graphics and Image Processing,

Fortaleza-CE, Brazil, 2002, pp. 300–305.

[80] J. Li, Y. Li, L. He, J. Chen, and A. Plaza, “Spatio-temporal

fusion for remote sensing data: an overview and new

benchmark,” Sci. China Inf. Sci., vol. 63, no. 4, p. 140301,

Apr. 2020.

[81] G. H. Ball and D. J. Hall, “ISODATA, a novel method of

data analysis and pattern classification,” Stanford research

inst Menlo Park CA, 1965.

[82] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,

“Image quality assessment: from error visibility to

structural similarity,” IEEE Trans. Image Process.,

vol. 13, no. 4, pp. 600–612, Apr. 2004.

[83] F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B.

Heidebrecht, A. T. Shapiro, P. J. Barloon, and A. F. H.

Goetz, “The spectral image processing system (SIPS)—

interactive visualization and analysis of imaging

spectrometer data,”

in AIP Conference Proceedings, Pasadena, California (U

SA), 1993, vol. 283, pp. 192–201.

[84] D. Renza, E. Martinez and A. Arquero, “A New Approach

to Change Detection in Multispectral Images by Means of

ERGAS Index,” IEEE Geosci. Remote Sens. Lett.,

vol. 10, no. 1, pp. 76–80, Jan. 2013.

