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Abstract 11 

An ensemble-based empirical regression algorithm is for the first time developed to retrieve 12 

total column water vapor from the Medium Resolution Spectral Imager (MERSI) near-infrared 13 

(NIR) channels onboard the Fengyun-3B (FY-3B) satellite. This retrieval method uses 14 

precipitable water vapor (PWV) data estimated from ground-based Global Positioning System 15 

(GPS) data to build a regression model in which the reflectance ratio observed from MERSI 16 

NIR absorption channels and the corresponding GPS PWV data are the parameters. The MERSI 17 

Level 1b data, specifically the three water vapor absorption channels centered at 905 nm, 940 18 

nm, and 980 nm are used to retrieve water vapor. PWV data observed from 256 ground-based 19 

GPS stations located in the western North America in 2016 are used as reference data for model 20 

development. Then, validation is performed with data obtained during 2017 ~ 2019 from both 21 

the western North America and Australia to assess the performance of the proposed algorithm. 22 

The results indicate that the new PWV results agree very well with ground-based PWV 23 
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reference data. The mean absolute percentage error (MAPE) for ensemble median PWV is 24 

16.72% ~ 36.74% in western North America and is 15.47% ~ 32.31% in Australia. The RMSE 25 

is 4.635 mm ~ 8.156 mm in western North America and is 5.383 mm ~ 8.900 mm in Australia. 26 

The weighted mean value using three-channel ratio transmittance has the best retrieval 27 

accuracy, with RMSE of 4.635 mm in western North America and 5.383 mm in Australia. This 28 

new PWV algorithm can retrieve PWV from FY-3B data with a higher accuracy for different 29 

regions. Different from conventional algorithms, no pre-observed information of atmospheric 30 

parameters is required in this model. 31 

Keywords: MERSI, Near Infrared, Precipitable Water Vapor, GPS 32 

33 

1. Introduction34 

Precipitable water vapor (PWV) is one of the most important natural greenhouse gases in the 35 

atmosphere (Held and Soden, 2000). It plays a key role in the weather (Soden et al., 2002), 36 

climate (Karl and Trenberth, 2003), and environment (Elliott and Gaffen, 1991) locally or 37 

globally, and impact the hydrological cycle and energy exchange (Raval and Ramanathan, 38 

1989; Sherwood et al., 2010). The variation of water vapor distribution is complex in space-39 

time dimension (Elgered et al., 1997), as the water vapor field varies significantly in the time 40 

domain within a period as short as one hour (Elgered et al., 2005) and also in the space domain, 41 

ranging from about 5 cm near the equator to less than 1 mm at the poles (Mockler, 1995). 42 

Therefore, water vapor observation with high spatial-temporal resolution is critical for climate 43 

and environmental research (Belward, 2016). Water vapor measurement has benefited from the 44 

development of remote sensing techniques, such as instrument improvement with better 45 

resolution, computational advances in storage, and processing capabilities (Hanssen et al., 46 

1999; Lindenbergh et al., 2008; Levin et al., 2014). Several operational products of water vapor 47 

were retrieved using radiative transfer models (Gao and Kaufman, 2003; Hu et al., 2011). 48 
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Validations against radiosonde show that the MOD05 data overestimated PWV with a scale 49 

factor from 1.14 to 1.20, while it overestimated by 7%–14% after comparison against GPS (Li 50 

et al., 2003). Inter-comparisons among multisource water vapor products show an 51 

underestimation of PWV by 10% to 30% for MERSI/FY-3C (Shi et al., 2018). Multi-sensory 52 

monitoring on water vapor makes it possible to continuously observe water vapor distribution 53 

with high spatial and temporal resolutions.  54 

 55 

The Chinese meteorological satellite system is established in 1988, with the launch of its first 56 

Fengyun (FY) satellite. The FY system is composed of both sun-synchronous satellites and 57 

geostationary satellites. Specifically, the FY-3 satellite series, as the second generation of the 58 

polar-orbiting meteorological satellites, aims to provide global air temperature, humidity 59 

profiles, and meteorological parameters for scientific research in climate change, climate 60 

diagnosis, and predictions (Dong et al., 2009; Yang et al., 2012). Four satellites in this series 61 

have been successfully launched into orbit, equipped with imaging and sounding instruments. 62 

Medium Resolution Spectral Imager (MERSI) onboard the FY-3 series, is a MODIS-like sensor 63 

with 20 bands in both visible and NIR channels with resolutions from 250 to 1000 m. Similar 64 

to MODIS NIR channels, MERSI also has 5 NIR water vapor related channels, including two 65 

window channels centered at 865 nm and 1030 nm, and three water vapor absorption channels 66 

centered at 905 nm, 940 nm, and 980 nm (Wang et al., 2012). Therefore, the MERSI NIR bands 67 

are suitable for water vapor observation over land in the daytime, under cloud-free conditions. 68 

 69 

Water vapor retrieval from NIR channels is based on the relationship between the transmittance 70 

of NIR channels and the amount of water vapor. Water vapor obtained from MERSI NIR is 71 

conventionally calculated using the simulation of radiative transfer models (Hu et al., 2011; 72 

Kaufman and Gao, 1992). Transmittance observed from MERSI NIR channels is converted into 73 
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column water vapor with the pre-calculated look-up table. The look-up table is computed using 74 

atmospheric transmittance code MODTRAN. The transmittance variations in the absorption 75 

bands is affected by the efficiency of radiative transfer model. Hence large uncertainties in 76 

water vapor estimation are expected (Warner and Ellingson, 2000). Evaluations of the 77 

MERSI/FY-3A PWV product over the northwest China against water vapor derived from the 78 

Global Positioning System (GPS) show that the mean absolute percentage error (MAPE) is 79 

22.83% (Gong et al., 2018b). Another validation on MERSI/FY-3A over the East Asia 80 

continent shows that the MAPE varies from 31.8% to 44.1% (Gong et al., 2018a). Validation 81 

analysis for MERSI/FY-3C in China suggests that the MERSI underestimates PWV by 10% to 82 

30% when compared to ground-based observations, with a mean bias of -4.68 mm (Shi et al., 83 

2018). In general, water vapor obtained from MERSI onboard of FY-3 satellites shows larger 84 

errors compared to other operational NIR water vapor products. For instance, our previous 85 

study showed that the RMSE of water vapor obtained from MERSI/FY-3A over the western 86 

North America region was 8.644 mm while the RMSE of water vapor product from the 87 

Moderate Resolution Imaging Spectroradiometer (MODIS) was 5.480 mm (He and Liu, 2019).  88 

 89 

The reason to retrieve water vapor from MERSI onboard of FY-3B in this study is twofold. 90 

First, previous studies showed that operational MERSI water vapor data obtained from FY-3A 91 

and FY-3C satellite missions had relatively poor accuracy. The retrieval errors are mainly from 92 

the miscalculation of transmittance variance from the radiative transfer model (Warner and 93 

Ellingson, 2000) and the uncertainties of atmospheric condition variation. Therefore, 94 

development of a new algorithm to improve water vapor retrieval from the MERSI sensor is 95 

needed. The empirical regression algorithm developed in this work shows that it can 96 

significantly reduce the bias of water vapor products. Secondly, currently no operational water 97 

vapor product has been published by the FY-3B satellite series administrator, which greatly 98 
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constrains applications in the user community.  With the use of the algorithm in this work, water 99 

vapor data can be retrieved from FY-3B data published online, which will benefit the FY-3 100 

series user community greatly. 101 

 102 

The  objectives of this study are: (1) to develop a new water vapor retrieval algorithm to retrieve 103 

water vapor from MERSI/FY-3B Level 1b data with a high accuracy. A large amount of 104 

collocated PWV data from GPS and transmittance data obtained from MERSI/FY-3B NIR 105 

water vapor absorption channels were employed to establish an ensemble-based regression 106 

model for the western North America region; (2) to validate the ensemble-based regression 107 

model using temporally and spatially independent reference PWV data. GPS PWV data 108 

observed in different time period from the western North America region and in Australia were 109 

employed to validate the performance of the new algorithm on a global scale; (3) to lay the 110 

algorithmic foundation for future work of retrieving and producing PWV data from the 111 

MERSI/FY-3B sensor for global uses. 112 

 113 

2 Dataset and Preprocessing 114 

2.1 Dataset 115 

Two types of data are included in this research, namely the MERSI/FY-3B reflectance data for 116 

water vapor retrieval and the GPS PWV data as the ground truth reference.  117 

2.1.1 MERSI L1B Data 118 

FY-3B satellite was successfully launched into a sun-synchronous polar orbit on November 4, 119 

2010, providing global coverage of earth surface observation every day. The MERSI onboard 120 

the FY-3B satellite has 20 channels in visible and infrared wavelength ranges. It has five NIR 121 

channels dedicated to water vapor observation, including three water vapor absorption channels 122 

centered at 905 nm, 940 nm, and 980 nm in the shortwave region and two window channels 123 
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centered at 865 nm and 1030 nm. A summary of the MERSI/FY-3B channels is listed in Table 124 

1 .  125 

 126 

Table 1 Summary of the spectral location and band information of MERSI/FY-3B for water vapor 127 

retrieval. 128 

Band 

Number 
Center  FWHM  

Spatial 

Resolution 

(m) 

Description 

16 865 nm 20 nm 1,000 Window Channel 

17 905 nm 20 nm 1,000 Absorption Channel 

18 940 nm 20 nm 1,000 Absorption Channel 

19 980 nm 20 nm 1,000 Absorption Channel 

20 1,030 nm 20 nm 1,000 Window Channel 

 129 

2.1.2 GPS Data 130 

(1) GPS PWV from SuomiNet 131 

The hourly PWV data from 256 stations in the SuomiNet GPS network 132 

(http://www.suominet.ucar.edu/data.html) CONUS sites are employed as ground truth of water 133 

vapor for model training and testing in this research. The GPS stations are located in the western 134 

North America and they have a variety of surface types, as shown in Figure 1.  135 
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 136 

Figure 1 Distribution map of 256 GPS stations located in the western North America. They are used for 137 

FY-3B water vapor calibration and validation analysis. The color bar represents the elevation of the 138 

GPS stations, in unit of meters. 139 

These stations are equipped with precise surveying quality, dual-frequency Trimble receivers 140 

and antennas (Ware et al., 2000), and the GPS data are processed to estimate precipitable water 141 

vapor using the BERNESE software developed at the University of Berne (Dach et al., 2015). 142 

BERNESE is a widely used software package for high-precision analysis of GPS as well as 143 

global navigation satellite system (GNSS) data. The GPS PWV data observed in 2016 are used 144 

for model development. In the model validation, GPS PWV data from 2017 to 2019 are used, 145 

in order to be independent of the data used for model development. 146 

 147 

(2) GPS Data from Geoscience Australia 148 

In addition, to evaluate the performance of this newly proposed retrieval algorithm outside the  149 

western North America, PWV observations obtained during 2017 to 2019 from 419 GPS 150 

stations are also used in this study for validation purpose, which are operated by the Geoscience 151 

Australia (ftp://ftp.ga.gov.au/geodesyoutgoing/gnss/products/troposphere/rapid/). The 152 

ftp://ftp.ga.gov.au/geodesyoutgoing/gnss/products/troposphere/rapid/
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Australian data are included in the validation process for two reasons. Firstly, Australia has a 153 

dense ground-based GPS observations. A lot of GPS-derived PWV can be used as reference. 154 

Secondly, Australia represents the south hemisphere’s weather and climate. Australian climate 155 

is sensitive to El Niño – Southern Oscillation (ENSO) and La Niña events, which are strongly 156 

related to water vapor distribution (Ashcroft et al., 2016; Wang et al., 2018).  157 

 158 

The GPS Zenith Tropospheric Delays (ZTDs) from the Australian network were also processed 159 

using the BERNESE GNSS software (Hu, 2017). These ZTD data are then converted to PWV 160 

using the surface pressure, temperature, and humidity profiles obtained from the European 161 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5 (Hersbach et al., 2020) with 162 

millimeter accuracy (Wang et al., 2018). The distribution map of these GPS stations is presented 163 

in Figure 2. 164 

 165 

Figure 2 Distribution map of 419 GPS stations located in Australia used for FY-3B water vapor 166 

validation analysis. The color bar represents the elevation of the GPS stations, in unit of meters. 167 

 168 
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2.2 Pre-Processing 169 

The first necessary step in the pre-processing of MERSI water vapor measurements is the 170 

screening of clouded pixels. Ideally, the cloud mask calculation algorithm should be concise 171 

and simple and provide enough information for the application effectively. A simple visible 172 

and IR window threshold approach is one of the most efficient ways to detect cloud (Ackerman 173 

et al., 1998). Because MERSI is a MODIS-like sensor, the cloud mask algorithm used for 174 

MODIS is adopted for MERSI cloud detection (Martins et al., 2002; King et al., 2003; Wind et 175 

al., 2010). The clear pixels have low radiance reflectance and high brightness temperature 176 

(Ackerman et al., 1998; Wind et al., 2010). Cloud condition is calculated at single-pixel 177 

resolution. To reduce the uncertainty caused by cloud, only confident clear pixels are further 178 

used in the following PWV retrieval training and testing procedures.  179 

 180 

3 Theoretical Background 181 

The measurement of the total column of atmospheric water vapor from the MERSI NIR channel 182 

is based on measuring its absorption effect on solar transmittance in the water vapor absorption 183 

channel. Based on molecular physics, the symmetric molecules, such as O3 and other gases in 184 

the atmosphere, do not affect the transmittance in this wavelength range (Roberts et al., 1976; 185 

Fraser and Kaufman, 1985; Berk et al., 1987). As shown in Figure 3, water vapor contributes 186 

to the majority of absorption on radiance around absorption channels at the three absorption 187 

channels centered at 905 nm, 940 nm, and 980 nm. Thus the MERSI is suitable for observing 188 

total column water vapor over land in the daytime and under cloud-free conditions. 189 
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 190 

Figure 3 Spectral transmission of atmosphere contents in the presence of water vapor at 0.6 g/cm2, 191 

considering H2O, O3 and the combined transmission. Computations were performed using MODTRAN 192 

4 model. The color bars at the bottom show the location of the MERSI water vapor absorption channels 193 

(black) and the window channels (blue) used in the retrieval study. 194 

As the transmittance cannot be measured directly, the differential absorption technique is 195 

applied while calculating transmittance from the three absorption channels (Kaufman and Gao, 196 

1992). The technique assumes that the transmittance of the solar energy approximately equals 197 

the ratio of one absorption channel and one or two window channels (King et al., 1992), 198 

therefore it will partially eliminate the effect of surface types on the reflectance (Kaufman and 199 

Gao, 1992). The transmittance of the 2-channel ratio method is described as:  200 

 
𝑇𝑖 ≅

𝐿𝑖
𝐿16

 （1） 

where 𝑇𝑖 is the transmittance of band 𝑖 (𝑖=17, 18 and 19). The 𝐿𝑖  denotes the reflectance of 201 

band 𝑖. 𝐿16 is reflectance in window channel 16. 202 

 203 

For surface type with complex and mixed reflectance spectrum, additional window channel will 204 

help to eliminate the effects from surface types (Kaufman and Gao, 1992). The 3-channel ratio 205 

function, including one absorption channel and two window channels, is written as: 206 
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𝑇𝑖 ≅

𝐿𝑖
(𝐶1𝐿16 + 𝐶2𝐿20)

 （2） 

where the coefficients 𝐶1 and 𝐶2 are prescribed as 0.8 and 0.2, respectively (Seemann et al., 207 

2006). 208 

 209 

Then, by applying an atmospheric transmittance model, such as High-Resolution Transmission 210 

(HITRAN) (Kaufman and Gao, 1992; Rothman et al., 2009) or  MODerate resolution 211 

atmospheric TRANsmission (MODTRAN) (Schläpfer et al., 1998; Berk et al., 2014), the 212 

relation between the measured radiance ratio and water vapor content could be simulated for a 213 

large variety of different atmospheric profiles (Hu et al., 2011). The relationship can be 214 

expressed by an exponential formula written as: 215 

 𝑇𝑤 = exp(𝛼 − 𝛽√𝑊∗) （3） 

where 𝑇𝑤 is the transmittance of water vapor, 𝛼 and 𝛽 are a function of surface type, and 𝑊∗is 216 

the water vapor along the sun-surface-sensor path (Kaufman and Gao, 1992).  217 

 218 

4 Methods 219 

In this study, an ensemble-based empirical regression algorithm is proposed in order to 220 

calculate water vapor with a higher precision from MERSI NIR channels.  221 

 222 

The retrieval scheme is illustrated in Figure 4. Firstly, the clouded pixels are defined as null 223 

(NAN) value, as the algorithm retrieves water vapor under clear conditions only. Secondly, the 224 

differential absorption method is utilized to calculate the transmittance of NIR channels for 225 

clear pixels. Subsequently, iterative optimization is performed using the bootstrap method to 226 

resample the training dataset for water vapor retrieval. The determination of the relationship 227 

between transmittance and water vapor content in three absorption channels from the MERSI 228 
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band centered at 905 nm, 940 nm, and 980 nm is the most critical step. The least-squares fitting 229 

method is used to establish the relationship between PWV and transmittance in the MERSI 230 

three water vapor absorption channels.   231 

 232 

Figure 4 Flow chart of the newly proposed method to retrieve PWV from NIR channels of the MERSI 233 

sensor onboard the FY-3B satellite. PWV estimated from ground-based GPS observations are used as 234 

reference values. The light brown boxes denote the input data, and the green boxes are the output results. 235 

4.1 Ensemble Analysis  236 

After getting the transmittance for clear pixels, a total of 6,036 pairs of valid points collected 237 

in 2016 over the western North America under cloud-free conditions are used for model 238 

development. Because regression modeling is highly data-dependent, the training dataset with 239 

uneven distribution in time might affect the performance of the retrieval results. As shown in 240 

Figure 5, summertime has more valid data observed than wintertime. Therefore, an ensemble-241 

based bootstrap resampling algorithm is introduced to balance the class distribution and reduce 242 

the potential effects of the training dataset (Batista et al., 2004). The approach is to divide the 243 

training dataset into several groups with slightly overlapping chunks and conduct regression 244 

fitting for all subsets concurrently (Efron, 1979; Wu, 1986). The multiple classifiers would have 245 

a better description of the relationship than a single one and would reduce bias and retrieval 246 

errors (Batista et al., 2004). In this procedure, the training data are resampled into 10 247 

independent subsets with 4,200 data points (around 70% of the total dataset used for model 248 

MERSI/FY-3B	L1B

Cloud	detection

Cloudy Reflectance	ratioClear

Regression Fitting

PWV

GPS	PWVNAN
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development). By applying this bootstrap method, the errors introduced from random sampling 249 

and the uncertainties caused by the possible channel drifting in the channel position are 250 

expected to be reduced (He and Liu, 2020).  251 

 252 

Figure 5 The number of data pairs of the collocated GPS and MERSI/FY-3B L1 NIR channel 253 

reflectance recorded in each day in each month of 2016 over the western North America under cloud 254 

free conditions. They are used for model development. The color bar denotes the number of data pairs. 255 

 256 

4.2 Training of Regression Algorithm 257 

A scatterplot of the relation between GPS observed water vapor and the transmittances of the 258 

three absorption channels of MERSI/FY-3B are shown in Figure 6. Band 18 centered at 940 259 

nm is the strongest absorption channel in the NIR wavelength range, with the maximum 260 

variation in transmittance. In the remaining two bands, band 17 (centered at 905 nm) is more 261 

sensitive to water vapor variation than band 19 (centered at 980 nm).  262 
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 263 

Figure 6 Example of scatterplot of the relationship between optical path (slant) column water vapor 264 

observed from GPS and the transmittance from three absorption channels of MERSI/FY-3B with 2-265 

channel ratio method. 266 

The selection of the exponential function is based on the examination of the numerical 267 

relationship between GPS observed PWV and the transmittance in the three absorption channels 268 

of MERSI. The least-squares fitting method is employed for each subset of data to model the 269 

relationship. After analyzing the characteristics of many types of functions, the exponential 270 

function description given below is selected to characterize the relationship: 271 

 𝑇𝑖 = 𝑎 ∗ exp(𝑏 ∗ 𝑊𝑖
∗) + 𝑐 （4） 

 
𝑊𝑖 = 𝑊𝑖

∗ (
1

cos 𝜃
+

1

cos𝜃0
)⁄  （5） 

where 𝑇𝑖 denotes the transmittance of MERSI NIR absorption channel 𝑖 (i=17, 18 and 19); 𝑊𝑖
∗ 272 

represents the water vapor content observed from channel 𝑖 in the slant viewing angle; the 273 

coefficients 𝑎, 𝑏, and 𝑐 are to be determined by the regression fitting; 𝑊𝑖 is the total column 274 

water vapor in the vertical view; 𝜃 and 𝜃0 represent the sensor zenith angle and solar zenith 275 

angle, respectively (Gao and Kaufman, 2003). It should be noted that the development of 276 

equation (4) is stimulated by the physical model in equation (3). The two equations have a kind 277 
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of similarity but they are different as shown by our results below. It is also worth mentioning 278 

that data points with a distance larger than three standard deviations of the fitting function are 279 

considered as outliers and are excluded from the training dataset.  280 

4.3 Optimization of Channel Selection 281 

Water vapor ensemble members can be retrieved from each absorption channel of the MERSI 282 

using the regression function. On the other hand, these absorption channels have different 283 

sensitivities under different levels of water vapor concentration. Band 18 (centered at 940 nm) 284 

is the strong absorption band, having the largest decrease in transmittance with the increase of 285 

water vapor. Band 19 (centered at 980 nm) is the weakest absorption band, having the least 286 

decrease in transmittance. Band 17 (centered at 905 nm) has a moderate sensitivity to water 287 

vapor variation. As a result, the transmittance in the three absorption channels can represent the 288 

magnitude of radiance attenuation resulting from water vapor. The weighted mean value of the 289 

three absorption channels, which is calculated based on the sensitivity of the transmittance, 290 

could obtain a more accurate retrieval of water vapor (Gao and Kaufman, 2003): 291 

 𝑊 = 𝑓17𝑊17 + 𝑓18𝑊18 + 𝑓19𝑊19 （6） 

where 𝑊17 , 𝑊18  and 𝑊19  are water vapor calculated from MERSI water vapor absorption 292 

bands 17, 18, and 19, respectively; the 𝑓17, 𝑓18 and 𝑓19 are normalized weighting parameters 293 

corresponding to each band and it is calculated as (Gao and Kaufman, 2003): 294 

 𝑓𝑖 =
𝜂𝑖

𝜂1 + 𝜂2 + 𝜂3
 （7） 

The weighting factor 𝜂𝑖 is subject to the sensitivity of transmittance in the absorption band and 295 

𝜂𝑖 is estimated from (Gao and Kaufman, 2003): 296 

 
𝜂𝑖 = |

𝑑𝑇𝑊𝑖

𝑑𝑊𝑖
| （8） 
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where 𝑑𝑇𝑊𝑖
 is the transmittance variation in one unit length; 𝑑𝑊𝑖 is the water vapor variation in 297 

one unit length. It is computed numerically from simulated curves of transmittance versus 298 

precipitable water vapor. 299 

 300 

One set of the ensemble members of the regression functions derived for water vapor retrieval 301 

in each absorption band and the corresponding weighting factor (𝑓i) of the three channels based 302 

on their sensitivity to transmittance are shown in Figure 7. The results confirm that band 19 is 303 

sensitive to atmospheric conditions with low water vapor content. It contributes the most to the 304 

weighted mean value when the PWV in the optical path is less than 8 cm. In the contrast, band 305 

18 is the most sensitive to the atmospheric conditions of high water vapor concentration (higher 306 

than 8 cm). 307 

 308 

Figure 7 (a) Example of regression functions from MERSI/FY-3B using 2-channel ratio method; (b) 309 

the corresponding normalized weighting factors of the three absorption channels based on their 310 

sensitivity to transmittance. 311 

 312 

5 Results 313 

With the above procedures discussed, new sets of ensemble members of water vapor can be 314 

estimated from MERSI/FY-3B using the regression functions for each absorption channel. The 315 
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weighted mean values could be further calculated from three channels based on their sensitivity 316 

to water vapor variation. The least-squares estimated parameters of the ensemble members are 317 

list in Table 1. 318 

 319 

Table 1 Least-squares estimated parameters of regression function 𝑇𝑖 = 𝑎 𝑒𝑥𝑝(𝑏𝑊𝑖
∗) + 𝑐  for 320 

ensemble members of MERSI/FY-3B water vapor absorption channels. The reference PWV data are 321 

from ground-based GPS observations over the western North America from January 1, 2016 to 322 

December 31, 2016. 323 

Training 

Dataset 
Band 

2-Channel Ratio Method 3-Channel Ratio Method 

a b c a b c 

1 

17 0.684 -0.055 0.315 0.618 -0.063 0.387 

18 0.583 -0.207 0.195 0.585 -0.211 0.199 

19 0.997 -0.026 0.000 1.000 -0.025 0.000 

2 

17 0.701 -0.053 0.296 0.624 -0.062 0.381 

18 0.582 -0.205 0.194 0.584 -0.209 0.198 

19 0.997 -0.026 0.000 1.000 -0.025 0.000 

3 

17 0.724 -0.050 0.272 0.642 -0.060 0.362 

18 0.583 -0.201 0.189 0.584 -0.205 0.194 

19 0.997 -0.026 0.000 1.000 -0.025 0.000 

4 

17 0.688 -0.053 0.308 0.618 -0.062 0.384 

18 0.581 -0.207 0.195 0.583 -0.210 0.200 

19 0.995 -0.025 0.000 0.998 -0.025 0.000 

5 

17 0.732 -0.050 0.265 0.643 -0.059 0.361 

18 0.583 -0.203 0.192 0.585 -0.207 0.197 

19 0.997 -0.026 0.000 1.000 -0.025 0.000 

6 

17 0.667 -0.056 0.331 0.606 -0.064 0.399 

18 0.581 -0.208 0.196 0.583 -0.211 0.201 

19 0.996 -0.026 0.000 0.999 -0.025 0.000 

7 

17 0.713 -0.052 0.284 0.643 -0.059 0.360 

18 0.584 -0.206 0.194 0.585 -0.210 0.199 

19 0.997 -0.026 0.000 1.000 -0.025 0.000 

8 

17 0.779 -0.046 0.216 0.689 -0.054 0.313 

18 0.581 -0.203 0.192 0.583 -0.206 0.196 

19 0.996 -0.026 0.000 1.000 -0.025 0.000 
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9 

17 0.734 -0.050 0.262 0.647 -0.059 0.356 

18 0.583 -0.208 0.195 0.585 -0.212 0.200 

19 0.997 -0.026 0.000 1.000 -0.025 0.000 

10 

17 0.761 -0.047 0.233 0.679 -0.055 0.323 

18 0.579 -0.202 0.192 0.580 -0.205 0.196 

19 0.996 -0.026 0.000 1.000 -0.025 0.000 

 324 

To evaluate the performance of the retrieval model that is developed based on the data of 2016, 325 

water vapor data obtained during 2017 to 2019 over the western North America and the 326 

Australia, representing two regions with different weather and climate conditions, are used in 327 

the validation process. Four statistic metrics are employed to evaluate the validation results. 328 

They are the mean absolute percentage error (MAPE), root mean squares error (RMSE), mean 329 

bias (MB), and coefficient of determination (R2). The MAPE is used to measure the retrieval 330 

accuracy, defined as: 331 

  𝐌𝐀𝐏𝐄 = 
𝟏

𝐧
∑ |

𝐏𝐖𝐕𝐑𝐒−𝐏𝐖𝐕𝐆𝐏𝐒

𝐏𝐖𝐕𝐆𝐏𝐒
| ∗ 𝟏𝟎𝟎%𝐧

𝐢=𝟏   （9） 

where 𝑛 denotes the number of data pairs; 𝑃𝑊𝑉𝑅𝑆 is the PWV column obtained from remote 332 

sensor i.e. the MERSI/FY-3B; 𝑃𝑊𝑉𝐺𝑃𝑆 is the PWV observed from GPS data. 333 

 334 

The RMSE is used to quantify the PWV differences between remote sensing PWV and 335 

reference data. It is defined as: 336 

 
 𝐑𝐌𝐒𝐄 = √

𝟏

𝐧
∑ (𝐏𝐖𝐕𝐑𝐒 − 𝐏𝐖𝐕𝐆𝐏𝐒)

𝟐𝐍
𝐢=𝟏   

（10） 

The MB is used to estimate the mean bias between the two sets of PWV data. It is defined as: 337 

  𝐌𝐁 =
𝟏

𝐧
∑ (𝐏𝐖𝐕𝐑𝐒 − 𝐏𝐖𝐕𝐆𝐏𝐒)
𝐧
𝐢=𝟏   （11） 

The R2 provides strength information between MERSI/FY-3B PWV and GPS PWV data. It is 338 

calculated as: 339 
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 𝐑𝟐 = [
∑ (𝐏𝐖𝐕𝐆𝐏𝐒−𝐏𝐖𝐕̅̅ ̅̅ ̅̅ �̅�𝐏𝐒)(𝐏𝐖𝐕𝐑𝐒−𝐏𝐖𝐕̅̅ ̅̅ ̅̅ �̅�𝐒)
𝐧
𝐢=𝟏

√∑ (𝐏𝐖𝐕𝐆𝐏𝐒−𝐏𝐖𝐕̅̅ ̅̅ ̅̅ �̅�𝐏𝐒)
𝟐(𝐏𝐖𝐕𝐑𝐒−𝐏𝐖𝐕̅̅ ̅̅ ̅̅ �̅�𝐒)

𝟐𝐧
𝐢=𝟏

]

𝟐

  （12） 

where the 𝑃𝑊𝑉̅̅ ̅̅ ̅̅
�̅�𝑆 and  𝑃𝑊𝑉̅̅ ̅̅ ̅̅

�̅�𝑃𝑆 denote the average values of remote sensing PWV and GPS 340 

PWV, respectively. 341 

 342 

5.1 Validation in western North America  343 

The first validation of the model is conducted using the water vapor data retrieved from the 344 

western North America. A total of 10,566 pairs of collocated PWV data observed during 2017 345 

to 2019 are employed. The performance of PWV retrieval results from both single absorption 346 

channel and the weighted mean value is discussed in details. 347 

 348 

5.1.1 Single Channel PWV Retrieval 349 

The scatterplot displayed in Figure 8 reveals that the MERSI water vapor estimated from each 350 

absorption channel has a high accuracy in all the comparison studies using transmittance 351 

calculated with both 2-channel ratio method and 3-channel ratio method. The MAPE is in the 352 

range of 16.50% to 36.74% and RMSE is in the range of 4.964 mm to 8.156 mm. For band 17, 353 

the PWV retrieved using 2-channel ratio transmittance performs slightly better than the data 354 

calculated using 3-channel ratio transmittance. In contrast, for both band 18 and band 19, the 355 

retrieval results have a better retrieval accuracy using 3-channel ratio transmittance. The 356 

improvement of the retrieval accuracy may be due to the addition of another window channel. 357 

The use of another window channel in transmittance calculation might reduce the spectroscopic 358 

uncertainties. Previous studies showed that additional window channel could mitigate the 359 

impact on the water vapor continuum caused by surface types (Gao and Kaufman, 2003). 360 
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 361 
Figure 8 Normalized frequencies of the ground-based GPS PWV data and water vapor products 362 

retrieved from MERSI/FY-3B over the western North America using 2-channel ratio transmittance 363 

(upper panel, a total of 10,566 data points) and 3-channel ratio transmittance (lower panel, a total of 364 

10,566 data points) over the period January 1, 2017 to December 31, 2019. The ensemble median is 365 

considered as the value of water vapor content calculated for corresponding pixel. The color bar 366 

represents the sample size. 367 

 368 
Among the three channels, band 18 performs the best with the smallest RMSE of 4.964 mm 369 

and the MAPE of 16.51% while using 3-channel ratio transmittance. Band 19 has the lowest 370 

accuracy with RMSE of 8.156 mm and MAPE of 36.74%.  371 

 372 

5.1.2 Weighted Mean PWV of Three Channels 373 

The weighted mean PWV validation results calculated from the three absorption channels with 374 

both 2-channel ratio transmittance and 3-channel ratio transmittance are presented in Figure 9. 375 

Both results have a better accuracy than single-channel PWV retrieval, with RMSE of 5.157 376 

mm using 2-channel ratio transmittance, and RMSE of 4.635 mm using 3-channel ratio 377 
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transmittance. The results using 3-channel ratio transmittance have a MAPE of 16.72%, smaller 378 

than those calculated with 2-channel ratio transmittance.  379 

 380 

Figure 9 Normalized frequencies of the ground-based GPS PWV data and weighted mean PWV 381 

retrieved from MERSI/FY-3B over the western North America using 2-channel ratio transmittance and 382 

3-channel ratio transmittance (a total of 10,566 data points) over the period January 1, 2017 to December 383 

31, 2019. The ensemble median is considered as the value of water vapor content calculated for 384 

corresponding pixel. The color bar represents the sample size. 385 

 386 

5.2 Validation in Australia  387 

To further investigate the applicability of the algorithm in other regions of the world, PWV are 388 

retrieved from MERSI/FY-3B observed over Australia during 2017 to 2019 using the same set 389 

of coefficients shown in Table 2, which are developed using the 2016 data collected in the 390 

western North America.  The retrieved PWV are then validated against collocated ground-based 391 

GPS PWV observations. A total of 15,600 collocated data pairs under clear conditions are 392 

observed over 419 GPS stations during the period of 2017 to 2019. The ensemble median is 393 

used to represent the corresponding retrieval value for each pixel. 394 

 395 
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Validation results in  396 

 397 

Figure 10 show that all PWV results retrieved from MERSI/FY-3B agree well with GPS PWV. 398 

The MAPE is in the range of 15.47% ~ 32.31%, while the RMSE is in the range of 5.383 mm 399 

~ 8.900 mm. The weighted mean PWV have a better agreement with GPS than those retrieved 400 

from a single absorption channel. Moreover, the data retrieved using 3-channel ratio 401 

(b)
(a)

(g)
(f)

(e)
(c)

(d)

(h)
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transmittance performs better than those calculated using 2-channel ratio transmittance. As 402 

shown in  403 

 404 

Figure 10, the weighted mean PWV retrieved using 3-channel ratio transmittance has the best 405 

accuracy, with MAPE of 15.47% and RMSE of 5.383 mm. The observation from band 19 using 406 

2-channel ratio transmittance has the worst retrieval accuracy, with MAPE of 32.31% and 407 

RMSE of 8.900 mm. 408 

(b)
(a)

(g)
(f)

(e)
(c)

(d)

(h)
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 409 

 410 
Figure 10 Normalized frequencies of the ground-based GPS PWV data and weighted mean PWV 411 

retrieved from MERSI/FY-3B over Australia over the period January 1, 2017 to December 31, 2019 (a 412 

total of 15,600 data points) (a) weighted mean PWV estimated using 2-channel ratio transmittance; (b) 413 

weighted mean PWV estimated using 3-channel ratio transmittance; (c) PWV retrieved from band 17 414 

using 2-channel ratio transmittance; (d) PWV retrieved from band 18 using 2-channel ratio 415 

transmittance; (e) PWV retrieved from band 19 using 2-channel ratio transmittance; (f) PWV retrieved 416 

from band 17 using 3-channel ratio transmittance; (g) PWV retrieved from band 18 using 3-channel 417 

ratio transmittance; (h) PWV retrieved from band 19 using 3-channel ratio transmittance. The ensemble 418 

median is considered as the value of water vapor content calculated for corresponding pixel. The color 419 

bar represents the sample size. 420 

 421 
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6 Discussion 422 

6.1 Stability of the algorithm  423 

An ensemble-based empirical regression algorithm for water vapor retrieval from MERSI/FY-424 

3B NIR channels has been developed with the observation data recorded in 2016 in the western 425 

North America. To assess the model’s performance, we used temporally and spatially 426 

independent datasets in the model validation. The validation data were collected in the period 427 

2017-2019 from both western North America and Australia. The water vapor distribution and 428 

variation of the Australia in the south hemispehre are very different from those in the western 429 

North America in the north hemisphere. The model test period 2017-2019 is also different from 430 

the model building period 2016. Therefore such an assessment is expected to objectively have 431 

a full evaluation the model’s performance in both time and space domains. 432 

 433 

A total of 10,566 pairs of collocated data points from the western North America and 15,600 434 

pairs of data points from Australia are employed for validation analysis. The results show that 435 

all data records retrieved from MERSI/FY-3B have good agreements with reference GPS PWV 436 

reference data, indicating that the algorithm provides an effective and accurate way for water 437 

vapor retrieval. Moreover, no obvious difference in MAPE or RMSE has been found in the 438 

results , showing that the model is spatial-independent and temporal-independent and that the 439 

coefficients derived from the model are applicable on a global scale.   440 

 441 

To study the temporal independency of the algorithm, the annual validation results for the 442 

period of 2017 ~ 2019 are summarized in Table 3 Annual validation results of the weighted mean 443 

PWV retrieved  for both western North America and Australia region. For retrieval over western 444 

North America, the MAPE is in the range of 15.98% to 17.16%, and the RMSE is in the range 445 

of 3.764 mm to 6.493 mm. For retrieval over Australia, the MAPE is between 13.77% and 446 
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18.09%, and the RMSE is between 4.580 mm and 6.459 mm. Although the results in both sites 447 

show relatively good agreement with ground truth, an increase of retrieval error was revealed, 448 

with RMSE increase year by year. This is possibly caused by channel drifting.  449 

 450 

Table 3 Annual validation results of the weighted mean PWV retrieved using 3-channel ratio 451 

transmittance compared against GPS observed PWV. The validation data were obtained from western 452 

North America and Australia for the period 2017 to 2019. 453 

Region 
Data 

Points 
Year 

3-Channel Ratio 

Slope Off-set MAPE 
RMSE 

(mm) 

MB 

(mm) 
R2 

Western 

North 

America 

5964 2017 0.866 2.091 16.86% 3.764 0.429 0.865 

2187 2018 0.983 0.643 17.16% 4.311 -0.318 0.808 

2415 2019 0.934 3.099 15.98% 6.493 -1.923 0.555 

Australia 

5843 2017 0.938 2.230 13.77% 4.580 -1.005 0.770 

5420 2018 0.835 5.128 15.21% 5.236 -1.661 0.627 

4337 2019 0.893 6.183 18.09% 6.459 -4.046 0.614 

 454 

In general, the water vapor retrieved using this newly developed ensemble-based regression 455 

algorithm is spatial and temporal independent. The algorithm coefficients are derived from a 456 

series of generally independent subsets of training data with slight overlapping. The multiple 457 

subsets have balanced the class distribution and reduced the potential sampling errors. 458 

Therefore, the ensemble median is bias-robust. 459 

 460 

6.2 Comparison with previous studies  461 

In previous studies, only a limited volume of MERSI/FY-3 series data have been used to 462 

retrieve water vapor and their results have shown large retrieval errors compared with ground-463 

based PWV observation. For instance, recent work by Gong et al. (2018a) showed that the 464 

MAPE of MERSI varied in the range of 31.8–44.1% in the East Asian. In the work by Gong et 465 

al. (2018b), the MAPE of MERSI compared with GPS water vapor is 22.83% when using North 466 
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China’s data. In general, the accuracy of water vapor retrieved from MERSI is worse than other 467 

water vapor products with NIR sensors, such as MODIS and MERIS (He and Liu, 2019). Using 468 

this newly proposed ensemble-based empirical regression algorithm, our study shows that the 469 

water vapor data retrieved from MERSI have a good agreement with the reference GPS data, 470 

with MAPE of 16.72% and RMSE of 4.635 mm in western North America, and MAPE of 471 

15.47% and RMSE of 6.092 mm in Australia. 472 

 473 

Conventional water vapor retrieval methods use a pre-calculated look-up table generated from 474 

radiative transfer models (Hu et al., 2011). In some cases, such as the MERSI/FY-3B sensor, 475 

the conventional methods can show significant bias. In this situation the empirical algorithm of 476 

this paper can be used operationally to estimate water vapor directly with a significantly 477 

reduced bias. It can therefore contribute to greater accuracy in global water vapor estimation. 478 

 479 

7 Conclusion 480 

Despite many studies on MERSI onboard of FY-3 series, the accuracy of water vapor retrieval 481 

methods is still low. In this study, our conclusions are: 482 

(1) an ensemble-based empirical regression retrieval algorithm is for the first time proposed to 483 

retrieve PWV from the NIR channels of MERSI sensor onboard the Chinese FY-3B satellite. 484 

This algorithm uses real-world data to mathematically establish the relationship between the 485 

transmittance and PWV. Ensemble analysis with the bootstrap method is employed to resample 486 

the model training dataset into 10 independent training subsets. The ensemble members are 487 

expected to have biases randomly so that the ensemble median could be bias-free.  488 

 489 

(2) the new method has been validated using independent GPS PWV data collected during 2017 490 

to 2019 in both western North America and Australia. Water vapor data from MERSI/FY-3B 491 
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satellite are calculated from both each of single absorption channels and the weighted mean of 492 

three channels. Validation results show that the PWV retrieved from both western North 493 

America and Australia agree well with ground-based GPS PWV observations.  494 

 495 

(3) the weighted mean PWV calculated using 3-channel ratio transmittance performs the best, 496 

with MAPE of 16.72% and RMSE of 4.635 mm in the western North America, and MAPE of 497 

15.47% and RMSE of 5.383 mm in Australia.  498 

 499 

(4) The differences of the two sets of in MAPE and RMSE for western North America and 500 

Australia are small. It is reasonable to state that our proposed model is spatially independent. It 501 

has the potential to be applied to other global regions as well.  502 

 503 

(5) the annual accuracy of the validated PWV is reasonably small over the period 2017-2019 504 

though the model’s coefficients are estimated based on dataset of 2016. It is reasonable to state 505 

that this algorithm is temporally independent. However the RMSE of the validation results also 506 

shows a slight increase trend over the years at both western North America and Australia. This 507 

is probably because of the channel drifting of MERSI sensor. The channel drifting will result 508 

in a change of transmittance observed in the water vapor absorption channels and then affect 509 

the retrieval accuracy. Therefore, it is suggested to calibrate the MERSI sensor regularly in 510 

order to maintain the PWV retrieval accuracy.  511 

 512 
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 683 

List of Figure Captions 684 

Figure 1 Distribution map of 256 GPS stations located in the western North America. They are 685 

used for FY-3B water vapor calibration and validation analysis. The color bar represents 686 

the elevation of the GPS stations, in unit of meters. 687 
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Figure 2 Distribution map of 419 GPS stations located in Australia used for FY-3B water vapor 688 

validation analysis. The color bar represents the elevation of the GPS stations, in unit 689 

of meters. 690 

Figure 3 Spectral transmission of atmosphere contents in the presence of water vapor at 0.6 691 

g/cm2, considering H2O, O3 and the combined transmission. Computations were 692 

performed using MODTRAN 4 model. The color bars at the bottom show the location 693 

of the MERSI water vapor absorption channels (black) and the window channels (blue) 694 

used in the retrieval study. 695 

Figure 4 Flow chart of the newly proposed method to retrieve PWV from NIR channels of the 696 

MERSI sensor onboard the FY-3B satellite. PWV estimated from ground-based GPS 697 

observations are used as reference values. The light brown boxes denote the input data, 698 

and the green boxes are the output results. 699 

Figure 5 The number of data pairs of the collocated GPS and MERSI/FY-3B L1 NIR channel 700 

reflectance recorded in each day in each month of 2016 over the western North America 701 

under cloud free conditions. They are used for model development. The color bar 702 

denotes the number of data pairs. 703 

Figure 6 Example of scatterplot of the relationship between optical path (slant) column water 704 

vapor observed from GPS and the transmittance from three absorption channels of 705 

MERSI/FY-3B with 2-channel ratio method. 706 

Figure 7 (a) Example of regression functions from MERSI/FY-3B using 2-channel ratio 707 

method; (b) the corresponding normalized weighting factors of the three absorption 708 

channels based on their sensitivity to transmittance. 709 

Figure 8 Normalized frequencies of the ground-based GPS PWV data and water vapor products 710 

retrieved from MERSI/FY-3B over the western North America using 2-channel ratio 711 

transmittance (upper panel, a total of 10,566 data points) and 3-channel ratio 712 

transmittance (lower panel, a total of 10,566 data points) over the period January 1, 713 

2017 to December 31, 2019. The ensemble median is considered as the value of water 714 

vapor content calculated for corresponding pixel. The color bar represents the sample 715 

size. 716 

Figure 9 Normalized frequencies of the ground-based GPS PWV data and weighted mean 717 

PWV retrieved from MERSI/FY-3B over the western North America using 2-channel 718 

ratio transmittance and 3-channel ratio transmittance (a total of 10,566 data points) over 719 
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the period January 1, 2017 to December 31, 2019. The ensemble median is considered 720 

as the value of water vapor content calculated for corresponding pixel. The color bar 721 

represents the sample size. 722 

Figure 10 Normalized frequencies of the ground-based GPS PWV data and weighted mean 723 

PWV retrieved from MERSI/FY-3B over Australia over the period January 1, 2017 to 724 

December 31, 2019 (a total of 15,600 data points) (a) weighted mean PWV estimated 725 

using 2-channel ratio transmittance; (b) weighted mean PWV estimated using 3-channel 726 

ratio transmittance; (c) PWV retrieved from band 17 using 2-channel ratio 727 

transmittance; (d) PWV retrieved from band 18 using 2-channel ratio transmittance; (e) 728 

PWV retrieved from band 19 using 2-channel ratio transmittance; (f) PWV retrieved 729 

from band 17 using 3-channel ratio transmittance; (g) PWV retrieved from band 18 730 

using 3-channel ratio transmittance; (h) PWV retrieved from band 19 using 3-channel 731 

ratio transmittance. The ensemble median is considered as the value of water vapor 732 

content calculated for corresponding pixel. The color bar represents the sample size. 733 

 734 




