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Identifying the Space-time Patterns of COVID-19 Risk and Their Associations with 

Different Built Environment Features in Hong Kong 

Abstract 

Identifying the space-time patterns of areas with a higher risk of transmission and the associated 

built environment and demographic characteristics during the COVID-10 pandemic is critical for 

developing targeted intervention measures in response to the pandemic. This study aims to 

identify areas with a higher risk of COVID-19 transmission in different periods in Hong Kong 

and analyze the associated built environment and demographic factors using data of individual 

confirmed cases. We detect statistically significant space-time clusters of COVID-19 at the 

Large Street Block Group (LSBG) level in Hong Kong between January 23 and April 14, 2020. 

Two types of high-risk areas are identified (residences of and places visited by confirmed cases) 

and two types of cases (imported and local cases) are considered. The demographic and built 

environment features for the identified high-risk areas are further examined. The results indicate 

that high transport accessibility, dense and high-rise buildings, a higher density of commercial 

land and higher land-use mix are associated with a higher risk for places visited by confirmed 

cases. More green spaces, higher median household income, lower commercial land density are 

linked to a higher risk for the residences of confirmed cases. The results in this study not only 

can inform policymakers to improve resource allocation and intervention strategies but also can 

provide guidance to the public to avoid conducting high-risk activities and visiting high-risk 

places. 
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1 Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has severely threatened global public 

health since it was first identified in December 2019. Due to its high contagiousness and rapid 

spread, COVID-19 has officially been declared a pandemic by the World Health Organization 

(WHO) on March 11, 2020 (World Health Organization, 2020).  

During a pandemic, prompt and accurate space-time surveillance of disease are critical for 

detecting outbreaks and identifying areas with high transmission risks (Lai et al., 2015). As the 

transmission risk of an infectious disease varies over space and time, monitoring the space-time 

trends of disease occurrence can highlight the dynamic patterns in risk and help mitigate the 

spread of diseases. In recent decades, analysis of the spatiotemporal patterns of diseases has 

become an increasingly common task in the fields of epidemiology, public health and geography 

(Robertson and Nelson, 2010). The main objectives of analyzing the space-time patterns of a 

disease are identifying disease clusters, explaining the spatial patterns of the clusters, and 

predicting the transmission risk of the disease (Caprarelli and Fletcher, 2014).  

Existing approaches to exploring the space-time patterns and detecting the high-risk areas of 

infectious disease include space-time clustering, density estimation and spatial statistics. For 

instance, local indicators of spatial association (LISA) were used to map clusters and detect hot 

spots of hand-foot-mouth disease in Beijing, China (Wang et al., 2014). Space-time K function 

was applied to investigate the space-time interactions and excessive risk of Rift Valley fever 

transmission in South Africa (Metras et al., 2012). Patterns of dengue cases in the city of Cali, 

Colombia were mapped with space-time kernel density estimation (Delmelle et al., 2014). 

Among the various space-time analysis approaches, space-time scan statistics is an effective 

method for mapping significant clusters of diseases and estimate the associated risk levels based 

on a variety of statistical models (Kulldorff, 2018). It has been widely used in exploring and 

mapping the patterns of various diseases, such as rash and respiratory diseases (Takahashi et al., 

2008), measles (Tang et al., 2017), dementia (Xu and Wu, 2018), and most recently COVID-19 

(Desjardins et al., 2020).  
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It has long been recognized that spatial context and the built environment contribute to both the 

initial establishment and dynamic space-time patterns of diseases (Real and Biek, 2007). 

Research on the relationship between the built environment and spatial distribution of disease 

can be traced back to the 19th century to the study of the spread of cholera by John Snow (1855). 

Built environment features at different spatial scales can affect the prevention and spread of 

infectious diseases. At a smaller scale, as a disease can spread through contaminated objects, 

certain designs of the physical structure and surface materials of buildings may prevent the 

spread of infectious diseases. Poor housing conditions and high building density may lead to the 

problem of inadequate sanitation, which would create an environment conducive to the spread of 

disease (Pinter-Wollman et al., 2018).  

At a larger scale, the built environment affects the space-time patterns of disease transmission by 

shaping people’s activities and social interactions. First, built environment characteristics like the 

spatial configuration and functional zones of a city significantly affect human mobility and social 

interactions, which are closely linked to the spread of infectious diseases. For instance, the 

increasing mobility of people has been identified as the main factor for the emergence of dengue 

fever (Vazquez-Prokopec et al., 2010). Second, outbreaks of infectious disease are always 

associated with a disturbance in the usual functioning of public spaces and city infrastructures, 

which have impacted human mobility and social interactions. In the context of COVID-19, non-

pharmaceutical measures including contact tracing and quarantine, social distancing, and the 

closing of gathering places and venues, have been identified to have a significant impact on 

human behaviors and social interactions, which are observed to be associated with a reduction in 

the spread of COVID-19 (Cowling et al., 2020). Kraemer et al. (2020) found that mobility 

statistics could offer a precise record of the spread of COVID-19 among the cities of China. In 

the United States, online mapping platforms were developed to provide quantitative information 

on the changes in people’s mobility patterns in response to social distancing guidelines and stay-

at-home mandates during the COVID-19 pandemic (Gao et al., 2020, Zhang et al., 2020). As the 

mobility patterns (e.g., journeys to work) in developed high-density urban societies are highly 

predictable, transportation infrastructures are usually considered when modeling the transmission 

of infectious disease (Mei et al., 2015, Mpolya et al., 2014). 
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There is a vast body of research examining how the built environment shapes people’s physical 

activities, which in turn affect their health outcomes. For instance, characteristics of the built 

environment such as singular land uses, lower residential densities, poor-quality public open 

spaces, limited access to public transport, inadequate health care and social service infrastructure 

are associated with higher risks for major non-communicable diseases, such as overweight and 

obesity, physical inactivity and poorer mental health (Koohsari et al., 2013, Garfinkel-Castro et 

al., 2017, Wang et al., 2020). However, there has been less research on the relationship between 

the built environment and the transmission risk of infectious disease in space and time. 

Especially, built environment characteristics associated with high transmission risk of COVID-

19 at the local scale have rarely been examined. This study fills this research gap by exploring 

areas with high COVID-19 transmission risks and the associated built environment and 

demographic factors in Hong Kong with individual COVID-19 case data. First, this study 

analyzes the space-time patterns of COVID-19 transmission in Hong Kong using the space-time 

scan statistic. Second, it examines the built-environment and demographic factors associated 

with a higher risk of COVID-19 transmission through quartile and correlation analysis. The 

results reveal much difference in the space-time patterns of high-risk locations as well as the 

associated factors, which would generate critical insights for developing targeted intervention 

measures in response to the COVID-19 pandemic. 

2 Methods 

2.1 Study unit and data 

(1) Study area and unit  

The study area of this research is Hong Kong, a metropolitan city with a very high population 

density. As of 2019, 7.4 million residents lived in its 1,104 km2 territory. Large Street Block 

Group (LSBG), delineated by the Hong Kong Planning Department and used by the census for 

data reporting purpose, is the study unit in this research. An LSBG is a group of street blocks 

with similar demographic characteristics.. There are 1,622 LSBG with 1000 or more residents 

each in Hong Kong according to the 2016 Hong Kong Census. The study area and study unit are 

shown in Figure 1.   
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Figure 1. Study area and study unit 

(2) COVID-19 case data 

The data of daily individual confirmed COVID-19 cases were collected by the Hong Kong 

Centre for Health Protection and are available to the general public online (at 

https://data.gov.hk). There were 1,013 confirmed cases between January 23 and April 14, 2020. 

The record of each confirmed case includes the characteristics of each case (e.g., age, gender), 

type of case (imported, local, close contact with local cases, possibly local, close contact of 

possibly local cases, and close contact of imported cases), and buildings or venues resided or 

visited by the confirmed cases in the 14-day period before the day of confirmation. We 

categorize the case-related locations into residences of the confirmed cases and the locations 

visited by them (visited locations). For the type of case, imported cases refers to the individuals 

confirmed with COVID-19 upon returning from abroad, while local cases refer to the individuals 

who were infected in Hong Kong. We also categorized the individual cases into two general 

groups: imported cases (including imported and close contact of imported cases) and local cases 

(including local, close contact with local cases, possibly local, close contact of possibly local 

cases). The temporal distribution of the confirmed cases in Hong Kong during the study period is 

shown in Figure 2, which presents two peaks of confirmed COVID-19 cases. 
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Figure 2. COVID-19 cases in Hong Kong by dates of confirmation 

Based on the types of buildings/venues and cases, the building/venue-level locations resided or 

visited by different types of cases are thus categorized into four categories, as Table 1 shows. 

Residences of the confirmed cases in an LSBG indicate the incidences of COVID-19 in the 

LSBG, while the locations visited by the confirmed cases in an LSBG reflect the spatial 

interactions between the confirmed cases and locations in the LSBG, which are potential places 

of disease transmission.  

Table 1. Four categories of building-level locations related to different types of cases 

Location category Description Indication 

IR Residences of imported cases 
Incidences of COVID-19 

LR Residences of local cases 

IV Locations visited by imported cases Intensity of spatial 

interaction LV Locations visited by local cases 

(3) Demographic and built-environment data 

Demographic data used in this study include LSBG-level population and median household 

income, which are obtained from the Hong Kong Census and Statistics Department. Built 

environment feature data, covering nodal accessibility, building density, average building height, 

green spaces, sky view, and land use are calculated from different geospatial data sources. 
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The nodal accessibility of a transport node, as our first built environment feature, represents how 

well the node (e.g., a subway or bus station) is connected with other transport nodes in the 

transport network. As over 90% of the trips in Hong Kong are made by public transport (Hong 

Kong Transport Department, 2017), this study only considers the public transport networks of 

the study area, including the Mass Transit Railway (MTR), bus and ferry. Using the transport 

network data obtained from the Hong Kong Transport Department, the nodal accessibility in 

each LSBG is calculated based on the connectivity matrix of the nodes of the Hong Kong 

transportation network in the LSBG. Building density and average building height are derived 

from the 3D spatial dataset with building geometry and height provided by the Hong Kong 

Planning Department. The sky view factor is the ratio of the area of sky visible from a given 

location on the ground to the sky area that is potentially available. It is a 10m x 10m raster 

dataset calculated from multiple data sources including airborne LiDAR data, building GIS data, 

and land cover data in a previous study (Yang et al., 2015). The area of green spaces in each 

LSBG is calculated using the Normalized Difference Vegetation Index (NDVI) derived from 

SPOT-7 Satellite images (2017) with a spatial resolution of 6 meters.  

Data of a variety of land-use types are acquired from a raster land-use dataset with 27 land-use 

types and with a spatial resolution of 10m × 10m from the Hong Kong Planning Department. 

The study includes four of these land-use types in its analysis: private residential land density, 

public residential land density, commercial land density, as well as open spaces and recreational 

land density. The density of each of these land-use types is obtained by dividing the area of each 

type of land use in an LSBG by the area of the LSBG. In addition, a land-use mix index (LUMI) 

is calculated as the degree of the land-use mix for each LSBG based on the notion of entropy, as 

Equation (1) shows. 

𝐿𝑈𝑀𝐼 = −∑
𝐿𝑖∗𝑙𝑛 𝐿𝑖

𝑁

𝑁
𝑖=1   (1) 

where Li represents the proportion of the ith type of land use, and N is the total number of land-

use types. 
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2.2 Identifying space-time clusters with high COVID-19 transmission risk  

(1) Space-time scan statistic (STSS)  

This study analyzes the space-time patterns of COVID-19 in Hong Kong by detecting significant 

space-time clusters using a space-time scan statistic (STSS) implemented in the SaTScanTM 

software package (Kulldorff, 2018). Given the baseline conditions, an STSS can identify 

significant space-time clusters of disease locations based on different base models. Relative risk 

as formulated in Equation (2) is also calculated for each cluster and each LSBG in a cluster. 

𝑅𝑅 =
𝑛/𝑒

(𝑁−𝑛)/(𝑁−𝑒)
          (2) 

where RR is the value of the relative risk of an LSBG; n is the total number of confirmed cases in 

an LSBG; e is the number of expected cases in an LSBG; N is the total number of confirmed 

cases in the entire study area. Equation (2) indicates that the relative risk of an LSBG is the 

estimated risk in the LSBG divided by that outside the LSBG. In this way, a relative risk value 

higher than 1 means that the LSBG has a higher possibility of exposing to the disease compared 

with the LSBGs outside it, and the higher the relative risk value, the higher the possibility it 

would have been exposed to the disease compared with the LSBGs outside it. In the same way, 

relative risk can also be calculated for a cluster by dividing the estimated risk within a cluster by 

the estimated risk outside the cluster. A maximum likelihood ratio test is performed to identify 

the LSBGs with an elevated risk. SatScanTM
 uses Monte Carlo simulation to test the statistical 

significance of the space-time scan statistic. 

(2) STSS for residential locations and visited locations 

As Section 2.1 mentioned, the building/venue-level locations are categorized into four types: IR, 

IV, LR, LV. Different types of clusters can be identified based on these four types of locations 

(e.g., clusters of the residences of local cases or clusters of the locations visited by imported 

cases). A cluster of residences indicates a higher risk of incidence, while a cluster of visited 

locations indicates a higher risk of interactions between cases and spatial locations within the 

cluster, which tend to be conducive to COVID-19 transmission. Therefore, this study identifies 

space-time clusters of LSBGs and calculate the associated relative risk based on the four types of 
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locations. The discrete Poisson model is chosen as the baseline model in this study because we 

assume that the number of observations in each LSBG follows a Poisson distribution based on 

the population or number of buildings/venues in each LSBG.  For residential locations (i.e., IR 

and LR), the null hypothesis is that the expected number of COVID-19 cases is proportional to 

the population in each LSBG. For visited locations (i.e., IV and LV), however, the null 

hypothesis is that the expected number of visits is proportional to the number of buildings or 

venues in each LSBG. Based on the expected number and observed number of COVID-19 cases, 

the relative risk of COVID-19 transmission for each LSBG or cluster can be calculated by 

Equation (2). 

2.3 Analyzing the characteristics of clusters with a higher relative risk 

This study then uses quartile analysis to depict the trends and patterns of relative COVID-19 risk 

in each LSBG with respect to the variations in demographic and built environment features.  

Quartile analysis is similar to decile analysis, which is commonly used as a graphical tool to 

elucidate the relationships between indicators of different population groups and the associated 

environmental outcomes (e.g., exposure to air pollution) (Fan et al., 2012). This method sorts 

each indicator in ascending order and places the corresponding relative risk into each quartile. 

Because there are variations in the demographic and built-environment indicators in different 

types of location clusters, this study uses absolute values on the horizontal axis instead of 

quartile percentages. In this way, the differences in demographic and built environment 

characteristics between the types of locations can be revealed. Further, Pearson correlation 

analysis was performed to assess the associations between the relative risk of different location 

types and different indicators. T-test is conducted to establish whether the correlation coefficient 

is significant. Using these methods, significant variables contributing to the relative risk of 

COVID-19 transmission can be identified.  

3 Results 

3.1 Space-time clustering of COVID-19 cases 

Our analysis begins with detecting clusters of different types of locations using the space-time 

scan statistic. Because the number of confirmed COVID-19 cases is relatively small compared 
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with the population in Hong Kong, we set the maximum scanning window size of 1% of the 

whole population in Hong Kong and 30% of the study period to avoid detecting extremely large 

clusters. In addition, a cluster is set to have at least 2 confirmed cases to avoid extremely small 

clusters. 

Figure 3 shows the time distributions for different types of significant clusters (with p values 

≤0.05). The horizontal lines in each row represent the detected clusters for each location type 

(IV, IR, LV and LR). The coverage of each cluster on the horizontal axis depicts the time span of 

the cluster. The depth of color indicates the number of clusters detected within a period of time. 

It can be observed that there were only a small number of clusters from January 23, 2020, the 

first confirmed COVID-19 case in Hong Kong, to early March 2020. After early March, a large 

number of imported clusters (both of residences and visited locations) appeared, and many 

clusters of local cases appeared in mid-March. Therefore, we visualize the spatial distribution of 

the clusters before and after March 1, 2020, in Figures 4-7. 

 

Figure 3.  Time distributions of significant clusters of different types of cases. 

Table 2 shows the characteristics of the significant space-time clusters (p≤0.05) before March 1, 

2020, which include the starting and ending times of every cluster, the number of observed cases, 

the number of expected cases, relative risk of the cluster, P-value and the number of LSBG(s) in 

each cluster. Since no significant cluster of IV is detected before March 1, 2020, Table 2 only 

shows clusters of IR, LR and LV. Figure 4 visualizes the clusters in Table 2, with Figure 4a 

showing the clusters within the extent of the entire study area and Figure 4b showing the 

enlarged rectangular area in Figure 4a. The color of each LSBG inside each cluster in Figure 4 

represents the relative risk value of the LSBG.  
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Table 2. Space-time clusters of COVID-19 in Hong Kong before March 2020. 

Cluster Duration Observed Expected Relative Risk P-value 
No. of 

LSBG 

IR1 Jan 29-Jan 30 3 0.0023 > 500 <0.001 1 

LR1 Feb 9 - Feb 10 4 0.25 164.1 0.007 8 

LR2 Feb 16 – Feb 17 3 0.0056 500.0 0.012 1 

LR3 Feb 9 – Feb 10 3 0.0043 > 500 0.006 1 

LR4 Feb 4 – Feb 5 3 0.003 > 500 0.002 1 

LV1 Feb 16 – Feb 27 17 0.21 81.4 <0.001 29 

 

Figure 4. Spatial distribution of space-time clusters of COVID-19 in Hong Kong before March 1, 

2020 

Table 2 and Figure 4b show that the first cluster of COVID-19 cases is IR1, a cluster of the 

residences of imported cases that appeared during January 29-30 and were located in the private 

residential area near West Kowloon. This cluster had only one LSBG with a very high relative 

risk. There were four clusters of local cases, among which LR1 and LR3 appeared during 

February 9-10. LR1 was located in Wan Chai District with a relative risk value of 164.1. LR2 and 

LR3, both with higher relative risk values, were located in the Eastern District and composed of 

only one LSBG. LR4 was located in Kwun Tong with only one LSBG and high relative risk 

value. According to the news report, clusters LR1-LR4 were family case clusters. Before March, 
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a cluster of visited places (i.e., LV1) appeared during February 16-27 in Eastern District, which 

included 29 LSBGs with a relative risk value of 81.4. Buildings and venues in this cluster were 

visited 17 times by confirmed cases during this period. Visited places in this cluster include a 

private clinic, a public hospital, a cafeteria and a Buddhist temple, where a group outbreak 

occurred. 

Table 3, Table 4 and Figures 5a and 5b show the characteristics and spatial distribution of the 

space-time clusters of cases (LR and IR) after March 1, 2020. The cluster IDs in Figures 5a and 

5b correspond to the cluster IDs in Table 3 and Table 4. In Table 3 and Figure 5a, a total of 67 

LSBGs in Clusters 1-3, 9 and 12 were located in Wan Chai District, Central and Western 

District, East District and Southern District on Hong Kong Island, with relative risk values from 

55.5 to over 500. There are 36 LSBGs in Clusters 4-6, 8 and 10 located in Kowloon, in which the 

largest cluster is Cluster 6 (with 32 LSBGs and a relative risk of 19.7) in Tsim Sha Tsui, which 

has a high residential density. Only 10 LSBGs in Clusters 7, 11 and 13 were located in the New 

Territories, with a relative risk of 26.6, 47.0 and 100. Among them, Cluster 7 was located near 

the airport, where there are many residential buildings for the staff of the Hong Kong 

International Airport and airlines who are high-risk groups for COVID-19 infection. 

 

Figure 5. Space-time clusters of the residential buildings of local and imported cases 
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Table 3. Space-time clusters of local COVID-19 cases (LR) in Hong Kong after March 2020 

Cluster Duration Observed Expected Relative Risk P-value No. of 

LSBG 

1 Mar 22 - Apr 04 34 0.67 55.5 <0.001 39 

2 Mar 18 - Mar 30 22 0.39 59.9 <0.001 19 

3 Mar 20 - Apr 02 11 0.12 91.1 <0.001 6 

4 Apr 01 - Apr 09 6 0.01 450.4 <0.001 1 

5 Mar 27 - Mar 28 4 <0.01 > 500 <0.001 1 

6 Mar 19 - Apr 01 12 0.63 19.7 <0.001 32 

7 Mar 21 - Apr 01 10 0.38 26.6 <0.001 2 

8 Mar 19 - Mar 24 4 0.01 500.0 <0.001 1 

9 Apr 07 - Apr 08 3 <0.01 > 500 0.002 1 

10 Mar 26 - Mar 27 3 <0.01 > 500 0.002 1 

11 Mar 18 - Mar 23 6 0.13 47.0 0.004 7 

12 Mar 23 - Apr 03 4 0.03 127.7 0.02 2 

13 Mar 20 - Mar 21 4 0.04 100.0 0.043 1 

 

Table 4 and Figure 5b show the space-time clusters of the residences of the imported cases (IR) 

after March 1, 2020. It can be seen by comparing Figure 5a with Figure 5b that the spatial extent 

of the IR cluster is larger than that of the LR clusters. Table 4 shows that most of the significant 

clusters occur in later March and early April. During this period, a large number of overseas 

students and residents returned to Hong Kong due to the increasingly severe COVID-19 outbreak 

in certain countries abroad (e.g., the U.K.). There were 18 significant IR clusters in total, out of 

which 10 clusters (Clusters 1,2,4-6, 11,12,17) with 126 LSBGs were located on Hong Kong 

Island. The high-risk areas include residential areas in Wan Chai District, Eastern District and 

Southern District, as well as residential neighborhoods at Mid-Levels, which is an affluent 

residential area in Central and Western District on Hong Kong Island. Clusters 3, 9, and 18 were 

located in Kowloon Peninsula, with 62 LSBGs. The largest cluster in Kowloon is Cluster 3 in 

Tsim Sha Tsui, with 32 LSBGs and a relative risk of 16.2. Different from the LR clusters, there 

are many IR clusters in the New Territories (i.e., Clusters 7, 8, 10, 13-16), with 15 LSBGs. 
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Table 4. Space-time clusters of imported COVID-19 cases (IR) in Hong Kong after March 2020 

Cluster Duration Observed Expected Relative Risk P-value No. of LSBG 

1 Mar 18 - Apr 08 44 1.26 38.2 <0.001 30 

2 Mar 18 - Apr 06 23 1.08 22.3 <0.001 30 

3 Mar 16 - Apr 05 19 1.22 16.2 <0.001 32 

4 Mar 17 - Apr 08 16 0.90 18.3 <0.001 27 

5 Mar 20 - Apr 08 15 0.79 19.6 <0.001 21 

6 Mar 19 - Mar 20 5 0.01 450.1 <0.001 4 

7 Mar 16 - Apr 03 9 0.20 45.0 <0.001 4 

8 Mar 22 - Apr 10 9 0.21 44.4 <0.001 2 

9 Mar 20 - Apr 10 14 0.98 14.71 <0.001 26 

10 Mar 22 - Mar 23 4 0.01 > 500 <0.001 1 

11 Mar 08 - Mar 27 9 0.36 25.4 <0.001 4 

12 Mar 20 - Mar 23 6 0.09 66.5 <0.001 9 

13 Apr 04 - Apr 05 3 <0.01 >500  0.001 1 

14 Mar 11 - Mar 13 4 0.02 186.8 0.004 1 

15 Mar 15 - Apr 05 6 0.16 36.8 0.012 5 

16 Mar 18 - Mar 22 3 0.01 396.5 0.021 1 

17 Mar 22 - Mar 30 4 0.04 103.3 0.032 1 

18 Mar 18 - Apr 10 7 0.35 20.1 0.045 4 

 

Table 5, Table 6 and Figures 6a and 6b show the space-time clusters of visited buildings or 

venues by local cases (LV) and imported cases (IV).  As shown in Table 5 and Figure 6a, there 

were 7 LV clusters (Clusters 1, 3, 6-7, 9, 15 and 19) on Hong Kong Island with a total of 165 

LSBGs and 241 visits. Cluster 1, with a relative risk of 140.1, received 162 visits during March 

18 – April 8. This cluster was located near Central on Hong Kong Island, which has a high 

density of dining and entertainment venues where multiple group outbreaks occurred (e.g., a 

night-club and gym cluster in Lan Kwai Fong). Six clusters (Clusters 2, 4, 5, 8, 11, 16) with 238 

LSBGs and 139 visits were located in Kowloon. Cluster 2, with a relative risk of 500.0, was 

located in Tsim Sha Tsui and received 70 visits during the week between March 25 and April 2. 

A group outbreak took place in a Karaoke bar in this area. Cluster 3 was located in Wan Chai 

District on Hong Kong Island and received 35 visits by confirmed cases during March 16 – April 

7. This is a busy commercial area with a high traffic volume. Although there were more clusters 

(8 clusters) in the New Territories than on Hong Kong Island and in Kowloon, the clusters 

(Cluster 9, 10, 12-14, 17, 18, 20, 21) were smaller and with fewer visits compared with the other 

two areas.   
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Table 5. Space-time clusters of buildings or venues visited by local COVID-19 cases (LV) in 

Hong Kong after March 2020 

Cluster Duration Observed Expected Relative Risk P-value 
No. of 

LSBG 

1 Mar 18 - Apr 08 162 1.56 140.1 <0.001 32 

2 Mar 25 - Apr 02 70 0.16 500.0 <0.001 9 

3 Mar 16 - Apr 07 35 1.29 28.7 <0.001 45 

4 Mar 18 - Mar 31 25 1.02 25.4 <0.001 121 

5 Mar 20 - Mar 31 12 0.15 80.8 <0.001 4 

6 Mar 17 - Apr 02 10 0.08 124.2 <0.001 1 

7 Mar 23 - Apr 08 12 0.31 39.0 <0.001 19 

8 Mar 18 - Apr 01 13 0.60 22.2 <0.001 47 

9 Mar 18 - Mar 31 13 0.75 17.6 <0.001 50 

10 Mar 20 - Mar 27 10 0.41 25.0 <0.001 16 

11 Mar 18 - Apr 04 14 1.28 11.2 <0.001 45 

12 Mar 29 - Apr 02 5 0.03 166.9 <0.001 1 

13 Mar 18 - Mar 29 6 0.08 75.1 <0.001 7 

14 Mar 20 - Apr 03 8 0.30 27.1 <0.001 17 

15 Mar 22 - Mar 27 5 0.05 101.6 0.001 13 

16 Apr 01 - Apr 03 5 0.06 88.9 0.002 12 

17 Mar 24 - Mar 25 3 <0.01 >500 0.003 2 

18 Mar 27 - Mar 28 3 0.01 >500 0.008 2 

19 Mar 27 - Apr 01 4 0.03 139.4 0.011 5 

20 Mar 18 - Mar 21 5 0.08 62.3 0.011 1 

21 Mar 28 - Apr 06 3 0.01 390.4 0.018 1 

 

Figure 6. Space-time clusters of places visited by local and imported COVID-19 cases 
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Table 6 and Figure 6b show the clusters of buildings/venues visited by the imported cases (IV) of 

COVID-19. The Hong Kong Government required that individuals returning to Hong Kong after 

March 19 must go through a 14-day mandatory quarantine. Some of these visited buildings (e.g., 

bars) were visited by returnees before March 19 while some other buildings were hotels used by 

some of the returnees to self-quarantine. A total of 95 visits in Clusters 2, 3, 6, 8 and 9 involving 

159 LSBGs were located on Hong Kong Island. These places have high commercial densities 

and received visits from confirmed cased at a public hospital, a private clinic and several 

entertainment venues. 70 visits in Clusters 1, 4, 5 involving 86 LSBGs were located in Kowloon. 

In the New Territories, there were 10 clusters (Clusters 7, 10-18) with 31 LSBGs and 36 visits. It 

can be seen that clusters in the New Territories are large in number, small in size and sparse in 

distribution but have a high relative risk. This is because the population and building densities in 

the New Territories are lower than those on Hong Kong Island and in Kowloon, which makes the 

expected number of visits by confirmed cases relatively low. As a result, the relative risks of the 

detected clusters would be higher compared with areas with a higher population or building 

densities.  

Table 6. Space-time clusters of visited buildings of imported COVID-19 cases (IV) in Hong 

Kong after March 2020 

Cluster Duration Observed Expected Relative 

Risk 

P-value No. of 

LSBG 

1 Mar 17 - Apr 09 46 0.62 88.2 <0.001 40 

2 Mar 14 - Apr 05 43 0.82 61.5 <0.001 46 

3 Mar 18 - Apr 10 28 0.80 38.8 <0.001 47 

4 Mar 11 - Apr 01 12 0.26 48.3 <0.001 20 

5 Mar 11 - Apr 03 12 0.26 48.1 <0.001 26 

6 Mar 22 - Apr 09 11 0.38 29.7 <0.001 55 

7 Mar 25 - Apr 09 5 0.01 503.8 <0.001 1 

8 Mar 04 - Mar 12 8 0.15 54.3 <0.001 10 

9 Mar 22 - Mar 30 5 0.02 245.0 <0.001 1 

10 Mar 10 - Mar 11 4 0.01 466.0 <0.001 10 

11 Mar 28 - Apr 08 3 0.00 >1000 <0.001 1 

12 Mar 10 - Mar 11 4 0.01 273.3 <0.001 3 

13 Mar 16 - Mar 17 4 0.02 253.2 0.001 11 

14 Mar 15 - Mar 22 3 0.00 967.4 0.002 1 

15 Mar 09 - Mar 10 4 0.02 199.5 0.002 1 

16 Mar 06 - Mar 11 5 0.08 66.1 0.007 1 

17 Mar 09 - Mar 10 2 0.00 >1000 0.012 1 
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18 Mar 19 - Mar 20 2 <0.01 >1000 0.03 1 

 

3.2 Association between demographic features, built environment features and the relative 

risk of COVID-19 

We use both quartile and correlation analysis to explore the association between the relative risk 

of COVID-19 transmission and relevant demographic and built environment features. The 

demographic characteristics of an LSBG included in this analysis are median household income 

and population density. Built-environment features include nodal accessibility, building density, 

building height, green spaces (derived using the NDVI), the sky view factor, private residential 

land density, public residential land density, commercial land density, open spaces and recreation 

land density and the land-use mix index (LUMI).  

The results of the quartile analysis are shown in Figure 7. The figure shows that the LSBGs in all 

four types of high-risk areas have relatively high median household income, most of which 

exceed the median household income of HKD 25,000 for Hong Kong in 2016 (HKCSD, 2016). 

Especially, the median household income of the LSBGs in the clusters of the residences of 

imported cases (IR) far exceeds those of the LSBGs of other types, which indicates that the 

imported cases have higher income levels when compared to local cases. This is probably 

because most of the imported cases are people working or studying overseas, who may have 

higher socioeconomic status than the average person. It can also be observed in the figure that 

the population density of the residences of imported cases (IR) is lower when compared to that of 

the residence of local cases (LR) and venues visited by local and imported cases (LV and IV). 

This is perhaps due to the similar fact indicated by the distribution of median household income: 

that is, the imported cases with higher socioeconomic status also tend to live in areas with lower 

population density. 

Figure 7 also shows that when relative risk is assessed by the number of venues visited by 

imported cases (IV), the areas with higher risk are associated with higher nodal accessibility, 

lower building height, and more sky view. It means that areas with these characteristics may 

increase the visiting frequency of the imported confirmed cases. When the relative risk is 



18 
 

assessed by the number of venues visited by local cases (LV), areas with a higher building 

density tend to have a higher risk of COVID-19. It can also be observed that the building density 

in the high-risk areas visited by the confirmed cases (LV and IV) is higher than that in high-risk 

residence areas (IR and LR), which indicates that areas most frequently visited by the confirmed 

cases tend to have a higher building density than the residential areas of the confirmed cases. In 

addition, areas with higher nodal accessibility, more high-rise buildings, and less sky view also 

tend to have a higher relative risk assessed by the number of venues visited by local cases (LV). 

However, when relative risk is assessed by the number of local confirmed cases (LR), areas with 

higher building density tend to have a lower relative COVID-19 risk. It is probably because some 

LR clusters were located in suburban areas with a lower building density (Figure 5a). Figure 7 

also shows that the relative risk for LSBGs in LV, LR and IR clusters tends to increase with an 

increase in green spaces (NDVI). This may be due to two reasons. First, the locations with a 

higher COVID-19 risk tend to be wealthier places with more green spaces resided by confirmed 

cases. Second, some locations in the suburban areas (e.g., country parks) with a higher 

proportion of green spaces tend to attract more visits by confirmed cases. 

In terms of the association between land use features and the relative risk, Figure 7 shows that an 

increase in private residential land density is associated with a decrease in relative risk assessed 

by the number of venues visited by imported cases (IV). But there is no obvious association 

between the relative risk of all types of locations and public residential land density and open 

spaces and recreational land density. In comparison, an increase in commercial land density is 

associated with an increase in the relative risk assessed by venues visited by local and imported 

cases (IV and LV).  Commercial land density is also associated with a decrease in the relative 

risk assessed by the number of confirmed cases (IR and LR). Similarly, an increase in land-use 

mix is also associated with an increase in relative risk for LV, IV and IR clusters. It indicates that 

commercial land density and land-use mix are important factors that influence the relative risk 

assessed by both the number of confirmed cases and the number of venues visited by confirmed 

cases. 
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Figure 7. Change in relative risk with respect to interquartile range increase of different factors in 

each group.   

Figure 8 further visualizes the correlation between the relative risk of the LSBGs in different 

types of clusters and different demographic and built environment features. It also shows the 

significant contributing factors of the relative risk assessed by the number of confirmed cases or 

the number of places visited by confirmed cases. In general, the correlation between the relative 

risk of LSBGs and different features confirms the association trends in Figure 7. When relative 

risk is assessed by the number of local confirmed cases (LR), areas with a higher risk of COVID-

19 have higher median household income, more green spaces, lower building density and lower 

commercial land density. When relative risk is assessed by the number of imported confirmed 
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cases (IR), areas with higher COVID-19 risk have higher median household income, higher land-

use mix, more green spaces and lower commercial land density. In comparison, when relative 

risk is assessed by the number of venues visited by the local confirmed cases (LV), areas with a 

high risk of COVID-19 have higher median household income, higher nodal accessibility, higher 

building density, higher building height, more green spaces, less sky view, lower public 

residential land density and higher land-use mix. It indicates that the places with higher 

transportation accessibility, denser and more high-rise buildings, and less sky view tend to attract 

people to visit and conduct activities and thus increase the risk of COVID-19 transmission. 

Those areas usually have a high density of commercial and entertainment venues as shown in 

Figure 6a. When relative risk is assessed by the number of venues visited by the imported cases 

(IV), areas with higher relative risk have lower median household income, lower population 

density, higher nodal accessibility, lower building height, more sky view,  lower private 

residential land density, higher commercial land density and higher land-use mix. This indicates 

that a higher commercial land use density and a higher land-use mix potentially increase the 

relative risk due to more visits and social activities of confirmed cases.  

 

Figure 8. Correlation of the relative risk with the demographic and built-environment features 

(*:p＜0.1; **: p＜0.05). MI: median household income; PD: population density; NA: nodal 

accessibility; BD: building density; BH: building height; GS: green spaces; SV: sky view; Pr: 

private residential land density; Pu: public residential land density; Cm: commercial land 

density; OR: open spaces and recreation land density; LUM: land-use mix. 
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4 Discussion 

This study explored the areas with high COVID-19 risk in Hong Kong and the associated built 

environment and demographic characteristics. The space-time clustering results in Section 3.1 

highlights the time periods and spatial locations with high transmission risk in Hong Kong 

during the first two waves of the COVID-19 pandemic in the city. By categorizing case-related 

locations into four different types — residences of imported cases (IR), residences of local cases 

(LR), buildings/venues visited by imported cases (IV) and buildings/venues visited by local 

cases (LV) — the study generated more detailed knowledge on the space-time patterns of 

COVID-19 risk in Hong Kong.  

Since the first COVID-19 case imported from Mainland China on January 23, 2020, the Hong 

Kong Government took a series of measures to mitigate COVID-19 transmission, including 

closing the borders with Mainland China, closing certain venues such as schools and social 

distancing. The situation of the COVID-19 pandemic in Hong Kong before March 2020 was 

stable: the number of confirmed cases remained low, especially for local cases. However, as the 

COVID-19 pandemic overseas became more serious in early March, many Hong Kong citizens 

and students residing overseas began to return to Hong Kong. The increasing number of 

imported cases led to an increasing number of local cases, which is confirmed by that the 

emergence of the clusters of local cases lagged behind that of the imported cases in Figure 2. In 

terms of the spatial patterns of the high-risk areas, Figures 4-6 show that there are significant 

differences between different types of clusters. As indicated by the residences of the imported 

and local cases, the local cases and imported cases seemed to involved different population 

groups as people who work or study overseas may have higher socioeconomic status when 

compared to those of the local cases, which may result in different patterns of high-risk areas 

between local and imported cases. For instance, Figure 5 shows that local cases are more likely 

to reside in high-density areas on Hong Kong Island and Kowloon, while the residences of the 

imported cases distribute more widely, including very affluent areas like Mid-Levels.  

According to the contact tracing information available via the government webpage on COVID-

19, many of the high-risk residential buildings are due to family members being cross-infected in 

short order. These cases of family-related outbreaks were usually caused by one or more family 
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members who were infected when visiting certain places or venues. By focusing on specific 

case-related locations (i.e., residences and places visited), high-risk areas of COVID-19 

transmission as well as high-risk activities are revealed in this study. The high-risk areas in 

Figure 6 indicate that pubs, fitness centers, and restaurants on Hong Kong Island and in Kowloon 

are high-risk places, which are likely to be visited by local cases.  

The analysis of the association and correlation between demographic and built environment 

features and relative risks further indicates the key factors shaping the COVID-19 landscape in 

Hong Kong. Figures 7 and 8 also indicate that the factors linked to the risks of different types of 

locations (locations of residence and visited places) are different. First, median household 

income has a positive correlation with the relative risk of residential locations of both local and 

imported cases. This means that areas with higher household income tend to have a higher 

COVID-19 risk, which is contrary to what was reported in much of the literature: many studies 

in other countries or cities reported negative correlations between economic factors (income 

level or GDP) and the transmission risk of infectious diseases where people with higher income 

tend to have healthier lifestyles and better access to healthy residential environmental and 

healthcare resources (National Academies of Sciences, 2018 ). For instance, in the United States, 

40% of low-income people were identified to have a higher risk of infecting COVID-19, 

compared to 24% of higher-income people (Raifman and Raifman, 2020). Actually, there are 

few reported cases in poor neighborhoods in Hong Kong during the time period of this study. As 

the activity spaces of low-income people are more confined than those of the high-income people 

in Hong Kong (Tao et al., 2020), and the activity spaces of these two population groups may not 

overlap significantly (Wang and Li, 2016), low-income people may have lower possibilities of 

visiting the high-risk locations and thus are exposed to lower infection risk.  

A higher population density is usually considered as an important factor associated with a higher 

risk of infectious disease transmission because high population density means higher chances of 

contact between people (Xu et al., 2019). However, for the COVID-19 pandemic in Hong Kong, 

population density has only a weak negative correlation with the locations visited by imported 

cases and does not have a significant correlation with other types of locations. This is because 

some suburban areas in the New Territories with low population density are identified as high-

risk clusters. The higher risk of these suburban areas, with higher proportions of their areas being 
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recreational spaces like country parks, may be related to higher levels of certain kinds of human 

activities (e.g., hiking and picnicking) after the COVID-19 outbreak as reported in the news.    

The correlation between the risks of different location types and built environment features 

would further characterize different types of locations with high transmission risk of COVID-19.  

For the locations visited by confirmed cases (lV and LV), the high-risk locations visited by 

imported cases have higher transportation accessibility, lower building height, better sky view, 

higher proportions of commercial land and higher land-use mix. While the high-risk locations 

visited by local cases are places with higher transportation accessibility, denser and more high-

rise buildings, less sky view, higher commercial land density and higher land-use mix.  Figure 8 

indicates that visited places with higher COVID-19 risk have both high transportation 

accessibility and land-use diversity. Surprisingly, green space is found to have a positive 

correlation with the COVID-19 risk of both residential and visited locations. This is perhaps 

because the locations with a higher risk tend to be wealthier places during the study period, and 

those places usually have higher proportions of green spaces. Also, suburban areas with country 

parks tend to attract more visits during the pandemic (e.g., several bank employees were found 

hiking in a country park while they were supposed to be working at home) and thus also tend to 

have a higher COVID-19 risk. The correlation analysis between relative COVID-19 risk and 

demographic/built-environment features in this study generates knowledge on how different 

features of places affect the transmission risk of COVID-19. The patterns of risky areas 

associated with the confirmed cases (especially for the local cases) may provide a useful 

reference for understanding the transmission risk of other infectious diseases with a similar 

transmission mechanism as COVID-19. It can also provide evidence that helps target 

interventions to the places with high COVID-19 risk and places where the residents tend to have 

a higher risk of being infected. 

In this study, both the residential and visited places of each confirmed case were obtained, which 

makes it possible to analyze case-related COVID-19 patterns and their relationships with various 

demographic and built environment features. It may not be possible to replicate the study in other 

countries and cities with large numbers of confirmed cases every day, where it is less feasible for 

contact and activity tracing to generate the detailed individual data used in this study, which is a 

limitation of this research. However, the results of this study still provide a useful picture of the 
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areas with a high COVID-19 risk in a high-density and socioeconomically segregated city like 

Hong Kong. Another limitation of this study is that the dates of confirmation or diagnosis are 

used in our analysis which tend to lag behind the exact time of COVID-19 transmission. 

5 Conclusion 

This study identified the high-risk areas of COVID-19 in Hong Kong between January 23 and  

April 14, 2020, and examined the characteristics of different types of high-risk locations by 

analyzing the association between the relative risk and various demographic and built 

environment features for each high-risk cluster. The results reveal much difference in the space-

time patterns of high-risk locations as well as the contributing factors, which provide useful 

knowledge for better understanding the COVID-19 pandemic in Hong Kong and improving 

intervention strategies. Future work includes further examining the activity patterns of different 

population groups and their impact on the transmission of infectious disease in different social 

contexts. 
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