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Abstract 

Urban land-use maps outlining the distribution, pattern, and composition of various land use 

types are critically important for urban planning, environmental management, disaster 

control, health protection, and biodiversity conservation. Recent advances in remote 

sensing and social sensing data and methods have shown great potentials in mapping urban 

land use categories, but they are still constrained by mixed land uses, limited predictors, non-

localized models, and often relatively low accuracies. To inform these issues, we proposed a 

robust and cost-effective framework for mapping urban land use categories using openly 

available multi-source geospatial “big data”. With street blocks generated from 

OpenStreetMap (OSM) data as the minimum classification unit, we integrated an expansive 

set of multi-scale spatially explicit information on land surface, vertical height, socio-

economic attributes, social media, demography, and topography. We further proposed to 

apply the automatic ensemble learning that leverages a bunch of machine learning 

algorithms in deriving optimal urban land use classification maps. Results of block-level 

urban land use classification in five metropolitan areas of the United States found the overall 

accuracies of major-class (Level-I) and minor-class (Level-II) classification could be high as 

91% and 86%, respectively. A multi-model comparison revealed that for urban land use 

classification with high-dimensional features, the multi-layer stacking ensemble models 

achieved better performance than base models such as random forest, extremely randomized 

trees, LightGBM, CatBoost, and neural networks. We found without very-high-resolution 

National Agriculture Imagery Program imagery, the classification results derived from 

Sentinel-1, Sentinel-2, and other open big data based features could achieve plausible overall 

accuracies of Level-I and Level-II classification at 88% and 81%, respectively. We also 

found that model transferability depended highly on the heterogeneity in characteristics of 

different regions. The methods and findings in this study systematically elucidate the role of 

data sources, classification methods, and feature transferability in block-level land use 

classifications, which have important implications for mapping multi-scale essential urban 

land use categories. 
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1. Introduction 

Urban land use information that reflects socio-economic functions and human activities is 

fundamentally important for urban planning and management (Gong et al., 2020a, Zhang et 

al., 2018). As the highest level human modification on land surface, urban land uses have 

widespread effects on modulating local hydrology, climate, biodiversity, agriculture, living 

environment, and public health (Chen et al., 2017b, Clinton et al., 2018, Grimm et al., 

2008, Seto and Shepherd, 2009, Watts et al., 2015, Wheater and Evans, 2009). With 

increasing urbanization and population growth, around 66% of global population will live in 

urban areas by 2050 (UNDESA, 2014). The accelerated conversion of land from rural to 

urban uses is expected to continue and lead to rapidly changing urban land uses from regional 

to global scales (Gao and O’Neill, 2020). However, detailed urban land use classification that 

outlines the distribution and composition of different land use types remains limited, in 

particular towards large-scale practices, due to extreme difficulties in (i) differentiating 

complex urban built-up areas to derive high-level semantic labels (Zhang et al., 2018, Zhang 

et al., 2017); (ii) coordinating financial input and skills of mapping personnel (Gong et al., 

2020a); and (iii) securing the support of spatially and temporally explicit datasets with high to 

very high resolutions. All these challenges indicate the importance of developing a robust and 

cost-effective data-model framework and approach to derive accurate and timely urban land 

use classification maps. 

A number of previous efforts have been made in the field of urban land use classification 

(Gong et al., 2020a, Hu et al., 2016, Liu et al., 2017, Liu and Long, 2016, Theobald, 2014, Tu 

et al., 2020, Yao et al., 2017, Zhang et al., 2018, Zhang et al., 2019, Zhong et al., 2020), 

which can be categorized into three classes by the minimum size of their spatial 

representation as pixels, objects, or blocks. The pixel-based approaches mainly use spectral 

and textural signatures to classify land cover/use types. For example, there are several 

available gridded urban-extent maps at global scales such as Global Human Settlement Layer 

(Gong and Howarth, 1990, Gong and Howarth, 1992, Pesaresi et al., 2013), Human Built-up 

and Settlement Extent (Wang et al., 2017), Global Man-made Impervious Surface (Brown de 

Colstoun et al., 2017), Global Artificial Impervious Area (Gong et al., 2020b), and others 



(Liu et al., 2020, Schneider et al., 2009, Zhou et al., 2018). However, the majority of these 

datasets with a moderate spatial resolution above 30 m generally regard urban as the single 

class of impervious area, rather than distinguishing sub-category land use types, or they are 

just experimental research with a small tract of land in a particular city. Lu and Weng 

(2006) have applied spectral mixture analysis to classify residential areas with different 

intensities and the integrated class of commercial/industrial/transportation uses in the city of 

Indianapolis, Indiana, United States (US). Theobald (2014) combined information of census 

housing, employment, and infrastructure, and land cover from satellite imagery to present a 

map of land uses for the conterminous US at a resolution of 30 m. These efforts greatly 

advance our understanding of land-use patterns from a macro perspective, but the pixel-based 

classification practices have not fully utilized the spatial information to uncover the 

composition of multiple land use types in urban settings. 

With the rapid development of very-high-resolution (VHR, ≤1 m) satellite observations, it is 

now possible to identify the geometry, texture, size, location, and adjacent information of 

ground objects at a finer scale (Zhang et al., 2018, Zhong et al., 2020). Object-based 

approaches thus are popular for classifying urban land use types, based on segmented objects 

from VHR remote sensing imagery. Two types of information are always included for 

consolidating the classification models, i.e., intra-object features (e.g., spectral, texture) and 

inter-object features (e.g., connectivity, contiguity, adjacent alignment) (Zhang et al., 2018). 

In addition to machine learning algorithms such as random forest (RF) and support vector 

machines (SVMs) that bring together low-level features for urban land use classification 

through the train-and-predict protocol (Petropoulos et al., 2012, Tu et al., 2020), recent 

advances in deep learning convolutional neural networks (CNNs) make it promising to 

transform these features into classes at a higher, slightly abstract level (LeCun et al., 

2015, Schmidhuber, 2015), thus facilitating image classification (Huang et al., 2018, Liu et 

al., 2019, Zhang et al., 2018, Zhang et al., 2019) and object recognition (Cheng et al., 

2016, Guo et al., 2018, Long et al., 2017) at different spatial scales. For example, Du et al. 

(2021) proposed an object-based urban land use classification method by combining a multi-

scale semantic segmentation network and a conditional random field framework using 

VHR remote sensing images. However, these approaches are mostly applied to case studies 

and have not yet been scaled-up to large challenging datasets from regional to global scales 

because of the data availability and computational costs. Moreover, the segmented units from 

object-based classifications are largely influenced by the spatial scale effect (Myint et al., 



2011), which cannot be easily applied in practical urban land-use planning and management, 

on account of the “application gap” (Zhong et al., 2020). 

Given the fact that a street block representing a relatively homogeneous urban function (Erol 

and Akdeniz, 2005, Liu and Long, 2016) is more compatible with the base unit for urban 

planning and management, block-based approaches have been increasingly developed and 

applied in classifying urban land use (Gong et al., 2020a, Hu et al., 2016, Liu and Long, 

2016, Zhong et al., 2020). Based on the statistics of Point of Interests (POIs) allocated within 

street blocks, land uses for 297 cities of China have been estimated (Liu and Long, 2016). 

Without considering other features into the differentiation of different land use classes, the 

accuracy of this derived map is highly determined by the quality and quantity of POIs. 

Several studies further explored to include more predictors from medium-resolution satellite 

imagery, POI data, and other auxiliary geospatial information, and experimental tests of 

block-based land use classification practices at the city level yielded more robust 

classification maps (Hu et al., 2016, Li et al., 2021, Liu and Long, 2016, Su et al., 2020, Yao 

et al., 2017). For example, Huang et al. (2021) integrated high-resolution multispectral and 

multi-view Ziyuan3-01 satellite images and Jilin1-07 nighttime light images to derive urban 

land use function for two megacities of Wuhan and Beijing in China. A data-driven point, 

line, and polygon semantic object mapping framework is recently proposed to integrate POIs, 

OpenStreetMap (OSM) data, and VHR Google Earth imagery for block-based urban land-use 

mapping in four cities of China (Zhong et al., 2020). However, the Google Earth imagery at 

regional scales is always spatially mosaicked using temporally irregular VHR satellite 

observations, which prevents spatially and temporally consistent information for categorizing 

land use types. Additionally, this work is also at the experimental stage focusing on specific 

testing zones without having a full picture of urban land use patterns in China. The 

implementation of this method will be challenging to scale up to large-scale regions due to 

the limitation of computational costs and model transferability. Gong et al. (2020a) report a 

new map of essential urban land use categories for entire China (EULUC-China) that uses 

10-m satellite images, OSM, nighttime lights, POIs, and Tencent location-based service data 

in 2018 as input features, marking the beginning of a new approach of collaborative urban 

land use mapping over large areas. However, this product has several shortcomings: due to 

the incomplete coverage of OSM roads in China, the segmented land blocks with certain big 

sizes are typically mixed with different land uses, thus resulting in a relatively low overall 

accuracy; the predictors are extracted from low-level features such as spectral and derived 



remote sensing indices, without considering higher-level information that is highly correlated 

with urban land uses such as vertical height, texture, and gradients; a unified model is used to 

classify nationwide urban land use categories, which may lead to a biased performance for 

localized experiments. 

The purpose of this study is to explore detailed urban land use classification in five 

metropolitan areas of the United States with numerous blocks (>194,000 blocks), using an 

expansive set of multi-source geospatial data layers, including multi-scale spatially explicit 

information on land surface, vertical height, socio-economic attributes, social media, 

demography, and topography. The ultimate goal is to present a robust and cost-effective 

framework for mapping urban land use categories. Specifically, we seek to answer the 

following scientific questions: (1) How is the performance of block-based urban land use 

classifications in metropolitan areas of the United States? (2) How to leverage multiple 

machine learning models to achieve relatively robust and accurate performance? (3) What is 

the relative importance of different datasets and predictor features? (4) Regarding feature 

transferability, are locally trained models suitable for predicting land use classification in 

non-local areas? An improved understanding of these issues is needed to guide and move 

forward the campaign of block-based urban land use classification from local to regional and 

continental scales. 

2. Materials and methods 

2.1. Study area 

We selected five representative metropolitan areas spanning over the continental US as our 

study area (Fig. 1), specifically, the San Francisco Bay area, Denver, New Orleans, Chicago, 

and New York City, which included different geographic distributions of urban land uses and 

landscape settings for testing our proposed framework in mapping urban land use categories. 



 

Fig. 1. Geographic distribution of five metropolitan areas in the United States (a). Enlarged 

metropolitan boundaries in white lines of (b) San Francisco Bay area, (c) Denver, and (d) 

New Orleans. Examples of street blocks generated in this study are shown in (e) Chicago and 

(f) New York City. 

2.2. Data 

We included an expansive set of geospatial data layers (Table 1) in the mapping of essential 

urban land use categories: OSM, Global Urban Boundary (GUB), National agriculture 

imagery program (NAIP) imagery, Sentinel-2 multi-spectral imagery, Sentinel-1 ground 

range detected (GRD) data, Suomi NPP VIIRS Day-Night Band imagery, WorldPop 

population dataset, Twitter check-in records, and topography data. The details regarding each 

category of the dataset are provided as follows. 

Table 1. Overview of categories, datasets, spatial resolution, and years data used in the 

mapping of essential urban land use categories. 



Category Dataset Resolution (m) Year (s) 

Road 

network 

OpenStreetMap (OSM) ±20 2018 

Urban 

boundary 

Global Urban Boundary (GUB) 30 2018 

VHR multi-

spectral 

National Agriculture Imagery Program (NAIP) 0.6–1 2017–2018 

HR multi-

spectral 

Sentinel-2 10–20 2018 

SAR Sentinel-1 10 2018 

Human 

activities 

Twitter – 2014–2017 

Visible Infrared Imaging Radiometer Suite 

(VIIRS) nighttime light 

500 2018 

WorldPop population 100 2018 

Topography National Elevation Data (NED) 10 2012 

 

Initiated in 2004 as a volunteer effort, OSM (https://www.openstreetmap.org/) is now a 

substantial global spatial database that maps a variety of point, line, and polygon features. 

The positional accuracy of mapped features (±20 m) is mainly determined by the positioning 

technologies (e.g., GPS) employed and references used while digitizing these features. It has 

been reported that road features from OSM largely surpassed the accuracy of other publicly 

available global datasets such as Global Roads Open Access Data Set (±500 m) (Haklay, 

2010), and the high precision and wide coverage make OSM the best available seamless 

dataset (Barrington-Leigh and Millard-Ball, 2017, Meijer et al., 2018). Similar to practices in 

mapping global human modification (Kennedy et al., 2019), we grouped road features as 

either “highway”, “motorway”, “trunk”, “primary”, or “secondary” into a single layer of 

major roads, and grouped road features coded as “tertiary”, “unclassified”, and “residential” 

into another layer of minor roads. 

We collected the GUB dataset in 2018, which is derived from 30-m Landsat imagery to 

represent the urban extent (Li et al., 2020a). Different from the commonly used 

administrative boundaries, the urban boundaries we used mark a physical region that consists 



of not only the built-up areas but also the associated natural lands in the urban center such as 

greenspace and water bodies. Two main steps were used in the process of generating GUB, 

firstly, the 30-m impervious surface pixels were aggregated to a coarse resolution (1 km) to 

derive a kernel density map; and secondly, urban boundaries in the urban fringe area were 

extracted using thresholding methods and refined using morphological operations. 

The US Department of Agriculture’s NAIP acquires aerial imagery during the agricultural 

growing seasons in the continental US. NAIP imagery is acquired at a one-meter ground 

sample distance (GSD) with a horizontal accuracy that matches within six meters of photo-

identifiable ground control points, which are used during image inspection (USDA-

FarmServiceAgency, 2020). Given the data availability, here we collected NAIP imagery in 

2018 for the San Francisco Bay area, in 2017 for Denver, Chicago, New Orleans, and New 

York City. 

The Sentinel-2 mission initiated by the European Commission and the European Space 

Agency constellation aims to provide systematic global acquisition of high-resolution multi-

spectral imagery with a high revisit frequency (Drusch et al., 2012). With the full operation of 

two identical satellites, Sentinel-2A/B has now been able to provide an unprecedented 

observation of global land surface with a spatial resolution of 10–60 m and a high revisit of 

5 days. Here we collected the Sentinel-2 Level-2A imagery in 2018 for the five metropolitan 

areas. 

The Sentinel-1 mission provides Ground Range Detected (GRD) data from a dual-

polarization C-band Synthetic Aperture Radar (SAR) instrument (Torres et al., 2012). Given 

the availability of multiple combinations of instrument mode and polarization in the Sentinel-

1 data, we chose a homogeneous GRD subset by selecting GRD scenes with a dual 

polarization (i.e., VV and VH) at the spatial resolution of 10 m from the instrument mode of 

an interferometric wide swath. Specifically, we acquired the full coverage maximum 

composite of Sentinel-1 GRD data covering the five metropolitan areas in 2018. 

The Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite 

(VIIRS) supports a Day-Night Band (DNB) sensor that provides global daily measurements 

of nocturnal visible and near-infrared (NIR) light that are suitable for Earth system science 

and applications (Elvidge et al., 2017). The VIIRS DNB’s ultra-sensitivity in lowlight 

conditions enables us to generate a new set of science-quality nighttime products that 

manifest substantial improvements in sensor resolution and calibration when compared to the 



previous era of Defense Meteorological Satellite Program/Operational Linescan System’s 

(DMSP/OLS) nighttime lights image products (Elvidge et al., 2017, Shi et al., 2014). We 

collected monthly average radiance composites from the VIIRS stray light corrected DNB 

datasets at the spatial resolution of ~500 m in 2018 (Mills et al., 2013). 

WorldPop (www.worldpop.org) provides different types of gridded population count 

datasets, depending on the methods and end-user application. Specifically, it provides the 

estimated number of people residing in each grid cell. Given the superiority of its fine spatial 

resolution and yearly updated frequency over other population datasets such as the Gridded 

Population of the World (GPW) (CIESIN, 2018) and LandScan (Dobson et al., 2000), we 

used the WorldPop 100-m resolution population count dataset in 2018, derived from 

the random forest model (Stevens et al., 2015; Tatem, 2017). 

Twitter is one of the most popular social media platforms in the world, which allows users to 

post messages and record their real-time locations. As for 2016, the platform had more than 

270 million active users, and 80% of them were cellphone-based (Lansley and Longley, 

2016). The spatial-temporal features of geotagged Tweets are considered a good 

representative of dynamic population distributions (Frias-Martinez et al., 2012). In this study, 

we collected geotagged Tweets generated from April 2014 to December 2017 for the five 

selected metropolitan areas via the Twitter Streaming Application Programming 

Interface (API) (https://developer.twitter.com). Although the collected social media dataset, 

i.e., Tweets, had a ~2-year difference from other datasets used in 2018, it did not affect much 

on revealing the geographic distribution and diurnal changes of human activities over 

different land use blocks (Chen et al., 2020). To avoid overestimation, we further deleted all 

the duplicated Tweets with the same messages (e.g., advertising information produced by 

robots). 

We collected the National Elevation Dataset (NED) with a spatial resolution of 1/3 arc-

second (Evans, 2010). The NED is a seamless dataset with the best available raster elevation 

data of the conterminous United States. 

All the datasets used in this study are open source. Except for the Twitter data collected using 

API, we collected the other datasets and extracted multi-source block-level features in the 

Google Earth Engine platform (Gorelick et al., 2017), and exported the derived results to be 

coupled with samples for offline classifications using different machine learning algorithms. 

2.3. Mapping urban land use categories 



Five main procedures are involved in mapping urban land use categories in this study (Fig. 

2): preparation of multi-source open big data; generation of street blocks in metropolitan 

areas; feature extraction from multi-source geospatial big data; collection of training and 

validation samples; and mapping urban land use categories using automatic ensemble 

learning framework and accuracy assessment. 

 

Fig. 2. Flowchart of the research data and methods. Noted that the abbreviations are: very-

high-resolution (VHR), remote sensing (RS), high-resolution (HR), synthetic aperture radar 

(SAR), Visible Infrared Imaging Radiometer Suite (VIIRS), digital elevation model (DEM). 

2.3.1. Generation of street blocks in metropolitan areas 

The street block that represents a relatively homogeneous function was used as the basic unit 

for urban land use classification in this study (Hu et al., 2016, Liu and Long, 2016, Watts et 

al., 2007). We used the road centerlines of major roads and minor roads from OSM to 

generate street blocks in the five selected metropolitan areas. Street blocks are polygons 

bounded by road networks, thus we can use buffered road centerlines to divide the 

metropolitan areas into polygon-based blocks. Given the fact that roads at different types and 

locations have different widths (Gong et al., 2020a), we randomly selected 150 samples for 

major roads and 150 samples for minor roads across the states where the five metropolitan 

areas were located. For each sample, we measured its road width using high-spatial-



resolution (HR) imagery in the Google Earth Pro software. Road widths varied among 

different states in terms of both major and minor roads (Fig. 3). Based on these findings, we 

used state-level thresholds (i.e., mean values) of the buffered road width for major roads and 

minor roads (Table 2). With the threshold of buffered road width and OSM road network, we 

derived the initial street blocks and further overlapped them with the GUB data in 2018 to 

achieve the final street blocks for these five metropolitan areas (Fig. 4). 

 

Fig. 3. Boxplots of road widths for major roads (a) and minor roads (b) in five states. 

Table 2. Road widths (meters) used for generating street blocks. 

Metropolitan 

(state) 

San Francisco 

(California) 

Denver 

(Colorado) 

New York City 

(New York) 

Chicago 

(Illinois) 

New Orleans 

(Louisiana) 

Major road 18.5 17.9 13.3 13.8 11.7 

Minor road 11.1 10.5 7.7 8.4 7.0 

 



Fig. 4. Illustration of the generation of land use blocks. (a) The OSM major (red lines) and 

minor (black lines) roads, (b) the derived blocks as the basic unit for land use classification, 

and (c) the zoomed-in subsets of derived blocks overlaid on the top of high-resolution Google 

Earth imagery. Noted that it is an example of the City of San Francisco, California. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

2.3.2. Feature extraction from geospatial big data 

Block-level features were extracted for urban land use classification from NAIP imagery, 

Sentinel-2 imagery, Sentinel-1 SAR imagery, VIIRS nighttime light imagery, WorldPop 

gridded population, Twitter check-in records, and topography datasets. Detailed descriptions 

of each categorized feature were provided as below and their specific items were summarized 

in Table 3. 

Table 3. Summary of features used in block-level mapping of essential urban land 

use categories. 

Data source Features Variables 

NAIP Mean of blue, green, red, near-infrared, 

NDVI, NDWI, entropy, gradient bands 

B_mean, Bent_mean, Bgrad_mean, G_mean, 

Gent_mean, Ggrad_mean, R_mean, Rent_mean, 

Rgrad_mean, N_mean, Nent_mean, Ngrad_mean, 

NDVI_mean, NDWI_mean, NDVIgrad_mean, 

NDWIgrad_mean 

 
Standard deviation of blue, green, red, 

near-infrared, NDVI, NDWI, entropy, 

gradient bands 

B_std, Bent_ std, Bgrad_ std, G_ std, Gent_ std, 

Ggrad_ std, R_ std, Rent_ std, Rgrad_ std, N_ std, 

Nent_ std, Ngrad_ std, NDVI_std, NDWI_std, 

NDVIgrad_std, NDWIgrad_std 

Sentinel-

2A/B 

Mean of B2, B3, B4, B5, B6, B7, B8A, 

B11, B12, NDVI, NDWI, and entropy 

bands 

S2_B2_mean, S2_B2ent_mean, S2_B3_mean, 

S2_B3ent_mean, S2_B4_mean, S2_B4ent_mean, 

S2_B5_mean, S2_B5ent_mean, S2_B6_mean, 

S2_B6ent_mean, S2_B7_mean, S2_B7ent_mean, 

S2_B8A_mean, S2_B8Aent_mean, S2_B11_mean, 

S2_B11ent_mean, 

S2_B12_mean, S2_B12ent_mean, S2_NDVI_mean, 

S2_NDVIent_mean, 

S2_NDWI_mean, S2_NDWIent_mean, 

S2_NDWI_mean, S2_NDWIent_mean 

 
Standard deviation of B2, B3, B4, B5, 

B6, B7, B8A, B11, B12, NDVI, NDWI, 

and entropy bands 

S2_B2_std, S2_B2ent_std, S2_B3_std, S2_B3ent_std, 

S2_B4_std, S2_B4ent_std, S2_B5_std, S2_B5ent_std, 

S2_B6_std, S2_B6ent_std, S2_B7_std, S2_B7ent_std, 

S2_B8A_std, S2_B8Aent_std, S2_B11_std, 

S2_B11ent_std, S2_B12_std, S2_B12ent_std, 



Data source Features Variables 

S2_NDVI_std, S2_NDVIent_std, S2_NDWI_std, 

S2_NDWIent_std, S2_NDWI_std, S2_NDWIent_std 

Sentinel-1 

GRD 

Mean of VV, VH, angle VV_mean, VH_mean, slope_mean 

 
Standard deviation of VV, VH, angle VV_std, VH_std, slope_std 

VIIRS 

DNB 

Mean of nighttime light Nighttime_light 

Twitter Counts of Tweets during 0:00–8:00, 

8:00–16:00, and 16:00–24:00 

TW_P1, TW_P2, TW_P3, TW_ALL 

WorldPop Mean of population Pop_mean 

NED-DEM Mean of elevation and slope Elevation, slope 

Block Area of street block Block_size 

 

2.3.2.1. Multi-spectral features and texture features from NAIP imagery 

We mosaicked NAIP imagery together to generate a seamless composite for each 

metropolitan area. Given the fact that NAIP aerial imagery was collected without calibrating 

into radiance or reflectance, we directly used its digital number (DN) values of blue, green, 

red, and near-infrared bands. Similarly, we also used the band combination to indicate the 

concept of normalized difference vegetation index (NDVI = (NIR-Red)/(NIR + Red)) and 

normalized difference water index (NDWI = (Green-NIR)/(Green + NIR)). Due to the high 

spatial resolution of NAIP imagery, we extracted texture information including entropy and 

gradient from each band. Specifically, we calculated the entropy of blue, green, red, and near-

infrared bands, with a square kernel of 4-pixel radius (approximately 2.4 or 4 m in radius) to 

quantify the adjacent texture information. Regarding the gradient, we first computed the 

image gradient in both horizontal and vertical directions, and then calculated the magnitude 

of the gradient through Eq. (1),(1)grad=gradx2+grady2where gradx and grady represent the 

gradient in x-axis and y-axis directions, respectively. 

Finally, all these available and derived bands were aggregated over each street block to 

obtain their mean and standard deviations (Table 3). 

2.3.2.2. Multi-spectral features and texture features from Sentinel-2 imagery 



We used the co-constellation Sentinel-2A/B imagery from January 1 to December 31, 2018 to 

extract multi-spectral features. We first did a pixel-based quality check to screen and filter 

out the poor-quality surface reflectance values using cloud mask and quality assessment (QA) 

information in the Sentinel-2A/B metadata. This eliminated the observations contaminated by 

clouds and shadows from the entire Sentinel-2 archive. NDVI values were then calculated 

from the retained reflectance in the Red and NIR bands for each pixel. We further used the 

pixel-based maximum NDVI values as the quality index to merge the whole-year Sentinel-

2A/B images and derive the cloud-free greenest Sentinel-2 composite in 2018 (i.e., blue, red, 

green, and near-infrared bands at 10-m spatial resolution, and four red edge bands and two 

shortwave-infrared bands at 20-m spatial resolution). Using this base image with 10-m bands, 

we calculated mean and standard deviations of blue, green, red, and near-infrared bands, 

NDVI, NDWI for each street block. Similarly, using the base image with remaining 20-m 

bands, we calculated mean and standard deviations of four red-edge bands and two 

shortwave-infrared bands for each street block. Additionally, we calculated the entropies of 

inclusive bands and remote sensing indices using a square kernel of 4-pixel radius, and 

derived their mean and standard deviations over each street block (Table 3). 

2.3.2.3. Height features from Sentinel-1 SAR imagery 

The height of building structure is one of explanatory variables accounting for the difference 

in land use type. For example, compared with residential and industrial regions, commercial 

service and business offices are generally with high-rise buildings. Although OSM data 

include certain building height information, they are not spatially complete because of the 

crowdsourcing collection and estimation. However, backscatter coefficients from the 

Sentinel-1 GRD VV and VH have been verified to show a high correlation with building 

height (Frantz et al., 2020, Koppel et al., 2017, Li et al., 2020b). Therefore, we directly used 

the backscatter coefficients of VV and VH from Sentinel-1 GRD data as measures of building 

height. Additionally, we also included the angle band representing the approximate viewing 

incidence angle, to characterize the viewing geometry of quantitative VV and VH 

observations accounting for potential differences across spatial and temporal scales. All these 

three bands were further aggregated over each street block to derive their mean and standard 

deviation values (Table 3). 

2.3.2.4. Auxiliary features 



We averaged the 12-month VIIRS stray light corrected DNB images to obtain the monthly 

nighttime light imagery, and calculated the mean value of digital number for each street block 

(Table 3). The 100-m gridded WorldPop data in 2018 were used as the reference to calculate 

the mean of population for each street block. In addition to the total number of Tweets, we 

calculated the number of geotagged Tweets during three time periods (0:00–8:00, 8:00–

16:00, and 16:00–24:00) within the generated street blocks (Table 3). In addition, the size of 

street block may help to account for the difference in land use type. For example, compared 

with industrial and entertainment/recreational regions, residential land uses typically 

occurring smaller blocks. Therefore, we also included the block size as one predictor in the 

classification (Table 3). 

2.3.3. Collection of training and validation samples 

We applied the two-level classification system proposed in our previous paper that comprises 

Essential Urban Land Use Categories (EULUC): residential, entertainment, transportation, 

industrial, and office (Table 4) (Gong et al., 2020a). 

Table 4. The two-level Residential-Entertainment-Transportation-Industrial-

Office classification schemes. 

Level-I Level-II Descriptions 

01 Residential 0101 Residential Houses and apartment buildings—places where people 

live. 

02 

Entertainment/Recreational 

0201 Sport and 

cultural 

Lands used for public sports and training, cultural 

services, including gym centers, libraries, museums, 

exhibition centers, etc. 

 
0202 Park and 

greenspace 

Parks and greenspace lands used for entertainment and 

environmental conservation. 

03 Transportation 0301 Road Paved roads including freeways, major and minor city-

roads. 

 
0302 

Transportation 

station 

Transportation facilities including motor, bus, train 

stains and ancillary facilities. 

 
0303 Airport Airports for civil, military, and mixed uses. 

04 Industrial 0401 Industrial Land and buildings used for manufacturing, warehouse, 

mining, etc. 



Level-I Level-II Descriptions 

05 Office 0501 Business 

office 

Buildings where people work, including office 

buildings, and commercial office places for finance, 

internet technology, e-commerce, media, etc. 

 
0502 Commercial 

service 

Houses and buildings for commercial retails, restaurants, 

lodging, and entertainment. 

 
0503 

Administrative 

Lands used for government, military, and public service 

agencies. 

 
0504 Educational Lands used for education and research, including 

schools, universities, institutes and their ancillary 

facilities. 

 
0505 Medical Lands used for hospitals, disease prevention, and 

emergency services. 

According to the defined classification scheme, we collected ground truth samples using the 

combination of the following two approaches: (i) visual inspections using HR Google Earth 

imagery, Google Street Views, Google Map point of interests (POIs), and 3-D modelled 

imagery; and (ii) reference from regional survey-based land use maps. The crowdsourcing 

information provided us relatively high confidential references to interpret the land use type 

of sampled blocks. Practically, we first generated randomly distributed blocks using stratified 

sampling strategies for each metropolitan area and then overlapped them with Google Earth 

imagery for interpretations (Fig. 5). We also provided examples of three representative 

features in different land use categories to illustrate the difference in multi-source data 

features (Figs. S1–3). The sampling rate was 13.66%, 4.69%, 6.86%, 3.97%, and 7.94% for 

San Francisco, Denver, New York City, Chicago, and New Orleans, respectively (Table S1) 

and the spatial distribution of samples was provided in Fig. S4. All samples in terms of 

Level-II classes collected in five metropolitan areas were summarized in Table 5. 



 

Fig. 5. Examples of sampled blocks of different urban land use categories overlaid with 

Google Earth imagery in Chicago. 

Table 5. The number of collected samples of different Level II categories in different 

metropolitan areas. 

Level-II Number of samples 

San 

Francisco 

Denver New York Chicago New 

Orleans 

In sum 

0101 2744 946 1148 1823 1062 7723 

0201 34 19 74 84 38 249 

0202 106 80 160 172 68 586 

0302 23 2 62 89 6 182 

0303 3 – 6 2 – 11 

0401 502 100 143 233 32 1010 

0501 572 24 170 97 15 878 

0502 753 102 166 326 85 1432 

0503 11 13 34 43 18 119 



Level-II Number of samples 

San 

Francisco 

Denver New York Chicago New 

Orleans 

In sum 

0504 215 76 217 187 56 751 

0505 31 21 41 43 21 157 

 

2.3.4. Mapping essential urban land use categories using automatic ensemble learning 

We trained the classification models using automatic ensemble learning through multi-layer 

stacking. As the basic architecture of multi-layer stacking shown in Fig. 6, Ln represents 

the nth stack layer consisting of several individual models (Base Learner-BL) and a meta-

learning model (ML). For each stack Ln, the derived results from BLn and original input 

features are stacked together for training MLn. Iteratively, each model in BLn will be 

individually trained using the output from MLn-1 in the previous stack layer. The input 

features from original data are also concatenated into input vectors of MLn-1, which enables 

higher-layer stackers to revisit the original data in training process for more robust and 

accurate model performance. In addition to multi-layer stacking, we employed 5-fold cross 

validation to reduce model variability and mitigate over-fitting problems in the automatic 

ensemble learning. Specifically, for any model at any stack layer, we randomly split the input 

data into 5 folds with equal size (stratified sampling based on labels). Among the 5-fold 

subsamples, one-fold subsample was retained for model validation, and the remaining 4 folds 

were used as training data. The cross-validation process in 5 replicated runs were then 

averaged to produce an average estimation. 

 

Fig. 6. The architecture of automatic ensemble learning. 



We here applied the AutoGluon package (Erickson et al., 2020) to implement automatic 

ensemble learning. AutoGluon is an open-source Python library that automates the process of 

model selection, hyperparameter tuning, and model ensembling during machine learning 

(Erickson et al., 2020). By setting parameters such as bagging strategy, stack level, and 

model parameters, AutoGluon will automatically train and ensemble multiple models to 

obtain the best classification result within a given time. In this study, the parameter 

‘num_bag_folds’ was set to 5 for 5-fold cross-validation, ‘auto_stack’ was set to True for 

automatic multi-layer stacking, and ‘time_limit’ was set to 3600 for a maximum learning 

time of 3600 s in total. Base models here included random forest, extremely randomized 

trees, light gradient boosting machine (LightGBM) (Machado et al., 2019), CatBoost boosted 

trees (Dorogush et al., 2018), and neural networks. For each base model, we tested 

classification performance under 20 sets of parameter combinations (Table S2). For neural 

networks, the choice of hyperparameters did have certain impact on the classification results, 

with a validation accuracy ranging from 67.70% to 81.47% and a training accuracy ranging 

from 67.97% to 81.29% for Level-II classification. In contrast, as for random forest, 

extremely randomized trees, and CatBoost boosted trees, the classification accuracy among 

models did not vary significantly with standard deviations less than 1%. We therefore 

selected parameters with the highest validation accuracy as the optimal parameters for each 

base model and used them for automatic ensemble learning accordingly. Specifically, For 

random forest and extremely randomized trees, the number of trees was 500 and 450, 

respectively, and the criterion was set to Gini. For LightGBM, the learning rate was 0.08, the 

number of leaves was 138, and the boosting type was set to traditional gradient boosting 

decision tree. In CatBoost boosted trees, the number of iterations was 10,000, and the 

learning rate was 0.1. In neural networks, the epoch was set to 10, the learning rate was 

0.005, the activation function was ReLU, the batch size was 512, and the dropout probability 

was set to 0.. 

2.3.5. Accuracy assessment and comparison 

We evaluated the accuracy of model performance in terms of two aspects. First, we grouped 

all samples from five metropolitan areas and split them into 75% for training and 25% for 

validation, which was treated as accuracy assessment for the global model. Second, we 

conducted the accuracy assessment individually across each of the metropolitan areas, which 

was termed as localized models. Similarly, 75% of samples were used for training and the 

remaining 25% of samples were used for validation. During the training process, we used 5-



fold cross-validation to achieve the averaged overall accuracy as an indicator for model 

training performance. To better inform the accuracy assessment, we included Kappa 

Coefficient for validation accuracy assessments. For model comparison, we further included 

the weighted F1 score to better justify the accuracy assessment. Specifically, the F1 score can 

be interpreted as an average of the precision (user’s accuracy) and recall (producer’s 

accuracy), where a F1 score reaches its best value at 1 and worst value at 0. The relative 

contribution of precision and recall to the final F1 score is equal, and the calculation of F1 

score is as below. 

F1=2∗(precision∗recall)/(precision+recall)                                                                 (2) 

According to Eq. (2), we can calculate the F1 score for each class, respectively. By 

accounting for the weight of each class, defined by the number of true instances for each 

class, we can calculate the weighted F1 score as another indicator for a more justified 

accuracy assessment. 

To differentiate the relative contribution of inclusive variables in the full model, we 

calculated the mean decrease of prediction accuracy to quantify variable importance 

(Erickson et al., 2020). Given the fact that we have included multi-source datasets into this 

block-level urban land use classification, it will be useful to identify specific types of data 

sources and features with a higher contribution to the classification performance, thus gaining 

potential insights of data selections and method transferability for multi-scale land use 

classification practices. Therefore, we conducted another set of classification comparisons 

using different combinations of inclusive features: (1) NAIP imagery only; (2) Sentinel-1 

imagery (S1) only; (3) Sentinel-2 imagery (S2) only; (4) auxiliary data including block size, 

population, Twitter locations, topography and nighttime light (i.e., others) (5) NAIP and S1; 

(6) NAIP and S2; (7) NAIP and others; (8) S1 and S2; (9) S1 and others; (10) S2 and others; 

(11) NAIP, S1, and S2; (12) NAIP, S1, and others; (13) NAIP, S2, and others; (14) S2, S1, 

and others. All 14 scenarios were trained and validated using the 5-fold cross-validation 

scheme as described in Section 2.3.4. 

2.3.6. Feature transferability for urban land use classification 

In addition to the models trained using samples from all five metropolitan areas (i.e., global 

models), we also developed independent models of urban land use classification metropolitan 

by metropolitan (i.e., localized models). Using the collected samples from each metropolitan, 

we were able to train metropolitan-wise classification models. We proposed a paired-



metropolitan training and validation scheme to investigate whether localized features and 

models could be transferred to non-local urban land use classification. For example, we first 

built the machine learning algorithm using training samples collected in the San Francisco 

Bay area, and then applied it in urban land use classification in New York City. The 

performance of classification practice was independently validated using samples collected in 

New York City. Following this protocol, we validated the classification performance through 

all paired-metropolitan training practices. The overall accuracy was used as the major 

indicator to account for its transferability. 

3. Results 

3.1. Comparison of different models 

Results of the multi-model comparison in Table 6, Table 7 showed that multi-stacking 

ensemble models achieved the best performance in training accuracy for Level-I classes 

(overall accuracy: 90.93%, and Kappa coefficient: 0.84) and Level-II classes (overall 

accuracy: 86.14%, and Kappa coefficient: 0.77), followed by random forest, LightGBM, 

ExtraTrees, NeuralNetwork, and CatBoost models with slightly lower overall. Meanwhile, 

we found that the multi-stacking strategy did help improve model performance in land use 

classification. For example, the overall accuracy could be improved from 89.72% to 90.93% 

when we increased the multi-stacking ensemble model from 2 layers to 3 layers. This general 

pattern was also identified in other base models such as Extremely Randomized Trees and 

Random Forest models. Due to the relatively superior performance of multi-stacking 

ensemble models (Table 6, Table 7), we chose them as the main models for subsequent 

analysis. 

Table 6. Level-I accuracy comparison of different models in terms of overall accuracy 

(OA), Kappa Coefficient (Kappa), weighted F1 score, training time and the number of stack 

layers. 

Model OA Kappa Weighted F1 

score 

Training time 

(s) 

Number of stack 

layers 

WeightedEnsemble_L3 90.93% 0.8405 90.60% 3284.56 3 

RandomForest_BAG_L2 90.77% 0.8376 90.42% 1691.14 2 

LightGBM_BAG_L2 90.77% 0.8374 90.43% 2018.04 2 



Model OA Kappa Weighted F1 

score 

Training time 

(s) 

Number of stack 

layers 

ExtraTrees_BAG_L2 90.64% 0.8354 90.29% 1616.73 2 

NeuralNetMXNet_BAG_L2 90.58% 0.8346 90.29% 1856.80 2 

CatBoost_BAG_L2 90.55% 0.8337 90.23% 2479.29 2 

CatBoost_BAG_L1 89.88% 0.8214 89.46% 1132.00 1 

WeightedEnsemble_L2 89.72% 0.8180 89.23% 1572.69 2 

LightGBM_BAG_L1 89.56% 0.8148 89.01% 229.13 1 

NeuralNetMXNet_BAG_L1 88.36% 0.7936 87.81% 143.49 1 

RandomForest_BAG_L1 87.37% 0.7737 86.52% 65.16 1 

ExtraTrees_BAG_L1 86.83% 0.7639 85.90% 18.22 1 

Table 7. Level-II accuracy comparison of different models in terms of overall accuracy 

(OA), Kappa coefficient (Kappa), weighted F1 socre, training time and the number of stack 

layers. 

Model OA Kappa Weighted F1 

score 

Training time 

(s) 

Number of stack 

layers 

WeightedEnsemble_L3 86.14% 0.7733 84.82% 3247.34 3 

LightGBM_BAG_L2 86.07% 0.7720 84.77% 1558.68 2 

CatBoost_BAG_L2 85.88% 0.7704 84.79% 2267.11 2 

ExtraTrees_BAG_L2 85.82% 0.7678 84.35% 1185.04 2 

RandomForest_BAG_L2 85.72% 0.7663 84.19% 1243.50 2 

WeightedEnsemble_L2 85.44% 0.7600 83.83% 1152.12 2 

CatBoost_BAG_L1 85.25% 0.7577 83.76% 844.22 1 

NeuralNetMXNet_BAG_L2 84.87% 0.7533 83.75% 1582.80 2 

LightGBM_BAG_L1 84.42% 0.7419 82.53% 98.20 1 

NeuralNetMXNet_BAG_L1 83.41% 0.7286 82.25% 153.41 1 



Model OA Kappa Weighted F1 

score 

Training time 

(s) 

Number of stack 

layers 

RandomForest_BAG_L1 81.88% 0.6964 79.62% 38.21 1 

ExtraTrees_BAG_L1 81.25% 0.6852 78.97% 14.37 1 

 

Although multi-stacking ensemble models achieved relatively robust and promising 

classification performance with overall accuracies of 90.93% and 86.14% for Level-I and 

Level-II, the confusion between classes (at both Level-I and Level-II) was still a challenge. 

As the confusion matrixes shown in Tables S3-4, the producer’s accuracy (PA) was quite 

high for the majority of classes in general, whereas the user’s accuracy (UA) for certain 

classes was not plausible, for example, commercial and transportation lands at Level-I 

scheme, and sport and cultural, transportation station, and medical lands at Level-II scheme 

achieved UA less than 67%. The relatively lower accuracy may result from two major 

factors. First, the samples of these land use types are much less than those of residential and 

industrial lands. Second, the similarity in spectral, textural, and anthropogenic characteristics 

of different land uses will lead to confusion between classes using machine learning 

algorithms. For example, sport and cultural lands (e.g., gyms, libraries, museums) will be 

confused with residential lands (Table S4), and medical lands will be confused with 

administrative and educational lands (Table S4). 

3.2. Land use classification maps for five metropolitan areas 

We derived the urban land use classification maps for these five metropolitan areas using the 

multi-stacking ensemble models, which achieved the best training accuracy for both Level-I 

and Level-II classification schemes (Table 6, Table 7). Given the contrasting characteristics 

in urban morphologies and components, the metropolitan-wise models were used. As shown 

in Fig. 7, the derived block-level maps could accurately depict the geographic distribution, 

pattern, and composition of various land use types for each metropolitan area. For example, 

in the city of San Francisco, the residential lands were mainly distributed in the western side, 

and the business office and commercial areas were distributed in the upper eastern side (Fig. 

7a). In Denver, the majority of industrial land use was distributed in the northeast side while 

the residential and commercial lands in the middle to southwest side (Fig. 7b). In New 

Orleans, the majority of residential, business office and commercial areas were distributed in 

the north of the Mississippi River, and we could clearly identify several industrial land uses 



along with the Mississippi River (Fig. 7c). In Chicago, residential, business office and 

commercial areas were densely distributed along the Lake Michigan, while the spatial 

coverage of parks and greenspaces were much larger in the suburban areas (Fig. 7d). New 

York City was quite different, and business offices are densely distributed in Manhattan (Fig. 

7e). 



 



Fig. 7. Urban land use classification map of (a) the San Francisco Bay area, (b) Denver, (c) 

New Orleans, (d) Chicago, and (e) New York City. The middle and right panels are zoomed-

in subsets from corresponding metropolitan areas. 

Quantitative results revealed that the overall accuracy of land use classification maps was 

consistently higher than 87% and 81% for Level-I and Level-II schemes in all five 

metropolitan areas (Table 8). Specifically, the highest Level-I overall accuracy could be up to 

95.38% and 93.71% for Denver and New Orleans, while their corresponding Level-II overall 

accuracy could be up to 91.62% and 89.71%. 

Table 8. Quantitative comparison of Level-I and Level-II classification in five metropolitan 

areas using overall accuracy (OA) and Kappa Coefficient (Kappa). 

Metropolitan areas Level-I Level-II 

OA Kappa OA Kappa 

San Francisco 92.63% 0.87 88.54% 0.82 

Denver 95.38% 0.90 91.62% 0.83 

New Orleans 93.71% 0.84 89.71% 0.75 

Chicago 91.61% 0.86 86.32% 0.78 

New York 87.21% 0.80 81.62% 0.75 

 

3.3. Contribution of inclusive features 

According to the variable importance quantified by mean decrease in the prediction accuracy 

(Fig. 8, Table S5), we could identify that, for both Level-I and Level-II classifications, mean 

population (pop_mean), elevation, mean of angle (angle_mean), and block size (F_AREA) 

were leading important predictors. It makes sense that population density accounts most for 

differentiating different urban land use types, because the function of urban land use is 

characterized by human activities, for example, the population in residential areas is 

significantly higher than that in industrial areas. Similarly, street block size is another factor 

representing the extent of different urban land uses. For example, residential land uses are 

always characterized with much denser street networks, thus leading to a smaller block size. 

In contrast, the industrial and transportation land uses always require much larger land 

availability, which are characterized by the larger block size. Meanwhile, as revealed in Fig. 



8, elevation is another important factor since the location of different urban land uses will be 

influenced by topographic effects such as elevation. We also identified significant variations 

of variable importance across these five metropolitan areas (Fig. S5-9). The differences of 

physical environment and socio-economic status among the five metropolitan areas will be 

the main driver accounting for the changes in variable importance. 

 



Fig. 8. Variable importance in terms of mean decrease in the prediction accuracy for (a) 

Level-I and (b) Level-II classification schemes. 

The inclusion of all features achieved the best performance of urban land use classification. 

Scenarios with different combinations of input features yielded different classification 

outcomes. Given the fine spatial details from NAIP imagery, we found that classification 

results from NAIP derived features (Level-I: 87.56% and Level-II: 81.95%) achieved much 

higher accuracies than that from Sentinel-1 imagery (Level-I: 80.62% and Level-II: 74.24%) 

or Sentinel-2 imagery (Level-I: 77.63% and Level-II: 72.46%). However, expect for 

scenarios with the addition of NAIP, the integration of Sentinel-1, Sentinel-2, and other 

auxiliary data could achieve a relatively plausible classification performance with overall 

accuracies of 88.42% for Level-I classes and 81.44% for Level-II classes (Table 9), which 

was higher than the combination of S1 and S2 (Level-I: 85.37% and Level-II: 78.08%), the 

combination of S1 and others (Level-I: 87.82% and Level-II: 81.12%), the combination of S2 

and others (Level-I: 84.93% and Level-II: 78.52%), S1 only (Level-I: 80.62% and Level-II: 

74.24%), S2 only (Level-I: 77.63% and Level-II: 72.46%), and others only (Level-I: 79.82% 

and Level-II: 74.90%). The combination of moderate-resolution spectral, textural, height, and 

topographic information from satellite-based observations and human activities from 

geospatial big data is able to provide multi-dimensional lens to uncover the composite, 

pattern, and distribution of urban land use types. 

Table 9. Accuracy comparison of Level-I and Level-II classification using different 

combinations of features. Noted that OA represents overall accuracy and Kappa 

represents Kappa Coefficient. 

Categor

ies 

 
NAIP S1 S2 Others NAIP + S1 NAIP + S2 NAIP + othe

rs 

Level-I OA 87.56

% 

80.62% 77.63% 79.82% 88.48% 86.87% 89.40% 

Kap

pa 

0.78 0.65 0.58 0.63 0.80 0.77 0.81 

Level-II OA 81.95

% 

74.24% 72.46% 74.90% 82.87% 81.25% 84.52% 

Kap

pa 

0.70 0.56 0.50 0.57 0.72 0.69 0.75 



Categor

ies 

 
NAIP S1 S2 Others NAIP + S1 NAIP + S2 NAIP + othe

rs 

Categor

ies 

 
S1 + 

S2 

S1 + oth

ers 

S2 + oth

ers 

NAIP + S1 

+ S2 

NAIP + S1 + ot

hers 

NAIP + S2 + ot

hers 

S1 + S2 + ot

hers 

Level-I OA 85.31

% 

87.82% 84.93% 89.05% 90.13% 88.67% 88.42% 

Kap

pa 

0.74 0.78 0.73 0.81 0.83 0.80 0.80 

Level-II OA 78.08

% 

81.12% 78.52% 83.06% 85.22% 84.30% 81.44% 

Kap

pa 

0.63 0.69 0.64 0.72 0.76 0.74 0.69 

3.4. Transferability of features and models across metropolitan areas 

As shown in Table 10, the overall accuracies of training models in each metropolitan area 

were above 87% and 81% for Level-I and Level-II schemes. By applying the model trained 

using samples collected in one metropolitan to other metropolitan areas, the derived overall 

accuracies differed a lot across different metropolitan areas (Table 10). For example, the 

models trained in Denver achieved quite plausible performance in classifying Level-I urban 

land uses in San Francisco with an overall accuracy of 76.60%, but yielded much lower 

accuracies in Chicago and New York. The models trained in New York even achieved better 

performance in classifying Level-I urban land uses in San Francisco with an overall accuracy 

of 81.89%. However, most localized models did not perform well in non-local regions, 

especially for the Level-II classification practices with overall accuracies of less than 50% in 

several metropolitan areas. 

Table 10. Comparison of the Level-I and Level-II overall accuracies using paired-

metropolitan training and validation experiments. 

Level-I overall accuracy (%) 

 
Validate 

Train San Francisco Denver New Orleans Chicago New York 

San Francisco 92.63 21.68 39.71 52.00 76.40 

Denver 76.60 95.38 58.00 69.16 60.00 



Level-I overall accuracy (%) 

 
Validate 

Train San Francisco Denver New Orleans Chicago New York 

New Orleans 74.60 31.21 93.71 38.32 54.96 

Chicago 29.89 51.73 24.57 91.61 22.34 

New York 81.89 70.23 68.00 75.23 87.21 

Level-II overall accuracy (%) 

 
Validate 

Train San Francisco Denver New Orleans Chicago New York 

San Francisco 88.54 11.85 26.29 50.97 62.34 

Denver 10.50 91.62 1.71 8.00 7.75 

New Orleans 59.62 11.27 89.71 33.03 37.30 

Chicago 19.07 69.94 33.43 86.32 10.27 

New York 65.95 74.43 74.57 61.29 81.62 

 

We selected four important features to show their difference among five metropolitan areas in 

terms of different urban land use categories (Fig. 9). We found there was a significant 

difference in the mean population within residential (Fig. 9a) and entertainment/recreational 

blocks (Fig. 9b) between Chicago and other metropolitan areas; and the elevation was much 

higher in Denver than other metropolitan areas (Fig. 9a-d). Block size was more comparable 

among different metropolitan areas for residential blocks (Fig. 9a) but showed more 

variations for other land use blocks such as entertainment/recreational (Fig. 9b), industrial 

(Fig. 9c), and office lands (Fig. 9d). The difference in the averaged angle among different 

metropolitan areas was similar across four selected land use types (Fig. 9a-d). This dived-in 

analysis helps gain insights that the suitability of model transferability should be dependent 

on the similarity in characteristics of different metropolitan areas. 



 

Fig. 9. Comparison of selected important features among five metropolitan areas in terms of 

different urban land use categories: (a) residential, (b) entertainment/recreational, (c) 

industrial, and (d) office lands. Noted that the San Francisco Bay area, Denver, New York 

City, Chicago, and New Orleans are abbreviated by SF, DV, NY, CH, and NL, respectively. 

4. Discussion 

The integration of features extracted from VHR satellite observations is able to provide 

important information for urban land use classification, especially for unique textures of 

buildings and infrastructures. However, the majority of VHR satellite imagery is publicly 

inaccessible and expensive (Chen et al., 2017a), thus hindering VHR feature extraction and 

semantic classification at large scales. A cost-effective data source is the freely available 

moderate-spatial-resolution images such as Sentinel-2 and Landsat series. The 30-m 

resolution of Landsat imagery is still challenging in spatial details to identify building objects 

at the block level, but the 10-m pixels from Sentinel-2 observations are promising to 

differentiate spectral and texture characteristics among different land use types at the block 

level (Gong et al., 2020a, Su et al., 2020, Tu et al., 2020). Compared with the classification 



performance using VHR NAIP based features, the derived classification using Sentinel-1/2 

based features with other auxiliary features achieved comparable overall accuracies (Table 9). 

This finding elucidates the possibility of accurate block-level urban land use classification at 

large scales without VHR satellite imagery, and we could rely on global free-accessible 

Sentinel-1/2 for substitute. Additionally, the VHR remotely sensed data is limited by 

its spectral bands from visible to near infrared wavelength. However, the red edge bands, 

shortwave infrared bands, and derived remote sensing indices such as NDWI and NDBI from 

Sentinel-2 provide more features to feed machine learning algorithms in urban land use 

classification. Backscatter coefficients from Sentinel-1 GRD observations have proven to be 

useful in urban land use classification, and in this study, the overall accuracies of 

classification practices using only Sentinel-1 based features are up to 80.62% and 74.24% for 

Level-I and Level-II classes, respectively (Table 9), which is even higher to the results using 

only Sentinel-2 based features. However, the integration of both Sentinel-1 and Sentinel-2 

observations can lead to an increase in the overall accuracy of 5%-8% for Level-I classes and 

4%-6% for Level-II classes (Table 9). Human activities and auxiliary features such as 

population and nighttime light are also playing important roles in increasing classification 

accuracies (Fig. 8). Although topography features do not change dramatically in the urban 

environment, we do find that for the global model, elevation plays an important role in both 

Level-I and Level-II classifications (Fig. 8). However, the role of topography features in 

urban land use classification varies across different regions. For example, elevation is the first 

or second leading variable in Level-I/II classification in San Francisco Bay area (Fig. S5) and 

Denver (Fig. S6), but it is not ranked as the leading variable of relative contribution in other 

three metropolitan areas (Fig. S7-9). With the investigation of variable contribution using an 

expansive set of multi-source open big data, our results revealed that the integration of free-

accessible datasets including Sentinel-1, Sentinel-2, nighttime lights, and population could be 

robust and cost-effective input features for large-scale mapping of urban land use categories. 

On the other hand, feature combination should depend on the urban landscape of specific 

study areas, since the contribution of datasets and predictor features will be different across 

different urban landscapes (Fig. S5-9), especially for different countries and continents. 

Mixed land uses have been challenging to urban land use categories mapping. The low 

accuracy of EULUC-China practice mainly results from the mixed land use within land 

blocks. Generally, the overall accuracy decreases rapidly with the increase in land use 

mixture (Gong et al., 2020a). Although we adopted the same protocol of using the OSM road 



network to generate polygon-based blocks, the derived street blocks in five metropolitan 

areas of the US are in much finer scales with less mixed land uses, due to the following two 

reasons: (1) the data coverage of OSM road networks is much higher in the US with almost 

complete coverage spatially, leading to pure land uses for generated street blocks; and (2) 

land use types are more unique in urban planning practices in the US (Sarzynski et al., 2014). 

Therefore, the road network based generation of street blocks is cost-effective and practically 

applicable for urban land use classification. However, for areas with highly mixed land uses, 

an optimal approach will be to refine the division of land blocks using more detailed road 

networks and multi-scale image segmentation (Tu et al., 2020). In addition to mixed land use 

and block size, the impact of the number of size (Su et al., 2020) and similarity of land uses 

should also be considered to better refine urban land use classification. 

Machine learning algorithms have been widely used in urban land use/land cover 

classification. The concept of ensemble learning has also enjoyed growing attention within 

the artificial intelligence and machine learning community (Zhang and Ma, 2012). The 

contribution of this study to method development and application could be concluded in two 

aspects. First, we proposed to apply the automatic ensemble learning framework in 

leveraging a group of machine learning algorithms for urban land use classification. As urban 

land use classification is a complex and challenging task with multi-source and high-

dimensional features and different landscape settings, compared with single machine learning 

algorithm, the ensemble learning framework will be more useful to derive robust 

classification outcomes. Second, using the same set of training and validation block samples, 

our study provided a comparison of multi-model performance (i.e., random forest, extremely 

randomized trees, LightGBM boosted trees, CatBoost boosted trees, and neural networks) in 

urban land use classification, which will provide potential guidance for selecting models and 

strategies in urban land use classification practices in different locations. Experimental results 

revealed that multi-stacking ensemble models achieved relatively robust and better 

performance in classification accuracy. This classification strategy and framework is 

especially suitable for processing high dimensional features. Meanwhile, the tradeoff between 

classification accuracy and computational cost should be acknowledged. For each inclusive 

base model, we tested its classification accuracy and computational cost under different 

scenarios of no-stack, one-layer stack, and two-layer stack, respectively. We also leveraged 

all based models for multi-layer stacking (i.e., the weighted ensemble model) for baseline 

comparison. As for Level-I classification scheme, results showed that ensemble learning did 



achieve better performance than single models, with higher weighted F1 scores (Fig. S10). In 

the meantime, ensemble learning required more training time and memory size, which 

increased with the larger number of stack layers (Fig. S10). For scenarios with no-stack 

single modes, the average training time was 317.6 s with an average weighted F1 score of 

87.74%. In contrast, as for the three-layer stack ensemble learning, the training time was 

approximately ten times longer (i.e., 3284.56 s on average), but the average weighted F1 

score reached up to 90.60% (Table S6). Given the added computational cost due to ensemble 

learning, on the one hand, we felt it was still worthwhile considering the increase in 

classification accuracy. On the other hand, the balance between classification accuracy and 

computational cost can be adjusted according to different purposes of practical applications. 

Although recent advances in deep learning that transform multispectral remote sensing 

imagery to high-level abstract features have proven great utilities in land cover and land use 

classification, the model interpretability of deep learning based approaches continues to be a 

major challenge. Moreover, the essential urban land use classification in this study is in the 

form of block-level mapping practices determined by road networks, which makes it difficult 

to create paired training samples in unified sizes and to link with multi-sensor and multi-

format data sources. Additionally, deep learning based approaches are more appropriate to 

high or very high-resolution remote sensing observations for thematic information extraction, 

which may be hindered by computational costs at large-scale urban land use classification 

practices. In contrast, ensemble machine learning in this study that brings together multi-

source features representing spectral, textural, height, topographic, and anthropogenic 

characteristics has demonstrated its robust and cost-effective capability of block-level urban 

land use classification with quite plausible accuracies. More importantly, the model 

interpretability of variable importance could help gain insights about the optimal selection of 

data sources and features in urban land use classification across different spatial and temporal 

scales. In addition to the model selection, the model transferability is another important issue. 

Given the difference in characteristics of urban land uses across states and countries, the 

training samples collected in some regions may not be appropriate for the land use 

classification in other regions. Our experimental results of five metropolitan areas also 

observed the varying overall accuracies when we applied the model trained using samples 

collected in one metropolitan to other metropolitan areas (Table 10). For large-scale mapping 

of urban land use categories, in particular, it will be unrealistic to apply a global model in 

universal land use classification for different regions. How to better define non-local 



similarities among different regions and develop spatially adjusted models will be an open 

topic in the direction of model and feature transferability from local to regional, and 

continental scales. For example, transfer learning which makes use of all parameters of neural 

network pre-trained over training datasets has been proven to be quite helpful and efficient to 

solve a different but related problem (Weiss et al., 2016). 

This study presents a cost-effective framework for mapping urban land use categories using 

openly available multi-source geospatial “big data”, using examples of five U.S. metropolitan 

areas. The potential of extending this framework to broader scale urban land use mapping can 

be summarized in terms of the following points. First, global open big data. Apart from the 

NAIP VHR imagery, the other datasets used including Sentinel-1, Sentinel-2, WorldPop, 

OpenStreetMap, nighttime light, Twitter, etc. are all globally free available, which makes it 

possible for regional to global urban land use classification practices. Second, cost-effective 

models. Automatic ensemble learning models have been verified to be effective and robust to 

achieve plausible accuracies in mapping urban land use categories. Third, crowdsourcing 

sample collections. Given the time-consuming cost of sample collections, we adopted the 

crowdsourcing scheme to leverage available geospatial big data to better facilitate sample 

collection from local to broader scales, which will be much more cost-effective than the on-

site survey practices in EULUC-China (Gong et al., 2020a). Fourth, transferability of training 

and prediction across regions. Although localized models and samples will be more suitable 

for mapping urban land use categories at local scales, our experimental tests also demonstrate 

the potential possibility of transferring samples and predictions across different regions, 

which will be very useful to conduct broader-scale urban land use classification. 

5. Conclusions 

Leveraging multi-source geospatial big data, this study sought to present a robust and cost-

effective framework for mapping urban land use categories, including five major procedures: 

(1) multi-source open big data collection; (2) generation of street blocks in metropolitan 

areas; (3) feature extraction from multi-source geospatial big data; (4) collection of training 

and validation samples; and (5) mapping urban land use categories using automatic ensemble 

learning strategy. Following this framework, we conducted block-level urban land 

use classification in five metropolitan areas of the United States, using a complete set of 

open-source geospatial data layers from VHR NAIP, Sentinel-1 GRD, Sentinel-2A/B, 

nighttime light, topography, population, and Twitter data. Results showed that the overall 

accuracies of Level-I and Level-II classification among five metropolitan areas could be up to 



91% and 86%, respectively. Multi-model comparisons revealed that compared with base 

machine learning models, the multi-stacking ensemble models achieved relatively robust and 

better performance in urban land use classification with high dimensional features. We found 

the classification result derived from Sentinel-1, Sentinel-2, and other open big data based 

features could also achieve comparable accuracies to models that included NAIP imagery, 

which supported the possibility of accurate block-level urban land use classification at large 

scales without VHR satellite imagery. We further found the model transferability was highly 

dependent on non-local heterogeneity in characteristics of different regions, which 

enlightened that cross-city model training and transferring should be cautious in practical 

applications. This study systematically elucidates the role of data sources, classification 

methods, and feature transferability in block-level land use classifications, and the methods 

and findings may carry implications for mapping multi-scale essential urban land use 

categories. 
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