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Abstract 5 
Urban agglomeration is an important strategy used to promote economic development and 6 
urbanization in China. Understanding the structure of urban agglomeration is therefore 7 
essential for policy makers and planners. In this study, the Beijing-Tianjin-Hebei urban 8 
agglomeration (BTHUG) is explored through a proposed spatial network analytical 9 
framework and a large amount of mobile phone dataset (over 20 million users). We first 10 
construct a weight-directed spatial interaction network based on an origin-destination 11 
matrix derived from the dataset. Several network metrics (i.e., degree, strength, the rich-12 
club coefficient, and the assortativity coefficient) and three selected community detection 13 
algorithms (i.e., Infomap, Louvain and Regionalization) are applied and compared to reveal 14 
the structure of the BTHUG. A four-level hierarchical structure is defined and observed: 15 
One global center, two local centers, major cities that have low mobility flow but strong 16 
linkages with the three centers, and peripheral cities that have low mobility flow and weak 17 
linkages with the three centers. Especially, the results imply that the spatial structure of 18 
BTHUG is over-dependent on the Global center (i.e., Beijing and northern Langfang). 19 
Further, ignoring spatial interaction patterns in top-down administrative planning for urban 20 
agglomeration may lead to ineffective integrated development. The implications for 21 
BTHUG planning are discussed.  22 
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25 
1. Introduction26 
Urban agglomerations have rapidly expanded in many developing countries. It is now an27 
important strategy for accelerating economic development and urbanization in China. The28 
development of urban agglomerations leads to huge flows of people, vehicles, goods, and29 
capital among cities, thus increasing openness and connectivity across city borders. This30 
has led to an economic revolution in mega-city regions and has attracted increasing31 
research attention in recent years (Taylor et al. 2002, Taylor and Derudder 2015, Wu et al.32 
2016, Zhang et al. 2018, Liu et al. 2016, Li and Phelps 2017, Li and Phelps 2019). Top-33 
down administrative planning has become the main mechanism for urban agglomeration34 
integrated development since the “opening-up” of China in the 1970s, and it is controlled35 
by the central government (Wu 2016). Hence, since the emergence of urban agglomeration36 
integrated development emerged, it has witnessed increasing flows of people, vehicles,37 
goods, and capital along with rapid economic development. However, a fundamental38 
question is whether the “top-down” administrative planning for urban agglomeration39 
integrated development reflects the spatial interaction of human activities, and what are the40 
potential impacts? It is thus important to understand the spatial structure of urban41 
agglomeration by developing methods that should be founded upon the spatial interaction42 
patterns.43 

44 
The administrative structure of a city or a city-cluster is to some extent static. Nevertheless, 45 
Batty (2013) proposed that an urban system should be regarded as “systems of networks 46 
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and flows”. Many researchers have conducted empirical studies to explore the “dynamics” 47 
of the spatial structure of an urban region, by taking the spatial interaction network 48 
approach. A spatial network is typically generated by representing a spatial unit (e.g., 49 
neighborhood, traffic analysis zone, or grid) as the node of a network, and the intensity of 50 
flow (people, vehicle, etc.) between nodes as weighted links. The “spatial structure” of an 51 
urban area can be detected from such a spatial network (e.g., Liu et al. 2015, Kempinska 52 
et al. 2018). The spatial structure of an urban region shapes and is shaped by spatial 53 
interaction patterns. Despite potential issues such as data uncertainty (Xu et al. 2020; 54 
Steiger et al. 2015; Huang and Wong 2016), spatial network analysis can be used to 55 
effectively explore the spatial structure with good performance (Wang et al. 2017, Wang 56 
et al. 2019), particularly with increasingly available human mobility data (e.g., taxi GPS 57 
trajectories, social media, smart card data, etc.). 58 
 59 
The considerable geographic extent and a “top-down” administrative system are two of the 60 
main characteristics of China’s urban agglomeration development (Wu 2002). The Beijing-61 
Tianjin-Hebei urban agglomeration (BTHUG) is the biggest urban agglomeration located 62 
in northern China, which includes the national capital, Beijing, the municipality of Tianjin, 63 
and the province of Hebei. Many studies in the past tend to explore the spatial structure of 64 
the BTHUG through its local social economical factors (Kuang et al., 2014), impervious 65 
surface coverage (Cao et al. 2018), and spatial connection intensity (e.g., transport 66 
connection and economic connection). However, the main mechanism for urban 67 
agglomeration integrated development in China is top-down administrative planning which 68 
controlled by central government. Thus, it should be paid attention to how human mobility 69 
and spatial interaction can facilitate the spatial structure analysis of BTHUG using the 70 
mobile phone dataset under the constraint of top-down administrative planning. The aim 71 
of this study is to explore the spatial structure of the BTHUG. The research questions can 72 
be summarized as: (1) What are the statistical characteristics of spatial interactions in 73 
BTHUG? (2) How these statistical characteristics reflect the spatial structure of BTHUG? 74 
(3) Are there significant differences among "top-down" administrative cities and the 75 
structures identify by different community detection algorithms (e.g., Infomap, Louvain 76 
and Regionalization)? If so, what is the difference? And (4) what is the observed spatial 77 
structure of BTHUG shaped by "top-down" administrative planning and the "bottom-up" 78 
spatial patterns?  79 
 80 
To answer the questions, this study proposed a spatial network analysis framework based 81 
on a large-scale mobile phone dataset. The dataset covers 20 million users (nearly 20% of 82 
the BTHUG population) and includes various types of demographic information. It can 83 
therefore reflect real-world human mobility patterns. We first extract an origin-destination 84 
spatial interaction matrix from the mobile phone dataset to build a spatial interaction 85 
network G. A set of network metrics (i.e., degree, strength, a rich-club coefficient, and an 86 
assortativity coefficient) are applied to explore statistical characteristics of spatial 87 
interaction in BTHUG. The result reveals a global (core) center area and the linkages 88 
between this and other counties in the BTHUG. Then, the top-down administrative cities 89 
and three different outcomes from selected community detection algorithms (i.e., Infomap, 90 
Louvain and Regionalization) are compared to further discuss the inconsistency in 91 
detecting communities by using different community detection algorithms. Last, the 92 



detected communities via Infomap, which has the best match with top-down administrative 93 
cities, is applied to identify the local centers, major cities, and peripheral cities. The results 94 
provide deeper insights into the urban agglomeration structures and spatial network 95 
collaboration. 96 
 97 
2. Related work on urban agglomeration structures 98 
Traditionally, urban structure refers to the spatial arrangement or layout of land uses, such 99 
as zonal (Burgess 2008), sectoral (Hoyt 1939), and multiple nuclei models (Harris and 100 
Ullman 1945). Early studies of urban structure mainly focused on static land use at the city 101 
level. With the rapid development of information technology and urbanization, big data of 102 
the mobility of people, transport vehicles, and freight has become increasingly available. 103 
Researchers have begun using big data to detect the dynamics of urban structures through 104 
spatial network analysis (e.g., Zhong et al. 2014; Shaw et al. 2016). Hence, the spatial 105 
structure of urban regions turns to the arrangement of spatial units (e.g., grid squares, 106 
neighborhoods, blocks, etc.) and a set of relationships arising out of the distribution of these 107 
units and the underlying interactions. These consist of people, freight, and capital 108 
(Rodrigue 2016, Wu 2020). From this perspective, the spatial structure of urban areas both 109 
shapes and is shaped by spatial interaction patterns. In terms of the methodology, by 110 
extracting the origin-destination (OD) matrices from mobility big data (e.g., taxi GPS 111 
trajectories, social media, and smart card data), a spatial interaction network can be 112 
constructed that reveals the spatial structure (Louail et al. 2015), in which the ODs are 113 
regarded as the nodes of the network.  114 
 115 
The basic properties of spatial networks (i.e., their degree and strength) can provide an 116 
overview of travel demand and interactions across urban space (Zhao et al. 2018). Zhong 117 
et al. (2014) identified the connectivity and centrality of an urban space using a centrality 118 
quantity measurement of the spatial network (i.e., betweenness and PageRank). Wei et al. 119 
(2018) found a typical oligarchic spatial structure characteristic in China’s population flow 120 
network by using the rich-club coefficient and the assortativity coefficient. Unlike the 121 
centrality measurement, the rich-club and assortativity coefficients emphasize that a few 122 
powerful nodes dominate the structure of a network, and will thus not only form a cohesive 123 
cluster among themselves, but will also maintain their connections with peripheral nodes. 124 
These coefficients are therefore widely used to explore various types of network structure, 125 
such as two-level (e.g., “rich-poor”) or hierarchical structures (e.g., Xing et al. 2016, 126 
Ducruet et al. 2016).  127 
 128 
The spatial structure in a spatial network can be detected using “community detection” 129 
algorithms. This organization can then be projected onto an urban region and depict the 130 
borders that subdivide the space into different clusters according to the spatial interaction 131 
patterns, which are called the “bottom-up” borders, in contrast to the “top-down” 132 
administrative borders (Yin et al. 2017). The hypothesis behind the bottom-up borders is 133 
that nodes (i.e., spatial units) with strong interactions will form a module (i.e., community), 134 
and the divisions between the modules are the borders. In the past decade, the Infomap, 135 
Louvain and Regionalization methods are widely applied to detect the community structure 136 
for a spatial network (Guo 2008, Lengyel et al. 2015, Guo et al. 2018). 137 
 138 



Many studies suggest that although the structures of network communities in the 139 
geographic space generally correspond well with top-down administrative borders, the 140 
presence of inconsistent borders indicates that human movements do not necessarily follow 141 
them. First, it has been suggested that closely connected spaces, in the form of network 142 
communities, follow the effects of spatial proximity. That is, the interaction strength 143 
between two spaces decreases as the geographical distance between them increases 144 
(Fotheringham 1981). Second, research demonstrated how the intrinsic demands of human 145 
movement and resources (e.g., trade, urban freight) can reshape the structure of space (Ratti 146 
et al. 2010, Gao et al. 2013, De Montis et al. 2013).  147 
 148 
Studies using mobility big data analytics and new technological methods have laid the 149 
foundations for a better understanding of human mobility behavior, and its relationship 150 
with the spatial structure of city regions in particular. However, most have focused on the 151 
city level. Some urban agglomerations or city-clusters have emerged, such as the New York 152 
bay area, Tokyo bay area, and Yangtze River Delta urban agglomeration. Most countries, 153 
including China, break down the urban region space into a system of multi-level 154 
hierarchical administrative units (e.g., provinces, prefecture-level cities, counties, and 155 
towns). The Chinese government recently initiated a national strategy to establish urban 156 
agglomerations, such as the BTHUG, which was first proposed by the central government 157 
in 2015 (Zhang 2016). Some researchers have assessed urban agglomeration structures 158 
using census or surveying data, but these are costly and time-consuming in the early stage 159 
(Castells 2011). Flow data (e.g., taxi GPS trajectories, social media, and smart card data), 160 
both within a city and among cities, are becoming increasingly available due to advances 161 
in information technology, and thus enable further insights into the structures of cities and 162 
city-clusters, and offer unprecedented levels of resolution. 163 
 164 
Current spatial network analysis techniques are convenient for exploring the structure of 165 
urban agglomerations because they are often tied to mobility-related big data (e.g., taxi 166 
GPS trajectories, social media, smart card data) that can be used to examine spatial 167 
interaction patterns (Liu et al. 2012, Liu et al. 2014). However, the use of spatial networks 168 
via mobility big data presents a level of uncertainty, as the revealed spatial structure of an 169 
urban agglomeration may be affected by the source of the data. For example, social media 170 
data (e.g., geo-tagged photos, geo-located tweets) are sparse and irregular in time and space 171 
(Xu et al. 2020). In addition, the data sample cannot cover the entire population (i.e., social 172 
media data, taxi GPS trajectories, and smart card data only cover specific users). Thus, the 173 
identified spatial structure of urban agglomerations based on spatial networks constructed 174 
via these datasets may not reflect the spatial interaction patterns in the real world (Steiger 175 
et al. 2015, Huang and Wong 2016). This issue has prevented the establishment of a 176 
systematic understanding of the spatial structure of urban agglomeration based on spatial 177 
interaction patterns. Mobility big data should thus be considered along with various types 178 
of demographic information to accurately establish spatial interaction patterns and spatial 179 
structures.  180 
 181 
We address these issues by combining mobile phone data with a spatial network approach. 182 
We analyze a human mobility dataset that captures the spatial interaction patterns in the 183 
BTHUG, and apply methods that can reveal the spatial structure of the BTHUG. We aim 184 



to provide an understanding of this structure that is based on real-world spatial interaction 185 
patterns.  186 
 187 
3. Dataset and spatial network construction 188 
3.1 Study area 189 
Our study area is the national capital region of China, or the Beijing-Tianjin-Hebei urban 190 
agglomeration (BTHUG), which is the biggest urbanized megalopolis in northern China 191 
and has an area of 217,156 𝑘𝑚2 (see figure 1). The BTHUG includes 204 counties that 192 
belong to 13 cities. Beijing is the capital and the center of politics, economics, and culture 193 
in China. Tianjin is one of the country’s four directly governed municipalities (the others 194 
are Beijing, Shanghai, and Chongqing), and Hebei is a province with 11 prefecture-level 195 
cities. The study area had a population of 110 million and a GDP of CNY66,474 hundred 196 
million in 2014. 197 
 198 

 199 
 200 

Figure 1. Study area of Beijing-Tianjin-Hebei (BTH) with 13 cities and 204 counties. 201 
 202 
3.2 Dataset and BTHUG spatial network construction 203 
Figure 2 presents the details of the dataset and data preprocessing for spatial network 204 
construction. The mobile phone data collected by China Unicom Co., Ltd. from November 205 
2 to November 7, 2015, constituted the main dataset used in this work. This includes 20 206 
million users (nearly 20% of the BTH region’s population) and 266,214 cell towers. Note 207 
that November 2 to November 7, 2015 are normal weekdays in China. We randomly 208 
selected this period after excluding some special holiday periods (e.g., Spring Festival, 209 
National Day holidays, etc.).  Further, county services as the basic unit in the urban 210 
agglomeration integrated development in China (Ma 2005, Yeh and Chen 2020). Hence, 211 
the administrative county units of the BTH provide another dataset. Each mobile data 212 
record tracks various attributes of a user, such as a unique ID, the date, the time, and the 213 
connected cell tower, every 30 minutes or when phone communication starts (i.e., a 214 
call/SMS). Note that the users’ IDs and cell phone numbers were re-assigned as sequence 215 
numbers (e.g., 1, 2, 3...) before data preprocessing to protect personal privacy.  216 



 217 

 218 
Figure 2. Details of dataset and preprocessing: (1) Inferring the user trajectory; (2) Deriving the 219 

origin-destination county matrix M; (3) Constructing the weighted-directed spatial network. 220 
 221 
To infer each user’s movements among counties, we first perform a spatial join analysis in 222 
ArcMap of the association between cell tower data and administrative county units. The 223 
cell tower data provide information pertaining to the county that the cell tower is located 224 
in. Second, each user’s trajectory among counties is denoted as a tuple list of 𝑇 =225 
{(𝑙1, 𝑡1), (𝑙2, 𝑡2), . . . (𝑙𝑛, 𝑡𝑛)}, where 𝑙𝑖 is the user’s location (i.e., county) at time 𝑡𝑖. Third, 226 
we infer the stay county chain of each user by setting the stay time threshold to be not less 227 
than six hours, and the stay county chain of each user is presented as 𝐿 = (𝑐1, 𝑐2, . . . 𝑐𝑛), 228 
where 𝑐𝑖 means that the user stayed at county 𝑖, and the tuple (𝑐𝑖, 𝑐𝑖+1) is one pair of origin-229 
destination counties in the user’s movement. Note that a user may spend a long time in one 230 
county, and so if a user has multiple continuous records in a single county we only consider 231 
one entry. Finally, we extract all users’ origin-destination counties from the stay county 232 
chain, and the matrix of origin-destination counties is represented as 𝑀 = (𝑐𝑖, 𝑐𝑗 , 𝑤), where 233 

𝑐𝑖 is the origin county, 𝑐𝑗 is the destination county, and 𝑤 is the intensity of flow between 234 

𝑐𝑖 and 𝑐𝑗. 235 

 236 
To explore the BTHUG structure, we construct a spatial weighted-directed network based 237 
on the matrix of origin-destination counties 𝑀. First, each county is presented as a node 238 
(i.e., 𝑐𝑖 is 𝑁𝑖), and the coordinate (𝑥𝑖,𝑦𝑖) of its center is regarded as the spatial location of 239 
the node. We then assign a directed edge 𝑒𝑖𝑗  to a pair of nodes (𝑁𝑖 ,𝑁𝑗 ) depending on 240 

whether there was human movement between them or not. The weighted 𝑊𝑖𝑗 of each edge 241 

𝑒𝑖𝑗  is given by the intensity of flow 𝑤  between 𝑐𝑖  and 𝑐𝑗 . A weighted-directed spatial 242 

network 𝐺 = (𝑁, 𝐸, 𝑊) is thus obtained. 243 
 244 
Figure 3 demonstrates the spatial interaction patterns using the movement flows on 245 
BTHUG. As the figure shows, each node in this graph corresponds to a geographic center 246 
of counties. The red lines indicate a higher flow between counties. We observe that slight 247 
amounts of counties displayed higher movement flows, including Beijing, Tianjin, 248 
Shijiazhuang, which represent the hubs of the whole network. Further, the figure shows 249 
that most of the counties in the same cities (e.g., Baoding, Xingtai, Handan, et al.) have 250 
higher spatial interaction with each other. 251 
 252 



 253 
Figure 3. Spatial interaction patterns in BTHUG based on the movement flows. 254 

 255 
4 Urban agglomeration structure analysis 256 
In this study, a spatial structure that consists of four city levels are defined to better 257 
understand the agglomeration structure: 258 
 Global (core) center: an area that comprises a number of cities (nodes) that have the 259 

largest volume of human flow and strong linkages among them. 260 
 Local center: an area that comprises a number of cities (nodes) that has large human 261 

flow and strong linkages with the global center. 262 
 Major cities: cities that have low human flow and strong linkages with global and 263 

local centers. 264 
 Peripheral cities: cities that have low human flow and weak linkages with global and 265 

local centers. 266 
 267 
Given the spatial network G constructed in section 3, where the administrative geographic 268 
units (i.e., county in G) are presented as a node, and intensity of human movements is 269 
directed-weighted link between a pair of nodes. A spatial network analysis framework is 270 
developed to explore the urban agglomeration structure (see figure 4). There are three steps 271 
in this framework: 1) exploring the spatial structure based on spatial network metrics, 272 
which includes degree, strength, rich-club coefficient and assortativity coefficient; 2) 273 
applying three different community detection algorithms to delineate the organization of 274 
urban agglomeration structure; 3) comparing the detected communities from the selected 275 
community detection algorithms. The detail of each step is illustrated as follows. 276 



 277 

Figure 4. Workflow of empirical analysis. 278 
 279 

4.1 Characterizing structure of spatial network 280 
We characterize the BTHUG structure using the metrics of spatial network 𝐺. The degree, 281 
strength, rich-club coefficient, and assortativity coefficient are applied to reveal the global 282 
(core) center area and the linkages between this and other counties in the BTHUG. 283 
 284 
(1) The degree 𝑑 of a node refers to the number of edges connected to it. The degree 285 
distribution P(𝑑) is the proportion of nodes with degree 𝑑  in the network. We further 286 
divide degree into out-degree and in-degree, according to the direction of human movement 287 
between each pair of nodes. 288 
 289 
(2) The strength 𝑠 of a node refers to the sum of the weights of all edges connected to it. 290 
The strength distribution 𝑃(𝑠)  is the proportion of nodes with strength 𝑠 . Again, the 291 
strength of each node is subdivided into out-strength and in-strength. 292 
 293 
(3) The rich-club coefficient is an effective tool to measure the structural characteristics of 294 
a network based on degree d or strength s. This can reveal “rich-member” nodes, which 295 
are subgroups of powerful nodes that preferentially and intensely connect with each other, 296 
while they maintain connections with “poor” nodes (Colizza et al. 2007, Van Den Heuvel 297 
and Sporns 2011, Alstott et al. 2014). Nodes with a strength greater than a certain value of 298 
𝑟 are typically considered as rich nodes, and thus 𝑟 can be used to define rich nodes (e.g., 299 
those with high 𝑑 or 𝑠). The rich-club coefficient is measured using the global and the local 300 
rich-club coefficient value, 𝜙𝑙𝑜𝑐𝑎𝑙 (Opsahl et al. 2008, Opsahl 2009). 301 
 302 
(4) The assortativity represents how nodes tend to connect with other nodes that have 303 
similar degrees, whereas disassortativity is the characteristic of nodes tending to connect 304 
with others that have different degrees.  It is widely used to measure the network structural 305 
characteristics and is defined as the Pearson correlation coefficient of degree between pairs 306 
of linked nodes (Newman 2002, Xu et al. 2010). The assortativity value is expressed as a 307 
scalar value, 𝜌 , in the range from -1 to 1. A positive value of 𝜌  means a network is 308 
characterized by assortativity, with a negative value indicating disassortativity. For a 309 
directed network, the assortativity can be measured with degree, in-degree and out-degree. 310 
Thus, a global assortativity and four directed assortativity (i.e., 𝜌(out, in), 𝜌(in, out), 𝜌(out, 311 



out), and 𝜌(in, in) can be estimated to quantify the tendency of nodes with un-directed and 312 
directed methods in a network (Foster et al., 2010).  313 
 314 
4.2 Community detection methods 315 

As discussed in Section 2, the bottom-up border of a community’s structure in a spatial 316 
network can be identified using community detection algorithms. In this work, the Infomap, 317 
Louvain and Regionalization methods are applied to the spatial network 𝐺 to detect how 318 
communities are organized (i.e., local centers, major cities, and peripheral cities). The 319 
detail of each method is introduced as follows.  320 

4.2.1 Infomap community detection algorithm 321 
The Infomap algorithm proposed by Rosvall and Bergstrom (2008) is focused on revealing 322 
community structure in weighted and directed networks. The main idea is that the 323 
interaction flow can be measured based on the probability flow of random walks in a 324 
network, and the network can be decomposed into modules by making the interaction flow 325 
inside a community significantly larger than those between communities. Nodes in the 326 
network are first given a unique code according to the visiting frequency of the random 327 
walk. Huffman coding is then used to assign more frequently visited nodes a shorter code, 328 
and thus the random walk trajectory of a network can be described as the prefixed 329 
community code plus the suffixed code of nodes inside the communities. Finally, the 330 
communities are clustered by finding the minimum description code length. The average 331 
trajectory length of the code describing a step of the random walk is estimated using the 332 
following map equation: 333 
 334 

𝐿(𝑀) = 𝑞𝐻(𝑄) + ∑ 𝑝𝑖𝐻(𝑝𝑖)
𝑚
𝑖=1                                             (1) 335 

 336 
where 𝐿(𝑀) is the expectation of the average trajectory length of code spent on a random 337 
walk inside and outside communities, 𝑞𝐻(𝑄) is the entropy of movement among clusters, 338 
and ∑ 𝑝𝑖𝐻(𝑝𝑖)

𝑚
𝑖=1  is the entropy of movement within clusters. Specifically, 𝑞  is the 339 

probability that a random walker moves from one cluster to another, whereas 𝑝𝑖  is the 340 
probability of movement within cluster 𝑖.  341 
 342 
4.2.2 Louvain community detection algorithm 343 

The Louvain algorithm proposed by Blondel et al. (2008) and extended by Leicht and 344 
Newman (2008) is a classic of modularity optimization methods on community detection 345 
algorithms for an undirected network. The algorithm was then adjusted by Dugué and Perez 346 
(2015) to compute communities for a directed network. Specially, the modularity 347 
optimization method provides a way to assess the existence of an edge between two nodes 348 
in a directed network by comparing it with the probability of have such an edge in a random 349 
model following the same degree distribution than the original network. For instance, if 350 
two nodes i and j have small in-degree/large out-degree and small out-degree/large in-351 
degree, then having an edge from i to j should be considered more surprising than having 352 
an edge from j to i. In this study, the modularity Q of a partition C for the spatial network 353 
G is defined as follows: 354 
 355 



𝑄 =
1

𝑊
∑ (𝑤𝑖𝑗 −

𝑠𝑖
𝑖𝑛𝑠𝑖

𝑜𝑢𝑡

𝑊
)𝛿(𝑐𝑖, 𝑐𝑗)𝑖𝑗                                             (2) 356 

 357 
where W stands for the sum of weighted for edges in G. 𝑤𝑖𝑗 is the weight associated to the 358 

edge connecting the node i and the node j. 𝑠𝑖
𝑖𝑛 and 𝑠𝑗

𝑜𝑢𝑡 are the in-strength and out strength 359 

of node i and j, respectively. The function 𝛿(𝑐𝑖, 𝑐𝑗) is defined as 1, when nodes i and j 360 

belong to same community, and 0 otherwise.  361 
 362 
4.2.3 Regionalization  363 
Regionalization with dynamically constrained agglomerative clustering and partitioning 364 
(REDCAP) is a family of regionalization methods based on spatially constrained 365 
hierarchical clustering (e.g., single linkage (SKL), complete-linkage (CLK), and average-366 
linkage (ALK) methods) (Guo 2011). To apply the regionalization method to the spatial 367 
network G, a similarity measure is defined for each pair of nodes (i.e., counties). This work 368 
applies the concept of modularity measures, which is defined as follows: 369 
 370 

𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗 = 𝑂𝑏𝑠𝑒𝑟𝑓𝑙𝑜𝑤𝑖𝑗 − 𝐸𝑠𝑡𝑓𝑙𝑜𝑤𝑖𝑗                           (3) 371 

 372 

𝐸𝑠𝑡𝑓𝑙𝑜𝑤𝑖𝑗 =
𝑝𝑖𝑝𝑗

𝑑
𝑖𝑗
𝛽                                                   (4) 373 

 374 
where 𝑂𝑏𝑠𝑒𝑟𝑓𝑙𝑜𝑤𝑖𝑗 is the observed flow between node i and j, and 𝐸𝑠𝑡𝑓𝑙𝑜𝑤𝑖𝑗 represents 375 

the expected flow between node i and j under the gravity model (i.e., equation (4)); 𝑝𝑖 and 376 
𝑝𝑗 are the population in county i and j; 𝑑𝑖𝑗 is the spatial distance between node i and j, 377 

and the 𝛽 is distance-decay parameter obtained by fitting a gravity model(Kang et al. 378 
2013). 379 
 380 
After estimating the modularity measure for each pair of counties in BTHUG, we have a 381 
weighted matrix for each link of counties, where the higher the modularity, the stronger 382 
the connection between the two counties is. Given the modularity matrix, an average-383 
linkage clustering based regionalization method (i.e., full-order-ALK) is used to detect 384 
the community for the spatial network G. There are two steps in the method: (1) the first 385 
step builds a hierarchy of clusters from the bottom up via iteratively merging the most 386 
connected clusters based on the county to county modularity values, and the output is a 387 
spatially contiguous tree;  (2) the second step partitions the spatially contiguous tree to 388 
obtain community while maximizing within-community modularity and enforcing the 389 
spatial contiguous constraints (i.e., the detected communities should consist of spatially 390 
contiguous counties).  391 
 392 
4.3 Comparing the selected community detection methods 393 
As this section 2 mentioned, many studies suggest that the structures of network 394 
communities in the geographic space generally correspond well with top-down 395 
administrative borders. One of the reasons is that the spatial structure is both shaped by 396 
"top-down" administrative planning and the "bottom-up" spatial patterns. Especially, it 397 
suggests that close spaces will be connected, in the form of network communities, follow 398 
the effects of spatial proximity. Because the interaction strength between two spaces 399 



decreases as the geographical distance between them increases. Hence, to quantitatively 400 
compare the quality of the communities detected by the selected community detection 401 
methods, we estimate the similarity of spatial distribution to evaluate how well the detected 402 
communities match the top-down administrative cities. We first use 𝑙𝑖𝑛𝑘𝑖𝑗  to present 403 

whether counties i and j belong to the same community/city (i.e., 𝑙𝑖𝑛𝑘𝑖𝑗 = 1, when counties 404 

i and j belong to the same community/city, and 0 otherwise). Then, the outcomes from the 405 
selected community detection methods can be represented as various matrices 𝑀𝐼𝑛𝑓𝑜 , 406 

𝑀𝐿𝑜𝑢𝑣𝑎𝑖𝑛, and 𝑀𝑅𝐸𝐷𝐶𝐴𝑃. Note that the top-down administrative cities composed of counties 407 
are also represented as a matrix  𝑀𝑐𝑖𝑡𝑦 . Last, bivariate Pearson correlation analysis is 408 

applied to investigate the similarity of spatial distribution between each matrix with each 409 
other. The higher the Pearson correlation coefficient is, the better the detected communities 410 
match with each other. It should be noted that the three selected community detection 411 
methods are sensitive to resolution parameters or multiple implementations, which 412 
indicates that the detected communities cannot always converge the same result under 413 
different parameters or after multiple implementations. Hence, only results that have the 414 
best match with top-down administrative cities after hundred implementations with 415 
different parameters will be selected to further compare with others.  416 
 417 
5. Results and discussion 418 
In this section, we explore the BTHUG structure characteristics based on the constructed 419 
spatial network of human mobility G = (N, E, W), which was introduced in subsection 3.2. 420 
 421 
5.1 Spatial network construction and characterization 422 
As introduced in subsection 4.1, we select degree, strength, the rich-club coefficient, and 423 
the assortativity coefficient to detect the global (core) center and the linkages between the 424 
global center area and other counties in the BTHUG. The statistical characteristics of 425 
degree and strength are first calculated to explore the human movement patterns. As Figure 426 
5(a) shows, the cumulative probability curves of degree range from 225 to 406 and decay 427 
slowly. We also find that the nodes with a higher degree (𝑑 ≥ 370) count for a large 428 
proportion, which is 73%. The results indicate that the majority of counties among the 429 
BTHUG have linkages with other counties. However, Figure 5(b) shows that the nodes 430 
with a higher strength (𝑠 ≥ 100000) account for a tiny percentage, which is 6.9%. Thus, 431 
a minority of counties in the BTHUG have larger and more frequent flows with other 432 
counties. A few developed counties therefore dominate the BTHUG structure with a very 433 
large number of human movements. 434 
 435 



 436 
Figure 5. (a)-(b) Cumulative probability distributions of degree and strength; (c)-(d) Correlations 437 

between in/out degree and strength; (e)-(f) Rich-club coefficients when 𝑟 = 𝑑 and 𝑟 = 𝑠. 438 
 439 
The constructed spatial network G is directed, so degree and strength can be further divided 440 
into in/out degree and strength, and we further explore their correlations. As shown in 441 
Figures 5(c) and 5(d), in-degree is strongly linearly correlated with out-degree, and the 442 
same true for in-strength and out-strength. All of the points are distributed on both sides of 443 
the line 𝑦 ∼ 𝑥, and the goodness of fit attained is above 0.92. These findings indicate that 444 
human movement is mutual among counties in the BTHUG. For two given counties, the 445 
human movement flows between them in both directions have no significant difference in 446 
terms of quantity in most cases. 447 
 448 
The above results reveal that a few developed counties dominate the BTHUG structure 449 
with a very large number of human movements. The rich-club coefficient and assortativity 450 
coefficient are examined to further detect the dominant counties (i.e., the global center). 451 
Figures 5(e) and (f) present the global rich-club coefficients, and both 𝑃𝑤(𝑑) and 𝑃𝑤(𝑠) are 452 
greater than 1 and reveal a general upward trend, confirming the existence of an obvious 453 
rich-club effect in BTHUG. The results also reveal a significant “elbow point” feature in 454 
the changes for both the 𝑃𝑤(𝑑) and 𝑃𝑤(𝑠) curves.  455 
 456 
In Figure 5(e), 𝑑 = 200 is an important elbow point. When degree d is larger than 200 the 457 
curve rapidly rises. In Figure 5(f), the curve has a hierarchical upward trend. When 𝑠 <458 
6.3 × 105, the curve continues to rise smoothly. The curve then jumps when 𝑠 > 6.3 ×459 
105  and reaches its peak when 𝑠 > 1.6 × 106 . According to the results, we identify 460 
Chaoyang, Xicheng, Dongcheng, Fengtai, and Haidian (Figure 6 (a)) as the “rich-club” 461 
counties (i.e., the global center area) that have the most connected and powerful spatial 462 
interactions in the BTHUG. The rich-club counties are defined as those with d > 200 and 463 



𝑠 > 1.6 × 106. Note that all of these counties are in Beijing, and Chaoyang is the heart of 464 
the BTHUG with the maximum strength, 𝑠 = 5 × 106. 465 

 466 

 467 
 468 

Figure 6. Rich-club coefficients of cities in BTH region: (a) Rich-club members in global rich-club 469 
coefficients; (b) Local rich-club coefficients. 470 

 471 
The global assortativity coefficient is -0.183, and the directed assortativity coefficients are 472 
-0.183, -0.176, -0.179 and -0.179 for ρ(out,in), ρ(in,out), ρ(out,out), and ρ(out,out), 473 
respectively. The results are consistent with the strongly linear correction among in-out 474 
degree and in-out strength, which suggests that human movement is mutual among counties 475 
in the BTHUG. Further, the assortativity coefficients indicate that the BTHUG structure 476 
has relatively weak disassortativity. The non-rich nodes with low degrees tend to be 477 
connected to the rich nodes, and vice-versa (Colizza et al. 2006). This is consistent with 478 
the rich-club analysis; the rich nodes connect strongly with one another, and thus the human 479 
movement flows are highly central among rich-club counties in the BTHUG. The local 480 
rich-club coefficient of each node is inferred based on the method given in section 4.1. 481 
Figure 6(b) shows the result divided into two groups according to the values of the local 482 
rich-club coefficients: 𝜙𝑙𝑜𝑐𝑎𝑙 > 1 and 𝜙𝑙𝑜𝑐𝑎𝑙 < 1. The counties in the 𝜙𝑙𝑜𝑐𝑎𝑙 > 1 group 483 
tends to connect with rich nodes, whereas the others tend to connect with non-rich nodes. 484 
The spatial distribution between the two groups obviously differs. Counties in the 𝜙𝑙𝑜𝑐𝑎𝑙 >485 
1 group are mainly concentrated around Beijing. Specifically, it expands from the five rich-486 
club counties (Chaoyang, Xicheng, Dongcheng, Fengtai, and Haidian), and includes four 487 
exclaves (i.e., eastern Chengde, northern Qinhuangdao and Cangzhou, and Shijiazhuang). 488 
A 𝜙𝑙𝑜𝑐𝑎𝑙 < 1 group is situated in the southern part of the BTHUG. This indicates that direct 489 
interactions between southern counties and rich BTHUG members are weaker. Distance 490 
decay may account for this. People in the southern part of the BTHUG tend to go to their 491 
neighboring 𝜙𝑙𝑜𝑐𝑎𝑙 > 1 region (e.g., Shijiazhuang), which has strong direct linkages with 492 
rich members, and thus form a hierarchical structure.  493 
 494 



5.2 Results of community detection 495 
Before performing the selected community detection methods, we first estimate the 496 
expected flow using the gravity model, and then calculate the modularity following the 497 
method given in section 4.2.3.  We find that the expected flow estimated using the gravity 498 
model has a strong linear correlation (i.e., R2=0.84 and p-value <0.01) with the observed 499 
flow (shown in Figure S1). This confirms that the intensity of human spatial interactions 500 
between two counties decreases as the geographic distance between them increases in 501 
BTHUG. Then, we find that the expected flow may underestimate among counties with 502 
large geographic distance (i.e., modularity > 0, shown in Figure S2) and overestimate 503 
among counties with smaller geographic distance (i.e., modularity <0, shown in Figure S3). 504 
 505 
As section 4.2 introduced, we detected the community structure of the spatial network G 506 
with the three selected methods: Infomap, Louvain, and Regionalization (i.e., full-order-507 
ALK). It should be noted that only results that have the best match with top-down 508 
administrative cities after hundred implementations with different parameters will be 509 
selected to further compare with others. Figure 7 shows the results of the community 510 
detection for the spatial network G. Each discovered community is represented by a unique 511 
and randomly assigned color. The results show that the detected communities from 512 
Infomap and Louvain generally correspond well with the administrative city boundary. The 513 
major different parts between infomap and Louvain is Tianjin city, it has been divided into 514 
northern and southern parts of Tianjin by infomap, while the Louvain divides Tianjin into 515 
four non-spatially adjacent communities. Meanwhile, the spatially adjacent counties are 516 
grouped into the same community by using infomap and Regionalization. It is reasonable 517 
that the results of infomap group the spatially adjacent counties into the same community 518 
since the intensity of human spatial interactions between two counties decreases as the 519 
geographic distance between them increases in BTHUG (as the above gravity model 520 
revealed). Further, using Regionalization method will generate a more geographically 521 
compact region. The results show that the detected community detection by different 522 
community detection methods for the same spatial network are mostly different. Therefore, 523 
it is worth comparing these methods with top-down administrative cities for investigating 524 
the urban agglomeration structure. 525 
 526 

 527 
Figure 7. The results of different community detection and regionalization methods: (a) Infomap 528 
algorithm; (b) Louvain detection algorithm; (c) Regionalization method (i.e., full-order ALK). 529 



To quantitatively compare the quality of the communities detected by the selected 530 
community detection methods, we use the similarity of spatial distribution to evaluate how 531 
well the detected communities match the top-down administrative cities. Specifically, we 532 
perform bivariate Pearson correlation analysis between each pair of them. Table 1 533 
illustrates the results, which indicates that all of the pairs have significant correlations (i.e., 534 
p-value < 0.05). Especially, the Infomap and Louvain have higher (i.e., 0.87 and 0.79) 535 
Pearson correlation coefficient with top-down administrative cities, while the 536 
Regionalization method has the lowest one (i.e., 0.34). In addition, we apply adjusted Rand 537 
Index (RI) analysis to verify the results of bivariate Pearson correlation. RI analysis is a 538 
method to assess the similarity between two clusters (Rand 1971, Steinley 2004). It ranges 539 
from 0 to 1, and 1 stands for perfect match. Table S1 presents the results of RI analysis, 540 
which is consistent with results of bivariate Pearson correlation analysis. 541 
  542 
The results indicate that using Regionalization method will generate more geographically 543 
compact regions which are quite different from top-down administrative cities in BTHUG. 544 
Moreover, since the spatial structure is both shaped by "top-down" administrative planning 545 
and the "bottom-up" spatial patterns. Thus, we select the detected communities from 546 
Infomap which has the highest association with top-down administrative cities to further 547 
analyze the urban agglomeration structure in the next section. 548 
 549 

Table 1. The results of the bivariate Pearson correlation analysis between each pair of the methods 550  
City Infomap Louvain REDCAP 

City - 0.87* 0.79* 0.34* 

Infomap - - 0.83* 0.35* 

Louvain  - - - 0.31* 

REDCAP - - - - 

*p-value < 0.05. 551 
 552 
5.3 Spatial structure identification 553 
The above results reveal that the spatial interaction reforms the BTHUG into a hierarchical 554 
structure. Further, the comparison result of three selected community detection methods 555 
suggests that the detected communities from Infomap method are selected to further 556 
analyze the urban agglomeration structure. Figure 8 shows the distribution characteristics 557 
of 15 communities identified by the method in geographical and network space, and the 558 
share of the total flow of each community in the BTHUG (i.e., the sum of flow related to a 559 
community divided by the total flow in the BTHUG). Note that the sequence of 560 
communities’ numbers follows the share of the flow of each community in the BTHUG 561 
(i.e., community 1 has the largest share of the flow). Figures 8(a) and (c) show that there 562 
is a hierarchical network structure. Figure 8(b) shows the distribution of the share of the 563 
flow of each community in the BTHUG. Beijing and northern Langfang (i.e., community 564 
1) consist of the rich-club counties (i.e., the global center area) with the most connected 565 
and powerful spatial interactions, so we regard community 1 to be the global center of the 566 
BTHUG.  567 
 568 



 569 
 570 

Figure 8. Community detection: (a) communities in network space; (b) percentage of total flow 571 
distribution in communities; (c) spatial distribution of communities. 572 

 573 
Community 2 (southern Tianjin) and community 3 (Shijiazhuang) in Figure 8(c) are 574 
selected as local centers according to their share of the flow and their linkages with the 575 
global center in the BTHUG. The major cities include communities 5 (Tangshan), 6 and 576 
14 (Baoding), 7 (Cangzhou), 9 (Qinhuangdao), 10 (Zhangjiakou), 11 (southern Langfang), 577 
13 (Chengde), and 15 (northern Tianjin). Note that the major cities are defined as in the 578 
𝜙𝑙𝑜𝑐𝑎𝑙 > 1  group in section 4.1, and have strong and direct linkages with rich-club 579 
members (i.e., the global center). The peripheral cities contain communities 4 (Handan), 8 580 
(Xingtai), and 12 (Hengshui). Note that the peripheral cities are located in the southern part 581 
of the BTHUG and have weaker linkages with the global center. Table 2 gives the details 582 
of the hierarchical BTHUG structure. 583 
 584 

Table 2. Description of the 4-level hierarchical spatial structure of the BTHUG 585 
City  Community Level Share of the flow of each community in the BTH region 

Beijing and 

northern 

Langfang 

 

1 

 

Global center 

 

38% 

Southern 

Tianjin 

2 Local center 20% 

Northern 

Tianjin 

15 Major city 1% 

Shijiazhuang 3 Local center 13% 

Handan 4 Peripheral cities 4% 

Tangshan 5 Major city 4% 

Baoding 6 Major city 3% 

14 Major city 1% 

Cangzhou 7 Major city 3% 



Xingtai 8 Peripheral cities 3% 

Qinhuangdao 9 Major city 3% 

Zhangjiakou 10 Major city 3% 

Southern 

Langfang 

11 Major city 2% 

Hengshui 12 Peripheral cities 1% 

Chengde 13 Major city 1% 

 586 
Figure 8(b) indicates that the counties in three centers (i.e., the global center and two local 587 
centers) account for 71% of the human movement flows. The remaining counties account 588 
for 29%  of the human movement flow in the BTHUG, and most movement in these 589 
counties is related to the three centers. Community 4 (i.e., the southernmost peripheral city, 590 
Handan) has a larger human movement flow but is defined as one of the peripheral cities 591 
in the hierarchical structure. 592 
 593 
Figure 8(c) reveals that most of the 15 communities correspond well with the 594 
administrative city units, except that Tianjin and Baoding are divided into 2 distinct 595 
communities, and 3 counties of Langfang are merged with Beijing and Cangzhou. People 596 
from a county tend to go to neighboring counties, and particularly among those that have 597 
strong linkages in the same administrative city, as they share the same local “Hukou” 598 
system.  599 
 600 
However, there are also strong incentives to cross the top-down administrative city units, 601 
and the center areas (i.e., the global center and two local centers) are attractive as they 602 
provide more employment opportunities and resources. The results suggest that human 603 
movement is generally constrained by the top-down administrative city units, but that there 604 
are strong incentives to break through this constraint and reshape the spatial structure.  605 
 606 
Figure 9 illustrates the structure of the BTHUG from the perspective of network analysis. 607 
The colors and sizes of the icons indicate the roles of cities in the BTHUG structure. Note 608 
that the cities’ positions are arranged according to their relative geographical location, and 609 
only strong linkages between cities/nodes are visualized, whereas the weak linkages are 610 
not shown. 611 
 612 
Figure 9 clearly shows the BTHUG structure and the relative geographical location of the 613 
urban agglomeration defined in this study. The global center consists of the whole of 614 
Beijing and northern Langfang, as Beijing is the national capital and is therefore the 615 
economic, cultural, and educational center of the country. Northern Langfang is adjacent 616 
to Beijing, and the government promotes the integrated development of Beijing and 617 
northern Langfang in its top-down administrative urban planning approach. Tianjin is 618 
divided into northern and southern parts, and the latter is one of the two local centers. 619 
Southern Tianjin has dense and well-built commercial and trade-port areas, which have 620 
benefited from the policy resources provided by the central government (e.g., Binhai New 621 
Area). Although the top-down policy has encouraged the development of northern Tianjin, 622 
it has not formed an integrated development trend with southern Tianjin from the 623 
perspective of spatial interactions. Another local center is Shijiazhuang, the capital city of 624 



Hebei province. Unlike the global center (i.e., Beijing and northern Langfang) and southern 625 
Tianjin, Shijiazhuang is located in the southwestern part of the BTHUG. It is an economic, 626 
cultural, and educational center in Hebei province, and has strong linkages with the global 627 
center and the southern cities of Hebei (i.e., Baoding, Xingtai, and Hengshui).  628 
 629 

 630 
 631 

Figure 9. The hierarchical structure in the BTHUG. 632 
 633 
Northern Hebei province contains the eight major cities of Tangshan, Baoding, Cangzhou, 634 
Qinhuangdao, Zhangjiakou, southern Langfang, Chengde, and northern Tianjin. These 635 
have strong connections with the global and local centers. The global center, local centers, 636 
and major cities form a hierarchical structure of integrated development in the BTHUG 637 
from the perspective of spatial interaction. The peripheral cities are those in the southern 638 
part of Hebei province (i.e., Handan, Xingtai, and Hengshui), and their linkages with the 639 
global center are weaker. The mobile phone big data-driven spatial interaction network 640 
plays a key role in the identification of the hierarchical structure of the BTHUG. Our results 641 
therefore provide new insights into the top-down urban agglomeration plans for the 642 
integrated development of the BTHUG. 643 



6. Conclusion 644 
In this study, we explore the spatial structure of the BTHUG using a proposed spatial 645 
network analysis framework based on a large-scale mobile phone dataset, which covers 20 646 
million mobile phone users in the BTHUG. The spatial network framework can be applied 647 
to other spatial scales (e.g., intra-urban, inter-urban, nationwide) for spatial structure 648 
analysis, and other spatial interaction analyses of areas such as trade, public transportation, 649 
or urban freight logistics. During the past 40 years since the opening-up of China, the 650 
dramatic increases in flows of people, vehicles, goods, and capital have reshaped China’s 651 
urban agglomeration structure along with the top-down administrative urban 652 
agglomeration planning approach of the central government. Thus, discussions about the 653 
urban agglomeration spatial structure for the BTHUG are rooted in the particular context 654 
of spatial interaction patterns in a spatial network.  655 
 656 
We first construct a spatial weighted-directed network G, derived from over 20 million 657 
mobile phone users as they move among the counties in the BTHUG. By computing the 658 
spatial network degree, strength, rich-club coefficient, and assortativity coefficient, we 659 
observe a hierarchical urban structure shaped by human movement, and a “rich-member 660 
club” (i.e., the global center area) consisting of a few counties in Beijing, which are central 661 
to the BTHUG. In addition, three selected community detection algorithms are applied and 662 
compared to detect the organization of community structure in BTHUG. The results 663 
indicate using different community detection methods for a spatial network yield 664 
significantly different communities structure. Especially, using Infomap and Louvain 665 
algorithms will detect spatially similar community detection, which also corresponds well 666 
with top-down administrative cities. Meanwhile, using Regionalization method will 667 
generate more geographically compact regions which are quite different from top-down 668 
administrative cities in BTHUG. 669 
 670 
Then, the detected community from Infomap which has the highest association with top-671 
down administrative cities has been selected to further analyze the urban agglomeration 672 
structure. The Infomap algorithm identifies a hierarchical spatial structure consisting of 15 673 
communities for the spatial network G, which are consistent with the top-down 674 
administrative city structure. The hierarchical spatial structure consists of one global center, 675 
two local centers, major cities with strong linkages with the centers, and peripheral cities 676 
that have weaker linkages with the centers. It should be noted the observed spatial structure 677 
of BTHUG is consistent with Zhu et al. (2020) by using social economical and transport 678 
dataset. The results also suggest that the top-down administrative city unit restricts human 679 
movement in terms of spatial interaction, but such movement tends to break through this 680 
constraint and reshape the spatial structure.  681 
 682 
These empirical findings can remind policy-makers that it is necessary to rethink whether 683 
the administrative planning during the wave of urban agglomeration development is in fact 684 
rooted in spatial interaction patterns, or is only “a forced marriage” from the top-down. 685 
Especially, the results obtained in this study implies that the spatial structure of BTHUG is 686 
over-dependent on the Global center (i.e., Beijing and northern Langfang), which may lead 687 
to more series issues in Beijing urban sustainable development (e.g., traffic congestion and 688 
air pollution) (Xu et al. 2019, Zhao and Hu 2019). Further, although the top-down policy 689 



has encouraged the development of northern Tianjin, it has not formed an integrated 690 
development trend with southern Tianjin from the perspective of spatial interactions. It 691 
suggests that ignoring spatial interaction patterns in BTHUG development may lead to 692 
ineffective integrated development. Our research also identifies the necessity to consider 693 
spatial interaction patterns together with this top-down planning approach in future 694 
research into urban agglomeration integrated development.  695 
 696 
Our study has the following limitations. First, there is much potential to further extend our 697 
case study on the evolution of the BTHUG structure. Unfortunately, we are limited by the 698 
availability of data. By collecting multi-year data, our spatial network method could be 699 
extended to investigate how human movements break down the constraints of city borders 700 
and reshape the structure of the BTHUG year by year. Meanwhile, our data source has been 701 
widely recognized as producing valuable material for large-scale (e.g., inter-county 702 
interaction) geographical research, as it covers the population with comprehensive 703 
demographic information, but mobile phone data only provide information about user 704 
movement without details of transportation behavior (e.g., driving, rail, or public transit). 705 
This data characteristic limits the correlation between the BTHUG structure and 706 
transportation networks. Further, in spatial terms, a comparative analysis of urban 707 
agglomeration structures could be conducted based on our method, if other data (e.g., from 708 
the Yangtze River Delta or the Guangdong-Hong Kong-Macao Greater Bay Area) can be 709 
collected.  710 
 711 
Finally, since the Infomap and Louvain cannot always converge the same result, it is 712 
necessary to implement multiple times to generate a stable result (as we demonstrated in 713 
section 4.3). However, the Infomap and Louvain used in this study still can allow 714 
researchers to explore the spatial structure. Because the results obtained by Infomap and 715 
Louvain in this study are consistent with those obtained using other mobility data source 716 
(e.g., social media and smart card data), which report that the detected communities in the 717 
geographic space generally correspond well with top-down administrative borders (Zhong 718 
et al. 2014, Lengyel et al. 2015, Yin et al. 2017). Future studies would, of course, benefit 719 
from developing more stable and insensitive community detection algorithms. 720 
 721 
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Appendix A 725 



 726 

Figure S1. The observed interaction strength versus the estimated ones from the adopted gravity 727 
model with a fitted β = 0.9. The dark line indicates strong linear correlation between the estimated and 728 

observed interaction strength with R2=0.84 and p-value < 0.01. 729 

 730 

Figure S2. The observed interaction strength which is larger than the estimated ones from the adopted 731 
gravity model (i.e., Modularity > 0). 732 



 733 

Figure S3. The observed interaction strength which is larger than the estimated ones from the adopted 734 
gravity model (i.e., Modularity < 0).  735 

 736 
Table S1. The results of the Rand Index (RI) analysis between each pair of the methods 737  

City Infomap Louvain REDCAP 

City - 
0.85 0.76 0.24 

Infomap - - 0.80 0.24 

Louvain  - - - 0.20 

REDCAP - - - - 
 738 
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