
Abstract—This paper contributes to an understudied category 

of traffic state estimation approaches, i.e. using a Godunov-type 

discrete traffic flow model (e.g. the Cell Transmission Model, 

CTM) to simultaneously estimate traffic flow parameters and 

traffic densities. Our main estimation algorithm is based on the 

CTM and the extended Kalman filter (EKF). Compared to 

previous studies, this study has two features. First, we take into 

account the effect of capacity drop, a factor that is largely 

ignored by previous studies in traffic state estimation. Second, a 

separate, supervisory observer capturing the capacity drop 

mode is attached to the main algorithm. Such a treatment 

enables the main estimation algorithm to more accurately switch 

between functions of free-flow regime and congested regime. It 

thus avoids mismatches between the applied models and the 

measurements, a common pitfall in conventional CTM-EKF 

approaches, hence can potentially enhance the quality of 

estimation. The proposed method was tested using micro-

simulation data and showed a satisfactory performance in 

tracking variations of traffic flow parameters and estimating 

traffic densities in real time. 

Keywords—traffic state estimation, system identification, 

extended Kalman filter, Cell Transmission Model, Godunov 

scheme 

I. INTRODUCTION

Traffic state estimation is essential to many Intelligent 

Transportation Systems (ITS) applications. Model-based 

traffic state estimation tries to infer vehicle densities in road 

sections based on a model of traffic flow dynamics and 

measurements of traffic flow variables such as flow rate, 

space-mean speed, and occupancy. A traffic flow model 

usually contains parameters such as free-flow speed and 

critical density. In reality, the values of these parameters are 

subject to external conditions such as weather, lighting, traffic 

compositions, etc., and thus is time-varying. As discussed 

recently in [10], proactive traffic control strategies attempt to 

prevent traffic breakdown at bottlenecks (and thus capacity 

drop), while reactive traffic control strategies allow the onset 

of congestion and then maximize the bottleneck discharge. 

Obviously, good knowledge of the values of traffic flow 

parameters such as free-flow speed and critical density in real 

time is important to model-based reactive traffic control 

strategies. Furthermore, we would like to point out that, even 

for proactive traffic control strategies, good knowledge of 

time variations of the traffic flow parameters is desirable, 
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because it can help to mitigate “the latent possibility of 

capacity underutilization” or overutilization that fails the 

control [10]. Thus, even under the framework of a proactive 

control strategy, it can be useful to periodically allow a 

temporary occurrence of congestion, such that knowledge of 

the values of the traffic flow parameters can be updated in 

time. 

In the rich literature of traffic state estimation, most have 

assumed the traffic flow parameters to be known and constant, 

e.g. [1-9]. In contrast, online calibration of traffic flow

parameters is much less studied in literature. The seminal

work of [15] is one earliest effort study that has jointly

estimated traffic states and traffic flow parameters. The

authors proposed a general approach based on extended

Kalman filtering (EKF) under which free-flow speed, critical

density, and etc., are estimated jointly with traffic densities in

real time, by taking measurements of flow rates and space-

mean speeds. However, the discrete traffic flow model

employed in [15] does not conform to the Godunov scheme

[16]. Godunov scheme is a numerical scheme that solves a

conservation PDE with physically correct inter-cell boundary

fluxes. The only two studies, as far as we have noticed, that

have employed a Godunov-type discrete traffic flow model

and treated the traffic flow parameters as time-varying

unknown parameters are [11, 12]. However, neither study

investigated their method’s capability in tracking the free-

flow speed and critical density, two important traffic flow

parameters

According to whether a traffic state estimation study has 

jointly estimated traffic flow parameters in real time, and 

whether the study has employed a Godunov type traffic flow 

model, we have categorized representative existing literature 
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TABLE I 

SUMMARY OF REPRESENTATIVE TRAFFIC STATE ESTIMATION STUDIES 

Godunov-type  

traffic flow model 

Non-Godunov-type 

traffic flow model 

Traffic flow 

parameters treated 

as known and 

constant 

[1-8] [9] 

Traffic flow 

parameters treated 

as unknown and 

time-varying 

[11, 12] [13-15] 
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in Table I. This article focuses on the lower-left category of 

Table I, considering the physical correctness of a Godunov 

type traffic flow model and the fact that traffic flow 

parameters are usually time-varying and cannot be perfectly 

known by offline methods. Existing studies in this category 

have the below shortcomings. 

First, no previous studies in traffic state estimation, in all 

the four categories, have considered capacity drop. Although 

capacity drop has been intensively studied in empirical 

studies and traffic flow modeling and widely considered in 

designing traffic control strategies, they have been largely 

ignored by traffic state estimation studies. Since the capacity 

drop magnitude can be as high as 10% to 25% depending on 

locations [17, 18], ignorance of capacity drop in traffic state 

estimation could render the effect of capacity loss erroneously 

absorbed by the estimates of traffic flow parameters, hence 

leading to improper traffic control decisions. 

Second, approaches belonging to the lower-left category 

can be vulnerable to poor initial estimates of critical density. 

Under the assumption of a piecewise-linear fundamental 

diagram and using a CTM-EKF estimation approach, the 

critical density will not become observable (hence cannot be 

corrected by measurements) until a congestion is present 

upstream of the bottleneck. For example, an underestimated 

(overestimated) initial critical density can cause the plant 

dynamics a premature (delayed) switch from free-flow regime 

to congested regime, while in reality the plant has not yet been 

congested (has already been congested for a while). This point 

will be discussed in detail in Section II. B. As a result, the 

quality of traffic state and parameter estimates can be 

potentially undermined. The more significant the initial bias 

is, the more significant the potential negative impact can be. 

Third, existing studies in the lower-left category, e.g. [11, 

12], did not investigate the methods’ capability in tracking 

traffic flow parameters, as has been done by the lower-right 

category methods, e.g. [13-15].  Note that there exists a 

significant difference between the lower-right and lower-left 

categories’ methods. That is, the lower-right category 

methods usually do not use a Godunov type discrete traffic 

flow model (e.g. CTM) and the plant dynamics model are 

usually continuous. Hence, conclusions on tracking 

capabilities drawn from the lower-right category do not 

necessarily apply to the lower-left category. One existing 

study in the lower-left category, [11] did test the tracking 

capability of their method, however, it was the so-called 

“capacity” that was tracked, rather than typically concerned 

traffic flow parameters, i.e. free-flow speed and critical 

density. Moreover, the method of  [11] is not a generic 

extension of the general EKF approach of [15] from a non-

Godunov type to a Godunov type model-based estimation. An 

investigation of the tracking capability of a generic extension 

of the general EKF approach of  [15] from non-Godunov type 

to Godunov type is still missing from the literature. 

 This article tries to fill in the gaps and mitigate the 

shortcomings of the existing lower-left category methods 

identified above. The contributions are summarized in the 

following. First, we consider capacity drop in our estimation 

method. To our knowledge this is the first such effort in traffic 

state estimation, in all the four categories. Second, to alleviate 

negative impact of poor initial critical density estimate, we 

propose the idea of coupling a separate, supervisory capacity 

drop mode observer to the main estimation algorithm in order 

to more accurately determine times to switch between free-

flow and congested regimes. The motivation behind the idea 

is to take advantage of the fact that in a road section consisting 

of a bottleneck, capacity drop is always associated with onset 

of a congestion. Third, we evaluate the tracking capability of 

the proposed method using CTM synthesized data and micro-

simulation synthesized data, respectively, which offers 

insights into the general tracking capability of the lower-left 

category approaches in Table I. 

The remainder of this paper is organized as follows. 

Section II introduces the conventional CTM-EKF estimation 

approach and points out a major deficiency associated with it. 

Section III introduces the proposed methodology, including a 

heuristic but effective capacity drop mode observer, and the 

modified CTM-EKF approach which takes advantages of the 

observer. Section IV validates the modified CTM-EKF 

approach by recovering true traffic states and traffic flow 

parameters synthesized using CTM. Section V presents an 

experiment using data generated by Aimsun, a commercial 

microscopic traffic simulation software. Section VI concludes 

the paper and points out future research. 

II. THE CONVENTIONAL CTM-EKF ESTIMATION APPROACH 

AND ITS DEFICIENCY 

A. Cell Transmission Model of a Lane-Drop Bottleneck 

Section 

To fix ideas, from here on all the discussions are concerned 

with a lane-drop highway bottleneck section. But note that the 

methodology can be extended to other types of bottlenecks. It 

is assumed that the section is divided into N cells, where the 

lane drop happens at the last cell. Please refer to Fig. 1. 

 

Fig. 1.  Configuration of CTM modeling of a lane-drop bottleneck section. 

We adopt a constant capacity drop proportion, and 

integrate it into the CTM in a way consistent with [19-21]. 

Traffic density updating equation of each cell is given by (1). 

𝜌𝑘
𝑖 = 𝜌𝑘−1

𝑖 +
Δ𝑡

𝜆𝑖Δ𝑥𝑖
(𝑞𝑘−1

𝑖−1,𝑖 − 𝑞𝑘−1
𝑖,𝑖+1) (1) 

In (1), k denotes simulation time step, i denotes the cell index, 

i = 1,2,…,N, 𝑞𝑘−1
𝑖−1,𝑖

 denotes the boundary flow between cell i-

1 and i, Δ𝑡 represents the simulation updating interval, Δ𝑥𝑖 

represents the length of cell i, and 𝜆𝑖 represents the number of 

lanes of cell i. The inter-cell boundary flow rates are 

determined by the minimum of the demand of the upstream 

cell and the supply of the downstream cell, i.e. 

For cell i = 1,2,…,N, 



  

𝑞𝑘−1
𝑖−1,𝑖 = min{𝐷𝑘−1

𝑖−1  , 𝑆𝑘−1
𝑖 } (2) 

𝑞𝑘−1
𝑖,𝑖+1 = min{𝐷𝑘−1

𝑖  , 𝑆𝑘−1
𝑖+1 } (3) 

with the exceptions that 

𝑞𝑘−1
0,1 = min{𝑞𝑘−1

𝑖𝑛  , 𝑆𝑘−1
1 } (4) 

𝑞𝑘−1
𝑁,𝑁+1 = 𝐷𝑘−1

𝑁  (5) 

where 𝑞𝑘−1
𝑖𝑛  is known. Note that (5) is because of the 

fundamental assumption that cell N is the most restrictive 

bottleneck cell of the concerned section, and there is not a 

more restrictive bottleneck downstream of it. Such an 

assumption is common in similar studies. It is always possible 

to segment a highway into separate sections each of which 

contains a most restrictive bottleneck that is beyond the reach 

of congestion propagated from a further downstream 

bottleneck. 

For cell i = 1,2,…,N-1, the demand and supply rates are 

given by (6) and (7), respectively. 

𝐷𝑘−1
𝑖 = 𝜆𝑖𝑣𝑘−1

fr  min{𝜌𝑘−1
𝑖  , 𝜌𝑘−1

cr } (6) 

𝑆𝑘−1
𝑖 =  𝜆𝑖𝑣𝑘−1

fr 𝜌𝑘−1
cr min {1 ,

𝜌jam − 𝜌𝑘−1
𝑖

𝜌jam − 𝜌𝑘−1
cr } (7) 

 In (6) and (7), 𝜌𝑘−1
𝑖  is the density of cell i at time k-1, 𝑣𝑘−1

fr  

and 𝜌𝑘−1
cr  are free-flow speed and critical density, respectively. 

In this study, these two parameters are treated as time-varying. 

𝜌jam  is the jam density, treated as known and constant, 

because it is relatively easy to be estimated offline. 

 For cell N, its demand and supply functions are defined by 

(8) and (9), respectively. 

𝐷𝑘−1
𝑁 = 𝜆𝑁𝑣𝑘−1

fr  𝜌𝑘−1
𝑁  (8) 

𝑆𝑘−1
𝑁

= {

 𝜆𝑁𝑣𝑘−1
fr 𝜌𝑘−1

cr ,                𝜌𝑘−1
𝑁−1 <

 𝜆𝑁

 𝜆𝑁−1
𝜌𝑘−1

cr

   𝜆𝑁𝑣𝑘−1
fr 𝜌𝑘−1

cr (1 − 𝜃),          𝜌𝑘−1
𝑁−1 ≥

 𝜆𝑁

 𝜆𝑁−1
𝜌𝑘−1

cr  
 

(9) 

 In (9), 𝜃 denotes the capacity drop proportion. In this paper, 

it is treated as a known and constant parameter, considering 

that in reality it can be easily estimated offline and is usually 

a constant. In future research, it may be desirable to also track 

its time variations along with other time-varying traffic flow 

parameters. 

B. A Deficiency of the Conventional Nonlinear CTM-EKF 

Estimation Approach 

To estimate traffic densities of each cell and traffic flow 

parameters in a recursive fashion, a state-space model 

consisting of a process model and a measurement model is 

needed. The process model describes plant dynamics, or state 

transition dynamics. The measurement model maps state 

variables to measurements. In this study, since we treat free-

flow speed and critical density as time-varying and want to 

estimate their values in real time, we augment them into the 

state space which would otherwise only contain traffic 

densities. We model the transition dynamics of free-flow 

speed and critical density as random walks. Such treatments 

are consistent with [15]. 

If the free-flow speed and critical density are to be treated 

as state variables, both the process model and measurement 

model become nonlinear in state variables. This is in contrast 

to many previous traffic state estimation studies that have 

employed CTM, e.g. [1-8], where the traffic flow parameters 

were treated as known and constant, and hence the process 

and measurement models were both linear in state variables. 

As a result, in this study a nonlinear recursive estimator is 

needed to solve the nonlinear state-space model. The 

extended Kalman filter (EKF) is a natural choice, because it 

is straightforward to implement and is computationally more 

efficient than particle filters. 

A general discrete-time state-space model composed of a 

nonlinear process model and a nonlinear measurement model 

with linear additions of noises are given as (10) to (13).  

𝐱𝑘 = 𝐟𝑘−1(𝐱𝑘−1, 𝐮𝑘−1) + 𝝎𝑘−1 (10) 

𝐲𝑘 = 𝐡𝑘(𝐱𝑘) + 𝜺𝑘 (11) 

𝝎𝑘−1 ∼ (0, 𝐐𝑘−1) (12) 

𝜺𝑘 ∼ (0, 𝐑𝑘) (13) 

In a CTM-EKF estimation approach that has augmented 

free-flow speed and critical density into the state space, the 

specific process model is given by (14) to (16).  

𝜌𝑘
𝑖 = 𝜌𝑘−1

𝑖 +
Δ𝑡

𝜆𝑖Δ𝑥𝑖
(𝑞𝑘−1

𝑖−1,𝑖 − 𝑞𝑘−1
𝑖,𝑖+1) + 𝜔𝑘−1

𝜌𝑖

 

i = 1, 2, …, N 
(14) 

𝑣𝑘
fr =  𝑣𝑘−1

fr + 𝜔𝑘−1
𝑣fr

 (15) 

𝜌𝑘
cr = 𝜌𝑘−1

cr + 𝜔𝑘−1
𝜌cr

 (16) 

The state vector 𝐱𝑘 is given by [𝜌𝑘
1 𝜌𝑘

2 … 𝜌𝑘
𝑁 𝑣𝑘

fr 𝜌𝑘
cr]

𝑇
. The 

input 𝐮𝑘−1 is scalar, 𝑞𝑘−1
𝑖𝑛 , i.e. the in-flow to the concerned 

section (refer to (4)). The RHS of (14) to (16) without the 

noise terms collectively define 𝐟𝑘−1(∙) as in (10). 

A key in the nonlinear CTM-EFK approach is to evaluate 

the time-varying Jacobian matrix of the process model at each 

time step. This requires determination of the specific 

functional form of the time-varying 𝐟𝑘−1(∙) at each step, from 

which the Jacobian matrix is derived. The time variation of  

𝐟𝑘−1(∙) is due to the implicit switching nature of the boundary 

flow functions in (14). Hence the key is to correctly identify 

the functional form of the boundary flows at each time step. 

In the following we explain why the conventional approach 

of determining the boundary flows as used by [12] can be 

problematic when the critical density is being estimated. 

Consider the boundary flow between cell N-1 and cell N, 

𝑞𝑘−1
𝑁−1,𝑁

. This boundary flow will always be the first to be 

influenced by a congestion because cell N is the bottleneck 

cell. As a result, it is always through this flow function the 

critical density first becomes observable. Conventionally, the 

functional form of 𝑞𝑘−1
𝑁−1,𝑁

 is defined by the (17) to (19). Note 

that the purpose of (17) to (19) is to identify the functional 

forms of 𝐷𝑘−1
𝑁−1, 𝑆𝑘−1

𝑁 , and 𝑞𝑘−1
𝑁−1,𝑁

, not to calculate the values 



  

as in simulation tasks. 

𝐷𝑘−1
𝑁−1 ∶= 𝜆𝑁−1𝑣𝑘−1

fr  min{𝜌𝑘−1
𝑁−1 , 𝜌𝑘−1

cr } (17) 

𝑆𝑘−1
𝑁

∶= {

 𝜆𝑁 𝑣𝑘−1
fr 𝜌𝑘−1

cr ,                𝜌𝑘−1
𝑁−1 <

 𝜆𝑁

 𝜆𝑁−1
𝜌𝑘−1

cr

   𝜆𝑁𝑣𝑘−1
fr 𝜌𝑘−1

cr (1 − 𝜃),          𝜌𝑘−1
𝑁−1 ≥

 𝜆𝑁

 𝜆𝑁−1
𝜌𝑘−1

cr  
 

(18) 

𝑞𝑘−1
𝑁−1,𝑁 ∶= min{𝐷𝑘−1

𝑁−1 , 𝑆𝑘−1
𝑁 } (19) 

Note that (17) is a shorthand for the following logic: If 

𝜌𝑘−1
𝑁−1 < 𝜌𝑘−1

cr , the functional form of 𝐷𝑘−1
𝑁−1  is 𝜆1𝑣𝑘−1

fr 𝜌𝑘−1
𝑁−1 ; 

else it is 𝜆1𝑣𝑘−1
fr 𝜌𝑘−1

cr . Equation (19) is a shorthand for the 

following logic: If 𝐷𝑘−1
𝑁−1 < 𝑆𝑘−1

𝑁 , the functional form of 

𝑞𝑘−1
𝑁−1,𝑁

 is the same as 𝐷𝑘−1
𝑁−1 , else it is the same as 𝑆𝑘−1

𝑁 . 

Equation (18) has no ambiguous meaning. 

Such an approach in defining flow function 𝑞𝑘−1
𝑁−1,𝑁

 can be 

vulnerable to a biased initial estimate of critical density. For 

instance, suppose that the initial critical density is 

underestimated. Under a CTM-EKF estimation framework 

using a piecewise-linear fundamental diagram, the entire 

concerned road section will remain at free-flow regime and 

the critical density estimate will not be updated until the 

condition  𝜌𝑘−1
𝑁−1 ≥

 𝜆𝑁

 𝜆𝑁−1
𝜌𝑘−1

cr  is satisfied. As a result, the 

underestimated initial value of critical density will lead to a 

premature satisfaction of this condition, hence erroneously 

rendering a switch of 𝑆𝑘−1
𝑁  from its free-flow form to its 

congested form, and consequently an erroneous switch of the  

functional form of 𝑞𝑘−1
𝑁−1,𝑁

, at some instant when in real-world 

it is still under the free-flow regime. 

Due to similar reasons, a premature or delayed switching 

problem usually also exists in determining the functional 

forms of the Jacobian matrix of the measurement model. 

III. METHODOLOGY 

A. A Heuristic Capacity Drop Mode Observer 

To overcome the deficiency of the conventional CTM-EKF 

estimation approach identified above, we introduce a separate 

method to estimate the presence (or lack thereof) of a capacity 

drop. The method is responsible for determining when all the 

flow functions should use their free-flow functional forms, 

and when the functional form of 𝑆𝑘−1
𝑁 , and consequently the 

functional form of 𝑞𝑘−1
𝑁,𝑁−1

, should switch from free-flow 

regime to congested regime and when to switch back, hence 

avoiding the trap of premature and delayed switches. The 

motivation behind this idea is to take advantage of the fact 

that as long as there is a queue present in cell N-1, there is an 

active reduction in the boundary flow rate between cell N-1 

and cell N, i.e. a capacity drop, which can be relatively easy 

to be detected in real world. 

Clearly, design of such an observer can be a non-trivial task 

by itself. However, the primary focus of this paper is to 

demonstrate the effectiveness of a modified CTM-EKF 

approach which takes into account capacity drop and 

provided that capacity drop mode can be satisfactorily 

captured. Therefore, in this paper, we use a heuristic 

algorithm developed based on micro-simulation data 

generated by Aimsun. The algorithm is presented in Table II. 

TABLE II 

A HEURISTIC CAPACITY DROP MODE OBSERVER 

Initialization: capacity_drop_indicator(0) = 0 

Input: 𝑞thre1, 𝑞thre2 and ∆ 

Output: capacity_drop_indicator (0 ∶= capacity drop off; 1∶= capacity 

drop on) 

At each time step k: 

Use upstream bottleneck cell boundary flows measured at step k-2, k-

1, and k, i.e. 𝑚_𝑞𝑘−2
𝑁−1,𝑁

, 𝑚_𝑞𝑘−1
𝑁−1,𝑁

 and 𝑚_𝑞𝑘
𝑁−1,𝑁

 

if capacity_drop_indicator(k-1) = 0 & any of the below three cases is 

satisfied: 

⚫ 𝑚_𝑞𝑘
𝑁−1,𝑁

- 𝑚_𝑞𝑘−1
𝑁−1,𝑁

< 0 & 𝑚_𝑞𝑘−1
𝑁−1,𝑁

- 𝑚_𝑞𝑘−2
𝑁−1,𝑁  < 0 & 𝑚_𝑞𝑘−2

𝑁−1,𝑁
- 

𝑚_𝑞𝑘−3
𝑁−1,𝑁

 < 0 

⚫ 𝑚_𝑞𝑘
𝑁−1,𝑁

- 𝑚_𝑞𝑘−1
𝑁−1,𝑁

< 0 & 𝑚_𝑞𝑘−1
𝑁−1,𝑁

- 𝑚_𝑞𝑘−2
𝑁−1,𝑁  < 0 & 𝑚_𝑞𝑘

𝑁−1,𝑁
- 

𝑚_𝑞𝑘−2
𝑁−1,𝑁

 < 𝑞thre1 

⚫ 𝑚_𝑞𝑘
𝑁−1,𝑁

- 𝑚_𝑞𝑘−1
𝑁−1,𝑁

 < 𝑞thre2 

capacity_drop_indicator(k) = 1 

else if capacity_drop_indicator(k-1) = 1 & 
|𝑚_𝑞𝑘

𝑁−1,𝑁− 𝑚_𝑞𝑘−1
𝑁−1,𝑁|

𝑚_𝑞𝑘−1
𝑁−1,𝑁 >  Δ 

capacity_drop_indicator(k) = 0 

else 

capacity_drop_indicator(k) = capacity_drop_indicator(k-1) 

end 

In Table II, 𝑞thre1, 𝑞thre2 and ∆ are constant parameters to 

be calibrated offline. Through simulation experiments, we 

found that, under the same traffic demand pattern, the 

observer with a set of well-calibrated parameters was able to 

effectively capture the capacity drop modes for different 

random replications of simulation. This algorithm can only 

work for an incident-free environment. A more sophisticated, 

model-based observer is currently under our investigation. 

B. State-Space Model Taking Advantage of The Capacity 

Drop Mode 

We take advantage of the capacity drop mode, which is 

indicated by the capacity_drop_indicator defined in Table II, 

to determine the functional form of the time-varying 𝐟𝑘−1(∙) 

at each step. The determination of the functional form of  

𝐟𝑘−1(∙) is composed of two steps, shown in Table III and 

Table IV, respectively. Again, note that in Table III and Table 

IV all the equations with a min{∙} is a shorthand in the same 

sense as stated in the paragraph below (19). 

Being consistent with  [15], the measurement model takes 

in the flows and space-mean speeds as measured by detectors 

stationed at cell boundaries (except for the in-flow detectors), 

as shown in Fig. 1. Thus the measurement model consists of 

2N equations. The first N equations map the state variables to 

measured boundary flows，and the second N equations map 

the state variables to measured boundary space-mean speeds, 

i.e. 

[
𝐦_𝐪𝑘

𝑖,𝑖+1

𝐦_𝐯𝑘
𝑖,𝑖+1

] = [
𝐡𝟏𝑘(𝐱𝑘)

𝐡𝟐𝑘(𝐱𝑘)
] + 𝜺𝑘 (20) 

To determine the functional forms of 𝐡𝟏𝑘(𝐱𝑘)  and 



  

𝐡𝟐𝑘(𝐱𝑘)  at each step, we also take advantage of the 

capacity_drop_indicator, in a way analogous to as shown by 

Table III and Table IV. Due to space limit, we do not present 

the detail in this paper. 

TABLE III 

DETERMINATION OF FORMS OF DEMAND AND SUPPLY FUNCTIONS  

1:    for i=1,2,…,N-1 

2:           if capacity_drop_indicator = 0 

3:                 𝐷𝑘−1
𝑖 ∶= 𝜆𝑖𝑣𝑘−1

fr  𝜌𝑘−1
𝑖  

4:                 𝑆𝑘−1
𝑖 ∶=  𝜆𝑖𝑣𝑘−1

fr 𝜌𝑘−1
cr

 

5:           else 

6:                 𝐷𝑘−1
𝑖 ∶= 𝜆𝑖𝑣𝑘−1

fr  𝑚𝑖𝑛{𝜌𝑘−1
𝑖  , 𝜌𝑘−1

𝑐𝑟 } 

7:                 𝑆𝑘−1
𝑖 ∶=  𝜆𝑖𝑣𝑘−1

fr 𝜌𝑘−1
cr min {1 ,

𝜌jam−𝜌𝑘−1
𝑖

𝜌jam−𝜌𝑘−1
cr } 

8:           end 

9:    end 

10:  for i=N 

11:         𝐷𝑘−1
𝑖 =  𝜆𝑖𝑣𝑘−1

fr 𝜌𝑘−1
𝑖  

12:         if capacity_drop_indicator = 0 

13:                𝑆𝑘−1
𝑖 ∶=  𝜆𝑖𝑣𝑘−1

fr 𝜌𝑘−1
cr  

14:         else 

15:                𝑆𝑘−1
𝑖 ∶=  𝜆𝑖𝑣𝑘−1

fr 𝜌𝑘−1
cr (1 − 𝜃) 

16:          end 
17:  end 

 

TABLE IV 

DETERMINATION OF FUNCTIONAL FORMS OF BOUNDARY FLOWS  

1:    for i=1 

2:           if capacity_drop_indicator = 0 

3:                  𝑞𝑘−1
𝑖−1,𝑖 ∶= 𝑞𝑘−1

𝑖𝑛  
4:           else 

5:                  𝑞𝑘−1
𝑖−1,𝑖 ∶= min{𝑞𝑘−1

𝑖𝑛  , 𝑆𝑘−1
𝑖 } 

6:           end 

7:    end 

8:    for i=1,2,…,N-2 

9:           if capacity_drop_indicator = 0 

10:                𝑞𝑘−1
𝑖,𝑖+1 ∶= 𝐷𝑘−1

𝑖  
11:         else 

12:                𝑞𝑘−1
𝑖,𝑖+1 ∶= min{𝐷𝑘−1

𝑖  , 𝑆𝑘−1
𝑖+1 } 

13:         end 

14:  end 

15:  for i=N-1 

16:         if capacity_drop_indicator = 0 

17:                𝑞𝑘−1
𝑖,𝑖+1 ∶= 𝐷𝑘−1

𝑖  
18:         else 

19:                𝑞𝑘−1
𝑖,𝑖+1 ∶= 𝑆𝑘−1

𝑖+1  
20:         end 

21:  end 

22:  for i=N 

23:         𝑞𝑘−1
𝑖,𝑖+1 ∶= 𝐷𝑘−1

𝑖  

24:  end 

We explain the advantages of the capacity_drop_indicator. 

From Table III and Table IV, it can be seen that when the 

capacity_drop_indicator is 0 (i.e. no capacity drop),  all the N 

cells use free-flow regime functions. This will prevent a 

premature or delayed switch of the process model from free-

flow functional forms to congested functional forms. As soon 

as the capacity_drop_indicator turns 1 (i.e. capacity drop is 

on), Line 15 of Table III and Line 19 of Table IV render the 

critical density observable instantly, i.e.  being able to be 

corrected from the biased initial value by measurements.  

At each time step, with the  𝐟𝑘−1(∙) and 𝐡𝑘(∙) identified 

using the above method, the Jacobian matrices of the process 

and measurement models, 𝐅𝑘−1 and 𝐇𝑘, respectively, can be 

derived. With these information available, the EKF algorithm 

can be applied, which is presented as Table V. Note that in 

line 9 of Table V, 𝑞𝑘−1
𝑖𝑛  is the known inflow rate from the 

upstream boundary of the concerned section, as introduced in 

Section II. A. In Table V, 𝐏 denotes the covariance of the 

estimation error, and 𝐊 denotes the Kalman gain. Meanings 

of the other notations in Table V have been defined previously. 

TABLE V 

THE DISCRETE-TIME EXTENDED KALMAN FILTER [22] 

1:    Initialization: 

2:                                     𝐱̂0
+ = 𝐸(𝐱𝟎) 

3:                         𝐏0
+ = 𝐸[(𝐱𝟎 − 𝐱̂0

+)(𝐱𝟎 − 𝐱̂0
+)𝑇] 

4:    for k = 1,2,3,… 

5:          (a) Jacobian matrix of the process model 

6:                                    𝐅𝑘−1 =
𝜕𝐟𝑘−1

𝜕𝐱
|

𝐱̂𝑘−1
+

 

7:          (b) Time update 

8：                          𝐏𝑘
− = 𝐅𝑘−1𝐏𝑘−1

+ 𝐅𝑘−1
𝑇 + 𝐐𝑘−1 

9：                                𝐱̂𝑘
− = 𝐟𝑘−1(𝐱̂𝑘−1

+ , 𝑞𝑘−1
𝑖𝑛 ) 

10:         (c) Jacobian matrix of the measurement model 

11:                                    𝐇𝑘 =
𝜕𝐡𝑘

𝜕𝐱
|

𝐱̂𝑘
−
 

12:         (d) Measurement update 

13:                          𝐊𝑘 = 𝐏𝑘
−𝐇𝑘

𝑇(𝐇𝑘𝐏𝑘
−𝐇𝑘

𝑇 + 𝐑𝑘)−1 

14：                         𝐱̂𝑘
+ = 𝐱̂𝑘

− + 𝐊𝑘[𝐲𝑘 − 𝐡𝑘(𝐱̂𝑘
−)] 

15:                                𝐏𝑘
+ = (𝐈 −  𝐊𝑘  𝐇𝑘)𝐏𝑘

− 

16:   end 

IV. VALIDATION OF METHODOLOGY 

Due to dependence on linearization, EKF estimates could 

diverge or converge to wrong values when either or both of 

the process and measurement models are nonlinear in state 

variables [23]. In our case, both the process and measurement 

models are nonlinear. Thus, it is desired to first test whether 

results of our method converge to perfectly known true traffic 

states and parameters. Moreover, the dynamics switching 

logics in our state-space model has been simplified from those 

of the original CTM through taking advantage of the 

capacity_drop_indicator, hence, it is also desirable to examine 

whether our method can recover the true signals synthesized 

from the original CTM. For these considerations, we present 

a validation experiment in this section to demonstrate that the 

methodology is able to recover the parameters of a state-space 

simulation of a CTM. 

Using the original CTM model as presented in Section II. 

A, we simulate the true signals. The simulation scenario is 

briefly described as follows. The simulation time is 2 hours, 

and the sampling interval is 5 seconds. The in-flow input is 

made such that two periods of congestion will be produced. 

The road section is divided into 5 cells, each cell being 700 m 

long. The first four cells consist of 3 lanes, and the last cell 

consists of 2 lanes. Parameters used for the simulation is as 

following: 𝑣fr = 100 km/hr for the 1st hour; 𝑣fr = 102 km/
hr   for the 2nd hour; 𝜌cr = 20  veh/km/ln for the 1st hour; 

𝜌cr = 22 veh/km/ln for the 2nd hour; 𝜌jam = 100 veh/km/ln; 

𝜃 = 10% . For the purpose of validation, in the truth 

simulation, the state variables are not corrupted by noise, 

while the measurements are corrupted by significant noise. 

This is in consistent with [15]. Since the capacity drop mode 



  

is very easy to detect using CTM synthesized data, it is not 

meaningful to test it. Thus in this section we assume it is 

known. We will test the proposed capacity drop mode 

observer in the next section, where micro-simulation data are 

used. 

The estimation results are presented by Fig. 2. Estimates of 

traffic densities of all the five cells match with the true values 

very well. Fig. 2 (a) shows that the estimator can track the 

abrupt change of the free-flow speed in a timely matter. Fig. 

2 (b) shows that, as expected, the critical density is not 

observable when there is no congestion. However, as soon as 

a congestion is present, the estimator is able to converge to 

the true signal very quickly. This can be clearly seen by 

comparing Fig. 2 (b) against Fig. 2 (g). Particularly, note that 

the estimator is able to correct the purposely made large biases 

in the initial estimates of the traffic flow parameters in a 

timely manner. 

 

 

 

 

 

 

 

Fig. 2.  (a) Free-flow speed; (b) Critical density; (c) Cell 1 density; (d) Cell 2 

density; (e) Cell 3 density; (f) Cell 4 density; (g) Cell 5 density. 

V. EXPERIMENT USING MICRO-SIMULATION 

To evaluate the effectiveness of the proposed method in an 

environment similar to real world, we test it using data 

generated from a commercial micro-simulation software, 

Aimsun. 

The simulated highway section is divided into 5 cells, each 

cell being 400 meters long. Cell 1 through cell 4 each consists 

of 3 lanes, and cell 5 has 2 lanes. The simulation time is 90 

minutes. One congestion period is produced. The “true” free-

flow speed is specified by setting maximum-desired-driving-

speed in micro-simulation. To be consistent with real-world 

applications, the measurement sampling time interval is set to 

be 30 seconds, but the estimation updating interval is set to be 

10 seconds. The jam density is estimated offline to be 210 

veh/km/ln. The “true” free-flow speed is 100 km/hr for 0 – 40 

min, and 80 km/hr for the left of the simulation time. The 

capacity drop proportion is 23%, estimated offline. 

Fig. 3 shows the measured boundary flow between cell 4 

and cell 5, plotted against the capacity drop status captured by 

the capacity drop mode observer introduced earlier. Note that 

it is the boundary flow between the lane-dropped cell (i.e. cell 

5 in this experiment) and its immediate upstream cell (i.e. cell 

4 in this experiment) that can best reflect capacity drop. It can 

be seen from Fig. 3 that the captured capacity drop mode 

matches the truth satisfactorily. This was also visually 

verified by checking the simulation animation. Note that the 



  

experiment has used measurements generated by a different 

random replication from those that have been used for 

calibrating the parameters of the capacity drop mode observer. 

As mentioned earlier, we have found that a set of well-

calibrated parameters was sufficiently robust in capturing 

capacity drop mode under different random replications. 

 

Fig. 3.  Captured capacity drop mode vs. the boundary flow rate between cell 

4 and cell 5. 

 Fig.4 (a) shows that the proposed method was able to track 

the time variations of free-flow speed. Particularly, we see 

that it was able to correct a very biased initial estimate and 

respond to an abrupt change in a timely manner. 

 Since it is difficult to specify critical densities in Aimsun, 

we were unable to directly simulate true signals for critical 

density. However, recognize such a fact, that cell 5 is the lane-

dropped cell and no more restrictive bottleneck is downstream 

of it, so cell 5’s density should be around critical density 

reduced by the capacity drop proportion, 𝜃, when the capacity 

drop is active. Therefore, densities of cell 5 when its upstream 

is congested can provide reasonable inferences into the true 

critical densities. Thus in Fig. 4 (b), we plotted the estimated 

critical densities against the true cell 5 densities. As can be 

seen, the matching is satisfactory. This implies that the 

proposed method was able to unveil the true critical density 

from only traffic flow and speed measurements generated by 

a micro-simulation process for which we almost had no a 

priori knowledge at all of the critical density. 

  

 

 

 

 

 

 

Fig. 4.  (a) Free-flow speed; (b) Critical density; (c) Cell 1 density; (d) Cell 2 

density; (e) Cell 3 density; (f) Cell 4 density; (g) Cell 5 density. 

Fig. 4 (c) through (g) show the estimated densities versus 

the true densities of cell 1 to cell 5, respectively. Table VI 

presents the mean-absolute-percentage-errors (MAPE) of  the 

estimated densities and the estimated free-flow speed, 

calculated against the true values. Note that here,  

𝜌𝑖  represents density for cell i. We see that the estimation 

results are reasonable. 

 



  

TABLE VI 

 MEAN-ABSOLUTE-PERCENTAGE-ERRORS OF THE ESTIMATED DENSITIES 

AND FREE-FLOW SPEED 

Quantity 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝑣fr 

MAPE 

(%) 
4.61 6.66 9.90 10.18 11.05 0.92 

VI. CONCLUSIONS AND FUTURE RESEARCH 

This paper proposed a method to jointly estimate highway 

traffic state and traffic flow parameters using CTM and EKF, 

and considering capacity drop. The method takes advantage 

of a separate, supervisory observer which determines times to 

switch between plant dynamics of free-flow and congested 

regimes by capturing the on-and-off of the capacity drop. The 

proposed method has demonstrated satisfactory capability in 

tracking time variations of free-flow speed and critical density 

and estimating traffic densities in real time. Future research 

includes an evaluation of the proposed method by comparison 

against the conventional CTM-EKF approach, development 

of a more sophisticated, model-based capacity drop mode 

observer that can work under a wide variety of demand 

patterns and requires little offline calibration, and application 

of the proposed estimation method to traffic control. 
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