
Abstract— Nonlinear interactions between neighboring pulses 

has always been a fundamental bottleneck in soliton 

transmission systems. Recently, coherent transceivers, digital 

signal processing (DSP) and the new nonlinear Fourier 

transform (NFT) theoretical framework has revived and 

generalized the field of soliton transmissions into nonlinear 

frequency division multiplexing (NFDM). We hereby 

demonstrate analytically and experimentally that one can 

considerably improve soliton transmission performance by 

intentionally allowing neighboring solitons to interact and 

collide during propagation and exchange positions at the 

receiver followed by standard NFT processing. This can be 

achieved by designing neighboring solitons’ eigenvalues 𝝀 to 

have opposite signs in the real part while the magnitude |𝕽(𝝀)| 
is optimized for a given transmission distance so that 

neighboring transmitted pulses would have swapped their 

timing positions at the receiver. Experimental results for 6.13 

Gbaud 1-soliton systems demonstrate a transmission reach 

improvement of 100% for 16APSK and 60% for 8PSK 

modulated on the b-coefficients. The proposed scheme 

eliminated a long-standing fundamental limitation in soliton 

transmissions, opened up new dimensions in transmitter signal 

design and receiver signal processing for nonlinear optical 

communication systems.     
Index Terms—Optical communications, nonlinear Fourier 

transform. 

I. INTRODUCTION

    Soliton is one of the key research area in long-haul 

nonlinear fiber transmissions and has been studied for the past 

three decades [1, 2]. Characterizing and reducing impairments 

for transmission of fundamental solitons has been a central 

theme for telecommunication researchers and the wider 

nonlinear optics community. In long-haul soliton 

transmissions, periodic signal amplification with spontaneous 

emission noise results in soliton jitters known as Gordon-

Haus effect [3-5], which is a long-standing problem in soliton 

transmissions. Additionally, in soliton systems where soliton 

pulse trains are generated and detected one pulse after the 

other, a linear superposition of two soliton pulses are in 

general not a solitonic solution to the Nonlinear Schrodinger 

Equation (NLSE) and hence neighboring pulses will interact 

with each other along propagation. The neighboring pulses 

will attract or repel from each other depending on their 

relative phase Δ𝜙 and such interactions are well documented 

in the literature [2, 6-9]. This will produce additional timing-

jitters and push the pulses away from the preset detection time 

window which significantly degrades performance. On the 
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other hand, when 2 wavelength-division multiplexing 

(WDM) solitons collide in time in the vicinity of an optical 

amplifier, the sudden change of the pulse energy creates 

asymmetric frequency shifts hence time shifts and additional 

jitters to pulses in neighboring channels [10]. The nonlinear 

interactions between neighboring pulses in time and/or 

neighboring WDM channels are therefore one of the most 

fundamental limitations in soliton transmissions. 

Consequently, a general design rule of thumb is that the pulse 

width needs to be about 1/5 of the pulse separation or symbol 

period [Chap. 9.2, 11] in order to suppress interactions and 

ensure reliable detection but in turn severely limit the spectral 

efficiency.     

    With coherent detection and digital signal processing 

(DSP) flourishing over the last decade, transmission 

capacities of optical fiber communication systems were 

tremendously improved. This is brought about by the ability 

to generate and detect arbitrary optical waveforms in two 

polarizations so that advanced high spectral efficiency 

modulation formats can be used. DSP also become powerful 

tools to combat transmission impairments such as chromatic 

dispersion (CD) and polarization-mode dispersion (PMD) and 

is highly adaptable. However, despite the success in 

mitigating linear impairments, fiber nonlinearity effects are 

still not effectively compensated through DSP. There has 

been a lot of attempts on this front such as digital back-

propagation [12] but their performance improvements are 

only modest but their computational complexity inhibits its 

practical use.  

    Recently, the field of nonlinear Fourier transform (NFT) 

and nonlinear frequency division multiplexing (NFDM) has 

gained attention in the community. The NFT framework 

decomposes the NLSE into parallel channels and decomposes 

the signal into nonlinear spectral components, which can be 

obtained by solving the Zakharov-Shabat problem from the 

Lax pair operators corresponding to the NLSE. In this case, 

the NFT/inverse-NFT (INFT) operators transform the signal 

between time-domain and nonlinear frequency domain [13]. 

Hasegawa and Nyu first proposed to use the NFT concept for 

nonlinear fiber transmissions [14] in which information can 

be transmitted on the eigenvalues of the nonlinear channels 

without interfering each other. The concept is further 

combined with advances in digital coherent technology and 

generalized into NFDM  [15-18]. NFDM is considered a 

generalized theoretical framework for nonlinear fiber 

transmissions in the sense that continuous spectrum resemble 

conventional orthogonal frequency division multiplexing 

    Chao Lu and P.K.A. Wai are with the Photonics Research Center, 

Department of Electronic and Information Engineering, The Hong Kong 

Polytechnic University, Kowloon, Hong Kong. (e-mail: 
enluchao@polyu.edu.hk; alex.wai@polyu.edu.hk). 

Improving Soliton Transmission Systems 

Through Soliton Interactions 

Gai Zhou, Tao Gui, Chao Lu, Alan Pak Tao Lau, and P.K.A. Wai 

This is the Pre-Published Version.
The following publication G. Zhou, T. Gui, C. Lu, A. P. T. Lau and P. -K. A. Wai, "Improving Soliton Transmission Systems Through 
Soliton Interactions," in Journal of Lightwave Technology, vol. 38, no. 14, pp. 3563-3572, 15 July, 2020 is available at https://
doi.org/10.1109/JLT.2019.2932332

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mailto:enluchao@polyu.edu.hk
mailto:alex.wai@polyu.edu.hk


(OFDM) while discrete spectrum (eigenvalues) resemble 

solitons. Initial proof-of-concept experiments have 

demonstrated promising results [19-27]. Information-

theoretic limits [28], DSP for NFT systems [25, 29-33] and 

advances in accurately and efficiently computing the NFT 

[34-36] and INFT operations [37, 38] are currently under 

intensive investigations. 

     The advent of digital coherent receivers and NFT 

framework give rise to new possibilities in solitons and 

general nonlinear signaling techniques for nonlinear fiber 

communication systems. The concept of coherent soliton 

communications was first proposed in [39] where 8PSK 

signals are considered and the perturbations to individual 

solitons and the overall pulse trains due to random phase 

difference between neighboring solitons are characterized. 

Timing jitters for phase modulated soliton systems are studied 

[3] and countermeasures such as digital backward

propagation and in-line fixed frequency guiding filters were

proposed [4, 5]. On the other hand, Frumin et al [33] proposed

to encode information in multi-solitons to eliminate pulse

interaction effects. In this paper, we took another direction of

approach by intentionally design the neighboring solitons’

eigenvalues λ to have opposite signs in the real part ℜ(𝜆) so

that the solitons will strongly interact, collide and walk past

each other irrespective of their initial relative phase Δ𝜙. We

analytically show that the perturbations to the eigenvalue by

neighboring pulses diminish with increasing |ℜ(𝜆)| .

Therefore, overall transmission performance can be

significantly enhanced as long as |ℜ(𝜆)| is also chosen such

that the original pulses are well separated and located within

neighboring time slots for detection at the receiver. The

proposed technique does not incur additional computational

complexity compared to other single-soliton based NFT

systems and are simpler than multi-soliton NFT/INFT.

Experiments for 6.13 GBaud 8-phase-shift-keying (PSK) and

16-amplitude-phase-shift-keying (APSK) modulated 1-

soliton pulses show that transmission reach can be extended

by 60% and 100% respectively compared to recent phase and

spectral magnitude modulated 1-soliton systems [23]. Our

work highlights the benefits of pulse-to-pulse interactions in

nonlinear transmission systems. The removal of the

conventional soliton interaction constraint improves soliton

transmission performance, provides new design parameters

and opens up new directions for signaling and DSP research

in communications over nonlinear fibers.

II. NONLINEAR FOURIER TRANSFORM IN DIGITAL COHERENT 

SYSTEMS 

    The equation governing signal propagation in fiber is the 

nonlinear Schrodinger Equation [40]: 

𝑗
𝜕

𝜕𝑧
𝐴(𝑡, 𝑧) −

𝛽2

2

𝜕2

𝜕𝑡2
𝐴(𝑡, 𝑧) + 𝛾|𝐴(𝑡, 𝑧)|2𝐴(𝑡, 𝑧) = 0

 (1) 

where 𝐴(𝑡, 𝑧) is the signal, 𝑡, 𝑧  𝛽2, 𝛾  are the physical time,

distance, group-velocity dispersion (GVD) and fiber 

nonlinearity coefficient respectively. We can write the NLSE 

in a normalized form  

𝑗
𝜕

𝜕ℓ
𝑢(𝜏, ℓ) + 𝑠𝑔𝑛(𝛽2)

𝜕2

𝜕𝜏2
𝑢(𝜏, ℓ) + |𝑢(𝜏, ℓ)|2𝑢(𝜏, ℓ) = 0                               

 (2) 

ℓ =
𝑧

𝐿𝐷
, 𝜏 =

𝑡

𝑇0
, 𝐿𝐷 =

2𝑇0
2

|𝛽2|
, 𝑢 = √𝛾𝐿𝐷𝐴  (3) 

where 𝜏, ℓ, 𝑢  are normalized time, distance and signal 

envelope respectively. Note that 𝑇0  is a free normalization

parameter. The NFT of a signal  𝑢(𝜏) (in normalized units), 

supported in the interval 𝜏 ∈ [𝑇1, 𝑇2], is defined by solving the

differential equation [1,16-18] 

𝜕𝑣

𝜕𝜏
= (

−𝑗𝜆 𝑢(𝜏)

−𝑢∗(𝜏) 𝑗𝜆
)                                (4) 

𝑣(𝑇1, 𝜆) = (
𝑣1(𝑇1, 𝜆)

𝑣2(𝑇1, 𝜆)
) = (

1
0
) 𝑒𝑥𝑝 (−𝑗𝜆𝑇1)              (5)

where 𝜆  and 𝑣(𝜏, 𝜆)  are, respectively, the eigenvalue and 

eigenvector. Defining the a-coefficient and b-coefficient as 

𝑎(𝜆) = 𝑣1(𝑇2, 𝜆) 𝑒𝑥𝑝(𝑗𝜆𝑇2) 
𝑏(𝜆) = 𝑣2(𝑇2, 𝜆) 𝑒𝑥𝑝(−𝑗𝜆𝑇2)

The nonlinear spectrum of 𝑢(𝜏) is made of a continuous and 

a discrete spectrum. The continuous spectrum is defined as 

𝑞𝑐(𝜆) = 𝑏(𝜆)/𝑎(𝜆)  for 𝜆 ∈ ℝ . The discrete spectrum is

defined as 𝑞𝑑(𝜆) = 𝑏(𝜆) 𝑎
′(𝜆)⁄  (where 𝑎′(𝜆) = 𝑑𝑎(𝜆) 𝑑𝜆⁄ )

at isolated roots 𝑎(𝜆) = 0 in the upper-half complex plane 

𝜆 ∈ ℂ+ . During signal propagation, the nonlinear spectrum

evolves with distance as  

𝑞𝑐(𝜆, ℓ) = 𝑞𝑐(𝜆, 0)𝑒𝑥𝑝(4𝑗𝜆
2ℓ)

𝑞𝑑(𝜆, ℓ) = 𝑞𝑑(𝜆, 0)𝑒𝑥𝑝(4𝑗𝜆
2ℓ)

     (6) 

with ℓ being the normalized distance. In analogy with linear 

systems, nonlinear frequency division multiplexing (NFDM) 

suggests that independent information should be encoded on 

different parts of the nonlinear spectra so that they will all 

propagate along the fiber without mutual interference. With 

coherent detection and digital signal processing (DSP) in this 

current generation of transceiver technology, the NFDM 

concepts can now be experimentally implemented. The 

process of converting the nonlinear spectrum into time-

domain waveform is the INFT.  

Waveforms with only discrete spectrum are known as 

solitons. The simplest soliton contains only 1 eigenvalue 

𝜆 ∈ ℂ+ with discrete spectrum 𝑞𝑑(𝜆) and is given by

𝑢(𝜏) = −2𝑗ℑ(𝜆) 𝑠𝑒𝑐ℎ(2ℑ(𝜆)(𝜏 − 𝜏0)) 

× 𝑒𝑥𝑝(−2𝑗ℜ(𝜆)𝜏 − 𝑗∠𝑞𝑑(𝜆)) 

where 

𝜏0 =
1

2ℑ(𝜆)
𝑙𝑛
|𝑞𝑑(𝜆)|

2ℑ(𝜆)
In this case, the physical interpretations of the spectral 

parameters are straight forward.  ℑ(𝜆)  determines the peak 

amplitude and width of the soliton while ℜ(𝜆)  determines 

center frequency shift, which in turn determines the soliton’s 

group velocity.  |𝑞𝑑(𝜆)|  and ℑ(𝜆)  together determine the

soliton’s initial position 𝜏0 while the soliton’s phase is given

by ∠𝑞𝑑(𝜆).
    In terms of  DSP techniques, we recently showed [25] that 

for discrete eigenvalue transmissions with phase and 

magnitude modulation of 𝑞𝑑(λ) = 𝑏(𝜆) 𝑎
′(𝜆)⁄ , it is the b-

coefficient 𝑏(𝜆) that is modulated and undergoes 𝑏(𝜆, ℓ) =

𝑏(𝜆, 0)𝑒4𝑗𝜆
2ℓ  while 𝑎′(𝜆)  does not carry information and

only contain noise. Therefore, 𝑏(𝜆) can be used as a decision 

statistic instead of 𝑞𝑑(𝜆). Furthermore, as distortions on 𝑏(𝜆)
due to amplifier noise are found to be correlated with 

distortions on λ  and 𝑎′(λ)  [17],  a simple linear minimum

mean square error (LMMSE) filter that exploits such noise 

correlations is shown to considerably improve detection 



performance.  

III. PULSE OVERLAPPING AND SOLITON INTERACTIONS 

    An ideal NFDM system requires one to generate and detect 

the whole waveform. However, as the processing complexity 

and latency [41-43] increase with the energy and duration of 

the waveform, it is more desirable for practical INFT/NFT 

algorithms to generate and process multiple shorter 

waveforms with separated non-overlapping time windows. 

Since the NFT/INFT operators are not linear operators, even 

if waveforms 𝑢1(𝜏) and 𝑢2(𝜏) are well-separated in time, the 

sum  

     𝑁𝐹𝑇(𝑢1(𝜏) + 𝑢2(𝜏)) ≠ 𝑁𝐹𝑇(𝑢1(𝜏)) + 𝑁𝐹𝑇(𝑢2(𝜏))  (7)     

and it is inevitable that each individual waveform will be 

perturbed by neighbors.  

    In case of soliton transmission as depicted in Fig. 1, soliton 

pulses are generated and processed in time-window 𝜏 ∈
[−𝑇/2, 𝑇/2], where 𝑇 is normalized time-window width. We 

are going to prove although the eigenvalues and spectral 

amplitudes of each soliton will only be slightly perturbed by 

overlapping in the beginning, the distortions will accumulate 

with propagation distance and will become significant 

transmission impairments for long-haul links. 

 
Fig. 1. Practical soliton pulse train are generated and detected one pulse after 

the other in separated time windows 𝜏 ∈ [−𝑇/2, 𝑇/2], where 𝑇 is normalized 

time-window width. When the pulses are put together, they will overlap with 

each other and create distortions to the eigenvalues and spectral amplitudes 

of neighboring solitons  
 

    The perturbations from overlapping soliton pulses are well-

understood [6-9],  including the perturbation theory on 𝜆 [6, 

section. 3]. Assume the pulse 𝑢0 is perturbed by overlapping 

with a small value 𝛥𝑢 so that 

                              𝑢(𝜏) = 𝑢0(𝜏) + 𝛥𝑢(𝜏),                              (8) 

the first order perturbation on the eigenvalue λ𝑛 of 𝑢0 can be 

written as:                   

𝛥𝜆𝑛 = −
𝑗 ∫ 𝑣𝑛

𝑇(𝜏, 𝜆𝑛)𝜎2𝛥𝑈𝑣𝑛(𝜏, 𝜆𝑛)𝑑𝜏
∞

−∞

∫ 𝑣𝑛
𝑇(𝜏, 𝜆𝑛)𝜎3𝜎2𝑣𝑛(𝜏, 𝜆𝑛)𝑑𝜏

∞

−∞

 

                                                                                             (9)                                       

𝛥𝑈 = (
0 𝛥𝑢(𝜏)

𝛥𝑢∗(𝜏) 0
) , 𝜎2 = (

0 −𝑗
𝑗 0

) , 𝜎3 = (
1 0
0 −1

)    

                                                                                       (10)  

where 𝑣𝑛 is the eigenvector of 𝜆𝑛. According to [1, section. 

5], when we assume two well-separated 1-soliton pulses with 

time separation 2𝜏0 and phase difference 𝛥𝜙 given by 

          𝑢(𝜏) = 𝑠𝑒𝑐ℎ(𝜏 − 𝜏0) + 𝑒𝑥𝑝(𝑗𝛥𝜙) 𝑠𝑒𝑐ℎ(𝜏 + 𝜏0),   (11)       

the expression for the eigenvalue perturbation will be    

𝛥𝜆 = −
𝑠𝑖𝑛(𝛥𝜙) [1 − 2𝜏0 𝑐𝑜𝑡ℎ(2𝜏0)]

𝑠𝑖𝑛ℎ(2𝜏0)
+ 𝑗

2 𝑐𝑜𝑠(𝛥𝜙) 𝜏0
𝑠𝑖𝑛ℎ(2𝜏0)                                

 

±
𝑠𝑖𝑛 (

𝛥𝜙
2
) [1 −

2𝜏0
𝑠𝑖𝑛ℎ(2𝜏0)

]

2 𝑠𝑖𝑛ℎ(𝜏0)
± 𝑗

𝑐𝑜𝑠 (
𝛥𝜙
2
) [1 +

2𝜏0
𝑠𝑖𝑛ℎ(2𝜏0)

]

2 𝑐𝑜𝑠ℎ(𝜏0)
 

                                                                                           (12)                                                                                                                                           

Perturbations on the ℜ(𝜆)  and ℑ(𝜆)  depends on the phase 

difference 𝛥𝜙. For two neighboring 1-solitons with 𝛥𝜙 = 0, 

only ℑ(𝜆)  will be perturbated. On the other hand, 𝛥𝜙 ≠ 0 

will induce ℜ(λ) perturbation on the two solitons and they 

will no longer be bounded in time and can move 

away/towards each other. Since information can now be 

encoded in the phase 𝛥𝜙  and magnitude of the spectral 

amplitude with digital coherent transceivers, such 

perturbations will also become random and pattern dependent. 

The consequences are: 1) the 𝑏-coefficient after propagation 

is given by 

            𝑏(𝜆 + 𝛥𝜆, ℓ) = 𝑏(𝜆 + 𝛥𝜆, 0) 𝑒𝑥𝑝(4𝑗(𝜆 + 𝛥𝜆)2ℓ) 
                                  ≈ 𝑏(𝜆 + 𝛥𝜆, 0) 𝑒𝑥𝑝(4𝑗(𝜆2 + 2𝜆𝛥𝜆)ℓ)  
                                                                                           (13) 

so that the distortions in the 𝑏-coefficient after equalization 

grows with distance through  

    𝑒𝑥𝑝(4𝑗(𝜆 + 𝛥𝜆)2ℓ) ⋅ 𝑒𝑥𝑝(−4𝑗𝜆2ℓ) ≈ 𝑒𝑥𝑝(8𝑗𝜆𝛥𝜆ℓ)   (14)                

and 2) perturbations in 𝛥𝜆 can distort the timing positions and 

produce jitters so that the soliton may walk out of the pre-set 

detection time window and significantly degrade 

performance.  An example for the received noise variance 

𝜎𝑏
2of b-encoded 8PSK signals as a function of normalized 

distance is shown in Fig. 2. The eigenvalue of the signals is 

𝜆 = 1𝑗. Solitons are in the center of time-window by setting 

|𝑞𝑑(λ)| = 2ℑ(λ). The normalized time-window length is set 

to be 3.9 which contains 99.9% of the pulse energy. The 

parameters correspond to simulation of 6 GBaud (physical 

time window of around 167ps ) 8PSK transmissions in 

lossless and noiseless Non-Zero Dispersion-Shifted Fiber 

(NZDSF) with dispersion coefficient 𝐷 ≅ 4 ps/nm-km, 

normalized parameter 𝑇0 = 42.7 𝑝𝑠  and hence normalized 

distance ℓ = 1  equals 357.9 km. In the simulation, the 

received b-coefficients are obtained by performing NFT for 

each time-window. While the 2-pulse model in Eq.   (11) may 

not be accurate analysis of 𝛥𝜆 and their effects for general 

pulse trains, it is obvious from Fig. 2 that the initial random 

𝛥𝜆 induce ever-growing distortions on the b-coefficients with 

propagation distance, a trend that aligns with the insights from 

Eq. (8) to Eq.  (14). 

 
Fig. 2. Variance of received b-coefficients as a function of normalized 

propagation distance for an ideal lossless and noiseless fiber channel. The 

time window contains 99.9% of the pulse energy. Even though the eigenvalue 

distortions 𝛥𝜆 maybe small at the transmitter, the distortions accumulate and 

significantly worsen performance as distance increases.  

 

    When we increase the baud rate, duration for each physical 

time-window decrease, which in turn reduce the normalized 

parameter 𝑇0  and increases the normalized distance for a 

given physical distance. To reduce pulse overlapping, one can 

shortening the pulse time-duration. For soliton pulses, time-

duration can be shortened by increasing ℑ(λ) but suffers from 

more noise because the signal bandwidth is increased [17, 44]. 
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Increasing the time separation between the solitons will 

reduce overlapping but in the expense of reduced transmission 

capacity. Consequently, soliton interactions are a bottleneck 

for high speed soliton communications.    

IV. INTERACTION-TOLERANT SOLITON TRANSMISSIONS 

    Following [6, section. 5], the eigenvector of a 1-soliton 

located at 𝜏 = 𝜏0 with eigenvalue 𝜆 = 𝛼 + 𝛽𝑗 and ∠𝑞𝑑(𝜆) =
𝜙 can be written as 

     𝑣 = (
𝑣1
𝑣2
) =

1

2
𝑠𝑒𝑐ℎ[ 2𝛽(𝜏 − 𝜏0)] 

                             × (
exp(−𝛽(𝜏 − 2𝜏0) − 𝑗𝛼𝜏)  

−𝑗 exp(𝛽𝜏 + 𝑗𝛼𝜏 + 𝑗𝜙)
)            

                                                                                           (15) 

Now, consider a train of solitons with eigenvalues 𝜆 = ±𝛼 +
1𝑗 and separated by 2𝜏0 as shown in Fig. 5 (a). For simplicity, 

let us just analyze the interactions between pulse 1 and 2 so 

that the overall signal is given by  𝑢(𝜏) = 𝑢1(𝜏) + 𝑢2(𝜏) 
where 

        𝑢1(𝜏) = 2 𝑠𝑒𝑐ℎ(2(𝜏 + 𝜏0)) 𝑒𝑥𝑝(−2𝑗𝛼𝜏)                 (16a)            

        𝑢2(𝜏) = 2 𝑠𝑒𝑐ℎ(2(𝜏 − 𝜏0)) 𝑒𝑥𝑝(2𝑗𝛼𝜏 − 𝑗𝛥𝜙)        (16b) 

Let pulse 1 (Eq. (16a)) be the pulse of interest so that pulse 2 

(Eq. (16b)) is the perturbation 𝛥𝑢 = 𝑢2 . Substituting the 

corresponding eigenvector 𝑣 into Eq. (9) results in Eq. (17). 

Note that the integrand in Eq. (17) contain a pulse-like term 

𝑠𝑒𝑐ℎ2(2𝜏′) 𝑠𝑒𝑐ℎ(2(𝜏′ − 2𝜏0)) and complex exponential 

terms 

𝑔(𝛼, Δ𝜙, 𝜏′) = 𝑒𝑥𝑝(−2(1 − 𝑗𝛼)𝜏′) 𝑒𝑥𝑝(−2𝑗𝛼𝜏0 − 𝑗𝜙) 
                             +𝑒𝑥𝑝(2(1 − 𝑗𝛼)𝜏′) 𝑒𝑥𝑝(2𝑗𝛼𝜏0 + 𝑗𝜙) 
Fig. 3 plots these terms with different values of 𝛼 for 𝜏0 =
1.95. One can deduce that when 𝛼 is small, the total area i.e. 

Δ𝜆  depends on Δ𝜙 . However, as 𝛼  increases, the rapidly-

varying sinusoid of 𝑔(𝛼, Δ𝜙, 𝜏′) will balance out the positive 

and negative areas of the integrand in Eq. (17) so that Δ𝜆 → 0 

irrespective of the relative phase Δ𝜙. Fig. 4 (a) shows the 𝛥𝜆 

obtained from Eq. (17) and compared with the Δ𝜆 obtained 

from the NFT of the composite 2-pulse waveform 𝑢(𝜏) =
𝑢1(𝜏) + 𝑢2(𝜏) , which is a 2-soliton. In this case, the 

eigenvalue distortion Δ𝜆 stems from the fact that 𝑢1(𝜏) and 

𝑢2(𝜏) are separate 1-solitons while the eigenvalues of their 

sum are not exactly ±𝛼 + 1𝑗 but slightly distorted. It can be 

seen that Δ𝜆 are similar for both cases and most importantly, 

𝛥𝜆   clearly diminish with increasing 𝛼 . The 2-pulse NFT 

preserves the eigenvalue upon transmission under ideal NLSE 

which allow us to approximate map the Δ𝜆 of the transmitted 

waveform and its analysis to the received waveform. Fig. 4 

(b) shows the variance of Δ𝜆 for a 6 Gbaud pulse trains of 

8PSK modulated on b-coefficient for back-to-back and 2147 

km transmission of ideal lossless fiber without noise and show 

how the variance of Δ𝜆  decreases with increasing 𝛼 (the 

choice of 𝛼 for 2147 km transmission will be described later 

in this section). Therefore, increasing 𝛼 can help eliminate the 

 
Fig. 3. The terms 𝑓(𝜏′) and 𝑔(𝛼, Δ𝜙, 𝜏′) in Eq. (17).  As 𝛼 increases, the 

rapidly-varying sinusoid of 𝑔(𝛼, Δ𝜙, 𝜏′) will balance out the positive and 

negative areas of the product 𝑓(𝜏′) ⋅ 𝑔(𝛼, Δ𝜙, 𝜏′)  so that the total area under 

hence Δ𝜆 will approach 0 irrespective to the phase difference Δ𝜙 between 

neighboring pulses. 

 

 
Fig. 4. (a) Eigenvalue distortions 𝛥𝜆  due to neighboring solitons using 

perturbation theory and NFT of the composite 2-pulse waveform 𝑢(𝜏) , 

illustrating that 𝛥𝜆 decreases with increasing 𝛼. (b) Variance of Δλ vs. 𝛼 for 

6 Gbaud 8PSK transmissions for back-to-back and over 2147 km (ℓ = 6) of 

ideal lossless fiber without noise. 

 

 

𝛥𝜆 = −
∫ (𝛥𝑢∗(𝜏)𝑣1

2(𝜏, 𝜆) − 𝛥𝑢(𝜏)𝑣2
2(𝜏, 𝜆))𝑑𝜏

∞

−∞

2∫ 𝑣1(𝜏, 𝜆)𝑣2(𝜏, 𝜆)𝑑𝜏
∞

−∞

 

=
∫ 𝑠𝑒𝑐ℎ2(2(𝜏 + 𝜏0)) 𝑠𝑒𝑐ℎ(2(𝜏 − 𝜏0)) (𝑒𝑥𝑝(−[2(𝜏 + 𝜏0) − 2𝑗𝛼𝜏] − 𝑗𝜙) + 𝑒𝑥𝑝([2(𝜏 + 𝜏0) − 2𝑗𝛼𝜏] + 𝑗𝜙))𝑑𝜏
∞

−∞

∫ 𝑠𝑒𝑐ℎ2(2(𝜏 − 𝜏0)) 𝑑𝜏
∞

−∞

 

= ∫ 𝑠𝑒𝑐ℎ2(2𝜏′) 𝑠𝑒𝑐ℎ(2(𝜏′ − 2𝜏0))⏟                  
𝑓(𝜏′)

(𝑒𝑥𝑝(−2(1 − 𝑗𝛼)𝜏′) 𝑒𝑥𝑝(−2𝑗𝛼𝜏0 − 𝑗𝜙) + 𝑒𝑥𝑝(2(1 − 𝑗𝛼)𝜏
′) 𝑒𝑥𝑝(2𝑗𝛼𝜏0 + 𝑗𝜙))⏟                                                  

𝑔(𝛼,Δ𝜙,𝜏′)

𝑑𝜏′
∞

−∞

 

                                                                                                                                                                                                      (17)
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Fig. 5. Proposed interaction-tolerant discrete-eigenvalue transmissions using 

neighboring pulses with alternating eigenvalues’ real part at the transmitter. 

Simulated transmissions of 6 Gbaud pulse trains with (b) α = 0.21 and 𝑧 =
1073  km; (c) α = 0.21  and 𝑧 = 2147  km (1-pass); (d)  α = 0.57  and 𝑧 =
2147  km (2-pass). The number in circles are sequence numbers of the 

respective solitons in the pulse train. The solitons will walk off and interact 

with multiple neighboring pulses during propagation. But by appropriate 

design of 𝛼 for a given transmission distance, the pulses can be well-separated 

at the receiver for detection.  

 

random interactions and eigenvalue perturbations due to the 

relative phase between neighboring solitons, which in turn 

reduce the noise in the 𝑏-coefficient through Eq. (14), reduce 

timing jitters and thus improve transmission performance. 

   However, as 𝛼 is closely related to the physical frequency 

hence group velocity of the pulse, increasing 𝛼 will exemplify  

pulse walking off their pre-set detection time window, collide, 

strongly interact and degrade detection performance. Instead 

of suppressing the interactions and ensuring the solitons are 

well-located within their own detection time-windows, we 

hereby propose an interaction- tolerant signaling scheme in 

which neighboring pulses have eigenvalues with alternating 

real parts ±𝛼 so that they every pair of transmitted pulse will 

walk towards each other and interact strongly. However, for a 

given distance ℓ (or real distance 𝑧), we choose 𝛼 accordingly 

so that a given transmitted pulse is well-located in the time 

window of neighboring pulses at the receiver. This can be 

graphically interpreted as letting the pulse walk past each other 

during transmission and essentially swapping positions at the 

receiver as shown in Fig. 5. In this case, the benefit of large 𝛼 

while ensuring the received pulses can be individually detected 

in neighboring time windows of the same duration is that no 

additional computational complexity is incurred compared to 

standard 1-soliton systems and the baud rate is not 

compromised due to pulse walk-offs.  

    In the proposed setup, the solitons with odd sequence 

number have ℜ(𝜆) = 𝛼  while even sequence have ℜ(𝜆) =
−𝛼 at the transmitter. In the figure, the arrows represent the 

walk off direction of solitons during propagation. The 

variation of solitons during propagation is obtained from 

numerical simulation of 6 Gbaud 8PSK signal modulated on 

b-coefficient with 𝜆 = ±𝛼 + 1𝑖  and 𝑇 = 3.9 . Solitons with 

odd and even sequence number will interact with each other as 

shown in Fig. 5 (b) and then move away from each other. The 

speed of solitons depends on α which is chosen to ensure the 

received solitons are centered at detection time windows of 

neighboring pulses as shown in Fig. 5 (c, d). In this case, the 

detection time windows are the same as conventional soliton 

or more general NFT systems. Furthermore, one can build on 

this concept and allow each soliton pulse to pass through 

multiple pulses during propagation before it is well-separated 

and located at the receiver. Let us denote a system in which 

each soliton walks off and passes 𝑁𝑝  neighboring solitons 

during transmission as an 𝑁𝑝-pass system. In this case, 𝑁𝑝 also 

represents the total number of collisions for each soliton. The 

value 𝛼 is related to the transmission distance ℓ,  ℑ(λ) and 𝑁𝑝 

but not exactly a linear function of 𝑁𝑝  and ℓ  because the 

individual solitons and its speed during collisions is not 

constant or even well-defined [10]. The optimized value of α 

for 1-pass and 2-pass in Fig. 5 (c, d) are respectively 0.21 and 

0.57 with z = 2147 km (ℓ = 6). Therefore, in the following 

simulations and experiments, the best 𝛼  is numerically 

estimated beforehand by numerical studies of pulse 

propagation before simulating transmission performance.  

    We conducted simulations of 6 GBaud 8PSK modulated 

soliton pulse train transmissions over 2147 km (ℓ = 6) with 

different pass-through numbers 𝑁𝑝  in NZDSF fiber with 

physical time window around 167ps , corresponding to a 

normalized time window of T = 3.9. The eigenvalue is chosen 

to be ℑ(𝜆) = 1 with |𝑞𝑑(𝜆)| = 2ℑ(𝜆) and |𝑏(𝜆)| = 1 so that 

the solitons are in the center of their respective time windows 

[45, 46]. We numerically estimate α ≈ 0, 0.21, 0.57, 0.87, 

1.21 for 𝑁𝑝 = 0,1,2,3,4. The noise variance on Δ𝜆 for of ideal 

lossless fiber propagation without noise is shown in Fig. 4(b) 

and the noise variance of the received 𝑏-coefficient is shown 

in Fig. 6 for different fiber propagation models. We first 

transmit the pulse trains in an ideal lossless and noiseless 

NLSE channel and lossless and noisy channel. This is followed 

by simulating a multi-span link with span length 50 km in 

which signal loss for a fiber with attenuation 0.2 dB/km is 

compensated by an inline optical amplifier with 5 dB Noise 

figure for the noisy setup and no noise for the noiseless setup. 

… …

(b) Collision and Interaction during propagation

(c) Separated at Receiver (1-pass)

… …
 +   − +    +   − +   

… …

 +   − +    +   − +   

(a) Separated at Transmitter

1 2 3 4

2 1 34

(d) Separated at Receiver (2-pass)

… …
 +   − +    +   − +   

4 1 6-1



It should be noted that in principle, the signal launched power 

is determined by ℑ{𝜆} [16]. In practice, the signal power that 

optimize transmission performance (given a particular ℑ{𝜆}) 
will deviate from the theoretical value due to fiber loss and 

other practical constraints. Typically, the optimal signal power 

for realistic systems with fiber loss will be higher than that 

from theoretical calculations assuming an ideal lossless fiber 

model. This can be intuitively understood by noting that higher 

power is needed to roughly offset the fiber loss so that the 

balance between fiber nonlinearity and chromatic dispersion is 

maintained for soliton transmissions. Consequently, for each 

𝑁𝑝 , the lossy cases in Fig. 6 are re-optimized over signal 

launched powers. It is interesting to note that the overall 

performance of noisy-lossy case is better than noisy-lossless, 

which may look counter-intuitive at the first glance. While 

fiber loss breaks the integrability of the NLSE and creates 

additional distortions to Δ𝜆, the amount of nonlinear effects 

weakens along propagation in principle due to signal loss. 

Furthermore, as the optimized signal power for lossy case is 

higher than the corresponding lossless case, the OSNR is also 

higher in principle. Therefore, the overall performance in 

presence of loss is not guaranteed to be worse than lossless 

scenarios and it certainly is interesting to investigate this 

phenomenon more analytically as future research. 

Nonetheless, it is clear that the distortions on the received b-

coefficients are significantly reduced when one allows the 

pulses to collide and interact during propagation by increasing 

𝛼 irrespective to the fiber propagation model. Nonetheless, for 

the lossy models, the noise variance exhibits a slight rebound 

after 𝑁𝑝 = 3.  

 
Fig. 6. Received noise variance of 6 GBaud 8PSK signals modulated on b-

coefficient transmitted over 2147 km (ℓ = 6) for different fiber propagation 

models. The distortions on 𝑏-coefficient decreases significantly when  𝑁𝑝 

increases. 

V. EXPERIMENTAL INVESTIGATIONS 

A. Experiment Setup 

    We also conducted an offline experiment to further verify 

the proposed interaction-tolerant pulse-train scheme. Fig. 7 

shows the experimental setup and offline DSP structure. At the 

transmitter side, random symbols were mapped onto the 

discrete spectrum for generated soliton pulse trains by inverse 

NFT. Here, 2 modulation formats, 8PSK and 16APSK were 

respectively tested for comparison in the experiments. The 

constellation shapes are shown in Fig. 7. The radius of 8PSK 

constellation is set as |𝑏(𝜆)| = 1  with |𝑞𝑑(𝜆)| = 2ℑ(𝜆)  so 

that the solitons are symmetric and hence located at the center 

of their respective time-windows. Such constellation designs 

apply to different values of 𝛼 in our study. Similar to [23], the 

distance d between the 2 rings of the 16APSK were 

respectively optimized for each pass-through number as 𝑑 

determines the pulse shift with respect to the given time 

interval.  

 

 

 
Fig. 7. Experimental Setup and modulation formats investigated. 

 

    Pre-adaptation as [47] was employed to pre-compensate the 

imperfection of transmitter components then sent to an 

arbitrary waveform generator (AWG) with 92 GSa/s to 

generate the electrical waveform of the pulse-train. The signal 

baudrate is 6.13 GBaud with 15 samples per pulse. Physical 

time-duration for each pulse is around 163 ps, corresponding 

to a normalized time window of 3.9 and   normalization 

parameter  𝑇0 = 41.8 𝑝𝑠 from Eq. (3). The total bit rate of the 

designed system is 18.4 Gbps with 8PSK and 24.5 Gbps with 

16APSK. After conversion by the I/Q modulator, the optical 

waveform was amplified and launched into fiber-loop. The 

loop consists of 1 span 50-km NZDSF and lumped 

amplification only by EDFA. A flat-top optical filter with a 3-

dB bandwidth of 1 nm was used inside the loop to suppress the 

out-of-band amplified spontaneous emission (ASE) noise. 

Both the transmitter laser and local oscillator were from fiber 

laser sources with very low laser phase noise (NKT Koheras 

ADJUSTIK Fiber laser with linewidth < 100Hz). After 

alignment by a polarization controller in the x-polarization, the 

received signal was then coherently detected and sampled by 

a digital storage scope with a sampling rate of 80 GSa/s and a 

bandwidth of 33 GHz. The sampled signal was analyzed by 

off-line digital signal processing (DSP), whose structure is also 

shown in Fig. 7. After timing synchronization and frequency  
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Fig. 8. Received 𝑏-coefficient distributions for 8PSK and 16APSK signals transmitted over 1500 km with optimized launch power. In case of 𝑁𝑝 = 1,2,  

distributions of two eigenvalues {𝛼 + 1𝑖,−𝛼 + 1𝑖} are shown separately. Red dots are the mean of each received symbol. The received magnitude |𝑏| is processed 

and detected in log scale.    

 

 
Fig. 9. (a) BER versus launch power for transmission over 1500 km for 𝑁𝑝=2. The optimal launch power for both modulation format is similar; (b) BER versus 

pass-through number 𝑁𝑝 for 8PSK/16APSK transmission over1500 km. The BER for each 𝑁𝑝 are optimized over signal launched power; BER vs. propagation 

distance for (c) 8PSK and (d) 16APSK signals with 𝑁p = 0,1,2. For slightly over 1500 km transmissions, the BER performance can achieve below SD-FEC 

threshold when 𝑁𝑝 = 2, while conventional soliton pulse trains (𝑁𝑝 = 0) can only meet the SD-FEC threshold when the distance is reduced to 1000 km and 780 

km for 8PSK and 16APSK signals respectively.     

 

offset compensation, the received signal for both static and 

relative-approach pulse-train were separated into blocks for 

further NFT processing to recover the nonlinear spectrum. The 

last steps were symbol decision and bit error rate (BER) 

calculations. LMMSE filter [25] was adopted to compensate the 

noise of the b-coefficients via the correlation between the noise 

on b-coefficients and the roots. 

B. Experimental Results 

    Both 8PSK and 16APSK modulation formats are 

investigated in experiments and their constellations are shown 

in Fig. 7.  For 16APSK, the separation 𝑑  between the two 

constellation rings are numerically optimized for each pass-

through number 𝑁𝑝. The value of 𝛼 is numerically determined  

for each transmission distance and 𝑁𝑝 through simulations. To 

improve the detection performance, the LMMSE is always 

applied to the received  𝑏 -coefficients. The received signal 

distributions of the LMMSE filter outputs are shown in Fig. 8 

with different 𝑁𝑝 and slight distortions to the signal 

constellations can be seen. To alleviate the influence from such 

distortions, we re-calibrate the mean of each symbol class (red 

dots in Fig. 8) from training symbols and use minimum 

Euclidean distance based detection. It should be noted that we 
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detect the magnitude of the received |𝑏| in log scale.  

We performed a sweep of signal launched power after the 

inverse NFT and the BER performance are depicted in Fig. 9 

for different signal launched powers, transmission distances 

and 𝑁𝑝 . Again, the signal power that optimize transmission 

performance (given a particular ℑ{𝜆}) will deviate from the 

theoretical value due to fiber loss and other practical 

constraints. Fig. 9 (a) shows that best launch power for 1500 

km transmission with 𝑁𝑝 = 2 is around 4.7 dBm for both 

modulation formats while the theoretical signal power is around 

4.1 dBm. With the BER corresponding to the best launched 

power for each 𝑁𝑝 , Fig. 9 (b) shows the optimized BER for 

different 𝑁𝑝  for both modulation formats. The performance 

improvements from our proposed interaction-tolerant soliton 

transmission design is clearly illustrated and agree with 

theoretical predictions as the BER decreases with increasing 

𝑁𝑝.  Nonetheless, it can be seen from Fig. 9 (b) that the benefits 

of intentional pulse-to-pulse interactions start to diminish when 

𝑁𝑝 increases beyond 3, in agreement with simulation results for 

the lossy cases. This may be attributed to fiber loss as depicted 

in Fig. 6 as well as other component imperfections in the 

experimental setup.  Fig. 9 (c, d) depicts the BER vs distance 

for both formats. For the soft-decision forward error correction 

(SD-FEC) threshold of 2.4E-2 (assuming an inner LDPC code 

with rate 9/10 and an outer hard-decision (HD)-FEC staircase 

code with 6.25% overhead [48]), transmissions over 1600 km 

and 1540 km can be achieved with 𝑁𝑝 = 2  for 8PSK and 

16APSK formats respectively while for conventional soliton 

pulse trains with 𝛼 = 0, the SD-FEC threshold can only be met 

at a reduced distance of 1000 km for 8PSK and 780 km for 

16APSK formats. Therefore, the proposed interaction-tolerant 

soliton transmission technique results in a reach improvement 

of around 60% and 100% for 8PSK and16APSK signals 

respectively. It should be noted that joint statistical processing 

of multiple neighboring pulses and performing the NFT on 

them as multi-soliton waveforms can potentially give further 

performance improvements and these are interesting topics for 

further research. 

Finally, Fig. 10 shows the back-to-back and received 

physical spectrum for 6.13 Gbaud 8PSK signals transmitted 

over 1500 km for different 𝑁𝑝. The spectra are low-pass filtered 

as a result of transceiver and receiver bandwidth limitations. 

From the physical spectrum point of view, increasing 𝛼 also 

comes with the expense of wider spectrum, with the 99%-

energy bandwidth of 1-, 2- and 3-pass signals increased by 5%, 

22% and 48% compared to conventional soliton signals with 

𝛼 = 0  respectively. Nonetheless, the transmission reach 

improvement from Fig. 9 (c, d) for 2-pass signals is almost 

doubled for 16APSK and increased by 60% for 8PSK 2-pass 

signals. Therefore, the proposed scheme demonstrates a 

considerable improvement in the overall bandwidth-distance 

product of nonlinear transmission systems. Finally, it should be 

noted from Fig. 10 that the two classes of solitons with different 

eigenvalue real part will be more separated as 𝑁𝑝 increases and 

eventually approaches a conventional 2-channel WDM soliton 

system. 

 
Fig. 10. (a) Back-to-back and (b) received spectrum for 6.13 Gbaud 8PSK 

signals transmitted over 1500 km with different pass-through number 𝑁𝑝 . 

Increasing the real part of the eigenvalue 𝛼 comes at the expense of broadened 

spectrum, but the overall bandwidth-distance product of the transmission 

system is improved. 

VI. CONCLUSIONS 

   In this paper, we theoretically and experimentally 

demonstrate that alternating the signs of the real part of 

eigenvalue 𝛼 of neighboring solitons and allow them to collide 

and interact while the detection performance can be improved 

by choosing 𝛼 such that the pulses are well separated at the 

receiver. The benefits of such interaction-tolerant design are 

experimentally demonstrated with 8PSK and 16APSK signals 

modulated on the b-coefficient where the transmission reach 

and bandwidth-distance product are significantly improved 

compared to conventional soliton transmissions. Our work 

illustrates how intentional soliton interactions can improve 

transmission performance. The results presented have only 

touched on the surface of several new dimensions for 

exploration such as multi-solitons, continuous spectrum, dual-

polarization signal design as well as joint multi-pulse detection 

and signal processing, which will be investigated in the future.  
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