
Abstract—This paper studies Electric Vehicle (EV) potential to 

participate in the energy market and provide flexible ramping 

products (FRPs). EV traffic flows are predicted by the deep belief 

network, and the availability of flexible EVs is estimated based on 

the predicted EV traffic flows. Then, a novel market mechanism 

in distribution system is proposed to encourage the dispatchable 

EV demand to react to economic signals and provide ramping 

services. The designed market model is based on locational 

marginal pricing (LMP) of energy, and marginal pricing of FRPs. 

System ramping capacity constraints and EV operation 

constraints are incorporated in the proposed model to achieve the 

balance between the system social cost minimization and the EV 

traveling convenience. Moreover, typical uncertainties are 

considered by the scenario-based approach. Finally, simulations 

are conducted to verify the effectiveness of the established model 

and demonstrate the contributions of EVs to the system reliability 

and flexibility.  

Index Terms—Electric vehicle, demand management, flexible 

ramping product, locational marginal price, deregulated 

electricity market. 

NOMENCLATURE 

A. Sets

ΩT Set of all time subperiods. 

ΩEA Set of electric vehicle (EV) aggregators. 

ΩB Set of all system nodes. 

ΩnoEA Set of system nodes except the nodes of ΩEA. 

ΩD Set of nodes with dispatchable demands in ΩnoEA. 

ΩS Set of substations. 

Ωk Set of EV aggregators in zone k. 

B. Parameters

Dt Duration of subperiod t. 

c
raup 

i  The marginal cost of ramp power for EV 

aggregator i. 

U
max 

m , U
min 

m  Maximum and minimum acceptable voltage 

magnitude of node m. 

Gmn, Bmn Conductance and susceptance of feeder mn.  
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P
U 

i,t Fixed power the EV aggregator i offers to EVs at 

time t.  

P
F,max 

m,t , P
F,min 

m,t  Maximum and minimum demand of P
F 

m,t . 

P
FL,max 

i,t , P
FL,min 

i,t Maximum and minimum demand of  P
FL 

i,t  . 

R
raup,max 

i,t Upward ramp rate of EV aggregator i at time t. 

Δi The physical ramp rate of EV aggregator i. 

R
k 

t  Ramping rate requirements in zone k at time t. 

P
max

i  Maximum power of EV aggregator i.  

S
 

m Apparent power capacity of the existing substation 

at node m. 

S
Max 

mn  Designed transfer capacity of feeder mn. 

η
chg

i  The discharge efficiency of EV aggregator i. 

Soc
min

i  Minimum energy SOC of EV aggregator i. 

Soc
max 

i  Maximum energy SOC of EV aggregator i. 

Soc
req

i  Required energy SOC of EV aggregator i. 

T The time duration of a time period. 

K The number of FRP zones. 

C. Variables

Soci,t  Energy SOC of EV aggregator i  

e
raup 

i,t the ramp capacity of EV aggregator i for upward 

FRP in period t. 

p
L

i,t    Distribution locational marginal price (LMP) of 

the node where EA i locates at time t.  

p
L 

m,t      Distribution LMP of node m at time t. 

p
S 

t  Electricity price of the balance bus at time t. 

Pi,t Active power EV aggregator i offered to EVs at 

time t.  

P
S 

m,t, Q
S 

m,t Active and reactive power provided by the 

substation at node m at time t.  

P
L 

m,t, Q
L 

m,t Active and reactive power demand at node m at 

time t.  

P
noEA 

m,t  Active power demand at node m of ΩnoEA at time t. 

P
D 

m,t  Dispatched active power demand at node m of ΩD 

at time t. 

P
FL

i,t   Dispatched power EV aggregator i offered to EVs 

at time t. 

R
raup 

i,t   The ramp power provided by the EV aggregator i at 

time t. 

Um,t, Un,t Voltage magnitude at node m and n at time t. 

Pmn,t, Qmn,t Active transmission power and reactive 

transmission power of feeder mn at time t. 

θmn,t  Deviation of phase angle between node m and n at 

time t. 

I. INTRODUCTION

lectric vehicles (EVs) will be important components in the

future smart power and the transportation system to 

increase the efficiency of energy utilization and realize energy 
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sustainable development [1]. Meanwhile, batteries of EVs 

become promising energy storage due to their special 

characteristics of quick response, good extensibility and easy 

maintenance [2][3], which has drawn interests of many 

researchers. In the content of electricity markets, batteries of 

EVs could gain profits by providing various services in energy 

market [4], regulation market [5], or reserve market [6]. A 

decision support algorithm and energy market participation 

policy are developed for EV aggregators using dynamic 

programming in [4]. A joint power management of EVs and a 

data center for frequency regulation is considered in [5], and a 

market planning strategy is proposed to minimize energy cost 

and maximize regulation service revenue. In [6], a bidding 

strategy for the EV aggregator is proposed to maximize its 

profits from participating in different regulating reserves 

markets, and the results indicate the system operator attains 

cost savings while the aggregator divides its resources between 

the reserve market and the energy market.  

The net load ramps, which are mainly caused by high 

penetrations of renewables, bring new challenges to power 

system operations to meet energy imbalances that could arise in 

the future [7]. In recent years, the concept of a new market 

product, the flexible ramp product (FRP), has been developed 

to deal with the increasing variability of net load ramps [8]. 

FRPs are firstly implemented by California independent system 

operator (ISO) and Midcontinent ISO in the USA, and the 

feature of FRPs is to enhance dispatch flexibility to maintain 

the energy balance threatened by the arising uncertainties of net 

load [9-11]. The FRPs are incorporated into the real time 

energy dispatch market in [12], and a risk-limiting economic 

dispatch model is used to optimize the dispatch and the 

provisions of FRPs. It is revealed in [13] that the PFRs in 

real-time ISO market could increase market efficiency and 

reduce the system operation cost. However, all the researches 

mentioned focus on transmission system and do not study the 

market mechanism with FRPs in the distribution system. 

By far, conventional generators are the most common 

resource for providing FRPs, which are proved effective in 

reducing load and supply curtailments and improving the 

efficiency of electricity markets [14]. However, the deployment 

of fast-start generators in real-time to provide enough ramp 

capacity is usually expensive [15]. Wind generator is an 

alternative way to give ramp services economically, and it is 

found in [16] the wind power can benefit by providing ramp 

capacity due to their low marginal cost, which will also help 

wind power avoid curtailment. It is found in [17] that the wind 

power ramping product could also enhance the power system 

reliability, and wind power forecasts are important in providing 

high-quality ramping service. In [18], battery energy storage 

system (BESS) is utilized to optimally provide FRP in 

day-ahead energy and reserve markets, which demonstrates 

good profitability by allocating resources among various 

ancillary products. Compared with BESS, batteries of EVs 

have similar characteristics of good controllability and quick 

responsibility.  

Due to the mobility nature of EVs, the available EVs should 

be estimated at first. It is a common practice to obtain the EV 

numbers in the EV aggregators indirectly from the traffic flow 

(TF) information [19-22]. Therefore, the accurate forecast of 

traffic flow at the candidate EV aggregator locations is the first 

and important step for the operation of EV aggregator and 

distribution system. Generally, this forecast could be 

influenced by different factors such as charging infrastructure, 

socioeconomic level and the government policy, many of 

which are not easy to be quantified. Multilayer neural network 

(NN) solves problems in a way similar to the human brain and 

is quite efficient in dealing with incomplete ambiguous data 

without strong regularity [23]. It is thus well suited for 

complicated forecasting problems. As a promising branch of 

machine learning, deep learning has been reported in literatures 

[24]. In [25], deep learning is firstly employed in the traffic 

flow prediction, which has a deep belief network (DBN) at the 

bottom with a multitask regression layer at the top. However, 

research only applies DBN in the traditional transportation area 

but is by far rarely used in EV traffic flow forecasting. 

The market mechanism in transmission systems with EV 

provided FRPs has been studied in several works [26-27], while 

more work is required for examining and mitigating FRPs 

provided by EVs in the distribution systems. A hierarchical 

scheme to utilize EVs to mitigate wind-induced unit ramp 

cycling operations in the transmission system is established in 

[26], but the proposed strategy is not carried out in the 

deregulated market environment. The impact of EV 

participation in ramp market on power system flexibility is 

investigated in [27]. Nevertheless, the cooperation of energy 

market and flexible ramping market, as well as the congestions 

of the system, are not discussed in this work.  

By far, limited efforts have been made to investigate the 

possibilities of providing FRPs by EVs in the electricity market 

of the distribution system. Although LMP-based market 

mechanism is not novel idea in transmission system operation, 

it has much shorter history to be studied in distribution systems 

[28] and receives growing attention only in recent years due to

the fast development of distribution generators and EVs [29].

As far as FRP provision is concerned, suitable market

mechanism in the distribution system is required to providing

FRPs properly considering the management of EVs. However,

to the best of our knowledge, rare works are conducted to this

topic.

Given this background, an EV participated market 

mechanism in the distribution system considering the provision 

of FRPs is proposed in this work. The main contributions of this 

paper are as follows:  

1) Deep belief network based model is utilized in the EV

traffic flow forecasting, and the availabilities of EV

demand for dispatch is estimated by the queuing theory. 

2) A novel distribution system based LMP model capable of

alleviating congestion and promoting the response of

EV charging is modeled to simulate the deregulated 

market environment. Based on this model, the possible 

ways of EV participation in the energy market and 

providing FRPs are explored, with EV operation need 

and system requirements are considered.  
3) An extended ACOPF model is employed to



simultaneously optimize the system cost of providing 

energy and ramping services, in which the EV 

aggregators could minimize their costs by participating 

in energy market and providing FRPs simultaneously. 

Therefore, EVs’ potential to reduce the impacts of load 

ramps is systematically investigated. 

The remainder of this paper is organized as follows: Section 

II introduces the deep belief network (DBN) based traffic flow 

forecasting, and potentials of EVs for FRP provision. Section 

III illustrates EV participated market mechanism considering 

EV’s provision of FRPs. Case studies and discussions are given 

in Section IV. Section V concludes the paper. 

II. POTENTIALS OF EVS FOR FRP PROVISION

A. Power System Inflexibility and FRPs

With the growing of renewable energy in recent years,

maintaining the flexibility becomes a critical problem for the 

power system operators. This is mainly caused by the uncertain 

features of renewable energy and changing behaviors of load 

customers.  Inflexibility of power system indicates the 

difficulty to balance load and supply, which leads to renewable 

energy curtailments as well as spikes of electricity market 

prices.  

The FRPs are a novel market product to improve the power 

system flexibility, which introduce new market variables to the 

existing market model. The utilization of FRPs will reduce 

power balance violations, potstone the deployment of 

regulation services, and increase the reliability of the power 

system. 

B. Deep Belief Network Based EV Traffic Flow Forecasting

hidden

..
.

..
.

...

Stacked RBM Predictor

visible visible visible

hidden hidden

Fig. 1.  The DBN framework for forecasting. 

It is usually difficult to optimize the weights (neurons) in 

most kinds of multilayer NNs and limits their forecasting 

performance. If the initial weights are too large, only poor local 

minima could be found. If the initial weights are too small, the 

gradients in the early layers are tiny when training with BP, 

making it infeasible to obtain the optimal weights in the 

multilayer NNs [23]. In comparison, the core characteristics of 

the proposed DBN method lies in that the composition of 

visible and hidden layers results in a fast-unsupervised process 

by pre-training a multilayer NN, thus the neurons in the hidden 

layer could be efficiently optimized to recognize different 

traffic flow characteristics. Then, the supervised fine-tuning is 

utilized to adjust the learned features for better prediction. 

Start

Establish the DBN network

Recognize the first RBM in the DBN

Obtain the units in the visible layers and hidden layers

Solving (1) by the gradient ascent algorithm
and update the parameters of the selected RBM

Generate the new RBM

All hidden layers updated?

NO

Coordinate the parameters of the DBN with BP

YES

TF forecast using DBN

Denormalization and output the forecast results

End

Input and normalize the training samples

Input and normalize 
the test samples

Fig. 2. The flowchart of the proposed DBN framework for forecasting. 

DBN consists of restricted Boltzmann machines (RBMs) 

layer by layer for pre-training and a fine-tuning layer for 

prediction, as shown in Fig. 1. The historic data is the input and 

firstly pre-trained by the stacked RBMs in an unsupervised way. 

The purpose of each RBM is to extract a probability 

distribution P(v, h) from visible layer vi to hidden layer hj to 

learn the unobservable patterns in the training data, which 

could be obtained by solving the following optimization 

according to the Bayesian theory [30]. 
( , )max log ( , ) log( / )−

 

=  E v h

v S v S

P v h e Z (1) 

where S is the training data; Z is the partition function for 

normalization; and E(v, h) is the energy function assigned to the 

state of the network: 

,

1 1 1 1

( , )
= = = =

= − − −  
v h v hn n n n

i i j j j j i i

i j i j

E v h a v b h h W v (2) 

in which ai and bj are the visible unit offset and the bias weight 

of the hidden unit, respectively, and Wj,i is the matrix of 

connection weights of visible and hidden units. The size of Wj,i 

is nv×nh.  All the parameters could be acquired during the 

solving process of Eq. (1) by stochastic gradient ascent 

algorithm [31]. The learning of RBMs works well even it is not 

exactly following the gradient of the log probability (1) of the 

training traffic flow data [32]. Besides, adding more layers 

always improves the lower bound on the log probability and 

ensures the weights are initialized correctly [33]. Therefore, the 

DBN is very effective to pre-train the weights and makes it an 

efficient way to reveal low-dimensional, nonlinear structure of 

the traffic flows to achieve higher forecasting performance than 

other technologies. 

In the final stage of the whole network, the fine-tuning is 

utilized as the predictor to coordinate the parameters of the 

DBN, which could be solved by the well-known back 

propagation (BP) in a supervised manner. As a summary, the 

flowchart of the proposed DBN method is shown in Fig. 2.   

To assess the effectiveness of the DBN method, the indices 

of mean absolute error (MAE), mean absolute percentage error 



(MAPE) and root mean square error (RMSE) could be used, 

which are defined as: 

1
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N TF TF
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where N is the training samples number, TF
a 

i  is the true traffic 

flow, and TF
f 

i  is the forecasted traffic flow. 

C. EV Availability Estimation

Fast-start power system components such as gas plants,

pumped hydro, fly wheel or compressed air could provide FRPs 

to the system. However, most of such methods are available but 

too expensive for widespread applications. Nowadays, some 

loads, such as loads in households for temperature control, are 

flexible and dispatchable. It is possible for these dispatchable 

loads to react to energy market signals to reduce their cost. 

Moreover, batteries of EVs are controllable to achieve smart 

charging and have possibilities to respond to energy market 

signals. On the other hand, net load ramps exist in the 

distribution system [34], which could lead the distribution 

system into balance violations and price spikes if not properly 

handled. Compared to the existing EV participated market 

mechanism, the EV abilities of FRP provision to eliminate the 

impacts of load ramps, is taken into the consideration in the 

proposed model due to their good controllability and fast 

responsive characteristics. 

The dispatchable demand in the EV aggregator is dynamic 

and highly dependent on the traffic flow passing by the EV 

aggregator, the temporal distribution of which could be 

predicted by the EV aggregator operators. The EV’s charging 

in the EV aggregator is a probabilistic queuing process, and the 

arrival EV number n of each time step follows a Poisson 

process: 

( ) ( ( !)) =0,1,2...nP n e n n −= (6) 

where λ is the average arrival EV number at each time step. The 

charging duration tc follows a negative exponential distribution. 

( ) ct
cf t e

 −
= (7) 

where μ is average number of EVs that complete charging and 

leave the EV aggregator at each time step. According to the 

queuing theory, the dispatchable EV number is Navi=λ/μ. In 

practice, some EV users do not have willingness to be ordered 

to adjust their demand or react to economic signals even if 

subsidy incentives exist. Therefore, υ, a tolerant coefficient less 

than 1, is introduced to solve this situation in the proposed 

approach, and the available EV power PFL,avi is  
FL,avi avi EV

rP N p= (8) 

where p
EV 

r  is the rated power of chargers in the EV aggregator, 

and υ guarantees that the system requirement could be met 

when only a portion of EVs are willing to adjust their demand. 

III. EV PARTICIPATED MARKET MECHANISM

A. Motivations for the Market Mechanism Design

Given the increasing penetration of distributed energy

resources in distribution networks, consumers have more 

flexible distributed generation and storage resources and have 

the potential to become prosumers, i.e., producers and 

consumers. In other words, peer-to-peer trading and aggregated 

energy trading in a distribution market will be emerging and 

transactive energy will be a new paradigm of energy supply. In 

the meantime, if more energy demand can be satisfied in the 

distribution market, transactions at the transmission level 

market may become less. Recently, this transition from a 

transmission level market to a distribution level market has 

been put forward by many government relevant reports such as 

[35-36]. 

The concept of LMP is usually used in transmission systems 

or distribution systems with distribution generators. The 

LMP-based distribution market has attracted attention from the 

research scholars, and we have found research works on this 

topic, such as [36-41]. The designed distribution system market 

architecture in this work has many advantages in the operation 

of the distribution system, including but not limited to 

congestion alleviation and ramp reduction. For example, the 

LMP-based mechanism could be used in distribution system to 

allocate the loss and remunerate the DG more efficiently [42], 

to identify and recover long-run investment costs [43], to 

allocate loss and emission reduction [40], or to facilitate PV 

penetration [41]. Given that dispatchable loads such as EVs 

widely existed in the distribution system, a novel LMP-based 

distribution market mechanism is proposed in this work to 

encourage the dispatchable loads such as EVs to react to 

economic signals. 

Meanwhile, net load ramps exist extensively in the 

distribution system, which could drive the distribution system 

into balance violations and power flow congestions if not 

properly handled. Traditional studies focus on direct control of 

loads, transformers, or distribution generators to avoid the 

drawbacks of congestions and ramps. However, it is not very 

effective to apply such control methods because users do not 

have willingness to be ordered to adjust their demand. The 

growing challenges of maintaining electricity sully-demand 

balance in distribution system lead to higher requirement for 

ramping products in distribution level [44-45]. 

Therefore, the concept of FRP price is introduced to ensure 

the net load ramps are met reliably and economically with true 

marginal costs, and the established market mechanism is based 

of locational marginal pricing (LMP) of energy and marginal 

pricing of FRPs. To calculate the marginal pricing of energy 

and FRPs with the consideration of congestions, power losses, 

and ramping requirements, an extended alternative current 

optimal power flow (ACOPF) is employed. The FRPs will 

reserve the ramp capacity to maintain the power balance of the 

system, and the ramp capacity need is incorporated into the 

traditional ACOPF based Locational marginal pricing (LMP) 

model. 

In the distribution system, EV loads of aggregators, and 

some other flexible loads, are considered dispatchable, and are 

stated as follows:  
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 Eq. (9) assumes that there are no other loads except EV 

aggregator demand on nodes where new EV aggregators are 

located. As shown in Eq. (10) and (11), parts of loads are 

dispatchable. 

B. Objective Function

Prices are essentially important for the development of EVs,

which leads to strong willingness of EVs to participant this 

market to obtained profits and reduce their charging cost. 

Considering the participation of the available EV power, the 

objective of the extended ACOPF model is to minimize the 

overall electricity system cost, as well as the total supplying 

cost for the FRPs in the distribution system.  

min 
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The first part in (12) denotes the electricity purchasing cost 

from the substations connecting to the upper-level transmission 

system. The second and third parts in (12) denote the incomes 

of selling energy to the EV loads and other flexible loads, and 

model them as negative real power injections with associated 

negative costs, while the negative cost is equivalent to benefits 

for consumption. The last part in (12) denotes the cost for EVs 

to provide the ramp service. The ramping down is ignored and 

only the ramping up is focused without loss of generality. 

C. Network Constraints
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The network constraints contain the active and reactive 

power flow limits of each branch, voltage magnitude and phase 

angle limits of each bus. Inequality (13) is the voltage 

magnitude constraint. Eq. (14) and (15) denote the typical AC 

power flow equality constraints for each bus, which mean that 

the sum of power flowing into this node is equal to the sum of 

power flowing out of that node [46]. This ensures a balanced 

steady operation state of the distribution system by nonlinear 

equations of nodal power and nodal voltage phasors [47]-[48]. 

Eq. (16) compactly gives the capacity constraints for 

substations. Meanwhile, the active and reactive power of 

distribution system feeders is determined by the Eq. (17) - (18). 

The transferred electricity power of the distribution system 

feeders should not exceed their designed transfer capacities, 

which are constrained by Eq. (19). Eq. (20) shows the upper 

and lower limits of dispatchable load on nodes where no EV 

aggregators are located. Eq. (21) gives the upper and lower 

limits of the dispatchable load of EV aggregator i. 

D. Ramp Capacity Constraints
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In this work, EVs provide ramp capacity to maintain the 

system power balance in the form of FRPs and receive rewards 

of giving such kind of service. On the other hand, a part of EV 

energy is reserved for FRP provisions. Eq. (22) states the 

relationship of ramp power and ramp capacity. Inequality (23) 

denotes the ramp capacity does not exceed the maximum 

available energy. (24) indicates that the ramp power provided 

by the EV aggregator are limited by the maximum ramp rate as 

well as their physical ramp rates Δi. In constraint (25), the FRP 

requirements are defined as a set of K fixed zonal quantities. 

Let Ωk be the set of EV aggregators in zone k and R
k 

t  be the FRP 

requirement for zone k. (25) requires that the sum of the ramp 

power should meet the requirements within each zone k, and 

this constraint ensures the expected variability could be met. Eq. 

(26) requires the active power EV aggregator i offered to EVs,

the ramp capacity provided by EVs, as well as ramp power 

should be positive. All the constraints should be satisfied to 

make sure that EVs have the abilities to participate the ramp 

market. 

E. EV Operation Constraints
chg EA

, , 1 ,Soc Soc ,i t i t i i t tP D i−= +     (27) 

min EA

, ,e Soc Soc ,raup

i t i t i i −      (28) 

min max EA

,Soc Soc Soci i t i i     (29) 

EA

,
Soc Socreq

ii t T
i

=
=    (30) 

 Equations (27) - (30) state the energy state-of-charge (Soc) 

limits of EV aggregators. The change of Soc between two 

neighboring time intervals is described in (27), which is related 

to its present charging power. (28) indicates the ramp capacity 

of EV aggregator i for upward FRP in period t should not be 

more than the available energy stored in the batteries of EVs. 



(29) demonstrates the minimal and maximal stored energy

constraints. (30) guarantees the Soc in the end of the time

period should be equal to the required Soc, which indicates the

electric energy required for the travelling consumption could be

satisfied.

F. Prices of Energy and FRPs

In this optimization model, network parameters, power flow

limits and output limits are known data for the optimization. 

Some required data such as load demand and traffic flow levels 

are forecasted by the market operators to solve this distribution 

system market optimization model.  

In this model, LMP of energy is defined as the marginal cost 

for meeting the increment of demand for the specific location, 

which is also defined as the partial derivative of Lagrange 

function with respect to an incremental load change and can be 

obtained by solving the proposed market mechanism 

optimization [49]. Dispatchable loads such as EVs are required 

to have biddings on the FRPs, and the FRPs are priced at the 

marginal values of the FRP requirements, which is calculated 

as the dual variable of the ramp capacity constraint (as shown in 

Eq. (25)) [27]. Similarly, the marginal pricing for FRPs in a 

zone is the incremental cost for meeting an additional megawatt 

of the FRPs in this zone. By solving the proposed ACOPF 

model, LMPs and FRP prices will be obtained.    

G. Scenario-based Approach for System Uncertainties

Various uncertainties affect the operation of the distribution

system, which should be properly treated to minimize risk, 

avoid accidental losses and minimize running problems. 

Scenario-based approach could address such kind of problems 

and is used in this work to deal with uncertainties involved in 

the proposed model.  

Load demand levels, traffic flow levels, penetration levels of 

EVs, and penetration levels of renewables are the four 

uncertainties considered in this paper. And the four 

uncertainties are stated by the vector as 
D EV RE s[ , , , ]s s s s s s   =  P TF      (31) 

where Φs represents scenario s; P
D 

s  is the load demand vector  in 

scenario k; TFs is the traffic flow vector (including traffic flow 

passing by all nodes) in scenario k; β
EV 

s  and γ
RE 

s  are the 

penetration levels of EVs and renewables in scenario k, 

respectively.  

The traffic flow passing by the candidate EV aggregators and 

load demands are forecasted as an important precondition for 

the EV aggregator optimization. Deviation strategy [50] is 

utilized to the forecasted values to generate related uncertainty 

scenarios. For instance, if 2 scenarios should be generated for 

traffic flow, the specific results could be (1+a%)×forecasted 

traffic flow and (1-a%)×forecasted traffic flow respectively, 

where a% is the bias added to the forecasted results. Meanwhile, 

the penetration levels of EVs and renewables are affected by 

many aspects such as subsidy policies and technology 

developments, which could hardly be forecasted by historical 

data. Scenarios for such kinds of uncertainties are directly 

predefined. 

IV. CASE STUDY AND DISCUSSIONS

A. Test System and Experiment Data Description

As shown in Fig. 3, an 11-kV 36-node system is used to show

the effectiveness of the proposed model. This 11-kV 36-node 

system represents a typical UK distribution system, the load of 

which is proportional (0.01%) to that of the UK [51]. The traffic 

flow on the roads is from the official website of Highways 

England [52-53]. Fig. 3 is the distribution network of the test 

system. As shown by the Lateral 1-3 in Fig. 3, the loads are 

divided into 3 categories: commercial, industrial, and 

residential, while the Lateral 4 composites load of the 3 kinds. 

The normalized load patterns of the 3 kinds of loads are shown 

in Fig. 4.  

Three EV aggregators are located at node 33, 34 and 37. Two 

wind power turbines are located at node 2 and node 5. Two 

substations are located at node 1 and node 6.  
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Fig. 3.  The 36-bus distribution system 

Fig. 4.  Normalized load patterns of different load categories.

Fig. 5. The total FRP requirement curve 

Loads in node 13, 20, and 23 are set to be controllable. Loads 

of EV aggregators are also assumed dispatchable and be able to 

provide FRPs. On nodes with both flexible and inflexible loads, 

the proportion of its inflexible loads and the maximum of its 

flexible loads are 70% and 30%, respectively. The substation 



(substation 1 on node 1) offers and controllable load bids are 

listed in Table I. The substation 2 on node 6 is assumed to 

provide FRPs. The marginal cost of ramp service for EV 

aggregators and substation 2 is shown in Table II. The system is 

divided into 2 zones. The substation 2, EV aggregator 1 and EV 

aggregator 3 are in both zone 1 and zone 2. EV aggregator 2 

only belongs to zone 1. The total FRP requirements of 2 zones 

are shown as Fig. 5. The required SOC value for the EV 

operation constraint is set to 92.2%. 
TABLE I 

THE SS1 OFFERS AND LOAD/EA BIDS (US$/MWh) 

SS1 EA1 EA2 EA3 Node13 Node20 Node23 

100 150 150 150 120 120 120 

SS1: Substation 1; EA: EV aggregator 

TABLE II 

THE MARGINAL COST OF RAMP SERVICE FOR EV AGGREGATOR AND 

SUBSTATION (US$/MW) 

Locations Cost Zone 

EV aggregator 1 node 33 700 1, 2 

EV aggregator 2 node 34 500 1 

EV aggregator 3 node 37 400 1, 2 
Substation 2 node 6 300 1, 2 

The simulation results are obtained on a laptop computer 

with 8 GB RAM and an Intel(R) Core(TM) i5-7200U CPU 

clocked at 2.50GHz. The EV participated market model is 

efficiently solved by the interior point algorithm [54]. 

B. Forecast Results Analysis

The traffic flow passing by the EV aggregators has first to be

forecasted as an important precondition for the market 

participation of EVs. The data for DBN based forecasting is 

obtained in [52-53] in 10-min intervals. Table III firstly verifies 

the performance of the DBN based traffic flow forecasting on 

node 33 and 37 compared with the Back Propagation Neural 

Network (BPNN), Support Vector Machine (SVM), 

Auto-Regressive and Moving Average Model (ARMA), and 

Morlet Wavelet Neural Network (MWNN). The DBN method 

has lower MAE, MAPE and RMSE values than other methods, 

which indicates that the DBN method has a better performance 

in forecasting the traffic flows. Fig. 6 demonstrates the 

forecasting curves of different methods on node 37. It could be 

found that the forecasted result by the DBN method is closest to 

the actual data among the 4 methods, which verifies its good 

performance. After the performance of the DBN is verified, the 

traffic flow curve for the market participation is forecasted and 

fed to the proposed model. 

Fig. 6.  Forecasting results by different methods on node 37. 

TABLE III 

TRAFFIC FLOW FORECASTING ERROR COMPARISON AT NODE 33 AND 37 

Location Error BPNN SVM ARMA MWNN DBN 

MAE 114.63  107.48  122.07  122.72  106.81  

Node 37 RMSE 151.21  150.83  165.58  162.69  144.61  

MAPE(%) 11.88 11.14 12.65 12.72 11.07 

MAE 53.89  39.61  45.18  52.09  37.29  

Node 33 RMSE 93.70  54.64  71.86  68.12  48.47  

MAPE(%) 14.45 10.62 12.11 13.96 10.00 

C. Ramp Power and Prices Results

Fig. 7 to Fig. 9 depict the ramp power of each aggregator, the

FRP price of each aggregator, and the FRP price in zone 1 and 

zone 2, respectively. And the computation time of this case is 

8.899 seconds.  It can be found in Fig. 7 that the EV aggregators 

provide relatively more ramp power during the time period 

10:00-11:20 and 12:30-13:50, which means more EV power is 

dispatched as FRPs during these 2 time periods. Meanwhile, as 

shown in Fig. 8 and Fig. 9, the FRP price of each aggregator, as 

well as the FRP prices in zone 1 and zone 2, are higher during 

the mentioned 2 time periods. This is because that when more 

ramp power is needed to maintain the balance of the system, the 

EVs with higher ramping cost are dispatched to provide the 

ramping service, which leads to a higher FRP price. On the 

other hand, the higher FRP price will give more rewards to the 

EVs. Therefore, the proposed FRP market-based mechanism 

will incentive EVs to provide the ramping service with higher 

rewards, while reducing their overall cost and benefiting the 

EV owners at the same time. From Fig.9, during the time period 

10:50-12:40 and 14:00-15:00, the FRP price in zone 2 is zero. It 

is because when the FRP requirement within zone 1 is satisfied, 

the available ramp power in zone 2 exceeds the FRP 

requirement within zone 2. 

Fig. 7.  The ramp power of each EV aggregator. 

Fig. 8.  The FRP price of each EV aggregator. 



Fig. 9.  The FRP prices in zone 1 and zone 2. 

Fig. 10.  The LMP of each node at 3pm.

Meanwhile, Fig. 10 gives the LMPs of each bus at the time of 

3pm, which range from 100 $/MWh to 150 $/MWh. The 

different LMPs indicate the variation of purchasing electricity 

energy for the customers, which could be caused by the 

congestions, power losses, et al. 

The average Soc of an EV in the EV aggregator on node 33 is 

illustrated in Fig. 11. It can be seen that the required Soc is 

satisfied in the end of the time period. Furthermore, in Fig. 12, 

Fig. 13 and Fig. 14, results for 24 hours are given. According to 

the forecasting results of the traffic flow curve, EV aggregators 

cannot offer FRP service in certain period time of a day (i.e. 

from 0 a.m. to 6 a.m.), which is also demonstrated in Fig. 12 

and Fig. 13. The SOC curve of EV aggregator throughout the 

24 hour is depicted in Fig. 14, which is different from the SOC 

of a single EV. This is because the SOC  curve of the aggregator 

is not only determined by the charging power, but also 

impacted significantly by the arrivals of EVs with small SOC 

and the departments of EVs with fully charged batteries (large 

SOC) in different time of a day. For example, if a large number 

of EVs with small SOC arrived at the EV aggregator 

simultaneously, the SOC of this aggregator will decrease. 

Fig. 11.  The SOC curve of an EV in the EV aggregator on node 33.

Fig. 12.  The ramp power of each EV aggregator in 24 hours. 

Fig. 13.  The FRP price of each EV aggregator in 24 hours. 

Fig. 14.  The SOC of the EV aggregator on node 33.

D. Coordination of EVs and Other FRP Providers

Because there usually exist different kinds of dispatchable

components in the distribution system, the coordination of EVs 

and other FRP provides should be considered. For example, the 

substations also have abilities to give ramping services, and the 

coordination of EV aggregators and substations to provide 

FRPs is studied in this part. There are several reasons for the 

coordination of substations and EV aggregators. Firstly, the 

batteries of EVs may not have enough capacities for the 

requirements of the system to maintain the power balance. 

Secondly, the FRP provisions of substations will give the 

system more flexibilities for the ramping service. As shown in 

Fig. 15, substation is the only source to provide the ramp power 

during the time period of 11:30-12:20, which indicates that EVs 

do not need to be dispatched as FRP providers. Fig. 16 shows 

the FRP price of each EV aggregator and the substation, which 
are priced at the marginal values of the FRP requirements, and 

different zones have different requirements. Noticing in Table 

II that the substation, EV1 and EV3 belong to zone 1&2, while 

EV2 only belongs to zone 2, it can be understood that the prices 

of FRP are the same for substation, EV1 and EV3, but the FRP 

price for EV2 is different with the others. The FRP prices in 

zone 2, as depicted in Fig. 17, also demonstrate that the 

participation of substations will reduce the FRP price during 



some time periods of the day. This is because that the substation 

has lower cost to provide ramp services. However, due to the 

capacity limitations of substations, in most time of the studied 

period, EVs and substations will provide FRPs simultaneously. 

Obviously, the participation of EVs for ramp service will 

enhance the system flexibility and gives more options to 

maintain the system power balance. 

Fig. 15.  The ramp power of EV aggregator and the substation. 

Fig. 16.  The FRP price of each EV aggregator and the substation.

E. Sensitivity Test with Different Scenarios

Based on the forecasted results, 2 scenarios, 0.9×forecasted

value and 1.1×forecasted value, are constructed for the load 

levels and traffic flow levels respectively. Scenarios for the 

penetration levels of EVs and renewables are directly assumed, 

setting the penetration values with 0.2 and 0.4 (proportions in 

all vehicles or total power). For example, the vector [1.1, 0.9, 

0.4, 0.2] stands for the scenario that the load demand is 1.1 

times of the forecasted value, traffic flow level is 0.9 times of 

the forecasted value, the penetration of EV is 0.4 and the 

penetration of renewables is 0.2. The detailed scenarios 

description is shown in Table IV. Besides, the occurrence 

probability is set to be the same for each scenario. Therefore, 16 

scenarios are set up. 

Fig. 17.  The FRP price in zone 1 and zone 2 with substations. 

TABLE IV 

SETTINGS OF SCENARIOS 

No 
Scenario  

descriptions 
No 

Scenario  

descriptions 
No 

Scenario  

descriptions 

S1 1.1,0.9,0.2,0.2 S7 1.1 ,1.1,0.4,0.2 S13 0.9 ,0.9,0.2,0.2 
S2 1.1 ,0.9,0.2,0.4 S8 1.1 ,1.1,0.4,0.4 S14 0.9,0.9,0.2,0.4 

S3 1.1,0.9,0.4,0.2 S9 0.9 ,1.1,0.2,0.2 S15 0.9,0.9,0.4,0.2 

S4 1.1,0.9,0.4,0.4 S10 0.9 ,1.1,0.2,0.4 S16 0.9 ,0.9,0.4,0.4 
S5 1.1 ,1.1,0.2,0.2 S11 0.9 ,1.1,0.4,0.2 

S6 1.1,1.1,0.2,0.4 S12 0.9 ,1.1,0.4,0.4 

Fig. 18.  The objective function values of different scenarios. 

The objective function values of different scenarios are 

depicted in Fig. 18. It can be found that the objective values are 

sensitive to the scenario settings, which verifies that the 

objective values change in different scenarios. Obviously, the 

uncertainties impact the optimization results significantly and 

should be properly handled by the market operators. 

The relationship between each uncertainty parameters to the 

objective value can be found from Fig.19 - Fig.22, and the 

effect of load levels, traffic flow, EV penetration and renewable 

penetration are stated as follows: 

1) The effect of load levels: Fig.19 illustrates the objective

function values of different scenarios (red bar graph) when 

0.7×forecasted value and 1.3×forecasted value are constructed 

for the load levels and other uncertainty parameters (traffic 

flow levels, the penetration levels of renewables and EV) are 

not changed as Table IV shows. Blue bar graph in Fig.19 is the 

same as Fig.18. It can be found that the objective function value 

increases as load demand increases. In other words, the load 

levels have negative impacts on the objective function value. 

2) The effect of traffic flow: Similarly, in Fig.20, red bar

graph depicts the objective function values of different 

scenarios when 0.7×forecasted value and 1.3×forecasted value, 

are constructed for the traffic flow levels and other uncertainty 

parameters are the same as Table IV shows. It can be noticed 

that the decreasing of traffic flow leads to the increasing of the 

objective function value. 

3) The effect of EV penetration: The penetration values with

0.2 and 0.4 for the penetration levels of EVs are replaced of 0.8 

and 0.6 in Fig.21. Compared to other impact factors, the EV 

penetration has a minor effect on the value of objective 

function. 

4) The effect of renewable penetration: The values for the

penetration levels of renewables with 0.2 and 0.4 are replaced 

of 0.8 and 0.6 in Fig.22. It can be observed that the increase of 

renewables penetration rate will decrease the objective function 

value. 

Overall, the load levels have more remarkable impact than 

other parameters on the objective function value. 



Fig. 19.  The objective function values of different scenarios when load levels 

are changed 

Fig. 20.  The objective function values of different scenarios when traffic flow 

levels are changed 

Fig. 21.  The objective function values of different scenarios when the 

penetration levels of EVs are changed 

Fig. 22.  The objective function values of different scenarios when the 

penetration levels of renewables are changed 

V. CONCLUSIONS

A novel EV participated LMP model considering FRP 

provision in the distribution system is set up in this work to 

realistically explore the potentials of dispatching EV demands.  

The effectiveness of proposed electricity market model with 

EV involved is proved for its immediate and 

far-reaching significance to promote the development of EVs. 

The limitations of this work include the lack of integration of 

many other ancillary services such as reserve and regulations, 

or the utilization of stochastic optimization to cope with 

uncertainties, which will be studied in the future work. 
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