
1 Abstract—Electric vehicles (EVs) are recognized as a 

promising remedy for the environmental crisis and fuel 

shortage faced by modern metropolises. But meanwhile, with 

the popularization of EVs, the unordered charging of EVs will 

have negative impacts on both the power distribution network 

(DN) and the traffic network (TN). The well scheduled EV 

charging/discharging behaviors could participate in the 

coordinated operation of TN and DN to significantly enhance 

the energy utilization efficiency of both networks. With an 

assumption that an entity like State Grid capable of dispatching 

distributed generators (DGs) and adjusting charging prices of 

fast charging stations (FCSs), a traffic-distribution coordination 

(TDC) model is proposed to minimize the travel cost of TN and 

energy service cost of DN, which simultaneously considers the 

economic operation of DN by alternating current dynamic 

optimal power flow (AC DOPF) and the traffic flow assignment 

of TN by EVs dynamic user equilibrium (DUE) respectively. 

And afterward the augmented Lagrangian alternating direction 

inexact Newton (ALADIN) method is adopted to solve the 

TDC model. Finally, the necessity of coordinated operation of 

TN and DN and the effectiveness of TDC model are validated 

in an integrated system of modified Nguyen-Dupius TN and 

IEEE 33-bus DN. 

Index Terms—traffic-distribution coordination with electric 

vehicles, alternating current dynamic optimal power flow, 

dynamic user equilibrium, augmented Lagrangian alternating 

direction inexact Newton. 

I. INTRODUCTION

ITH growing concern about carbon emission, pollution

and oil depletion issues, the trend in replacing fossil-

fueled cars with electric vehicles (EVs) is inevitable. The total 

number of electric vehicles on the road has reached 5.1 million 

in 2019 and will increase to more than 100 million by 2030 [1]-

[2]. The proliferation of EVs will have remarkable impacts on 

operations of distribution network (DN) and traffic network 

(TN). Fast charging stations (FCSs) on road would 

simultaneously have an impact traffic flow in TN and power 

flow in DN, thereby couple the two networks tightly. However, 

EV dispatch scheduling in separate TN or DN has been the 

subject of study for many years; but the corresponding results 

have often pointed to sub-optimal solutions. The 

interdisciplinary research on the coordinated operation of TN 

and DN has significantly enhanced the operation efficiency and 
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ensure the safe operation of DN. The coordination of the two 

networks labeled as the traffic-distribution coordination (TDC) 

model can be used in the future as a fundamental analytical tool 

for infrastructure planning, EV scheduling, and economic 

operation of electrified transportation network. 

In the realm of DN, EVs are characterized as mobile and 

distributed energy storage devices, which can participate in 

demand response programs [3]. Vehicle-to-grid enables EVs to 

either inject power to or draw power from the grid for peak 

shaving and valley filling [4]. Besides, EVs can provide 

auxiliary services and enhance the operational flexibility of 

power systems in particular as resource variability in power 

systems is heightened [5]-[6]. The impact of EV charging 

facilities on DN operation was assessed in [7]-[8]. When EVs 

play a significant role in DN operations, the intertemporal 

feature of EVs charging transforms the traditional optimal 

power flow problem into a dynamic optimal power flow 

problem [9]. 

As for TN operation, the research has mainly focused on 

EVs’ route charging navigation. In [10], a route optimization 

model of the alternative energy-fueled vehicles was presented, 

which minimized the travelling distance with consideration of 

the alternative energy supply and the maximum fuel capacity 

limit. Compared with [10], the charging cost and battery 

capacity of EVs were considered in the route selection model 

with the assumption that the charging price is constant [11]. To 

relax this assumption, a time-of-use electricity price based route 

optimization model was further developed in [12] to reflect the 

interaction of route selection and electricity price. Different 

from these deterministic route selection model used in [10]-[12], 

the charging navigation model both in deterministic and 

stochastic traffic network was proposed in [13] to improve the 

navigation accuracy. 

With regard to the TN and DN coordinated operation, the 

traffic flow of TN and power flow of DN should be considered 

simultaneously. The user equilibrium (UE) model considering 

the range anxiety of EVs was proposed in [14], and was further 

improved to include trip chains in [15]. However, the capacities 

of FCSs were neglected. In [16], a battery capacity-constrained 

flow-capturing location model was presented to maximize EV 

traffic flow in charging stations. In [17], a decentralized 

optimization framework was proposed to analyze the impact of 

wireless charging on TN and DN, and the UE traffic assignment 

and the day-ahead electricity market operation were 

simultaneously considered. Similar to [17], an equilibrium 
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model integrating the stochastic UE and direct current optimal 

power flow was developed to study the interaction between 

traffic flow and electricity prices [18]-[19]. In [20]-[22], a 

hybrid model consisting of the traffic assignment of TN and 

optimal power flow of DN was designed to minimize the social 

cost by optimally schedule the generation of DGs and charge 

the congestion tolls on congested roads. Different from the UE 

based model in [14]-[22], [23] proposed a socially optimum 

(SO) model to enable the TN and DN operators to cooperatively 

manage the TN and DN network towards a SO operating point. 

All these studies adopt the static UE or SO method to assign 

traffic flows, however the time-varying traffic demands and 

intertemporal EVs charging behaviors are not considered. 

In this paper, the TDC model is proposed to minimize the 

travel cost of TN and energy service cost of DN by 

simultaneously considering the dynamic user equilibrium 

(DUE) of TN and the alternating current dynamic optimal 

power flow (AC DOPF) of DN. However, the TDC model is 

difficult to solve because it engages a large number of control 

variables and constraints. Correspondingly, a distributed 

algorithm based on augmented Lagrangian alternating direction 

inexact Newton (ALADIN) is adopted to solve the TDC model 

in this paper. 

Similar to alternating direction of multipliers method, 

ALADIN solves a sequence of local optimization problems 

combined with a coordination step. The complicated operations 

are performed locally in which the iterative TDC solution is 

based on a quadratic objective function with linear equality 

constraints [24]. However, in contrast to the alternating 

direction of multipliers method, the sequential quadratic 

programming is applied to improve the updating step of 

ALADIN with a faster convergence rate, which requires fewer 

ALADIN iterations than that of alternating direction of 

multipliers method by an order of magnitude. 

The main contributions of this paper are threefold as follows: 

1) DUE is first established to consider time-varying traffic

demands and intertemporal EV charging behaviour, which are 

ignored or simplified in previous studies [14]-[23]. In addition, 

transfer and dummy arcs are designed to represent FCSs as a 

transit TN module, and the capacities of FCSs are also 

considered in the performance function of transfer arc, which 

have been neglected in [14]–[15], [18]–[19] and [22]. 

2) The TDC model is proposed to minimize the travel cost

of TN and energy service cost of DN, which simultaneously 

takes into account the DN dynamic economic operation and TN 

dynamic traffic assignment. In the model, AC DOPF of DN is 

presented to optimize the locational marginal prices during 

multiple time periods for coordinating TN and DN operation, 

meanwhile the nodal voltage restrictions, DGs’ ramp up/down 

constraints and network losses are fully considered, which have 

been ignored in [17]-[18] and [23]. Moreover, the ALADIN 

distributed algorithm is applied to efficiently solve the proposed 

TDC model with a large number of coupling variables and 

constraints. 

3) An integrated system of modified Nguyen-Dupius TN and

IEEE 33-bus DN is tested to validate the effectiveness of the 

proposed TDC model. Simulation results demonstrate that the 

optimal traffic and power flows are effectively obtained 

through the TDC model, and potential risks of DN voltage 

violations are well mitigated by adjusting FCS charging prices 

in TN.  

The rest of this paper is organized as following. The TDC 

model simultaneously considering DUE of TN and AC DOPF 

of DN is proposed in Section II, and then a distributed algorithm 

ALADIN is presented in Section III to solve the TDC model. In 

Sections IV, a case study consisting of TN and DN is designed 

to validate the effectiveness of TDC model with conclusions 

given in the last section. 

II. TDC MODEL FORMULATION

The TDC model is proposed in this section to minimize the 

sum of travel cost of TN and energy service cost of DN, which 

simultaneously considers DUE in TN and AC DOPF in DN as 

follows.  

A. DUE in TN

1) Definition and Assumptions

UE is an effective measure to assign traffic flows to an urban

TN. However, the traditional UE is not suitable for considering 

time-varying traffic demands and intertemporal EV charging 

features. Therefore, we use DUE in this paper to solve the 

traffic assignment problem with time-varying traffic demands 

and intertemporal EVs charging behaviors. Before establishing 

the mathematical model, the DUE definition and corresponding 

assumptions are put forward as follows. 

DUE Definition: For any EV leaving its origin at any time for 

destination, the EV travel costs on any used paths are equal and 

minimal; and the EV travel costs on any unused paths are larger 

than or equal to those on used paths [25]. 

Assumptions: 

i) The path selection rule for every EV is to minimize the travel

cost from origin to destination based on the assumption that

travellers can obtain the complete information on TN traffic

arcs and FCS charging prices before selecting any paths. This

is a traditional assumption in the research of transportation field

[26], and with the development of 5G communication

technology and intelligent transportation system, it is

reasonable to know the traffic flow on arcs of every feasible

path and charging prices of FCSs before choosing travel path.

ii) The charging ratio of each O-D pair is γ and the average EV

charging energy is used in place of individual EV charging to

simplify the TDC model. That means EV assigned to an FCS

receives the average energy Ech with an average charging power

Pch [27]. We will accordingly refine the proposed solution by

aggregating all EVs into several categories for representing

different charging energy and power. Since this paper focuses

on the coordinated operation of TN and DN in a system-level,

it is acceptable to utilize the average EV charging energy

instead of the heterogeneous EV information for establishing

TDC.

2) Network Representation

The TN is represented by a connected graph GTN = (V, A),

where V denotes the set of consecutively numbered vertices, 

which include TN origins, destinations and intersections; A 

denotes the set of consecutively numbered arcs (links), 

representing lanes or roadway segments. The TN topology is 

depicted by a vertex-arc incidence matrix Μ|V||A| with elements 

μv,a, where μv,a=1(-1) represents the vertex v is the entrance 

(exit) associated with the arc a. Let Aen(v) denote the set of arcs 

with an entrance vertex v where Aex(v) denotes the set of arcs 

with an exit vertex v. Let R denote the set of origins (which 

initiate traffic flows) and S denote the set of destinations (which 



terminate traffic flows). Note that RS since TN vertices 

can serve as origins and destinations for different simultaneous 

trips. Each O-D pair r-s is connected by a set of paths (routes) 

through TN. This path set is denoted by Krs where rR and sS. 

Let rs denote the arc-path incidence matrix for O-D pair r-s 

with element δa,k
rs

, where δa,k
rs

=1 if arc a is a part of path k (where 

kKrs) connecting O-D pair r-s; otherwise  δa,k
rs

=0. 

The origin-destination matrix is denoted by Q(t) with entries 

qrs(t) representing the traffic demand between origin r and 

destination s during the time slot t. Let xa(t) represent the traffic 

flow assigned to arc a at time slot t. Let f
k

 rs
(t) denote the traffic

flow assigned to path k connecting origin r and destination s at 

time slot t. Let  Oa
s (t) denote the traffic outflow with destination

s on arc a at time slot t. The traffic outflow on arc a at time slot 

t is denoted by Oa(t), where Oa(t)= ∑ Oa
s (t)s . The traffic flow on

arc a at time slot t is denoted by ea(t). 

FCSs is a linking infrastructure for connecting TN and DN. 

In [28], an FCS was considered a charging route destination in 

TN, which was not distinguished from ordinary vertices. 

However, an FCS is often located along the path rather than TN 

origins, destinations and intersections. In this paper, transfer 

and dummy arcs are introduced in the TDC model, and FCS is 

represented by a transit module in Fig. 1. The transit module 

consists of two vertices, which include a transfer arc for EV 

charging and a dummy arc with zero travel time. Under this 

characterization, TN arcs are classified into three types of 

ordinary (AO), transfer (AT)and dummy (AD) arcs with different 

performance functions, where AOATADA. 

Origin Destination

FCS
Arc 1 Arc 2 Arc 4

Arc 3

Origin Destination

Arc 1 Arc 4

Arc 3

Transfer Arc

Dummy Arc

Transit Module

Fig. 1.  A TN graph with FCS 

In urban TN, the travel time on urban streets and 

intersections increases with traffic flow because of traffic 

congestion. Consequently, the arc performance function ta(ea(t)) 

relates the arc travel time and flow ea(t). The performance 

functions of ordinary, transfer, and dummy arcs are presented 

as follows. 

i) Ordinary arcs without FCS. A practical function is developed

by the U.S. Bureau of Public Roads (BPR) [29] as

0 4( )
( ( )) 1 0.15( ) ,a
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where t
0 

a  is the free-flow travel time, i.e., the length of link 

divided by the speed limit, and ca is the capacity of arc a. Also, 

ea/ca is the saturation widely used in traffic engineering. 

Equation (1) is the performance function of ordinary arcs, 

which represents the travel time of arc a (aAO) at time t.  

ii) Transfer arcs for charging. The travel time on this arc

consists of charging and queueing times. The Davidson

function developed in [30] by using the the queuing theory is

introduced and modified for representing the arc performance. 
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 (2) 

where ta
ch is the charging time according to assumption ii which 

is stated as ta
ch=Ech/Pch,aAT). ca

ch is the FCS capacity of on

the transfer arc a.  () represents round down (up) to an 

integer. J is the curvature parameter which controls the shape 

of the curve. Equation (2) is the performance function of 

transfer arcs, which represents the travel time of arc a (aAT) 

at time t including charging time and queueing time. 

iii) Dummy arcs. The dummy arc is introduced to ensure the

connectivity of TN. Since the length of dummy arc is very short,

the travel time on this arc is negligible and the dummy arc

performance function is given by

( ( )) 0,a a Dt e t a A  (3) 

For each O-D pair, EV can travel r to s through a chain of 

connected arcs, which is referred to a feasible path. The feasible 

path only depends on the TN topology and EV charging 

demand. We assume the charging ratio of each O-D pair is γ, 

which means γ percent EVs of the total traffic demand need to 

be charged for arriving at the destination. In other words, a 

feasible EV path must include transfer arcs for an O-D pair 

extending from r to s. The set of feasible paths which includes 

transfer arcs is represented by Krs
T ; the set of feasible paths 

without transfer arcs is denoted by Krs
O . 

3) DUE of Traffic Network

The DUE objective is to minimize the total travel cost CTN.
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The first term in (4) is the travel time cost in ordinary arcs, the 

second term is the sum of time and charging costs of transfer 

arcs, where  is the monetary price of time, and a
j
 denotes both 

the FCS charging price on transfer arc aAT and locational 

marginal prices of bus j in DN. 

Based on the traditional dynamic traffic assignment model 

[31], considering operation characteristic of FCSs and EVs, the 

DUE constraints are developed as follows. 
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In this model, (5) and (6) represent traffic flow conservation 

constraints. Accordingly, for each O-D pair r-s, traffic flows 

assigned to all feasible paths at r are equal to the sum of traffic 

demands originated at other vertices, which stops in r before 



arriving at s. Equation (7) defines the relationship between arc 

flow and path flow. Equation (8) and (9) represent the traffic 

flow coupling between t and t-1. For each arc, the traffic flow 

difference between time slots t and t-1 is equal to the difference 

between the traffic flow assigned to time slot t and the traffic 

outflow at time slot t. The non-negative conditions of (10) are 

designed to ensure that the solution will be physically attainable. 

Equation (11) ensures that CTN will be reduced by adjusting 

traffic flow assignments rather than cutting the FCSs charging 

prices. Equation (12) indicates that the initial traffic flow on 

each arc is zero. 

To proof the optimal solution of mathematical model (4)-

(12) satisfying the DUE definition as presented above, the

objective function CTN(ea(t)) can be transferred to CTN(f
k

 rs
(t))

using (7) and (8). The corresponding Lagrangian function is

formulated as:
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The first-order conditions of the mathematical model 

consisting of (4)-(12) are equivalent to the first-order condition 

of Lagrangian function (13), given that (13) has to be 

minimized with respect to (10). The first-order condition of (13) 

is given as follows. 
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If we substitute (4) into (13), the partial derivative of 

Lagrangian function is given as: 
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the travel cost on path l which is extended from m to n. The 

first-order condition (14) can be transfered to (16) using (15). 
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Here, (16) indicates that if path k connecting r-s is in use (i.e. 

f
k

 rs
(t)>0), the travel cost on this path is ck

rs(t)=ρ
rs
t ; if the travel

cost ck
rs(t)>ρ

rs
t , the path k is unused (i.e. f

k

 rs
(t)=0). Thus ρ

rs
t  is

equal to the minimum path travel cost between r and s. The 

above analyses and derivations, point out that the optimal 

solution of the mathematical model (4)-(12) satisfies the DUE 

definition. 

B. AC DOPF of DN

DN is composed of buses and lines commonly located in a

radial manner. Without the loss of generality, a radial DN is 

considered in this paper which is represented by a directed 

graph GDN=(N, L). Let N={1,…,N} denote the set of all buses, 

bus 1 as the substation bus, the other buses as N+={2,…,N}.

Each pair (i,j) in L represents a line with impedance zij=rij+ixij, 

and Pij
t  and Q

ij

t  denote active and reactive power from bus i to j, 

respectively. Let (i) denote the collections of buses stemming 

from bus i. A typical tree graph of radial distribution network is 

shown in Fig. 2. Let T={1,…,T} denote the set of time slots. 

For each bus j∈Ω(i), k∈Ω(j), at time t∈T, the AC DOPF of 

DN is given as follows [32]-[33]. 
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min max

, , , ,t

DG j DG j DG jQ Q Q j N    (22) 
min max ,t

j j j j N     (23) 
1

, , ,t t

d DG j DG j ur t P P r t j N        (24) 

In this model, (17)-(20) represent branch flows, where PDG,j
t  

and Q
DG,j

t  are active and reactive power of DGs at bus j at time 

slot t. Pload,j
t  and Q

load,j

t  are active and reactive demand at bus j. 

υj
t  denotes the square of voltage magnitude at bus j, and ℓij

t

denotes the square of current magnitude of line (i,j). PFCS,j
t  

denotes the total charging power of FCS at bus j, which is given 

by 

, ( ) ,t j

FCS j a a ch TP e t P a A  (25) 

where εa
j

 is the element of traffic-power incidence matrix,

where εa
j
=1  if the corresponding FCS on arc a of TN is

connected to bus j of DN; otherwise, εa
j
=0. ea(t) is the traffic

flow on arc aAT in TN, and Pch is the EV charging power in 

FCS. 

Equations (21)-(23) represent the active and reactive power 

bounds of DGs, as well as square voltage magnitude bounds at 

bus j. Equation (24) represents the ramp up and down 

constraints of DGs with the upper limits ru and lower limits rd. 

Equation (25) represents charging demand of FCS. 

The objective of AC DOPF can be expressed as (26). 

2

, , 1

(1)

min ( )t t t

DN j DG j j DG j b j

t T j N j

C a P b P P
  

 
     

 
   (26) 

The energy service cost CDN consists of two terms. The first 

term is the production cost of DGs in DN. P1j
t  denotes the active 

power directly delivered from the substation bus 1, and b is the 

price of purchasing electricity from the main grid; hence the 

second term is the purchase payment. 



Fig. 2.  Tree graph of a radial distribution network 

C. TDC Model

The traffic information of arcs, congestion condition and

FCS charging prices in TN will influence the EV traffic flow 

assignment. The EV spatial and temporal distribution will 

impact the electricity load profile and DN operations. The 

coordinated operation of TN and DN can be implemented by an 

entity like the State Grid with capability of dispatching DGs and 

adjusting FCSs charging prices. The proposed TDC model will 

minimize the sum of travel cost of TN and energy service cost 

of DN, which simultaneously considers the DN economic 

operations and EV traffic flow assignments in TN. The 

proposed TDC model is stated as follows. 

min ( ) ( )TDC TN DN

t T

C C t C t


  (27)

subject to: 

Constraints of TN (5)-(12) 

Constraints of DN (17)-(25) 

From TN side, charging prices a
j
 are included in both the 

objective function (4) and constraint (11), and the traffic flow 

of all arcs is optimized with an initial charging price and 

afterward passed to DN. From DN side, the charging demand 

of FCS is calculated by (25) based on the optimized traffic flow 

in TN, and then the locational marginal prices are determined 

from AC DOPF of DN and passed to TN. This procedure is 

iteratively repeated for representing the interactions of TN and 

DN, and the proposed TDC model will be finally solved when 

the charging prices and locational marginal prices reach 

equilibrium. 

III. TDC SOLUTION ALGORITHM

In this section, we discuss the TDC convex transformation 

and present the distributed ALADIN algorithm to solve the 

TDC model.  

A. Convex Transformation of TDC model

The convexity of DUE analyses and the second-order cone

programming relaxation of AC DOPF are prepared here for the 

convex transformation of TDC model. 

1) Convexity of DUE

The DUE constraints are affine and DUE is a convex

optimization problem if the Hessian matrix of (4) is positive 

definite.  
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Equations (28) and (29) are the first-order and second-order 

partial derivatives of (4), respectively. In (28) and (29), all off-

diagonal elements of Hessian 2CTN are zero and all diagonal 

elements are given by dta(ea(t))/dea(t), where aAO or  aAT. 

Hence  

2 1 1

1

( ( ))( ( ))
, ,

( ) ( )

A A

TN

A

dt e tdt e t
C diag

de t de t

 
   

  

(30) 

The Hessian matrix (30) is a diagonal positive definite 

matrix with all entries strictly positive, dta(ea(t))/dea(t)>0 , 

because of monotone increase in arc performance functions  (1) 

and (2). Therefore, the objective function (4) is strictly convex 

and DUE is a convex optimization problem. 

2) second-order cone programming relaxation of AC DOPF

The AC DOPF constraints satisfy the convex optimization

requirements, except for (20). In [34]-[35], the non-convex 

equality constraint (20) is relaxed to inequality constraints by 

the second-order cone programming relaxation method as 

follows: 
2 2( ) ( ) ,t t t t

i ij ij ijP Q j N    (31) 

Accordingly, the proposed TDC model is formulated as a 

convex optimization problem. 

   

         

min ( ) ( )

.
   5 12

   17 19 ,  2 31,
.

2 5  1

TDC TN DN

t T

Constraints of TN

Constraints of D

C C t C t

s t
N







 



(32) 

B. ALADIN-based TDC model

On one hand, it is not easy to directly solve the TDC model

due to a large number of optimization variables and the hybrid 

objective; on the other hand, the variables and integrated 

objective of original TDC model can be separated into the TN 

and DN sub-problems with coupled affine constraints, and 

thereby TDC model would be effectively solved by a divide 

and conquer strategy. While ALADIN is such a kind of 

algorithm, which are well designed for solving sub-problems 

with separable objective and coupled affine constraints based 

on augmented Lagrangian theory [36], therefore the ALADIN 

algorithm is presented in this paper to optimize the proposed 

TDC model as follows. 
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Summarizing the above, the TDC model (32) can be 

reformulated in a affinely coupled separable form as (33). Here, 

the TN variables are integrated as zTN
t =[f

k

 rs
(t)]

Tr
 for every path

k∈Krs,∀r,s , and DN variables are integrated as

zDN
t =[υj

t,ℓij
t ,(Pjk

t )
Tr

,(Q
jk

t )
Tr

]
Tr

 for bus j∈N , where []Tr 



represents the transpose of a matrix. Let zTN=[zTN
1 ,…,zTN

T ]
Tr

 and

zDN=[zDN
1 ,…,zDN

T ]
Tr

; accordingly, the TDC objective function is

represented as. 

min ( ) ( )TN TN DN DNf z f z (34) 

The TN equations (5)-(12) are formulated as nonlinear 

equality constraints hTN(zTN)≤0, and (17)-(19), (21)-(24), (31) 

of DN are formulated as nonlinear equality constraints 

hDN(zDN)≤0 . Here, (25) are formulated as affine consensus 

constraints ATNzTN+ADNzDN=0. Applying the ALADIN theory 

[36], we present the technical details of ALADIN in Algorithm 

1 to solve the proposed TDC model. 

Algorithm 1: ALADIN to solve TDC model 

1) Initialization: Initial guess  0 0,s  ; penalty parameters 

=  ， ; weighting matrix 
i , and tolerance 

2) While
TN TN DN DNA z A z 


  and TN TN

DN DN

z s

z s




   
    

   

do 

3) Solve the decoupled NLPs for all  ,i TN DNz z z
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4) Compute Jacobians, gradients and Hessians for all

 ,i TN DNz z z ,  ,i TN DNs s s

     
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if 0
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5) Solve coupled quadratic program
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6) Update TN TN TN

DN DN DN

s z z

s z z

     
      
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7) End while

IV. CASE STUDIES

A. Basic Settings

In this section, we provide a numerical experiment for the

coordinated operation of TN and DN. TN is represented in Fig. 

3 by a modified Nguyen-Dupius network, which consists of 13 

vertices, 19 arcs, 4 O-D pairs and 7 FCSs. The arcs and O-D 

data are shown in TABLE I and, respectively. The charging 

ratio of each O-D pair is γ=1%. The average energy for FCS 

EV charging on transfer arc is Ech=30kWh, and the charging 

power is Pch=60kW . Hence, the charging time is ta
ch=30min ,

where aAT. The FCS capacity on a transfer arc is ca
ch=50. The

monetary price of travel time is β=10$/h.  
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Fig. 3.  The topology of Nguyen-Dupius TN

TABLE I  

PARAMETERS OF TN ARCS 

Entrance Exit 
ta
0

(min) 

ca 

(veh)
Entrance Exit 

ta
0 

(min) 

ca 

(veh) 

1 5 7 5000 8 2 9 5000 

1 12 9 4000 9 10 10 2000 

4 5 9 4000 9 13 9 2000 

4 9 12 2000 10 11 6 1000 

5 6 3 3000 11 2 9 2000 

5 9 9 3000 11 3 8 4000 

6 7 5 5000 12 6 7 1000 

6 10 13 2000 12 8 14 4000 

7 8 5 5000 13 3 11 4000 

7 11 9 5000 

TABLE II  

TRAFFIC DEMAND OF O-D PAIRS 

O-D pairs 1-2 1-3 4-2 4-3

qrs(1) (veh) 1000 1750 1500 750 

qrs(2) (veh) 2000 3500 3000 1500 

qrs(3) (veh) 2500 4375 3750 1875 

qrs(4) (veh) 3000 5250 4500 2250 

The modified IEEE 33-bus network represents DN as shown 

in Fig. 4. The basic data of original IEEE 33-bus network can 

be found in [37], and the time varying active and reactive loads 

are shown in Appendix. The DG parameters are given in 

TABLE III, and the electricity purchase price from the main 

grid is λb=150$/MWh. 

333231

23 17 16 15

1 2 4 53 6 7 8 9 10 11 12 13 14

27 28 29 30

19 20 21 22

24 25 18

DG1

DG2

DG3

DG4FCS2

FCS3

FCS4

FCS1

FCS5 FCS6 FCS7

Main Grid

26

Fig. 4.  Topology of IEEE 33-bus network 

TABLE III 

PARAMETERS OF DGS 

Unit Node 
PDG,j

min

(MW) 

PDG,j
max

(MW) 

Q
DG,j

min

(MVar) 

Q
DG,j

max

(MVar) 

aj 

(
$

(MW)
2
∙h

) 

bj 

(
$

MW∙h
) 

DG1 18 0 4 -2 2 50 100 

DG2 22 0 8 -4 4 60 110 

DG3 25 0 8 -4 4 70 120 

DG4 33 0 6 -3 3 80 130 



To discuss the effect of charging price on TN flow 

assignment and DN reliable operation, we consider a two-stage 

uncoordinated operation (UCO) mode. At the first stage, the 

charging prices of all FCSs are set to a
j
=0.16$/kWh, and the 

traffic flow of all arcs is obtained via solving DUE of TN with 

the constant charging price; then the AC DOPF of DN is solved 

at the second stage based on traffic flow obtained at the first 

stage. 

B. Proposed Solution Results

The UCO leads to an unsafe DN operation when the traffic

flow is very heavy on certain TN arcs. For a
j
=0.16$/kWh, the 

traffic flows on all arcs are calculated according to the DUE of 

TN. Due to page limitations, we only show in TABLE IV the 

traffic flow on transfer arcs with FCS during the 4 time periods. 

Also, the black numbers in Fig. 5. show traffic flows on all arcs 

at t=3 in UCO mode. 

Comparing the traffic flows on transfer arcs shown in 

TABLE IV with the FCS capacities, it is easy to find that FCS2 

and FCS5 have always been operated during the 4 time periods, 

while few EVs are charged in other FCSs. The traffic flows on 

these transfer arcs are distributed very unevenly. In this case, 

traffic flows at the transfer arc terminals shown in Fig. 5 do not 

obey the Kirchhoff’s law. 

TABLE IV  

TRAFFIC FLOW OF TRANSFER ARCS WITH FCSS 

FCS1 FCS2 FCS3 FCS4 FCS5 FCS6 FCS7 

t=1 

UCO(veh) 0 24 1 0 21 2 2 

TDC(veh) 0 24 1 0 21 2 2 

a
j
($) 0.160 0.160 0.160 0.160 0.160 0.160 0.160 

t=2 

UCO(veh) 0 50 0 1 48 1 0 

TDC(veh) 17 19 22 18 9 7 9 

a
j
($) 0.177 0.193 0.175 0.160 0.191 0.161 0.160 

t=3 

UCO(veh) 7 50 6 1 36 3 22 

TDC(veh) 22 19 14 7 17 24 22 

a
j
($) 0.183 0.194 0.186 0.160 0.192 0.160 0.161 

t=4 

UCO(veh) 19 50 11 4 15 22 29 

TDC(veh) 25 29 23 12 19 18 24 

a
j
($) 0.177 0.189 0.176 0.160 0.163 0.162 0.165 

XXX
XXX

Traffic flow of UCO
Traffic flow of TDC

87

12

6

313

4 5

9

1

FCS2

16 17

FCS3

18 19

FCS5

22 23

FCS6

24 25

14

15

10 11 2

20

21

26

27

6375 4375

500

2500

3363

3350

868
903

8813
6781

8826
6776

0
0

5006

3343

3846
3420

5506 5843

1877
385

1874
401 746

399

4975 3438

0 0

1247

2796

50
19

7
22

36
17

1
7

22
22

6
14

3
24

8863

6800

8863

6800

875 925

868 920

8862

6793

8874

6785

1 7

1 18

3868 3442

3846 3429

1883

399

1877

407

1878

425

1875

408

FCS1
FCS4 FCS7

Ordinary arcs
Transfer arcs
Dummy arcs

Fig. 5.  Traffic flow of all arcs at t=3 in UCO mode and TDC model 

Consider the vertex 23 in UCO model, in which the traffic 

flows of dummy arc and transfer arc between vertices 22 and 

23 are 8826 and 36 respectively. However, the traffic flow on 

the ordinary arc between vertices 23 and 7 is 8874. This 

seemingly unreasonable condition could be explained by the 

intertemporal EV charging behaviors between time slots t and 

t-1. The assigned 36 EVs is charged in FCS5 at t=3; meanwhile

the 48 EVs assigned to FCS5 at t=2 (see Table IV) have already

completed its charging and left the vertex 23. Hence, the traffic

flow on the ordinary arc between vertices 23 and 7 is

8826+48=8874. The situations in other vertices and arcs are

similar to vertex 23 and FCS5. This observation indicates that

the current traffic flow is a function of both traffic flow at

present time slot and charged EV at previous time slots, which

is consistent with the time coupled traffic flow between t and t-

1 described in (8) and (9).

In UCO mode, the FCS charging load is calculated by (25) 

using Table IV results. The power flows are calculated by 

solving the AC DOPF of DN. The voltage magnitude at buses 

connected with FCS during the 4 time periods are given in 

TABLE V. We notice that the FCS2 traffic flow is very close 

to that of FCS5, but the voltage magnitude at bus27 where 

FCS5 is connected is 0.932 at t=2, which is very different from 

0.900 at bus10 where FCS2 is connected. The reason is that the 

nodal voltage magnitude depends not only on EV charging 

loads but also on the grid topology. Bus27 has a relatively short 

electrical distance to 33 and its voltage magnitude is higher than 

that in bus10. To visually demonstrate the results, the bus 

voltage magnitudes in UCO mode at t=3 are shown in Fig. 6, 

where the bus10 voltage magnitude is approaching its minimum. 

Because the heavy traffic flow on the transfer arc with FCS2 

leads to a large demand at bus10 of DN, the two-stage UCO 

mode would result in DN bus voltage violations.  
TABLE V 

VOLTAGE MAGNITUDE OF BUSES CONNECTED TO FCSS 

|Vj
 t|

(p.u.) 

t=1 t=2 t=3 t=4 

UCO TDC UCO TDC UCO TDC UCO TDC 

7 0.957 0.957 0.939 0.953 0.940 0.950 0.934 0.954 

10 0.939 0.939 0.900 0.929 0.900 0.926 0.900 0.932 

15 0.957 0.957 0.942 0.944 0.941 0.943 0.936 0.949 

19 0.998 0.998 0.998 0.997 0.998 0.997 0.997 0.997 

27 0.956 0.956 0.932 0.950 0.937 0.949 0.950 0.953 

29 0.964 0.964 0.966 0.963 0.964 0.961 0.956 0.963 

31 0.981 0.981 0.986 0.981 0.985 0.981 0.980 0.981 

In contrast to UCO, the TN traffic flow and DN power flow 

are also calculated for the TDC model. The traffic flow of arcs 

with FCS and charging price of FCS  a
j
 are shown in TABLE 

IV, and the voltage magnitude of buses connected with FCS are 

presented in TABLE V. When compare the traffic flow and 

voltage magnitudes of UCO with that of TDC model at t=1, 

there is not any difference. This is because under light traffic 

demand qrs(1) at t=1, the bus voltage is basically maintained 

within normal range and the DN operation security has not been 

threated, therefore the EV charging price is not adjusted and 

therefore the UCO mode has the same optimal solutions as TDC 

model. With increasing number of EVs charging in FCSs, the 

risk of voltage violation will increase rapidly, and FCS charging 

prices at different locations are adjust to impact the assignation 

of TN traffic flow and thus results in a reliable for DN power 

flow distribution to ensure operational security. 

In TDC mode, the traffic flow on all arcs in TN at t=3 are 

shown in Fig. 5 and highlighted in red, while the bus voltage 

magnitudes are shown in Fig. 7. Obviously, the increasing 

price of FCS2 will lead some EVs to choose other FCSs, which 

helps alleviate traffic overloads on transfer arc with FCS2. In 

this way, the voltage magnitude of bus10 is upgraded to its 

normal level, and the DN security is ensured. Comparing the 

UCO mode voltage magnitude in Fig. 6 with that of TDC mode 



in Fig. 7, it is very clear that the bus voltage is distributed much 

more evenly in TDC mode. 
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333231

23 17 16 15

1 2 4 53 6 7 8 9 10 11 12 13 14

26 28 29 3019 20 21 22

24 25 18

27

Main 

Grid
DG3

FCS4 DG2

FCS1

FCS5 FCS6

FCS2

FCS7

FCS3DG1

DG4

Fig. 7.  Voltage magnitude dispersion in TDC mode 

C. Proposed Sensitivity analyses

The charging ratio  influenced by battery capacity, initial

state of charge, power consumption per hundred kilometers, 

and so on will impact the solution of TDC model, and therefore 

a sensitivity analysis conducted on   is essential for studying 

the TDC model. CTN and CDN are correspondingly shown in Fig. 

8 by varying   from 0.5% to 1.5% in 0.25% increments. When 

γ ≤ 0.75%, its variation has almost no effect on CTN. This is 

because the saturation of transfer arc is not deep, and DN 

constraints are easy to be satisfied without adjusting the 

charging price. When γ ≥ 1%, both CTN and CDN continue to 

grow with an increase in . This is because the heavy traffic in 

FCS will lead to bus voltage violations in DN and the charging 

price needs to be adjusted to disperse traffic flows in TN. 

However, if   is larger than 3 %, the adjustment in charging 

price will no longer be an effective measure for alleviating DN 

voltage violations and maintaining TN amenity. The investment 

on DGs, lines, and FCS, should be considered to alleviate the 

traffic congestion. 
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Fig. 8.  Sensitivity of charging ratio 

V. CONCLUSION

In this paper, a TDC model which simultaneously considers 

the DN economic operation and the EV traffic flow assignment 

in TN, is proposed to minimize the sum of the travel cost of TN 

and energy service cost of DN. The ALADIN distributed 

algorithm is presented to effectively solve the TDC model. The 

case study on an integrated system of the modified Nguyen-

Dupius TN and IEEE 33-bus DN has demonstrated the 

necessity of the coordinated operation of TN and DN. 

Simulation results have also revealed that the optimal power 

and traffic flows can be obtained through the solution of the 

proposed TDC model. In addition, potential DN voltage 

violations are mitigated by adjusting FCS charging prices in TN. 

To replace the average EV charging energy in the TDC 

model, the heterogeneous EV battery information will be 

considered in our future work. Besides, we assume the 

travellers can have access to the full data on traffic arcs and 

charging prices of FCSs. Accordingly, stochastic user 

equilibrium will be introduced in TDC to consider the 

proliferation of variable renewables. 

APPENDIX 

TABLE VI 

THE ACTIVE AND REACTIVE LOADS OF ALL BUSES 

t=1 t=2 t=3 t=4 

Pload,j
t  

(kW) 

Q
load,j

t

(kVar) 

Pload,j
t  

(kW) 

Q
load,j

t

(kVar) 

Pload,j
t  

(kW) 

Q
load,j

t

(kVar) 

Pload,j
t  

(kW) 

Q
load,j

t

(kVar) 

j=1 0 0 0 0 0 0 0 0 

j=2 100 60 200 120 250 150 300 180 

j=3 90 40 180 80 225 100 270 120 

j=4 120 80 240 160 300 200 360 240 

j=5 60 30 120 60 150 75 180 90 

j=6 60 20 120 40 150 50 180 60 

j=7 200 100 400 200 500 250 600 300 

j=8 200 100 400 200 500 250 600 300 

j=9 60 20 120 40 150 50 180 60 

j=10 60 20 120 40 150 50 180 60 

j=11 45 30 90 60 112.5 75 135 90 

j=12 60 35 120 70 150 87.5 180 105 

j=13 60 35 120 70 150 87.5 180 105 



j=14 120 80 240 160 300 200 360 240 

j=15 60 10 120 20 150 25 180 30 

j=16 60 20 120 40 150 50 180 60 

j=17 60 20 120 40 150 50 180 60 

j=18 90 40 180 80 225 100 270 120 

j=19 90 40 180 80 225 100 270 120 

j=20 90 40 180 80 225 100 270 120 

j=21 90 40 180 80 225 100 270 120 

j=22 90 40 180 80 225 100 270 120 

j=23 90 50 180 100 225 125 270 150 

j=24 420 200 840 400 1050 500 1260 600 

j=25 420 200 840 400 1050 500 1260 600 

j=26 60 25 120 50 150 62.5 180 75 

j=27 60 25 120 50 150 62.5 180 75 

j=28 60 20 120 40 150 50 180 60 

j=29 120 70 240 140 300 175 360 210 

j=30 200 600 400 1200 500 1500 600 1800 

j=31 150 70 300 140 375 175 450 210 

j=32 210 100 420 200 525 250 630 300 

j=33 60 40 120 80 150 100 180 120 
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