
1

  Abstract—An operation model for distribution companies 
(DISCOs) is proposed to reduce their operation costs by fully 
utilizing the flexibility of electric vehicle aggregators (EVAs). In 
the proposed model, linear decision rules approximation is 
adopted to achieve mathematical tractability, and distributionally 
robust optimization is applied to evaluate costs affected by 
uncertainties in renewable power outputs and EVA charging 
demands. Case studies are conducted under various settings. With 
the proposed model, using EVAs to mitigate uncertainties is 
achieved and is further classified into delaying uncertainties and 
eliminating uncertainties. As a result, average penalties for 
DISCO’s deviations from its planned energy portfolio are reduced. 
Besides, EVA charging demands are shifted to hours with lower 
energy prices to reduce energy costs of DISCO. Using EVAs to 
mitigate uncertainties and shifting EVA charging demands are 
properly coordinated under the proposed model. Moreover, power 
losses in EVA charging and discharging are utilized to reduce the 
scale of uncertainties, which decreases average penalties for 
energy deviations of DISCO. 

Index Terms—Distribution company, electric vehicle 
aggregator, renewable energy, uncertainty, distributionally robust 
optimization. 

NOMENCLATURE 

A. Parameters

e
ta Energy price in Hour 𝑡 
,

r,def
t ia , ,

r,over
t ia Price of reserves for EVA charging deficiency, 

over-charging at Node 𝑖 in Hour 𝑡 
,

r,def
t ib , ,

r,over
t ib Regular compensation rate for EVA charging 

deficiency, over-charging at Node 𝑖 in Hour 𝑡 
,

p,def
t ib , ,

p,over
t ib Punitive compensation rate for EVA charging 

deficiency, over-charging at Node 𝑖 in Hour 𝑡 
p,pos
tb , p,neg

tb  Penalty coefficients for DISCO’s positive, 
negative deviations from its energy purchase in 
Hour 𝑡 

d
ib Compensation rate for EVA battery degradation 

at Node 𝑖  
bv Base voltage

,i jx , ,i jr Line reactance, resistance between Node 𝑖 and 𝑗 
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,
l
t ip , ,

l
t iq  Active, reactive load at Node 𝑖 in Hour 𝑡 

,
RES,f
t ip RES power forecast at Node 𝑖 in Hour 𝑡 
,

EVA,p
t ip EVA planned charging demand at Node 𝑖 in Hour 𝑡 

iλ  EVA power factor at Node 𝑖 
ch
iη , dis

iη Average EVA charging, discharging efficiency at 
Node 𝑖 

ch,max
ip Maximum EVA charging rate at Node 𝑖 
dis,max
ip Maximum EVA discharging rate at Node 𝑖 
,

def,max
t ie Acceptable EVA charging deficiency at Node 𝑖 in 

Hour 𝑡 
,

over,max
t ie Acceptable EVA over-charging at Node 𝑖 in Hour 𝑡 

T Number of hours in the time horizon 
tΔ  An hour 
sysN Set of nodes in the distribution system 

( )pN i Parent node of Node 𝑖 
( )cN i Set of children nodes of Node 𝑖 

EVAN Set of EVA nodes 

RESN Set of RES nodes 

B. Uncertainties
,

EVA
t iξ Deviation of EVA actual charging demand from 

EVA planned charging demand at Node 𝑖 in Hour 𝑡 
,

RES
t iξ Error of RES power forecast at Node 𝑖 in Hour 𝑡 

ξ Vector of EVA and RES uncertainties in all hours 
dξ  Dimension of 𝝃 
fξ Probability distribution of 𝝃 

( )A ξ Ambiguity set for 𝝃 
μ  Statistical expectation of 𝝃 
Σ Statistical covariance matrix of 𝝃 
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C. Variables
,

def
t ir , ,

over
t ir Purchased reserves for EVA charging deficiency, 

over-charging at Node 𝑖 in Hour 𝑡 
pur
te Purchased energy for Hour 𝑡 

,t iσ EVA status at Node 𝑖 in Hour 𝑡
,

sys,EVA
t ip EVA active power supplied by the distribution 

system at Node 𝑖 in Hour 𝑡 
,

ch
t ip , ,

dis
t ip EVA active charging, discharging power at Node 𝑖 

in Hour 𝑡 
,

dist
t ie Cumulative disturbance to EVA at Node 𝑖 between 

Hour 1 and 𝑡 
, ,

p
t i jfl , , ,

q
t i jfl  Active, reactive power flow between Node 𝑖 and 𝑗 

in Hour 𝑡 
in
tp Active power imported from the transmission 

system 
,t iv  Node 𝑖 voltage in Hour 𝑡 
,

ch
t iα , ,

dis
t iα  Constant components in real-time operation plans 

for 𝑝 , , 𝑝 ,  
( ),

ch
t if ξ Function of uncertainties in real-time operation 

plan for 𝑝 ,  
( ),

dis
t if ξ Function of uncertainties in real-time operation 

plan for 𝑝 ,
I. INTRODUCTION

ISCO purchases energy and then delivers to the energy 
users within the distribution system [1],[2]. As a 

component of a power system, it may be required to maintain 
the energy balance of the system by scheduling its energy 
portfolio in advance. If it defaults on its schedules, it can be 
penalized [3],[4]. As renewable energy sources (RESs) 
introduce considerable forecast errors, i.e., uncertainties [5],[6], 
it is becoming challenging for DISCO to maintain its energy 
portfolio. Meanwhile, the proliferation of electric vehicles (EVs) 
introduce additional opportunities for DISCO to reduce its 
operation costs. 

As long as EVs are plugged into power systems for a 
sufficiently long time, EV charging rates can be adjusted and 
vehicle-to-grid power flows can be introduced. For example, 
the flexibility of EVs is used to mitigate wind power forecast 
errors [7], reduce peak load [8] and improve voltage profile [9]. 
To directly dispatch EVs as done in [7-9], circumstances of 
each EV need to be taken into consideration. As EV behaviors 
are influenced by many factors including human decisions, they 
involve considerable uncertainties. In terms of modeling EV 
uncertainties, [10] assumes that EV departure times, trip 
durations and energy consumptions follow uniform 
distributions and generates scenarios according to the assumed 
uniform distributions to represent these EV uncertainties. [11] 
also uses scenarios to represent EV uncertainties and further 
combines scenarios that have no difference from the 

perspective of system operators. [12] performs more detailed 
modeling of EV uncertainties by considering charging failures, 
the tendency of EV users to round time and so on. [13] models 
EV uncertainties through analyzing EV travel routes and 
charging of the same EV at different places. However, when a 
large number of EVs are involved, it will be very difficult to 
take all these uncertainties into consideration to dispatch each 
individual EV [14]. Instead, it is more reasonable for system 
operators to dispatch EVAs and let EVAs control a limited 
number of EVs. [15] and [16] adopt such schemes, but their 
models are not designed for DISCO and do not use EVAs to 
mitigate uncertainties. 

EVAs represent equivalent loads that are always connected 
to the system with time varying charging demands. Because of 
uncertain factors associated with EV behaviors, there are 
uncertainties in charging demands of EVAs. Meanwhile, EVAs 
provide flexibility for system operation as they represent 
aggregated EV flexibilities. EVA flexibility can be explored by 
DISCO to reduce penalties for its deviations from the scheduled 
energy portfolio through mitigating RES and EVA uncertainties 
and reduce its energy costs through shifting EVA charging 
demands to hours with lower energy prices. Power losses in 
EVA charging and discharging can be evaluated through 
average charging and discharging efficiencies of EVAs 
[15],[17].  

In addition to EVAs, other options which are considered for 
the provision of flexibility in distribution systems include 
hourly load curtailments, which can neither shift loads to hours 
with lower energy prices nor be effective when energy supply 
is sufficiently available [18],[19]. Other cases considered 
distributed generators, which can only supply energy, while 
EVAs can both supply and consume energy [20],[21]. Energy 
storage is another flexibility option which differs from EVAs in 
the following aspects [22],[23]. First, energy storage is 
specifically deployed to facilitate system operation, while 
EVAs are not. Second, there is no uncertainty related with 
energy storage, but uncertainties exist in EVA charging 
demands. Third, operating energy storage incurs costs. In 
contrast, costs are resulted from disturbing EVA charging. In 
consideration of these features of EVAs, a tailor-made model is 
proposed for DISCO to reduce its operation costs by fully 
utilizing EVA flexibility in this paper. 

Using EVA flexibility incurs disturbance to EVAs including 
over-charging and charging deficiency. Depending on whether 
recovering the corresponding disturbance to EVAs in the 
current day, using EVAs to mitigate uncertainties is classified 
into delaying uncertainties and eliminating uncertainties in this 
paper. Further discussions will be made in Section III.B. 

EVA flexibility has two potential applications for DISCO, 
namely, mitigating uncertainties and shifting EVA charging 
demands to hours with lower energy prices. Both EVA 
applications can introduce cost savings. Besides, they are both 
constrained by EVA capacity for charging disturbance. If EVAs 
are used to mitigate uncertainties more extensively, they can 
shift less charging demands and vice versa. So, the two EVA 
applications are correlated. 

Because of power losses in EVA charging, the power 
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supplied by the distribution system is greater than that received 
by EVAs. Similarly, the power received by the distribution 
system is smaller than that supplied by EVAs when EVAs 
discharge. Such phenomenon influences the scale of 
uncertainties from the perspective of DISCO and can be utilized 
when EVAs charge in some hours and discharge in other hours. 
Further discussions are made in Section III.C and VI.C. 

Major contributions of this paper are the following. 
(1) A comprehensive operation model is proposed for DISCO
to reduce its operation costs. In the proposed model, using
EVAs to mitigate RES and EVA uncertainties is achieved and
is further classified into delaying uncertainties and eliminating
uncertainties.
(2) EVA flexibility is used to shift EVA charging demands to
hours with lower energy prices. The two applications of EVA
flexibility, i.e., mitigating uncertainties and shifting charging
demands, are coordinated in the proposed model to achieve the
optimal overall costs.
(3) Power losses in EVA charging and discharging are utilized
to reduce the scale of uncertainties and thus reduce penalties for
energy deviations of DISCO.

This paper is organized as follows. Section II gives 
background settings. Section III discusses applications of EVA 
flexibility. The proposed model is presented in Section IV and 
transformed into deterministic forms in Section V. Case studies 
are conducted in Section VI. Lastly, conclusions are drawn in 
Section VII. 

II. BACKGROUND SETTINGS

The proposed model is based on the perspective of DISCO 
and focuses on the operation model of DISCO and interactions 
between DISCO and EVAs. DISCO faces uncertainties in EVA 
charging demands rather than uncertainties associated with EV 
behaviors. EVAs need to consider EV uncertainties, and how 
EVAs operate influences uncertainties in EVA charging 
demands. But DISCO and EVAs are different entities, and the 
operation model of EVAs and interactions between EVAs and 
EVs are not studied here because they are beyond the scope of 
this paper. It should be noted that although EV uncertainties are 
not directly considered in the proposed model, they are 
reflected through uncertainties in EVA charging demands. As 
EVA charging demands can be observed by DISCO, their 
uncertainties can be analyzed by using their historical samples. 

The proposed model involves the day-ahead and the real-
time stage. Actual EVA charging demands and RES outputs are 
unknown in the day-ahead stage, which means that there are 
EVA and RES uncertainties. In consideration of real-time 
operation under possible realizations of EVA and RES 
uncertainties, the proposed model makes day-ahead decisions 
and real-time operation plans for DISCO with the aim of 
minimizing total operation costs of DISCO in the two stages. 
Real-time operation plans are functions of uncertainties and 
will give real-time decisions when uncertainties realize. Further 
discussions about real-time operation plans will be made in 
Section III and IV.B. The schematic diagram of the proposed 
model is given in Fig. 1, where TSO stands for transmission 
system operator.  

In the day-ahead stage, DISCO purchases energy that it plans 
to import from the transmission system. Because of 
uncertainties in EVA charging demands and RES outputs, the 
actual energy import of DISCO in the real-time stage may 
deviate from its energy purchase. DISCO needs to pay penalties 
for the deviation no matter it is positive or negative.  

In the day-ahead stage, EVAs are required to report their 
planned charging demands to DISCO. The actual EVA 
charging demands in the real-time stage will be the sum of 
planned charging demands and EVA uncertainties 𝜉 , . In the 
real-time stage, DISCO gives dispatch to EVAs and may cause 
disturbance to their charging, which is defined in (1). When 
EVAs receive more energy than their needs, 𝑒 ,  is negative 
and EVA over-charging happens. When EVAs receive less 
energy than their needs, 𝑒 ,  is positive and EVA charging 
deficiency happens. In the day-ahead stage, EVAs report their 
acceptable amounts for over-charging and charging deficiency 
to DISCO. 

Uncertainty,
Flexibility

EVAs

RESs

Distribution system

Uncertainty

DISCO

Reserve 
purchase

Energy 
purchase

TSO

Real-time 
operation plan

······

······
Fig. 1.  Schematic diagram of the proposed model 

( )( ), , , , ,
dist EVA,p EVA ch dis

1,...,

t i t i t i t i t i

t t
e p p p tξ

=

= + − + Δ (1)

DISCO pays EVAs for disturbance to them in two steps. 
First, in the day-ahead stage, DISCO reserves certain amounts 
for EVA over-charging and charging deficiency and pays EVAs 
for the reserves. As uncertainties realize, disturbance to EVAs 
is known in the real-time stage. Then, regular compensations 
are given to EVAs by DISCO for the disturbance within the 
reserves purchased by DISCO, and punitive compensations that 
are of higher rates are given for the disturbance beyond the 
reserves. With such mechanism, EVAs could anticipate the 
dispatch of DISCO through the reserves that DISCO purchases 
in the day-ahead stage. The concept of reserves here is not the 
same with that of reserves from generators in economic 
dispatch problems. Adjustments of generator outputs are 
constrained by generator reserves in economic dispatch [24], 
while disturbance to EVAs can exceed the reserves in this paper 
and is constrained by the capabilities of EVAs in accepting 
disturbance. Besides, DISCO compensates the degradation of 
EVA battery at fixed rates according to EVA discharging power 
in the real-time stage.  

Although it is assumed here that EVAs follow the dispatch 
of DISCO, the proposed model can also incorporate EVAs that 
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do not cooperate, which are inflexible loads with uncertainties 
from the perspective of DISCO. Similar to uncertainties in RES 
outputs, uncertainties in charging demands of these non-
dispatchable EVAs can be mitigated by dispatchable EVAs. 

In some literature such as [25], DISCO cooperates with the 
distribution system operator, which is responsible for network 
operation. While, in some other literature such as [18] and [26], 
DISCO manages network operation by itself. The proposed 
model for DISCO is applicable for both cases as it is able to 
both consider and not consider network constraints. It should be 
noted that power losses considered by DISCO in the proposed 
model are from EVA charging and discharging, and they 
influence the energy that DISCO needs to purchase and the 
deviations of DISCO from its decided energy portfolio. Power 
losses on the distribution network are discussed later in Section 
IV.A.

III. APPLICATIONS OF EVA FLEXIBILITY

The key of the proposed model lies in applications of EVA 
flexibility, which are discussed in this section. Fig. 2 gives the 
schematic diagram of the proposed model’s methodology. 

DISCO

Energy costs

Payments to 
EVAs

Penalties for 
energy deviations

RESsUncertainties

EVAs

Shifting EVA 
charging 
demands

Mitigating 
uncertainties

Reduce

Cause

Reduce

Pay

Achieve

Dispatch

Cause Bring

Delaying 
uncertainties

Eliminating 
uncertainties

Fig. 2.  Schematic diagram of the proposed model’s methodology 

A. Mitigating uncertainties and shifting EVA charging
demands

DISCO’s real-time operation plan for EVA charging power 
is given in (2). If DISCO does not disturb EVAs, EVA charging 
power will be the sum of EVA planned charging demands and 
EVA uncertainties, which means 𝛼 , = 𝑝 ,,  and 𝑓 , 𝝃 =𝜉 , . By choosing proper 𝑓 , 𝝃 , DISCO can use EVAs to 
mitigate uncertainties. For example, if 𝑓 , 𝝃 = 0 , EVA 𝑖 
mitigates its own uncertainty because its charging power is now 
constant. If 𝑓 , 𝝃 = 𝜉 , − 𝜉 , , EVA 𝑖  mitigates the
uncertainty of EVA 𝑗 . Similarly, EVAs can mitigate RES 
uncertainties. Besides, by setting 𝛼 ,  to proper values, DISCO 
can shift EVA charging demands to hours with lower energy 
prices. If EVAs discharge in some hours, more EVA charging 
demands can be shifted compared with the case when EVAs 
never discharge. DISCO’s operation plan for EVA discharging 
power is given in (3). Similar to choosing proper 𝛼 ,  and 𝑓 , 𝝃 , choosing proper 𝛼 ,  and 𝑓 , 𝝃  can have EVAs shift 
their charging demands and mitigate uncertainties, respectively. 

For example, if 𝑓 , 𝝃 = −𝜉 , , uncertainty of EVA 𝑖 is not 
mitigated. The negative sign is because EVA 𝑖 is discharging. 
If 𝑓 , 𝝃 = 0 , EVA 𝑖  mitigates the uncertainty of itself. If 𝑓 , 𝝃 = −𝜉 , + 𝜉 , , EVA 𝑖  mitigates the uncertainty of
EVA 𝑗. 

( ), , ,
ch ch ch
t i t i t ip fα= + ξ  (2) 

( ), , ,
dis dis dis
t i t i t ip fα= + ξ  (3) 

Similar to 𝛼 ,  and 𝛼 , , 𝑓 , 𝝃  and 𝑓 , 𝝃  influence power 
flows between the distribution system and EVAs, and thus can 
shift EVA charging demands from some hours to other hours. 
But the effects of 𝑓 , 𝝃  and 𝑓 , 𝝃  are different from those of 𝛼 ,  and 𝛼 ,  as follows. First, the effects of 𝛼 ,  and 𝛼 ,  are 
known once 𝛼 ,  and 𝛼 ,  are determined in the day-ahead 
stage, while the effects of 𝑓 , 𝝃  and 𝑓 , 𝝃  are known only 
after uncertainties realize in the real-time stage. Besides, proper 𝛼 ,  and 𝛼 ,  reduce the costs of DISCO in purchasing energy 
imported from the transmission system, while proper 𝑓 , 𝝃  
and 𝑓 , 𝝃  reduce the penalties for energy deviations of 
DISCO caused by uncertainties. In consideration of these 
differences, “shifting EVA charging demands” refers to 
“choosing proper 𝛼 ,  and 𝛼 , ”, and “mitigating 
uncertainties” refers to “choosing proper 𝑓 , 𝝃  and 𝑓 , 𝝃 ” 
in the following parts of this paper.  

Shifting EVA charging demands and mitigating 
uncertainties would both disturb EVA charging. When any one 
of them is carried out, either EVA charging deficiency or EVA 
over-charging will be incurred. If their disturbance to EVAs is 
in the same direction (EVA charging deficiency or EVA over-
charging), their disturbance reinforces each other. While if their 
disturbance is in different directions (EVA charging deficiency 
and EVA over-charging), their disturbance offsets each other.  

B. Delaying uncertainties and eliminating uncertainties
Depending on whether the corresponding disturbance to

EVAs is recovered within the day or not, using EVAs to 
mitigate uncertainties can have different effects. To 
differentiate these two circumstances, “delaying 
uncertainties” and “eliminating uncertainties” are used to 
represent them, respectively. Discussions about the two 
circumstances are made below. 

Delaying uncertainties is illustrated as follows. If the 
charging power of EVA 𝑖 in the first hour is 𝑝 , = 𝑝 ,, , EVA 𝑖  mitigates its own uncertainty and the disturbance to its 
charging is 𝑒 , = 𝜉 , . If the disturbance is recovered in the 
second hour, there is 𝑒 , = 0, which requires 𝑝 , = 𝑝 ,, +𝜉 , + 𝜉 , . So, 𝜉 ,  causes the variation of EVA charging 
power and penalties for energy deviations of DISCO in the 
second hour rather than in the first hour, which means that 𝜉 ,  
is delayed. 𝜉 ,  and 𝜉 ,  now offset each other in 𝑝 ,  if they 
are of different signs. To conclude, delaying uncertainties 
happens when disturbance to EVAs incurred from mitigating 
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uncertainties is recovered within the day. 
Eliminating uncertainties occurs when the disturbance to 

EVAs incurred from mitigating uncertainties is not fully 
recovered by the end of the day. The unrecovered disturbance 
will be merged into EVA planned charging demands when 
DISCO decides its energy portfolio again in the day-ahead stage 
of the next day. In other words, the involved uncertainties will 
become deterministic information in the next day and will not 
cause energy deviations of DISCO and corresponding penalties 
anymore, which is like the involved uncertainties being 
eliminated. This can also be interpreted as delaying 
uncertainties to the next day and thus making them 
deterministic. To differentiate from the earlier circumstance, 
this circumstance is called eliminating uncertainties. Operation 
costs of DISCO in the next day will be influenced by the 
unrecovered disturbance to EVAs incurred from mitigating 
uncertainties. But the average influence is tiny because 
expectations of the considered uncertainties are close to zero. 

Delaying uncertainties and eliminating uncertainties 
cooperate under the proposed model to achieve the optimal 
overall costs. Their optimal cooperation depends on the 
parameters and needs to be obtained by solving the proposed 
model. Further discussions can be found in Section VI.E. 

C. Effects of power losses in EVA charging and discharging
on uncertainties

Because of power losses in EVA charging and discharging, 
the EVA active power supplied by the distribution system will 
be 𝑝 ,, = 𝑝 , /𝜂 ,  when EVAs charge and will be 𝑝 ,, = −𝑝 , ∙ 𝜂 ,  when EVAs discharge. Therefore, 𝑓 , 𝝃  and 𝑓 , 𝝃  in 𝑝 ,  and 𝑝 ,  as shown in (2) and (3) will 
be magnified or minified by power losses in EVA charging and 
discharging in 𝑝 ,, , which directly influences the power 
that DISCO imports from the transmission system. Because of 
such phenomenon, uncertainties may be minified for the first 
time when they are mitigated by EVAs and then be minified for 
the second time when the corresponding disturbance to EVAs 
is recovered, which means that the scale of uncertainties is 
finally reduced from the perspective of DISCO. Detailed 
illustration is given in Section VI. C. 

IV. PROPOSED MODEL FOR DISCO
Compensations to EVAs and penalties for energy deviations 

of DISCO are influenced by uncertainties. To evaluate costs 
affected by uncertainties, robust optimization is used in some 
literature. However, it is often over-conservative because it is 
worst-case oriented and the worst case rarely happens [27],[28]. 
Instead of optimizing the costs under the worst uncertainty 
realization, it is more reasonable to pursue the lowest average 
costs. In this regard, some literature adopts stochastic 
optimization, which uses scenarios to represent the stochastic 
nature of uncertainties. But uncertainties could be poorly 
represented and thus sub-optimal solutions could be obtained if 
the number of used scenarios is small [29], and heavy 
computational burden will be caused if a large number of 
scenarios are adopted [30],[31]. In consideration of the 

drawbacks of robust optimization and stochastic optimization, 
a more recently developed approach, namely distributionally 
robust optimization (DRO), is adopted in this paper to evaluate 
costs affected by uncertainties.  

As available information about uncertainties is limited, the 
exact uncertainty distribution is hard to be acquired. But it is 
included in the family of distributions satisfying certain known 
information such as statistical moments. The set constituted by 
such family of distributions is called the ambiguity set [32],[33]. 
To utilize available uncertainty information and avoid being 
over-optimistic, DRO focuses on the worst distribution in the 
ambiguity set. Compared with robust optimization, DRO is 
capable of improving the average economic performance. 
Compared with stochastic optimization, DRO can properly take 
uncertainties into consideration without causing excessive 
computational burden. Further discussions about DRO will be 
made in Section V.B. 

A. Formulation of the proposed model
The formulation of the proposed model is given in (4.1)-

(4.19). As discussed in Section II, DISCO needs to purchase 
reserves from EVAs and energy imported from the transmission 
system in the day-ahead stage. The first and second items in the 
first line of (4.1) are energy costs and reserve costs, 
respectively. E[] is the operator that calculates the expectation. 
Items within the operator E[] in the second and third lines of 
(4.1) are costs of DISCO incurred in the real-time stage and are 
influenced by uncertainties. The largest expectation of their 
sum with respect to all distributions in the ambiguity set 𝐴 𝝃  
is calculated through the max operator and considered in (4.1) 
to hedge against the ambiguity in the uncertainty distribution 
and avoid over-optimistic solutions [24]. It will be later 
transformed through DRO in Section V.B. The first item within 
the operator E[] in (4.1) is the compensation for disturbance to 
EVAs, and its explicit expressions are given in (4.2)-(4.5). As 
discussed in Section II, (4.2)-(4.3) correspond to the case when 
disturbance to EVAs is within the purchased reserves and there 
are only regular compensations. (4.4)-(4.5) correspond to the 
case when disturbance to EVAs is beyond the purchased 
reserves and there are both regular and punitive compensations. 
The second item within the operator E[] in (4.1) is the penalty 
for DISCO’s energy deviations, and its explicit expressions are 
given in (4.6) and (4.7), which correspond to the cases when 
DISCO has positive and negative energy deviations, 
respectively. The last item within the operator E[] in (4.1) is the 
compensation for EVA battery degradation caused by EVA 
discharging. To avoid excessive degradation of EVA battery 
and reduce operational challenges, the status of EVAs, i.e., 
charging or discharging, in an hour is required to be fixed 
whatever uncertainty realizations are, which is achieved 
through (4.9)-(4.11). Also, EVA charging and discharging 
power are limited in (4.10) and (4.11), respectively. (4.12) 
reflects power losses in EVA charging and discharging. 
Disturbance to EVAs is constrained within their acceptable 
ranges in (4.13). (4.14) implies that disturbance to EVAs 
incurred from shifting charging demands should be fully 
recovered in the end of the day. According to the linearized 
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power flow model for distribution networks in [34], power 
balances are ensured through (4.15)-(4.17), and node voltage is 
given in (4.18) and constrained in (4.19). Power losses on 
distribution networks are non-linear and much smaller than 
power flows [34]. Therefore, as done in [34] and [35], they are 
neglected in the proposed model, which greatly reduces the 
computational complexity and has very small influence on the 
result. To incorporate power losses on distribution networks, 
the piecewise-linearized power flow model from [36] can be 
adopted at the cost of increased computational complexity. 

min     ( )
EVA

, , , ,
e pur r,def def r,over over

1,..., 1,...,

t t t i t i t i t i

t T t T i N
a e a r a r

= = ∈

+ +  

( )
( ) ( )

EVA

, , ,
dist def over in pur1,2,3,4 1,21,..., 1,...,

max E max , , max ,t i t i t i t t
k kf A k kt T i N t T

f e r r g p e
∈ = == ∈ =


+ +


  

ξ ξ

EVA

,
d dis

1,...,
+ i t i

t T i N
b p t

= ∈


Δ 


     (4.1) 

s.t.
( ), , , , ,

1 dist def over r,def dist, ,t i t i t i t i t if e r r b e=  (4.2) 

( ), , , , ,
2 dist def over r,over dist, ,t i t i t i t i t if e r r b e= −   (4.3) 

( ) ( ), , , , , , , ,
3 dist def over p,def dist def r,def def, ,t i t i t i t i t i t i t i t if e r r b e r b r= − +   (4.4) 

( ) ( ), , , , , , , ,
4 dist def over p,over dist over r,over over, ,t i t i t i t i t i t i t i t if e r r b e r b r= − − +   (4.5) 

( ) ( )1 in pur p,pos in pur,t t t t tg p e b p t e= Δ −    (4.6) 

( ) ( )2 in pur p,neg pur in,t t t t tg p e b e p t= − Δ   (4.7) 

( )( ), , , , ,
dist EVA,p EVA ch dis

1,...,

t i t i t i t i t i

t t
e p p p tξ

=

= + − + Δ

EVA, , ,t i N∀ ∀ ∀ ∈ξ   (4.8) 

{ }, EVA0,1 , ,  t i t i Nσ ∈ ∀ ∀ ∈  (4.9) 
,

ch , ch,max EVA0 , , ,  t i i
t ip p t i Nσ≤ ≤ ∀ ∀ ∀ ∈ξ    (4.10) 

( ),
dis , dis,max EVA0 1 , , ,  t i i

t ip p t i Nσ≤ ≤ − ∀ ∀ ∀ ∈ξ   (4.11) 
, , ,

sys,EVA ch ch dis dis EVA= / , , ,  t i t i i t i ip p p t i Nη η− ⋅ ∀ ∀ ∀ ∈ξ    (4.12) 
, , ,

over,max dist def,max EVA, , ,  t i t i t ie e e t i N− ≤ ≤ ∀ ∀ ∀ ∈ξ   (4.13) 

( ), , ,
EVA,p ch dis EVA

1,...,
+ 0 if ,  t i t i t i

t T
p p p i N

=

− = = ∀ ∈ 0ξ    (4.14) 
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fl p p p flξ

∈

= + − − + 

{ }sys, ,  / 1t i N∀ ∀ ∀ ∈ξ      (4.15)
( )

( )

p

c

, , , , 2 , ,
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i i
j N i

fl q p flλ λ
∈

= + − + 

{ }sys, ,  / 1t i N∀ ∀ ∀ ∈ξ      (4.16)
,1,2

in p
t tp fl=   (4.17) 

( )
( )

( )
( )( ) ( )

p p

p p p

, , , ,
, p q b, , ,/ ,t N i i t N i i

t i N i i N i i t N iv r fl x fl v v+ + =

{ }sys, ,  / 1t i N∀ ∀ ∀ ∈ξ      (4.18)

b , b sys0.95 1.05 ,  , ,  t iv v v t i N≤ ≤ ∀ ∀ ∀ ∈ξ   (4.19) 

B. Linear decision rules approximation
The proposed model is a multi-period problem involving

uncertainties. For such problems, [36] and [37] adopt two-stage 
models, whose first and second stage are before and after 
realizations of all uncertainties, respectively. However, the two-
stage models in [36] and [37] need to be solved through iterative 
processes, and non-convex bilinear problems need to be solved 
in every iteration. As a result, the computational burden of such 
two-stage models is very heavy. Besides, these two-stage 
models are problematic in assuming that uncertainties in all 
periods realize simultaneously. Actually, uncertainties in 
different periods realize gradually according to their temporal 
sequences. As shown in [38], such two-stage models could lead 
to operational infeasibility because of their ignorance of 
temporal sequences. 

To take the temporal sequences into consideration and solve 
the proposed model within reasonable time, linear decision 
rules (LDR) approximation is adopted here by assuming that 
DISCO’s real-time operation plans are affine functions of 
uncertainty realizations in earlier hours [39],[40]. Then, (2) can 
be rewritten as (5), where 𝛽 ,̅,  and 𝛾 , ̅,  are uncertainty
coefficients. As shown in (5), real-time operation plans in any 
hour only depend on earlier uncertainties but not later ones, 
which is in accordance of temporal sequences. After replacing 
real-time operation plans by corresponding affine functions of 
uncertainties under LDR, the proposed model becomes 
equivalent to a single-period problem in terms of mathematics 
and is much easier to solve. 

EVA RES

, , , , , ,
ch ch , EVA , RES

1,...,

t i t i t j t j t j t j
t i t i

t t j N j N
p α β ξ γ ξ

= ∈ ∈

 
= + +  

 
           (5) 

With LDR, the variables that the proposed model needs to 
solve are day-ahead decisions including the energy portfolio of 
DISCO and the reserves that DISCO purchases from EVAs, and 
all constant components and uncertainty coefficients of LDR. 
Although uncertainty realizations are still unknown in the day-
ahead stage, uncertainty coefficients of LDR have already 
determined how uncertainties will be mitigated in the real-time 
stage.  In other words, using EVAs to mitigate uncertainties can 
be interpreted as allocating uncertainties to EVAs in advance 
through uncertainty coefficients of 𝑝 ,  and 𝑝 ,  under LDR.  

LDR brings no errors when the optimal decisions depend 
affinely on uncertainties. When the relationship between the 
optimal decisions and uncertainties gets farther from affine 
functions, errors brought by LDR become larger. In this paper, 
uncertainties are mitigated by adjusting EVA charging and 
discharging power under LDR, which is similar to adjusting 
generator outputs to compensate uncertainties under LDR as 
done in [38-41] in terms of mathematics. It has been shown that 
the errors of LDR are acceptable in [38-41]. 

V. TRANSFORMATION OF THE PROPOSED MODEL

In this section, the proposed model is transformed into 
deterministic forms. 
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A. Robust constraints
The proposed model contains robust equality and inequality

constraints, which are both linear under LDR. Robust linear 
equality constraints can be written in compact forms as (6), 
where 𝒉  is the transpose of 𝒉 . They are satisfied for all 
possible uncertainty realizations if and only if 𝒉 = 𝟎 and 𝑔 =0, and thus can be replaced by deterministic constraints on their 
constant components and uncertainty coefficients. Uncertainty 
realizations are assumed to lie in proper polyhedral sets. So, 
robust linear inequality constraints can be substituted by their 
deterministic linear counterparts according to robust 
optimization [42].  

0g′ + =h ξ    (6) 

B. Distributionally robust optimization
The ambiguity set for uncertainty distribution can be

constructed differently using uncertainty expectations and 
variances as in [43], or expectations, mean absolute deviations 
and standard deviations as in [44]. As discussed in Section III.B, 
uncertainties from different hours may offset each other when 
EVAs are used to delay uncertainties, whose possibility 
depends on uncertainty correlation. Therefore, as shown in (7), 
the ambiguity set is constructed based on statistical uncertainty 
expectations and covariance matrix, which can be obtained 
from historical samples of uncertainties. 

( ) [ ]
( )( )

   
E

E

d

A f

 ∈
 
 ==  
  ′− − =    

Σ

 ξ

ξ

ξ
ξ μ   ξ
ξ μ ξ μ

  (7) 

The utility function within the operator E[] in (4.1) is the 
sum of several piecewise-linear functions and can be rewritten 
as a single piecewise-linear function. Then, the worst 
expectation calculated through the max operator in (4.1) can be 
transformed into deterministic forms according to DRO 
techniques in [45]. However, as the number of piecewise-linear 
functions within the operator E[]  grows, the number of 
segments in the rewritten single piecewise-linear function 
increases exponentially, which would cause great 
computational difficulties. To solve the proposed model within 
a reasonable time, an upper bound (8) is used to approximate 
the original worst expectation in (4.1). [46] shows that errors of 
such approximation are acceptable. As the compensation for 
EVA battery degradation depends linearly on uncertainties 
under LDR, its expectation can be calculated directly from 
uncertainty expectations. Terms in the first line of (8) can be 
transformed into deterministic forms by using DRO techniques 
in [45]. After all transformation in Section V, the proposed 
model becomes a deterministic mixed-integer second-order 
conic program and can be solved by off-the-shelf solvers. 

( )
( )( )

( )
( )( )

EVA

, , ,
int def over in pur1,2,3,4 1,21,..., 1,...,

sup max , , sup max ,t i t i t i t t
k kk kf A f At T i N t T

f e r r g p e
= =∈ ∈= ∈ =

+  
ξ ξξ ξ

EVA

,
d dis

1,...,
E i t i

t T i N
b p t

= ∈

 + Δ   (8)

VI. CASE STUDIES AND DISCUSSIONS

Case studies are conducted based on a modified IEEE 33-
node system, in which Node 16 and 22 each has an EVA, and 
Node 13 and 30 each has an RES. Average charging and 
discharging efficiencies of both EVAs are set to 0.9. To 
evaluate the performance of obtained decisions, uncertainty 
realizations are generated according to normal distributions. In 
Section VI.A to VI.D, the time horizon is assumed to contain 
only 2 hours to demonstrate the proposed model more clearly. 
Then in Section VI.E, the time horizon is assumed to contain 24 
hours.  

In Section VI.A to VI.D, disturbance to EVAs is assumed to 
be completely recovered at the end of the time horizon, which 
means that EVAs are used to only delay but not eliminate 
uncertainties according to the definitions in Section III.B. 
Prices of reserves for over-charging and charging deficiency of 
both EVAs are set to 0.2¢/kWh. Regular compensation rates for 
over-charging and charging deficiency to both EVAs are set to 
2¢/kWh. Punitive compensation rates for over-charging and 
charging deficiency to both EVAs are set to 6¢/kWh. 
Compensation rates for battery degradation to both EVAs are 
set to 0.05¢/kWh.  

A. Using EVAs to delay uncertainties
In this part, energy prices in both hours are set to 4¢/kWh.

Penalty coefficients for positive and negative energy deviations 
of DISCO are set to 10¢/kWh. As discussed in Section IV.B, 
using EVAs to mitigate uncertainties under LDR is equivalent 
to allocating uncertainties to EVAs in advance, which is 
illustrated here. 

TABLE I 
Uncertainty coefficients when EVA flexibility is not used 

Uncertainty 
Variables in the first hour Variables in the second hour 𝑝 ,,  𝑝 ,,  𝑝  𝑝 ,,  𝑝 ,,  𝑝  𝜉 ,  1.111 0 1.111 0 0 0𝜉 ,  0 1.111 1.111 0 0 0𝜉 ,  0 0 -1 0 0 0𝜉 ,  0 0 -1 0 0 0𝜉 ,  0 0 0 1.111 0 1.111𝜉 ,  0 0 0 0 1.111 1.111 𝜉 ,  0 0 0 0 0 -1𝜉 ,  0 0 0 0 0 -1

TABLE II 
Uncertainty coefficients when EVA flexibility is used 

Uncertainty 
Variables in the first hour Variables in the second hour 𝑝 ,,  𝑝 ,,  𝑝  𝑝 ,,  𝑝 ,,  𝑝  𝜉 ,  0.600  -0.600 0 0.512  0.600  1.111  𝜉 ,  -0.512 0.512  0 0.512  0.600  1.111  𝜉 ,  0.460  0.540  0 -0.460 -0.540 -1𝜉 ,  0.460  0.540  0 -0.460 -0.540 -1𝜉 ,  0 0 0 1.111  0 1.111  𝜉 ,  0 0 0 0 1.111  1.111  𝜉 ,  0 0 0 0 0 -1𝜉 ,  0 0 0 0 0 -1

According to the solution of the proposed model, the active 
power that the distribution system supplies for EVA 1 in the 
first hour is 𝑝 ,, = 222.222 + 1.111𝜉 ,  when EVA 
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flexibility is not used. So, the coefficient of 𝑝 ,,  for 𝜉 ,  is 
1.111 and the coefficients of 𝑝 ,,  for other uncertainties are 
0. For clearer illustration, uncertainty coefficients of certain
decision variables when EVA flexibility is used and not are
given in Table II and I, respectively. As shown in Table I,
coefficients for EVA uncertainties are greater than 1 because of
power losses in EVA charging. As EVA flexibility is not used,
each variable in Table I depends and only depends on
uncertainties in its hour. In contrast, when EVA flexibility is
used, the active power imported from the transmission system
in the first hour, i.e., 𝑝 , is not influenced by uncertainties as
shown in Table II. In the second hour, because disturbance to
EVAs incurred from uncertainty mitigation is recovered,
variables depend on uncertainties from both hours. So,
uncertainties in the first hour are delayed to the second hour.

Uncertainty-affected costs when EVA flexibility is used and 
not are recorded in Table III, where the total uncertainty-
affected costs are the sum of reserve costs, compensations to 
EVAs and penalties for energy deviations minus the reduction 
in energy costs. As uncertainties from different hours can offset 
each other, average penalties for energy deviations of DISCO 
decrease when EVA flexibility is used. Meanwhile, 
corresponding reserve costs and compensations to EVAs are 
incurred. Overall, the average total uncertainty-affected costs 
are reduced because of EVA flexibility. 

TABLE III 
Uncertainty-affected costs when EVA flexibility is used and not 

Using EVA flexibility No Yes 
Reduction in energy costs brought by EVA flexibility (¢) 0.0 0.0 

Reserve costs (¢) 0.0 8.6 
Average compensations for disturbance to EVAs (¢) 0.0 26.8 

Average compensations for EVA battery degradation (¢) 0.0 0.0 
Average penalties for energy deviations (¢) 258.5 182.5 
Average total uncertainty-affected costs (¢) 258.5 217.9 

B. Trade-off between cost savings brought by using EVA
flexibility and corresponding payments to EVAs

In Section VI.A, each uncertainty in the first hour is 
completely delayed to the second hour, which however is not 
always the case. In this part, case studies are conducted under 
varying penalty coefficients for energy deviations of DISCO. 
Energy prices are set to be the same as in Section VI.A. Under 
all considered penalty coefficients, each uncertainty in the first 
hour has the same percentage delayed to the second hour. 
Relevant results are recorded in Table IV. When penalty 
coefficients are large enough, uncertainties in the first hour are 
completely delayed to fully utilize EVA flexibility. But when 
penalty coefficients decrease, using EVAs to mitigate 
uncertainties becomes less attractive. As a result, EVA 
flexibility is used less extensively, and thus lower percentage of 
each uncertainty is delayed to the second hour, resulting in 
fewer reserve costs and average compensations for disturbance 
to EVAs. To make the idea of partially delaying uncertainties 
clearer, an illustration is given here. If the charging power of 
EVA 𝑖 in the first hour is 𝑝 , = 𝑝 ,, + 0.5 ∙ 𝜉 , , 50 percent 
of 𝜉 ,  is delayed and the charging power of EVA 𝑖  in the 
second hour will be 𝑝 , = 𝑝 ,, + 0.5 ∙ 𝜉 , + 𝜉 , . In this 

circumstance, 𝜉 ,  can cause energy deviations of DISCO in 
both the first and second hour. 

TABLE IV 
Results under different penalty coefficients 𝑏 , , 𝑏 , , 𝑏 , , 𝑏 ,  

(¢/kWh)

Percentage of each 
uncertainty delayed to 
the second hour (%)

Reserve 
costs 
(¢)

Average 
compensations for 

disturbance to 
EVAs (¢)

11 100 8.6 26.8
10 100 8.6 26.8
9 100 8.6 26.8
8 97.5 8.4 26.2
7 86.7 7.5 23.3
6 74.5 6.4 20.0

C. Effects of power losses in EVA charging and discharging
on uncertainties

Case studies are conducted in this part under three settings 
for energy prices as shown in Table V. Penalty coefficients are 
set to be the same as in Section VI.A. Under all three settings 
in Table V, each uncertainty in the first hour is completely 
delayed to the second hour. Uncertainty coefficients of 𝑝  are 
shown in Fig. 3. Average penalties for energy deviations of 
DISCO are given in Table VI. 

TABLE V 
Settings for energy prices 

Setting C-I C-II C-III𝑎  (¢/kWh) 4 7 4𝑎  (¢/kWh) 4 4 7

As average charging and discharging efficiencies of both 
EVAs have been set to 0.9, they are all represented by 𝜂 in the 
following illustration. Uncertainty coefficients of 𝑝  under 
Setting C-I are the same with those in Table II and can be 
regarded as the reference for Setting C-II and C-III. Under 
Setting C-II, because of the significant difference in energy 
prices in the two hours, EVAs discharge in the first hour and 
charge in the second hour. To offset RES uncertainties, the total 
power that the distribution system receives from EVAs in the 
first hour, i.e., −𝑝 ,, − 𝑝 ,, , contains − 𝜉 , + 𝜉 , . 
Because of power losses in EVA discharging, the total EVA 
discharging power, i.e., 𝑝 , + 𝑝 , , contains − 𝜉 , + 𝜉 , /𝜂. Then, in the second hour, disturbance to EVAs is recovered. 
As a result, the total EVA charging power, i.e., 𝑝 , + 𝑝 , , 
contains − 𝜉 , + 𝜉 , /𝜂. Because of power losses in EVA 
charging, 𝑝 ,, + 𝑝 ,,  and 𝑝  contains − 𝜉 , +𝜉 , / 𝜂 . As shown in Fig. 3, coefficients for 𝜉 ,  and 𝜉 ,  
have greater absolute values under Setting C-II than under 
Setting C-I. So, under Setting C-II, these uncertainties are 
magnified from the perspective of DISCO, and average penalty 
for energy deviations is higher than that under Setting C-I as 
shown in Table VI. Under Setting C-III, EVAs charge in the 
first hour and discharge in the second hour. With similar 
analysis as for Setting C-II, it can be deduced that 𝑝  contains − 𝜉 , + 𝜉 , 𝜂  and 𝜉 , + 𝜉 , + 𝜉 , + 𝜉 , 𝜂  under
Setting C-III, which matches the results in Fig. 3. So, these
uncertainties are minified from the perspective of DISCO, and
average penalty for energy deviations is now lower than under
Setting C-I.
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TABLE VI 
Average penalties for DISCO’s energy deviations under different settings 

Setting C-I C-II C-III 
Average penalties for energy deviations (¢) 182.5 183.5 148.8 

Fig. 3.  Uncertainty coefficients of 𝑝  

D. Interactions between mitigating uncertainties and shifting
charging demands

In this part, energy price in the first hour is set to 4¢/kWh 
and energy price in the second hour, i.e., 𝑎 , is set to varying 
values. Penalty coefficients are set to be the same as in Section 
VI.A. As shown in (5), real-time operation plans of DISCO are
made up of constant components, that do not depend on
uncertainty realizations, and linear functions of uncertainties
under LDR. Fig. 4 records the constant components of the total
EVA active power supplied by the distribution system,∑ 𝑝 ,,∈ . Average penalties for energy deviations of
DISCO are shown in Fig. 5.

When 𝑎  is 4¢/kWh, there is no shifted EVA charging 
demand, and each uncertainty in the first hour is completely 
delayed to the second hour. Therefore, there is no penalty for 
energy deviations in the first hour as shown in Fig. 5. When 𝑎  
rises to 5¢/kWh, savings in energy costs brought by shifting 
EVA charging demands are fewer than corresponding payments 
to EVAs. But as discussed in the last paragraph of Section III.A, 
shifting EVA charging demands may alleviate the disturbance 
to EVAs incurred from uncertainty mitigation. For the sake of 
minimizing overall costs, there is a slight amount of EVA 
charging demands shifted from the second hour to the first hour 
as shown in Fig. 4. When 𝑎  equals to 6¢/kWh, the difference 
in energy prices in the two hours becomes large enough and 
shifted EVA charging demands greatly increase compared with 
earlier cases. As 𝑎  increases to 6.5¢/kWh, shifted EVA 
charging demands further grow. To guarantee that EVA status 
is fixed in the second hour, each uncertainty in the first hour is 
only partially delayed to the second hour. So, the average 
penalty in the first hour is now positive and the average total 
penalty in the two hours is higher than those under earlier cases 
as shown in Fig. 5. 

When 𝑎  is 6.7¢/kWh, EVA discharging is uneconomical in 
terms of the sum of energy costs and payments to EVAs. 
However, EVAs still discharge in the second hour because 
uncertainties will then be minified as illustrated in Section VI.C 
and thus lower overall costs will be achieved. To avoid EVA 
status swinging between discharging and charging in the second 

hour, each uncertainty in the first hour is only partially delayed 
to the second hour, which leads to positive average penalty in 
the first hour as shown in Fig. 5. When 𝑎  grows to 7¢/kWh, 
EVAs further discharge in the second hour and each uncertainty 
in the first hour is completely delayed to the second hour. 
Compared with the cases when EVAs charge in the second 
hour, the average total penalty is now lower because 
uncertainties are minified. When 𝑎  increases to 7.5¢/kWh, 
EVA discharging power in the second hour significantly 
increases and is bounded by EVAs’ acceptable amounts for 
over-charging in the first hour. As 𝑎  keeps increasing to 8 and 
8.5¢/kWh, each uncertainty in the first hour is only partially 
delayed to the second hour to have more EVA charging 
demands shifted from the second hour to the first hour, which 
causes growth in penalties but achieves optimal overall costs 
because of savings in energy costs. 

Fig. 4.  Constant components of the total EVA active power supplied by the 
distribution system under varying energy price in the second hour 

Fig. 5.  Average penalties for energy deviations of DISCO under varying energy 
price in the second hour 

E. Delaying uncertainties and eliminating uncertainties
In this part, the time horizon contains 24 hours. Prices of

reserves for EVA over-charging and charging deficiency are set 
to 0.1 time of energy prices. Regular compensation rates for 
EVA over-charging and charging deficiency are set to be equal 
to energy prices. Punitive compensations rates for EVA over-
charging and charging deficiency are set to 3 times of energy 
prices. Compensation rates for EVA battery degradation are set 
to 0.05 time of energy prices. Penalty coefficients for energy 
deviations of DISCO are set to 3 times of energy prices. As 
compensations to EVAs will keep increasing as time goes if 
disturbance to EVAs is not recovered, it is assumed here that 
disturbance to EVAs incurred from uncertainty mitigation 
needs to be recovered in 5 hours unless the time horizon ends. 
Such restriction has tiny influence on the results but can greatly 
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reduce the computational complexity. Case studies are 
conducted under three settings as given in Table VII. Average 
penalties for energy deviations of DISCO are shown in Fig. 6.  

The curve of Setting E-I reflects the scale of uncertainties in 
each hour as EVAs are not used to mitigate uncertainties. Under 
Setting E-II, average penalties are generally lower than those 
under Setting E-I, which is because uncertainties are delayed 
through EVAs and thus can offset uncertainties in later hours. 
Under Setting E-III, EVAs eliminate or partially eliminate 
uncertainties in the last several hours. As a result, average 
penalties in these hours are lower than those under Setting E-II. 
It should be noted that eliminating uncertainties is not applied 
on uncertainties in the earlier hours of the day because 
otherwise the corresponding payments to EVAs will be higher 
than corresponding savings in penalties for energy deviations. 
While, for uncertainties in the last several hours, eliminating 
uncertainties can be more profitable than delaying uncertainties 
because there are no corresponding penalties for energy 
deviations. 

Uncertainty-affected costs under Setting E-I to E-III are 
recorded in Table VIII. As shown by the results under Setting 
E-I and E-II, using EVAs to delay uncertainties brings
significant reduction in average penalties and thus achieves
lower average total uncertainty-affected costs, which are
consistent with the results in Section VI.A. By comparing the
results under Setting E-II and E-III, it can be further noticed that 
having EVAs eliminate uncertainties creates extra savings
based on those achieved by using EVAs to delay uncertainties.

TABLE VII 
Three settings for uncertainty mitigation 

Setting E-I E-II E-III 
Using EVAs to delay uncertainties No Yes Yes 

Using EVAs to eliminate uncertainties No No Yes 

Fig. 6.  Average penalties for energy deviations of DISCO under different 
settings 

TABLE VIII 
Uncertainty-affected costs under different settings 

Setting E-I E-II E-III 
Reduction in energy costs brought by 

EVA flexibility (¢) 0.0 5.4 6.7

Reserve costs (¢) 0.0 562.1 642.6 
Average compensations for 

disturbance to EVAs (¢) 0.0 1369.6 1629.3 

Average compensations for EVA 
battery degradation (¢) 0.0 0.0 0.0

Average penalties for energy 
deviations of DISCO (¢) 6265.6 3356.8 2853.2 

Average total uncertainty-affected 
costs (¢) 6265.6 5283.2 5118.4 

F. Computational efficiency
To comprehensively show the computational efficiency of

the proposed model, its computation times under 3 settings are 
recorded in Table IX. Setting F-I is the same with Setting E-III 
in Section VI.E. Under Setting F-I, EVAs charge in all hours, 
which means that all binary variables take the value of 1. Setting 
F-II is based on Setting F-I but sets the energy price in the 15th
hour to 3 times of the original value. Because of the high energy 
price, EVAs discharge in the 15th hour, and binary variables
corresponding to the 15th hour take the value of 0 under Setting
F-II. Setting F-III is based on Setting F-I but sets the energy
prices in both the 15th and 21st hour to 3 times of the original
values. EVAs discharge in both the 15th and 21st hour under
Setting F-III. Computation times recorded in this section are
obtained by using a desktop with Intel Core i5-9400 CPU.
According to Table IX, the computational efficiency of the
proposed model is acceptable.

To illustrate the advantage of DRO over stochastic 
optimization in terms of computational efficiency, case studies 
are conducted by adopting stochastic optimization rather than 
DRO in the modified proposed model. The average value of the 
objective under all considered scenarios is minimized in the 
modified proposed model, which is a mixed-integer linear 
program. Table X shows the computation times of the modified 
proposed model under Setting F-III when different numbers of 
scenarios are considered. By comparing the results in Table IX 
and X, it can be noticed that the modified proposed model 
(using stochastic optimization) already has much longer 
computation time than the proposed model (using DRO) when 
it considers 100 scenarios. Uncertainties considered here are 
from charging demands of two EVAs and outputs of two RESs 
in 24 hours and thus are 96-dimensional. Obviously, 100 
scenarios are not sufficient to properly represent the stochastic 
nature of the considered uncertainties. But if more scenarios are 
incorporated, the computational burden brought by stochastic 
optimization will become even heavier. In contrast, DRO can 
use as many historical samples of uncertainties as possible to 
derive more accurate statistical uncertainty moments and thus 
improve its accuracy without increasing the computational 
complexity. 

TABLE IX 
Computation times of the proposed model under different settings 

Setting F-I F-II F-III
Computation time (s) 46 393 602 

TABLE X 
Computation times of the modified proposed model that uses stochastic 
optimization under Setting F-III when different numbers of scenarios are 

considered 
Number of scenarios 10 100 1000 
Computation time (s) 578 2145 29042 

VII. CONCLUSION

With the proposed model, flexibility of electric vehicle 
aggregators (EVAs) is explored by the distribution company 
(DISCO) to shift EVA charging demands to hours with lower 
energy prices and mitigate uncertainties in EVA charging 
demands and renewable power outputs. If the corresponding 
disturbance to EVAs is recovered within the time horizon, using 
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EVAs to mitigate uncertainties is equivalent to delaying 
uncertainties; otherwise, it is equivalent to eliminating 
uncertainties. It has been found from the case studies that 1) the 
proposed model is successful in simultaneously utilizing both 
forms of uncertainty mitigation to reduce average penalties for 
deviations of DISCO from its planned energy portfolio, 2) the 
proposed model is effective in coordinating EVA applications 
in mitigating uncertainties and shifting charging demands to 
achieve optimal overall costs, and 3) power losses in EVA 
charging and discharging are used in the proposed model to 
reduce the scale of uncertainties under certain circumstances. 
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