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    Abstract— Large-scale renewable energy suppliers and electric 
vehicles (EVs) are expected to become dominated participants in 
future electricity market. In this paper, a competitive bidding 
strategy is formulated for wind power plants (WPPs) and EV 
aggregators in a pool-based day-ahead electricity market. A bi-
level multi-agent based model is proposed to study their bidding 
behaviors, with market clearing completion in the lower level and 
revenue maximization in the upper level. A stochastic framework 
is developed to incorporate the uncertainties in maximal power 
production of WPPs and EV aggregators and bid prices of other 
participants. The process of bidding decision is formulated as a 
stochastic game with incomplete information, in which electricity 
suppliers including WPPs and EV aggregators are considered as 
players of the game, their lack of information in this stochastic 
market environment is counterbalanced by a multi-agent 
reinforcement learning (MARL) algorithm named win or learn fast 
policy hill climbing (WoLF-PHC) with maximizing their own 
profits by self-game. The feasibility and effectiveness of the 
proposed model and the WoLF-PHC solution approach are 
successfully illustrated using a modified IEEE 6-bus system and a 
modified 118-bus system with different numbers of market 
players. 

Index Terms— Bidding strategy, electricity market, renewable 
energy, multi-agent reinforcement learning (MARL), stochastic 
game, WoLF-PHC 

NOMENCLATURE 

Indices:  
l Index of loads
g Index of traditional generators 
e  Index of EV aggregators 
𝜔 Index of WPPs 
n Index of nodes 
𝛼 Index of scenarios 
k Index of iterations 
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Sets:  
𝛺 Set of all nodes with loads 
𝛺  Set of all nodes with traditional generators 
𝛺  Set of all nodes with EV aggregators 
𝛺  Set of all nodes with WPPs 
𝛺  Set of the neighbour nodes of node n  
𝑁  Set of all scenarios for stochastic optimization 

(including bid prices of non-strategic 
participants as well as maximal power 
production of WPPs and EV aggregators) 

Parameters： 
𝑃  Max power output of traditional generator g, in 

MW  
𝑃 , ,

,  Max power production of WPP 𝜔 at time t in 
scenario 𝛼, in MW 

𝑃 ,
,  Max power production of EV aggregator e in 

scenario 𝛼, in MW 
𝑃 ,  Max power consumption for load l at time t, in 

MW   
𝐸  Max energy capacity of EV aggregator e, in 

MWh  
𝑆𝑂𝐶 , ,  Desired SOC of EV aggregator e in scenario 𝛼, 

in % 
𝑆𝑂𝐶  Upper limit of SOC for EV aggregators, in % 
𝑆𝑂𝐶  Lower limit of SOC for EV aggregators, in %   
𝜆 , ,  Bid price of traditional generator g at node n and 

time t in scenario 𝛼, in $/MW 
𝜆 , ,  Bid price of load l at node n and time t in 

scenario 𝛼, in $/MW 
c / dis Charging/discharging efficiency, in % 
𝐵   Susceptance of the line connecting nodes n and 

m, in Siemens 
𝑓  Thermal capacity of the line connecting nodes n 

and m, in MW 
𝜆  Price for EV aggregators traded with EV 

owners, in $/MW  
𝜏  Weighting factor (probability) of scenario 𝛼 , 

and the sum of probabilities for all scenarios is 
equal to 1, e.g., ∑ 𝜏 1. 

𝐿  Battery lifetime, in MWh 
𝐶  Battery capital cost, in $  
μ Learning rate of WoLF-PHC 
η Discount factor of WoLF-PHC  
𝛿  Win learning parameters for updating the policy 

of the algorithm 
𝛿  Lose learning parameters for updating the policy 

of the algorithm 
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Variables： 
𝜑 , ,     Locational Marginal Pricing (LMP) at node n and 

time t in scenario 𝛼, in $/MW 
𝑃 , ,

,    Power dispatched for EV aggregator e at time t in 
scenario 𝛼, in MW  

𝑃 , ,
,  Power dispatched for WPP 𝜔 at time t in scenario 

𝛼, in MW  
𝑃 , ,

,  Power dispatched for traditional generator g at 
time t in scenario 𝛼, in MW 

𝑃 , ,
,  Power dispatched for load l at time t in scenario 

𝛼, in MW 
𝑆𝑂𝐶 , ,  State of charge for EV aggregator e at time t in 

scenario 𝛼, in % 

𝜆 ,  Bid price of WPP 𝜔  at node n and time t, in 
$/MW  

𝜆 ,  Bid price of EV aggregator 𝑒 at node n and time 
t, in $/MW 

𝜃 , ,   Voltage angle at node n and time t in scenario 𝛼  

I. INTRODUCTION

N oligopoly electricity market, large-scale energy suppliers 
have a vital influence on market prices and production. The 

share of renewable energy in gross electricity generation is 
expected to be increased to 80% by 2030 and 100% by 2050, of 
which 37% will be provided by wind energy [1]. Wind power 
producers (WPPs) have occupied a dominant position in some 
regions such as in Danish electricity markets [2]. Meanwhile, 
rapidly growing numbers of distributed electric vehicles (EVs) 
could be aggregated as a new demand response (DR) resource 
for providing energy through a coordinator called the EV 
aggregator, which dispatches EVs and exchanges information 
between independent system operator (ISO) and individual EV 
owners [3]. The green contribution of WPPs and EVs to energy 
conservation and environmental protection, as well as the rapid 
expansion of their scales, would lead them to be oligopolists in 
the wholesale market [4, 5]. Furthermore, it is worthy of 
developing an effective approach to model market behaviors for 
WPPs and EV aggregators. 

In general, there are cooperative and competitive models for 
developing optimal bidding strategies in electricity market. 
Numerous cooperative models have been proposed based on 
collaborators’ compensation for peak shaving [6-8]. Although 
the cooperative model in [9] has improved the common 
interests of EVs and WPPs on account of their energy 
coordination during different time slots, this model depends 
highly on the centralized control and scheduling of a central 
aggregator who owns lots of bidding information of EVs and 
WPPs. In this way, the communication requirement between 
EVs and WPPs is high, the privacy of EVs and WPPs cannot be 
guaranteed, and WPPs and EV aggregators have little flexibility 
to cope with any self-decisions. In future electricity market with 
great respect for personal privacy and autonomy of energy 
suppliers, a bidding strategy accustomed to a more flexible 
market without any central agent would be more attractive. 
Since energy suppliers would not share any personal data with 
each other for the sake of privacy, WPPs and EV aggregators 
would have the freedom to make their own bidding decisions to 

increase their respective profits in a competitive market. 
For this purpose, equilibrium model and agent-based model 

(ABM) have been widely adopted in the modeling of a 
competitive market. Equilibrium models are formulated using 
mathematical programming approaches [10]. However, the 
equilibrium solution is often not easy to obtain or does not exist, 
especially in large systems. ABM is more flexible, in which all 
market players could be modeled as the artificial autonomous 
agents learning through repetitive interactions with a simulated 
market environment [11]. Thus it is more similar to a real 
electricity market. Model-based intuitive learning formulation 
and genetic algorithms are used separately to find the optimal 
bidding curves in [12] and [13]. However, these algorithms are 
designed to obtain the bidding strategy of a single agent, in 
which each agent makes the decision without regard to other 
rivals. Thus, they are inappropriate for the competitive market 
with each agent achieving its independent goal by adapting its 
behavior in the presence of other agents. As a class of 
reinforcement learning methods, various Q-learning algorithms 
have been widely used in the multi-agent electricity market to 
explore bidding strategies. A decentralized multi-agent model 
of EV owners bidding was developed based on a Q-learning 
algorithm without modeling the environment [14]. A deep 
reinforcement learning-based methodology was proposed to 
address bidding problems for energy suppliers, which has 
significant advantages in contrast with the traditional Q-
learning algorithm [15]. However, there is no game process 
among these strategic participants. In [16] and [17], the game 
problem was considered to update multi-agent bidding 
strategies for energy suppliers respectively in a large power 
system and regionally integrated energy system, in which 
historical bidding decisions of rivals are essential. Although this 
model has some advantages compared to that with perfect 
information of other rivals’ cost functions and market clearing 
mechanism, it is still not practical as the real electricity market 
is more likely a market with incomplete information, i.e. each 
player knows about only its own cost function and bidding 
strategy without any knowledge of other competitors [18]. A 
combined multi-agent model-based and learning-based 
approach for generators’ bidding decision problems with 
incomplete information was presented in [19], but the 
calculation of the Nash equilibrium point is time-consuming 
and hard to solve for large systems. This is due to the 
complexity of the equilibrium calculation and storage pressure 
of state-action space. Further research shall therefore focus on 
exploring an optimal multi-agent approach without knowing the 
equilibrium point, suitable for the bidding strategy in a 
competitive market, which protects personal privacy with no 
bidding information communicated among agents and 
guarantees they could have the right to make their own bids.  

In addition, existing researches on large-scale players 
bidding in a competitive environment refer to the WPP and 
demand response in [10], GENCOs and large consumers in [20], 
a demand-response virtual power plant in [21]. Especially in 
recent years, the decision making of the EV parking lots attracts 
numerous studies. Centralized dispatches are adopted in [22-24, 
30], in which EVs have to provides lots of private information 
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such as bidding and capacity to a central agent. Although [25-
29] use decentralized EVs scheduling, it is essential to provide
their own historical or rival information for decision making.
Besides, [29, 30] need to calculate Nash equilibrium point,
which is time consuming. Based on the above discussions and
comparisons of the decision making of the EV parking lots in
Table I, decentralized decision making of aggregated EVs relies 
on neither historical and rival information nor Nash equilibrium
point is worth to study.

TABLE I  
Comparison of the Decision Making of the EV Parking Lots  

Reference Decentralized 
Independent of 

Historical and Rival 
Information 

Independent of 
Nash Equilibrium 

Point 
[22-24]   
[25-28]   

[29]   
[30]   

Proposed    

So far, to the best of authors’ knowledge, there is few study 
considering the renewable WPPs and EV aggregators as 
oligopolists for developing a competitive multi-agent bidding 
strategy in a pool-based day-ahead (DA) market without either 
any information of opponents or calculating any equilibrium 
point. Based on the previous work to propose a bi-level 
stochastic optimization model of central controlled offering 
strategy for an aggregated WPP-EV hybrid power plant (HPP) 
as a price maker in the DA market considering the uncertainties 
of energy production and the spot price in real-time (RT) market 
[9], a new competitive DA market model for oligopoly players 
WPPs and EV aggregators with incomplete information to 
develop bidding strategy and consider uncertainties in their 
maximal power productions and bid prices of other players is 
first proposed in this paper, and then efficiently solved using a 
recently developed multi-agent decentralized Win or Learn 
Fast Policy Hill Climbing (WoLF-PHC) [31] method, based on 
an easy average policy instead of the equilibrium policy, which 
could not only meet the requirements of respecting individual 
privacy and the autonomy of energy providers but also 
accommodate the complex bidding behaviors of energy 
suppliers, to maximize revenues of WPPs and EV aggregators. 

The main contributions of this paper are as follows. 
(1) Newly developed a stochastic bi-level model, as compared
to strategic participant WPPs in [2] and cooperative players
including strategic WPPs and EV aggregators in [9], to explore
a competitive bidding strategy for WPPs and EV aggregators in
a pool-based oligopoly DA market based on multi-agent game
system, considering the uncertainty of maximal power
productions of WPPs and EV aggregators and bid prices for
other participants. Compared with the centralized dispatch in
[2, 9], WPPs and EV aggregators are neither controlled by an
aggregator or central agent nor share any personal information
with other rivals and make self-determined biddings to increase
their respective profits in a competitive market.
(2) Comprehensively analyzed the proposed bidding problem
of the market model as a multi-agent stochastic game with
incomplete information, and applied a multi-agent
decentralized WoLF-PHC to counterbalance their lack of
information in this stochastic market environment for WPPs

and EV aggregators and make their own bidding decisions by 
self-game. Compared with the existing methods in [16, 17] and 
[19], no rivals’ information and time-consuming equilibrium 
calculation are needed.  
(3) Successfully applied the WoLF-PHC method to solve the
multi-supplier bidding strategies problem in the modified IEEE
6-bus and 118-bus systems.

The organization of this paper is as follows. Section Ⅱ
introduces the proposed bi-level electricity market model and 
the bidding mechanism. In Section Ⅲ, the WoLF-PHC 
implementation for suppliers’ bidding strategies is proposed. 
Simulation results and analysis of four cases are represented in 
Section Ⅳ. Section Ⅴ concludes this paper. 

II. MULTI-AGENT ELECTRICITY MARKET MODEL 

 In the pool-based DA market, all market participants are 
required to provide their sale to or purchase offers from the 
ISO in each hour day-ahead [9]. In this paper, the market is 
modeled as a bi-level structure as shown in Fig.1. WPPs and 
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Fig. 1.  Schematic representation of the proposed market model 

EV aggregators are considered as two strategic oligopolies 
aimed to improve their respective revenues by solving bidding 
problems in the upper level. In the lower level, ISO collects bids 
from traditional generators, loads, and strategic WPPs and EV 
aggregators, and completes market clearing with maximizing 
the social welfare. Then ISO returns signals of Locational 
Marginal Pricing (LMP) and scheduled power to all 
participants. All the industrial, small residential and 
commercial loads are considered as a whole participant, i.e. a 
load aggregator, in this paper. Loads dispatched by the load 
aggregator consist of fixed and curtailed parts. The latter is 
considered as the elastic load and satisfied with the requirement 
of demand response. In this model, traditional generators and 
loads are assumed as non-strategic players. Their bid prices are 
their marginal cost prices and open to strategic suppliers [2]. 
Besides, the transmission network is represented by a DC 
model without losses.  

In this paper, three sources of uncertainties including the 
maximal power productions of WPPs and EV aggregators, and 
bid prices for non-strategic participants are considered. 
1) Stochastic model of WPP maximal power production

Weibull distribution is popularly used for modeling the
probabilistic wind speed 𝜈  as (1). 

( )1( , , ) ( )
kv

kvk
f v k e


 

 
 

                   (1)

where λ and k are the shape and scale parameters. As wind 
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power at nearby locations may have related patterns due to the 
similar meteorological conditions, wind speed correlations of 
multiple wind farms should be generally considered for a 
stochastic optimization problem. In this paper, the correlation 
coefficient denoted as CWPP with the range [-1, 1] is introduced 
to quantify how well wind speeds at two sites follow each other. 
With the probabilistic wind speed model in (1), the maximal 
power production of a WPP is determined from the speed-
power curve by (2) [5]. 

0,      ( ,  )
( ),    ( )

,          ( )

ci ct
W,max ci

cirated rd
cird

ctrated rd

v v v v
v v

P P v v
v

P v v

 






 




  
   
  

  (2) 

where Prated is the rated power; νci, νrd and νct are the cut-in, rated 
and cut-out wind speed, respectively. 

2) Stochastic model of EV maximal power production
In this paper, the maximal charging/discharging power of an

aggregator is calculated by multiplying the number of EVs NEV 
with the EV average rated power. According to [32], the 
number of EVs connected at an aggregator could be described 
by Gaussian distribution, and therefore the stochastic maximal 
power production of an EV aggregator could be modeled as (3). 

,max 2 2
,max ( ) /21

2
( )

p

E
e p pE

e

P
f P e

 



 
  (3) 

where μp and σp are the mean and standard deviation of 
Gaussian distribution. In a general form, the maximal power 
production correlations of multiple EV aggregators are also 
represented by the correlation coefficients CEV in this paper. 

3) Stochastic model of bid prices for non-strategic participants
The bid price of non-strategic participants at each hour is

characterized by the log-normal distribution as (4) [33]. 
2 2(ln ) /21

( , , )
2

DA
n DA

n

DA
n q q

q q
q

f e   


 
 

   (4) 

where μq and σq are the mean and standard deviation of log-
normal distribution, respectively. λ  is the bid price of the 
non-strategic participant. Similarly, the correlation coefficients 
CBID is used to represent the correlated bid price of multiple 
non-strategic participants. 

Scenario generation strategy: The above three stochastic 
models can be unified and denoted by the uncertain variables X 
with the correlations Rx, and the Monte Carlo sampling method 
incorporated with the Cholesky decomposition strategy is 
introduced to generate representative scenarios for correlated 
uncertain variables via the following steps; 1) For the given 
probabilistic distributions of uncertain variables X with the 
correlations Rx, build a correlation coefficient matrix Ry using 
Ry=G(Rx)*Rx, where G(Rx) is the correlation coefficient shift 
function associated with the specific type of probability 
distributions, which could be obtained by using Tables 4-8 in 
[34]; 2) Apply the Cholesky decomposition to Ry to obtain an 
orthogonal matrix B, namely Ry = B*BT where T denotes the 
transpose of a matrix; 3) Generate a sample matrix Z of 
independent standard normal variables, for example using the 
statistical analysis function normrnd() in MATLAB, and 
afterward obtain the correlated standard normal matrix Y=B-1*Z; 

4) Apply the transformation S=H-1(φ(Y)) to generate the final
scenarios S for the original uncertain variables X, where φ is the
cumulative distribution function (CDF) of the standard normal
distribution, and H is the CDF of the input variables X.

Scenario reduction strategy: Since computational burden 
would increase with the number of scenarios in consideration, 
associated optimization problems may become intractable as 
the cardinality of scenario sets increases. As a result, the 
forward selection method [35] is used as the scenario reduction 
technology in this paper to curtail the number of scenarios 
considered, while minimizing the inevitable dilution of 
stochastic information contained in the original set. By 
minimizing the Kantorovich distance between the initial 
scenario set and the reduced scenario set, the forward selection 
algorithm recursively adds scenarios from the initial set to the 
reduced set until the latter totals a desired number of constituent 
members. 

Lastly, based on these scenario generation and reduction 
strategies, the stochastic features of the maximal power 
production of WPPs and EV aggregators, and the bid prices of 
non-strategic participants modeled in (1)-(4) would be 
represented by a proper set of scenarios. In specific, the 
maximal power production of the WPP and EV aggregator, the 
bid price of the traditional generator and load are respectively 
denoted by 𝑃 , ,

, , 𝑃 ,
, ,  𝜆 , ,  and 𝜆 , , . And the 

expected profits of WPPs and EV aggregators and the social 
welfare from the perspective of ISO can also be expressed by 
these scenarios and their probabilities.  

The uncertainties associated with stochastic resources may 
introduce risk into the optimized bidding problem. In such a 
condition, risk measuring categorized into risk-neutral and risk-
averse can be used to provide guiding information to bidding 
decision makers. In general, the risk-averse bidding strategy is 
relatively conservative [36]. The risk-neutral decision maker 
has more opportunities to dynamically adapt the bidding 
strategy according to the information observed for increasing 
the expected profit, and thus is considered in this paper. In 
addition, the optimized objective function is represented as an 
expectation by selected scenarios and relevant weights, and all 
constraints should be satisfied for all scenarios. In this way, risk 
of profit caused by the volatility of uncertain resources could be 
partly reduced. More specific risk metrics in [36-39] would be 
studied in future work.  

A. Clearing model (Lower level)

In the lower level, the ISO first collects bids from all market
participants and then completes market clearing. The ISO aims 
to ensure the efficiency of electricity market, which is 
characterized by maximized social welfare. As a result, the 
objective function in the lower level is maximizing social 
welfare. With the help of traditional optimal power flow (OPF) 
method to clear the market, the dispatched power 
production𝑃 , ,

,  and 𝑃 , ,
,  for WPPs and EV aggregators 

respectively and LMP 𝜑 , ,  will be returned to the upper level 
for maximizing revenues of strategic WPPs and EV 
aggregators. The bid prices 𝜆 ,  and 𝜆 ,  are bidding strategy 
for the WPP 𝜔  and the EV aggregator e at node n and time t 
respectively. 
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max max

, , , ,- ( ) , , ,,DA DA N

nm nm n t m t nm nf B f n m t               (7) 

, max

, ,0 , ,,G DA

g t gP P g t          (8) 

min , max

, , , , , ,,L DA

l t l t l tP P P l t           (9) 

, ,max

, , , ,0 , ,,W DA W

t tP P t             (10) 

max ,max
, , , , -1 , ,

, ,

= ( ) / E

urgent e end e t e eT SOC SOC E P

e t

  







     (11) 

,max , ,max

, , , , , ,, 24E E DA E

e e t e urgentP P P e t T           (12a) 

, ,max

, , , , ,= , 24E DA E

e t e urgentP P e Tt      (12b) 

, , 0, , , :DA

n t t n ref              (13) 

, ,- , , , \ :DA

n t t n n ref       (14) 

min max

, , , , ,e tSOC SOC SOC e t                  (15) 

, ,max

, , , , -1 , , , ,= ( / ), , , 0,/E DA E DA

dise t e t e t e e tSOC SOC P E Pet t           (16a) 

, ,max

, , , , -1 , , , ,= ( / ), , , 0,E DA E DA

ce t e t e t e e tSOC SOC P E Pet t          (16b) 

where ⌈𝑎⌉ is the round-up calculation of a. 

The objective function (5) is to maximize social welfare. The 
first term is the revenues of selling electricity to load demands, 
while the other three terms represent the costs of purchasing 
electricity from traditional generators, WPPs and EV 
aggregators. The constraint (6) is the power production and 
consumption balance for node n with a dual variable 𝜑 , ,  
donating the LMP that would be provided to the upper-level. 
Inequality (7) limits the thermal capacity of the transmission 
line. Maximum and minimum energy dispatched for traditional 
units, load demand and WPPs are constrained in (8), (9) and 
(10) respectively. It is noted that a load demand consists of the
fixed and curtailed parts represented by the minimum load 𝑃 ,

and variable load 𝑃 , ,
,  respectively in (9). Equation (11)

calculates the threshold hour of fully charging EV aggregator
by the maximum charging power. Constraint (12a) applies
when the EV aggregator is not in urgent charging period and
could participate in the power market, while constraint (12b)
applies when the EV aggregator is in urgent charging period so
that EV aggregator is charged at the maximum power to satisfy
the daily driving utilization. Equation (13) and inequality (14)
set voltage angle limits at the slack bus and other buses

respectively. Inequation (15) represents the SOC range of an 
EV aggregator at the present hour, while constraints (16a) and 
(16b) indicate time-series SOC formulation of an EV 
aggregator at present and the previous hours. 

B. The suppliers’ bidding problem (Upper level)

The proposed bidding problem considers the output capacity
uncertainties of WPPs and EV aggregators as a set of scenarios. 
Strategic oligopolists’ revenues for the 𝜔th WPP and the eth 
EV aggregator are expressed by these scenarios with 
corresponding probabilities and represented in the upper level 
by (17) and (18) respectively, where LMP 𝜑 , , , scheduled 

WPP power 𝑃 , ,
, and EV aggregator output  𝑃 , ,

,  are 
obtained from the market clearing in the lower level. While the 
revenue of WPP is presented in (17), the revenue of an EV 
aggregator in (18) includes the income of selling electricity to 
power market in the first term, the cost of buying electricity 
from EV owners in the second term and the battery degradation 
cost in the third term. Absolute-value function in (18) could be 
handled by a linear programming simplex method in [40].  

,
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In this paper, the game problem 𝛹 among strategic suppliers 
including WPPs and EV aggregators is defined by a set of nodes 
with strategic players, bid prices and revenues as (19).  
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It is obvious that the revenues of other rivals are influenced 
by every strategic supplier’s bid price through the clearing 
process in (5)-(16b). As there is no information of other 
strategic suppliers’ profit functions and historical bidding 
decisions, the decision process of bidding strategies is a game 
problem rather than an optimization. As a result, these strategic 
players are required to learn for their optimal bids by repeated 
interaction with the market. In the following Section Ⅲ, 
strategic bidding behaviors of WPPs and EV aggregators in a 
competitive market with incomplete information are modeled 
as stochastic games, where the market environment is stochastic 
and determined by both bid prices and characteristics of all 
players. Suppliers including WPPs and EV aggregators are 
considered as players of the game. Then the bidding strategy is 
explored using a multi-agent reinforcement learning (MARL) 
algorithm WoLF-PHC as a decision support tool. 

III. METHODOLOGY

In this part, a brief summary of the RL theory and MARL is 
first introduced, followed by a stochastic game framework for 
a DA electricity market. Afterward, a MARL method WoFL-
PHC and the utilization of WoLF-PHC for multi-agent bidding 
strategies are described in detail. 
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A. Description of RL theory and the MARL

RL is an area of machine learning developed to analyze
animal and artificial behavioral systems [41]. The agent updates 
its decision relying on instant feedbacks and gradual learning 
through repetitive interaction with the external environment, 
which is quite similar to the relationship between strategic 
energy suppliers and the market. Q-learning is one of 
frequently used RL approaches. The MARL is developed based 
on the single-agent RL to decide the optimal action of every 
agent in multi-agent domains. It combines the single-agent RL, 
game theory and policy research techniques, and hence is more 
suitable for solving bidding problems of multi-supplier in 
electricity market. However, due to the alterability and 
unpredictability of multi-agent dynamic environments, it would 
be more difficult and challenging for each agent to learn with 
other agents as moving targets. Next, a stochastic game 
framework is introduced to describe this complicated problem 
of multi-agent bidding decisions in electricity market.    

B. The stochastic game framework of proposed DA electricity
market

The multi-agent stochastic game could be described as a 
tuple (M, X, A, T, R) where M = {1, 2, … , m} denotes a set of 
agents, X is a set of game states {𝑥 }, A={𝑎 , … ,𝑎 , … , 𝑎 }, 
in which 𝑎 ={𝑎𝑎 , …,  𝑎𝑎 } represents the sects of 
actions available to any player 𝑎 , T is the transition function 
represented by 𝑋 𝐴 𝑋 → 0,1 , and R={𝑅 ,…, 𝑅  …, 𝑅 } 
shows the set of reward functions for all agents in which 𝑅 : (𝑥 , 
𝑎 ) → ℛ is the reward function of the jth agent in the state 𝑥  
with executing the action 𝑎 . At each step, all agents observe 
the state 𝑥 ∈ 𝑋 and choose to perform the action 𝑎  according 
to an optimal action selection policy of learning algorithm, then 
go to the next state 𝑥 ∈ 𝑋.  

The proposed multi-agent market model is expressed as a 
stochastic game framework. There exist two types of agents, 
which are the WPP 𝜔 ∈ 𝛺   and the EV aggregator 𝑒 ∈ 𝛺 . 

M={𝜔 ∈ 𝛺 ，𝑒 ∈ 𝛺 } in the proposed model. States of the 
stochastic game consider different levels of WPP and EV 
aggregator suppliers’ capacities represented as two sets 
{𝑥 ∈  and 𝑥 ∈  respectively. The market clearing 

process, representing the interactive environment, would 
provide the signal of scheduled power production 𝑃 ,

,  and 

𝑃 ,
,  to every agent for WPPs and EV aggregators 

respectively. In this way, a state would be chosen for each agent 
after every market clearing. Next, admissible actions 
A= 𝑎  are defined for agents of WPPs and EV aggregators to 

update bid prices 𝜆 ∈  and 𝜆 ∈  respectively. 

As to the returned reward functions in (13) and (14), they could 
be expressed by 𝑅 ∈  and 𝑅 ∈  where 𝑅 : (𝑥 , 

𝑎 )  → ℛ  is the payoff of the ωth agent after clearing the 

market with bidding 𝜆  in the WPP’ capacity level 𝑥 , and 
𝑅 : (𝑥 , 𝑎 ) → ℛ is the eth agent’ profit after providing bid 

price 𝜆  in the EV aggregators’ capacity level 𝑥  to the 
clearing market. The decision process involves the choice of 
bidding actions for each player can be defined as 

B= 𝜆 ∈ , 𝜆 ∈ . Then their own perception of 

states would be got through executing corresponding bidding 
decisions in the stochastic market, in which the set of states is 
described as X= 𝑥 ∈ , 𝑥 ∈ . Consider the property 

of stochastic game and the decision vectors B of players are in 
a competitive environment, the combined process given by B 
and M is a competitive stochastic game with incomplete 
information. 

In order to determine an action to update the bid price for 
every player in the market environment, a policy, p: 𝑋 𝐴 →
0,1 ,  is introduced, which states the probability of the 

algorithm choosing an available action 𝑎 , based on the game is 
in the state 𝑥 . As a result, the target in this multi-agent 
stochastic game framework is to find a suitable algorithm that 
every agent could learn a policy along with others learning 
simultaneously. Here, the WoLF-PHC would be introduced to 
model the learning process in stochastic games. 

C. The MARL method WoLF-PHC

Policy Hill Climbing (PHC) is a simple extension of Q-
learning, the policy of which is evolved by increasing the 
probability of selecting the action with the highest value with a 
learning rate 𝛿 ∈(0,1] and performs hill-climbing in the space 
of mixed policies. However, its convergence is unclear [31]. 
PHC is then further developed to have a variable learning rate, 
consisting of two learning parameters 𝛿  and 𝛿  standing for 
the win and lose, respectively. The variable learning rate 
introduced aids in the convergence, with leaving more time for 
rivals to adjust when the player is gainful or compelling the 
player to adapt more quickly to rivals’ strategy changes once its 
interest is damaged [31]. The unknown equilibrium policy can 
further be replaced by a more general average strategy to 
asymptotically approximate to the equilibrium, such that the 
agent could determine its win or lose by comparing the 
expected and average payoff. Specifically, 𝛿  should be greater 
than 𝛿 . The larger learning rate 𝛿  means agents could learn 
quickly to adjust their strategies after losing, while the smaller 
learning rate  𝛿  is used to remain caution if it wins. This is 
called the win or learn fast (WoLF) principle. The final 
algorithm is named as WoLF-PHC and described as follows. 

The transition from the last state to the current state comes as 
a result of the market clearance. For a given agent i, Q-function 
after the kth market clearance based on an exploration action 
𝑎  under the past state 𝑥  and the current state 𝑥  with a 
reward function 𝑅  is updated as (20). 

( -1 ( -1

'

'
( , ) (1 ) ( , )

m ax ( , ))
i i k jk i i k jk

jk i ik
jk

jk
a

Q x a Q x a

R Q x a


 

 ） ）

+ ( +     (20) 

The corresponding policy 𝑝  is updated as (21)-(24). 𝛿  is 
kept within (0,1] in (23), policy for the last state is updated in 
(21)-(22) by increasing the probability of the action with the 
maximum Q-value or decrease probabilities of other actions in 
the last state. The maximized Q-value is used to determine the 
probability distribution of actions for the last state, which is 
prepared for the next visit in this state. 𝛿   refers to the variable 
learning rate for the agent i at the kth iteration, in which 𝛿  is 
chosen and the agent is winning if the past expected Q-value is 
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larger than the expected Q-value with the average policy 𝑝 , 
otherwise 𝛿  is selected.  

( 1) ( 1) ( 1)
, ) , )( (i i k jk i i k jk i k jkx ap x a p x a  
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where 𝑝   in (24) is the average policy updated as in (25)-(26), 
𝑐 𝑥  is the total number of the state 𝑥  from the initial state to 
the current state, and the Q-value, policy and average policy are 
required to be updated based on the previous state.  

( ) ( ) 1i ic x c x   (25) 
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D. Implementation of WoLF-PHC for Suppliers’ Bidding
Strategies

In the proposed model, WPPs and EV aggregators would not 
share any private information with other rivals and make self-
determined biddings to increase their respective profits. The 
proposed model thereby is a multi-agent stochastic game 
problem with incomplete information. Considering that WoLF-
PHC is a decentralized self-game algorithm which could well 
counterbalance the lack of information, a multi-agent 
decentralized WoLF-PHC is therefore applied in this stochastic 
market environment for WPPs and EV aggregators to make 
bidding decisions. The specific learning procedures for the ωth 
WPP and eth EV aggregator strategically bidding through 
WoLF-PHC could be described as follows. Each agent would 
repeat steps (a)-(h) in (2) until the count is met. 

(1) Set learning rate 𝜇 ∈ (0,1], discount factor η ∈ (0,1] and
learning parameters used to update the policy  𝛿
𝛿 ∈(0,1]. Initialize Q-value 𝑄  and 𝑄 , policy 𝑝  and 𝑝 ,
and the count of states  𝑐 𝑥  and 𝑐 𝑥  as (27) and (28).

( , ) 0 ( , ) 1 / ( ) 0Q x a p x a c xA    ， ，    (27) 

( , ) 0 ( , ) 1 / ( ) 0
e e eQ x a p x a c xA  ， ，   (28) 

(2) Repeat, in the kth episode,
(a) According to policy  𝑝 𝑥 ,𝑎  and

𝑝 𝑥 ,𝑎 , choose corresponding actions 𝑎
and 𝑎  respectively.

(b) The ωth WPP and eth EV aggregator’ bid prices 𝜆
and 𝜆  are updated in terms of actions 𝑎  and 𝑎
selected in step (a).

(c) Bid prices 𝜆  and 𝜆  updated in step (b) are sent to
the ISO in the lower level of the proposed market model,
with LMPs and scheduled WPP’s and EV aggregator’s
productions are obtained from the clearing process (5)-
(16b) and are provided to the upper level. Then reward
functions  𝑅  and 𝑅  are calculated based on (17)
and (18).

(d) Q-functions 𝑄 𝑥 ,𝑎 , 𝑄 𝑥 ,𝑎  are
updated by observing scalar rewards 𝑅 , 𝑅  in step
(c), and the current state 𝑥 , 𝑥  as (20).

(e) Observe every action 𝑎′  and 𝑎′  for states 𝑥
and 𝑥  respectively, 𝑄 and 𝑄 related to each pair 

𝑥 ,𝑎
′  and 𝑥 ,𝑎

′ . 

(f) Update average polices �̅� 𝑥 ,𝑎  and

�̅� 𝑥 ,𝑎  as (25) and (26).
(g) Update the variable learning rate 𝛿  and 𝛿   relied on

𝑄 𝑥 ,𝑎
′ and𝑄 𝑥 ,𝑎

′  in step (e) and

�̅� 𝑥 ,𝑎
′  and �̅� 𝑥 ,𝑎

′  in step (f) as

(24). Then policies 𝑝 𝑥 ,𝑎 ，

𝑝 𝑥 ,𝑎   are updated according to as (21)-(23).
(h) Set k=k+1, return to step (a).

The above learning process for a WPP and an EV aggregator
developing respective bidding strategies through their 
interactions with the market is shown in Fig.2, and it could be 
extended and scaled to have more strategic players. The WoLF-
PHC to solve the proposed bidding problem for the agent i is 
represented as Fig.3. 
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Fig. 2.  The specific learning process for a WPP and an EV aggregator 
strategically bidding through WoLF-PHC

Remarks: The proposed model is for a single hour of the DA 
market and can be considered as an offline approach. Since the 
model involves a large number of scenarios, the calculation 
process could be time consuming. The WoLF-PHC pre-learning 
process [42] could therefore be firstly introduced to boost the 
computation efficiency, which uses the optimized Q-value and 
bid price in the previous hour as the initial point of the current 
WoLF-PHC computation such that the convergence rate can be 
accelerated [42]. In addition, there are numerous scenarios in 
solving the DA market clearing, scenario-parallel computing 
could further be used to reduce the computation time. 
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k>number of intervals?

Optimal bidding strategy for each agent 

k=k+1

The ith agent updates the bid price

Update the lower-level clearing problem as (5)-(16b)

Choose the initial bid price for the ith agent, learning rate 
μ, discount factor η,  and learning parameter δ . Initialize 
Q-value, policy and the count of states as (27) and (28).

No

Update Q value of the agent i as (20)

k=1

Update policy p for the agent i as (21)-(23)

Yes

Update the upper-level reward function R for the agent i as (17)/(18)

Update average policy    for the agent i as (25)-(26)

Update the variable learning rate    for the agent i as (24)

p



Start

End

Fig. 3 Algorithm to solve the proposed bidding problem 

IV. CASE STUDIES 

Parameters of the three sources of uncertainties are 
configured as below. The shape and scale parameters of wind 
speed are set as λ=2 and k=12 with correlations of 0.3, while the 
cut-in, cut-out and rated wind speed are 𝜈 =3m/s, 𝜈 =25m/s 
and 𝜈 =12 m/s, respectively [43]. The parameters for the 
normal distribution of the EV aggregator are set as μp=120MW 
and σp =0.1μp with correlations of 0.1. The parameters of the 
log-normal distribution for the stochastic bid prices of non-  
strategic participants are set as μq=40$/MW and σq=0.1μq with 
correlations of 0.2. Besides, the price for the EV aggregator 
traded with EV owners is set as 20$/MW [5]. The lower limit 
of bid price is the cost price of each energy supplier. Other data 
for the EV aggregator is shown in Table II and parameters for 
the WoLF-PHC are listed in Table III. 

TABLE II 
EV Aggregator Parameters 

EV 
Aggregator 

𝑆𝑂𝐶  
(pu) 

𝑆𝑂𝐶  
(pu) c dis 

𝐸  
(MWh) 

Value 0.9 0.1 0.9 0.85 1000

TABLE III 
Data for the WOLF-PHC  

Parameter μ η  𝛿   𝛿  
Value 0.1 0.5 0.01 0.02

Four different cases are studied in this section. Case 1 would 
first simulate the model proposed in Section II, in which a WPP 
and an EV aggregator represent two strategic players, and then 
the proposed model is compared with the cooperative model in 
[9]. In Case 2, the number of strategic players increases to three 
to allow a traditional generator to strategically bid and compete 
with the WPP and EV aggregator. Loads are changed to 
inelastic. Bidding results would be analyzed according to the 
relationship between generation supply and load demand. In 

Case 3, strategic players of the proposed model are expanded to 
cover loads as well. Four strategic players including a load, a 
traditional generator, a WPP and an EV aggregator are 
simulated in the model. In Case 4, the four players model in 
Case 3 is applied to a modified IEEE 118-bus system with the 
number of strategic players tripled to twelve, and their bidding 
results will be fully studied and analyzed. While Case 1 would 
provide the solutions for both a single hour 20:00 and the 
successive 24-hour operations to show the time-series 
performance of the proposed model, Cases 2-4 would only 
present the results of a single hour 20:00 for illustrating the 
convergence of bi-level model. All the cases are simulated in 
MATLAB running on a 1.6 GHz Intel Core i5 -5250U computer 
for Case 1-3 and a 3.2 GHz Intel Core i7-8700 computer for 
Case 4 with 8 GB of RAM. 

A. Case 1

 The proposed model is first tested on the IEEE 6-bus
system. There are three traditional generators locating in buses 
1-3 and three loads connecting to buses 4-6. A WPP and an EV
aggregator representing two strategic participants are set in bus 
4 and bus 5, respectively.  

In order to generate the appropriate number of scenarios for 
the stochastic maximized power outputs of WPPs/EV 
aggregators and bid prices of non-strategic participants, the 
convergence theory in [43, 44] is used to determine the number 
of scenarios by formulas (29)-(31). 

* *100 [%](| |) /MC      (29) 

* *100 [%](| |) /MC      (30) 

* *100 [%](| |) /M C      (31) 

where μMC, σMC and λMC are the mean value, standard deviation 
and skewness calculated based on the generated scenarios; μ*, 
σ* and λ* are the mean value, standard deviation and skewness 
derived theoretically from the proposed model in Section II; εμ, 
εσ and ελ are the preset accuracy threshold. In this paper, the 
number of generated scenarios is increased from 100 by a step 
of 100, and the number of scenarios with εμ, εσ and ελ just smaller 
than the settled accuracy 1% is deemed as the finally 
determined numbers. By using this strategy, the uncertainties of 
the maximized power outputs of WPPs/EV aggregators, and bid 
prices of non-strategic participants are respectively represented 
by 1000, 1000, and 500 scenarios in this paper. 

In order to reduce the computational burden, the 
aforementioned forward selection method is used to curtail the 
number of scenarios and thus a set of the reduced number of 
scenarios is obtained. In the following, for investigating the 
impacts of the number of reduced scenarios on the accuracy of 
the scenario-based market model, comparative studies with 
different numbers of reduced scenarios are performed. Table IV 
shows the profits of the WPP/EV aggregator, social welfare and 
the solution time for different numbers of reduced scenarios at 
hour 20:00. It can be found that, with the number of reduced 
scenarios increasing from 125 to 500, profits of the WPP and 
the EV aggregator as well as the social welfare would be 
slightly enhanced; whereas as the number of reduced scenarios 
further increasing beyond 500, there will be very little further 
improvement. Regarding to the solution time, it would 
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monotonically increase with the growing number of reduced 
scenarios. Consequently, to make a trade-off between the 
profits of the WPP/EV aggregator, social welfare and time 
consumption, 500 reduced scenarios are adopted as an 
appropriate choice for the following case study. 

TABLE IV  
Profits of the WPP/EV Aggregator/Social Welfare and Solution Time under 

Different Numbers of Reduced Scenarios at hour 20:00 
Number of 
Reduced 
Scenarios 

Profit ($) Social 
Welfare ($) 

Solution 
Time(s) 

WPP EV Aggregator 

125 7630.9 2934.1 7352.5 105.68
250 7651.3 2949.6 7529.3 196.87
500 7688.1 2961.2 7830.7 365.72 
1000 7686.7 2962.7 7832.9 1165.59
2000 7688.5 2961.5 7830.9 2508.94

Based on the parameter set above, the optimized revenues of 
EV aggregator and WPP in all scenarios are used to display the 
randomness of the stochastic model. Fig.4 shows the 
relationship of revenues of the EV aggregator or WPP, as 
formulated in (17) and (18) respectively, LMPs and power 
output of the EV aggregator or WPP. The relationship of social 
welfare as represented in (5) and the EV aggregator/WPP power 
output is illustrated in Fig.5. The revenues of WPP or EV 
aggregator and the social welfare are calculated based on 500 
scenarios with probabilities derived by the scenario-generation 
and scenario-reduction algorithm. 

In the model, WPP and EV aggregator develop respective 
bidding strategies through the learning process of WoLF-PHC 
and interact with the market, while their revenues and the social 
welfare are influenced by constraints of the market clearing 
model, i.e. the power output limits of WPP and EV aggregator 
in (10)-(12b) and the SOC limit of EV aggregator in (15)-(16b). 
As shown in Fig.6, bidding results converge nicely to 
equilibrium after 50 iterations. The computation time is 
365.72s. In this process, there is no complex KKT 
transformation nor complex calculations for exploring the Nash 
equilibrium point, which demonstrates that flexible and concise 
WoLF-PHC could be used in the oligopoly electricity market to 
respectively optimize bid prices for the competitive WPP and 
the EV aggregator. Besides, each agent makes self-decision on 
bidding for maximizing its own interest only through the 
bidding information obtained from the ISO in the market 
without the cost functions or bidding data from the competitor. 
In this way, the privacy of personal data is protected. 

Comparison with the cooperative model in [9]: In the 
cooperative model in [9], the WPP and the EV aggregator as a 
strategic Hybrid Power Plant (HPP) and the objective is to 
maximize the overall benefit of the HPP model. In order to 
improve the WPP and EV aggregator’s common interests, the 
HPP owns their bidding information and cost function to 
strategically bid and dispatch their power as a central market 
player. The WPP and EV aggregator are fully controlled by the 
HPP and do not have any self-determination on bidding. 
Besides, the cooperative model would break if the WPP and EV 
aggregator do not provide their personal data to the HPP. 
Whereas, the proposed competitive model could adapt to a 
more flexible market environment and allows for self-bidding 
to increase individual revenue of the WPP and EV aggregator 

separately, which ensures better privacy of strategic players. 
Table V shows comparative results of the cooperative and 
competitive models for the two strategic participants in hour 
20:00. Compared with the cooperative model, both revenues of 
the EV aggregator and social welfare are increased while the 
profit of the WPP is slightly declined. This is due to the WPP’s 
profits are increased by the EV aggregator with the help of the 
HPP’s centralized dispatching in the cooperative model. In the 
competitive market, the EV aggregator could make self-
decision on bidding and reduce its bid price to lower than the 
WPP to sell more and earn more in return. As a result, the EV 
aggregator’s profit has an increase and the WPP’ interest is 
reduced. Meanwhile, social revenue is improved as competition 
brings the reduction of bid prices. 

In addition, the bidding strategy of the proposed model is also 
simulated for 24 hours. Scenarios of maximum power 
production of the WPP and bid prices of non-strategic 
participants are generated on an hourly basis as in [2, 45]. While 
the number of EVs connected to the EV aggregator is a normal 
distribution for 24 hours, and the initial and desired SOC are set 
as 0.6 and 0.8, respectively [46]. Comparative results of the 
cooperative and competitive models for 24 hours are provided 
in Table VI. The revenues of the WPP and EV aggregator in the 
proposed model outperformance those of the cooperative model, 
while the social welfare is also higher. Among the 500 reduced 
scenarios, Fig. 7 shows the SOC curve and scheduled output of 
the EV aggregator for 24 hours for scenario 1 as an example. 
As shown in Fig. 7, the EV aggregator is not in urgent charging 
period before 23:00 and its power output could be scheduled in 
the power market (refer to the constraint (12a)); whereas for the 
last several hours, the EV aggregator is fixed at the maximum 
charging power for preparing the daytime driving utilization 
(refer to the constraint (12b)). In this way, the EV aggregator 
strategically participates in the pool-based electricity market as 
well as satisfy the traffic energy demand. 

TABLE V 
Revenues Comparison of Cooperative and Competitive Models at hour 20:00 

Market Type 
WPP 

Revenues ($) 
EV Aggregator 
Revenues ($) 

Social  
Welfare ($) 

Cooperate Model  7724.9 2489.8 4157.6 
Competitive Model 7688.1 2961.2 7830.7 

TABLE VI 
Revenues Comparison of Cooperative and Competitive Models for 24 hours 

Market Type 
WPP 

Revenues ($) 
EV Aggregator 
Revenues ($) 

Social 
Welfare ($) 

Cooperate Model  131943.8 44519.2 79943.1 
Competitive Model 133720.3 45664.8 133674.2 

B. Case 2

In this case, the number of strategic players increases to three
suppliers, with a traditional generation unit, a WPP and an EV 
aggregator located at bus 1, bus 4 and bus 6, respectively. The 
total generation capacity is 497.1MW consisting of 174.6MW, 
122.5MW and 200MW for the traditional generator, WPP and 
EV aggregator respectively. The cost price of the traditional 
unit is set as 40$/MW. Loads are inelastic and set by the 
following four levels with bidding results analyzed as below. 

(1) The total load demand is set equal to the total capacity of
three suppliers. Fig.8 shows the market clearing bid prices, 
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Fig. 4 Revenues of EV and WPP for all  scenarios 
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Fig. 10.  Market clearing results of 3 players for 
total demand equal to total generation capacity of 

WPP and EV aggregator in 6-bus system
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total demand equal to total generation capacity in 
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Fig. 11.  Market clearing results of 3 players for 
total demand less than total generation capacity of 

WPP and EV aggregator in 6-bus system
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  Fig. 15.  Market clearing results for 12 players in 
118-bus system

revenues of the three suppliers and the overall social welfare. 
The computation time is 250.87s. It is observed that the game 
for these three strategic players converges to its equilibrium, in 
which their bid prices are much higher than their cost prices. 
This is because there is no competitive relationship among 
players in this case, they have no incentive to decrease the bid 
prices and every supplier raises its bid price to gain more profits. 

(2) The total load demand is reduced and set to 420 MW, and

in this condition the total power supply is higher than the total 
load demand. Hence, the relationship among these three 
suppliers becomes competitive. Fig.9 shows curves of bid 
prices and revenues as well as the social welfare obtained in 100 
iterations of WoLF-PHC with the computation time of 238.08s. 
The curves converge towards the equilibrium with ever 
decreasing amplitude. It is obvious that three players’ bid prices 
are reduced compared to those in Fig.8, which shows the 
competition forces every player to cut down its prices for 
selling more product. 

(3) The total load demand is further reduced to 322.5MW,
which is equal to the total capacity of the WPP and the EV 
aggregator. The converged bid prices and revenues of these 
three players as well as the social welfare are shown in Fig.10. 
In this way, the total load demand can be covered just by two 
generation units with lower cost prices. The traditional supplier 
with relatively higher cost price has little chances to sell 
products and earn profits. It is obvious in Fig.10 that none has 
interest to buy from the traditional supplier although its bid 
price has been reduced to its cost price. Meanwhile, WPP and 
EV aggregator have raised their prices to earn more with the 
WPP being the first to run out due to its lower bid prices. 
Afterward, if the bid price of the EV aggregator exceeds the 
traditional generator, the market becomes competitive. As a 
result, the EV aggregator would ensure its bid price slightly 
lower than that of the traditional supplier, which is consistent 
with curves in Fig.10. The computation time is 255.78s.  

(4) The total load demand is further reduced to below total
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capacity of the WPP and EV aggregator to form a competitive 
relationship between these two suppliers. Bid prices combined 
with the social welfare are shown in Fig.11 and the computation 
time is 251.38s. Similar to the previous case shown in Fig.10, 
the traditional generator bids according to its cost price and has 
no revenue. The competition drives the EV aggregator and the 
WPP to lower its bid price than that in Fig.10. 

C. Case 3
Loads are reset as elastic with curtailed parts and considered

as a load aggregator. In order to expand the model for more 
participants, four strategic players consisting of an elastic load, 
a traditional generator, a WPP and an EV aggregator are 
investigated in this case. Fig.12 shows the bid prices and 
revenues of these four strategic players as well as the social 
welfare. The computation time is 265.23s and the convergence 
performance is good. These imply that the proposed model is 
suitable for traditional units to participate in strategically 
bidding and works well for different typical strategic players 
participated in the market. Next, three energy suppliers remain 
the same as before, and the load demand is split into three 
agents with the capacity equal to 1/3 of total capacity of the 
original load. The computation time is 289.72s. Bidding results 
of these six players and the social welfare are plotted in Fig.13. 
The resulted bid prices are much lower compared with the ones 
with four players in Fig.12. This implies that players would 
adopt a relatively conservative behavior in a more competitive 
environment. Also noted is that WPP and traditional generator 
with higher bid prices will have little chance to sell their power 
generation and the load demand can be preferentially supported 
by the EV aggregator with a lower price. 

D. Case 4
The model of four strategic players in Case 3 is applied to a

modified IEEE 118-bus system, in which the WPP, EV 
aggregator and traditional generator are located at nodes 32, 49 
and 94, respectively, and loads are considered as a load 
aggregator. Both the bid prices and the social welfare are nicely 
converged as shown in Fig.14. It shows that WoLF-PHC could 
successfully obtain the optimal bid price for every strategic 
player in a larger fully competitive electricity market. Each of 
these four strategic players is then duplicated to become three 
identical players at the same location while loads are equally 
assigned to three load aggregators, and thereby there are twelve 
strategic players in total. The game of these twelve strategic 
players in the modified IEEE 118-bus system converges to its 
equilibrium with bid prices and the social welfare plotted in 
Fig.15. It confirms that the model with WoLF-PHC could be 
successfully used for more players to strategically bid in a large 
scale market. In addition, the overall bid prices of twelve 
strategic makers are kept at lower level than the case with four 
strategic players, which is consistent with Case 3 that bid prices 
would be reduced in a more competitive environment. With the 
use of the afore mentioned WoLF-PHC pre-learning process 
and 6 parallel computation threads running on a 6-core 3.2 GHz 
Intel Core i7-8700 computer, the computation times for market 
clearing with four and twelve strategic players are reduced to 
735.09s and 946.72s respectively, and would satisfactorily meet 

the offline market clearing requirement for the proposed DA 
market model. 

The objective of the proposed model is to maximize the 
social welfare as the priority, while with the LMP 𝜑 , ,  
interacted by the market-clearing in the lower level, the WPP 
and EV aggregator participants in the upper level make strategic 
biddings for increasing their respective revenues. As can be 
observed from Fig.6-15, the social welfare is increased on 
different levels, while the revenues of WPP and EV aggregator 
participants in some case studies would increase during the 
iteration process while others would reduce. Furthermore, the 
revenue of a particular market player would go up or down 
depending on the position of the final solution relative to the 
initial point of the WoLF-PHC algorithm. And the revenues of 
a group of market players, such as WPPs, EV aggregators, 
generators and loads, are not necessary always going up or 
down together, as demonstrated in Fig.15(b) of Case 4 where 
the revenue of Load 1 is reduced while those of Load 2 and 3 
are increased. 

V. CONCLUSION

A new competitive bidding market model with incomplete 
information for considering the uncertainties in bid prices of 
non-strategic participants and maximal power productions of 
WPPs and EV aggregators is presented in this paper. A recently 
developed MARL algorithm named WoLF-PHC is adopted to 
successfully solve the proposed model for strategic players to 
optimize their bidding in an oligopoly electricity market with 
personal privacy protection and respecting the autonomy of 
strategic suppliers. The market is simulated as a multi-agent 
based system, with three test cases built on a modified IEEE 6-
bus system and a larger case study based on a modified IEEE 
118-bus system, the bid result in four cases is nicely converged
to the equilibrium. Promising conclusions drawn from these
case studies include 1) multiple participants could respectively
optimize their bids by learning using the WoLF-PHC algorithm
in competitive electricity markets; 2) compared with the
cooperative model of the WPP and EV aggregator in a previous
study, the proposed competitive model is able to adapt to a more 
flexible market environment in which every strategic player has 
full autonomy in biddings with incomplete information to
maximize its own profit; 3) bid prices of market players would
be reduced with more competition brought from either the
decreased demand or the increased number of strategic
participants.
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