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Abstract—In this letter, the evolutionary game theory (EGT) 
with replication dynamic equations (RDEs) is adopted to explicitly 
determine the factors affecting energy providers’ (EPs) willingness 
of using the market power to uplift the price in the bidding 
procedure, which could be simulated using the win-or-learn-fast 
policy hill climbing (WoLF-PHC) algorithm as a multi-agent 
reinforcement learning (MARL) method. Firstly, empirical and 
numerical connections between WoLF-PHC and RDEs is proved. 
Then, by formulating RDEs of the bidding procedure, three 
factors affecting the bidding strategy preference are revealed, 
including the load demand, severity of congestion, and the price 
cap. Finally, the impact of these factors on the converged bidding 
price is demonstrated in case studies, by simulating the bidding 
procedure driven by WoLF-PHC. 

Index Terms—market power, multi-agent reinforcement 
learning, evolutionary game theory, bidding strategy 

I. INTRODUCTION

HE increasing amount of bilateral energy trading has 
resulted in massive congestion of tie-lines and accounts for 

higher complexity of transmission pricing. Meanwhile, the 
deregulated electricity market paradigm endogenizes strategic 
interactions and bidding games among multiple stakeholders 
intending for chasing more profits [1]. Most importantly, some 
stakeholders will intentionally uplift their bidding price to 
manipulate the locational marginal price (LMP) for more 
remuneration. This is known as the “market power” [2], which 
adversely contribute to the maximization of social welfare. 
Existing literatures in the field of market force mitigation are 
all based on static bidding game model, while little research 
provides insights based on the simulation of dynamic bidding 
procedure among multiple EPs. Thus, they failed to reveal the 
inherent reason why the EPs are motivated to uplift their 
bidding price, even willing to take the risk of failure of bidding. 
By answering this question, the market operator would be 
enlightened on how to impose proper regulations using the 
incentive compatibility method [3] to mitigate such abuse of 
market power. 

In [4], the WoLF-PHC algorithm, was adopted to simulate 
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the dynamic bidding among multiple EPs and to compute the 
Nash equilibrium point. However, the factors affecting the 
converged bidding price are implicitly indicated therein. In [5], 
the numerical connection between EGT with RDEs and some 
baseline MARL algorithms is proved, implying that EGT with 
RDEs can explicitly reveal the factors affecting the converged 
result in MARL. Thus, in this letter, the correlation between 
WoLF-PHC and EGT is investigated and adopted to analyse the 
learning dynamics. Specifically, the contributions of this letter 
are outlined as follows: 
1) The connection between WoLF-PHC based MARL and

EGT with RDEs is firstly investigated.
2) RDEs of bidding among EPs considering congestion

management are formulated to reveal indicators affecting
EPs’ converged bidding price driven by WoLF-PHC.

3) The Evolutionary Strategy Stability (ESS) analysis is
conducted to analyse how these indicators will affect the
learning dynamics, and conclusions are validated by case
studies in a 2-bus test network and IEEE 14-Bus system.

II. MARKET BIDDING AND CLEARING MODEL CONSIDERING

CONGESTION MANAGEMENT 

The interactive bidding and market clearing procedure is 
commonly formulated as a bi-level dynamic programming 
model. In this model, all EPs are considered as conventional 
generators with controllable power output. To capture the 
methodology of MARL and integrate the impact of congestion 
management into EPs’ decision making, the conventional bi-
level model is modified as follows with all well-known 
constraints neglected: 
EPs: 

𝑀𝑎𝑥  𝑅௘௡,௜
௧ ൫𝑃௘௡,௜

௧ , 𝜆௘௡,௜
௧  ห 𝜆௘௡,௠௔௥,௜

௧ିଵ ,𝑃௘௡,௔௟௟௢,௜
௧ିଵ ൯ 

െ𝐶௘௡,௜
௧ ሺ𝑃௘௡,௜

௧ ሻ ൅ 𝑅௦௨௥௣,௜
௧       (1) 

𝑅௦௨௥௣,௜
௧ ൌ ∑ ሺ𝜆௘௡,௜

௧ െ 𝜆௘௡,௝
௧ ሻ𝜇௜௝𝐹௜௝

௧
௝∈௃        (2) 

Market Operator: 
𝑀𝑖𝑛   𝐶ெை,௘௡

௧ ൫𝜆௘௡,௠௔௥,௜
௧ ,𝑃௘௡,௔௟௟௢,௜

௧  ห 𝑃௘௡,௜
௧ , 𝜆௘௡,௜

௧ ሻ       (3) 
𝐶ெை,௘௡
௧ ൌ ∑ 𝜆௘௡,௠௔௥,௜

௧ 𝑃௘௡,௔௟௟௢,௜
௧

௜∈ூ        (4) 
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The objective function of the 𝑖௧௛  EP at time slot t is to 
maximize the total revenue 𝑅௘௡,௜

௧ , and decision variables are the 
available capacity 𝑃௘௡,௜

௧  and the bidding price 𝜆௘௡,௜
௧ , based on 

market clearing results [𝜆௘௡,௠௔௥,௜
௧ିଵ ,𝑃௘௡,௔௟௟௢,௜

௧ିଵ ], in which 𝜆௘௡,௠௔௥,௜
௧ିଵ  

denotes the LMP. The congestion surplus 𝑅௦௨௥௣,௜
௧  is the 

multiplication of LMP difference between connected area i and 
j, and the tie-line capacity is 𝐹௜௝

௧ , while 𝜇௜௝𝐹௜௝
௧  denotes the pre-

purchased amount of Financial Transmission Right (FTR) [2] 
capacity by the 𝑖௧௛  provider. The objective function of the 
market operator is to minimize the total cost 𝐶ெை,௘௡

௧  by 
optimally allocate 𝑃௘௡,௔௟௟௢,௜

௧  to each EP.  

III. EVOLUTIONARY DYNAMICS OF EPS’ BIDDING STRATEGY

A. Connections between MARL and EGT

As elaborated in previous work [4], such dynamic bi-level
model (1)-(4) can be solved by MARL algorithms, which are 
intended to optimize the so-called “policy” of each “agent”. The 
policy is the function mapping the “state” and the “action”, i.e. 
to compute the optimal action with maximum “reward” in each 
state. For EPs, the state refers to [𝜆௘௡,௠௔௥,௜

௧ିଵ ,𝑃௘௡,௔௟௟௢,௜
௧ିଵ ], the action 

is [𝑃௘௡,௜
௧ , 𝜆௘௡,௜

௧ ]. The EGT with RDEs, instead, presents the 
change of probability of multiple “players” selecting different 
“strategies”, and these players will imitate the strategy of those 
who obtain the largest “payoff” [5]. Empirically, the strategy 
can be considered as the principle of selecting actions. 

The numerical connection between the EGT and MARL lies 
in the speed of change of strategies and actions. If the speed of 
“strategy change” can be proved to be proportional to that of 
“policy change”, then the expression of policy change can be 
directly replaced by that of strategy change [5], in which the 
factors affecting the converged result are explicitly indicated. 
    From the perspective of EGT, the game is assumed to be a 
two-player, two-strategy model, in which the two players refer 
to EPs located in the congested lines with different bidding 
strategies, including price-taker (strategy 1) and price-maker 
[4] (strategy 2). For EPs taking the price-taker strategy, they
tend to propose a relatively low bidding price, to secure the
success of bidding. For EPs taking the price-maker strategy,
they tend to submit a higher bidding price, to pursue more
benefit while taking the risk of failure of bidding. Based on the
derivations presented in [5], the change of probability of player
𝑥  and 𝑦  [10] selecting different strategies 𝑝  and 𝑞  can be
written as:

ௗ௫೛
೟

ௗ௧
ൌ 𝑥௣௧𝑥௤௧ ሾ𝑦௤௧𝓦𝓡𝓦் ൅ ℛ௣,௤

௧ െ ℛ௤,௤
௧ ሿ       (5) 

where 𝑥௣௧  denotes probability of player 𝑥 selecting strategy 𝑝, 
𝑥௤௧ ൌ 1 െ 𝑥௣௧  , 𝑦௤௧ ൌ 1 െ 𝑦௣௧ , 𝓦 ൌ ሺ1,െ1ሻ, and 𝓡 denotes the 
payoff matrix: 

𝓡 ൌ ቆ
ℛ௣,௣
௧ ℛ௣,௤

௧

ℛ௤,௣
௧ ℛ௤,௤

௧ ቇ                                (6) 

In conventional WoLF-IGA algorithm [6], the updating speed 
of policy is the gradient of expected reward to the policy, based 
on the assumption that the underlying game and the converged 
policy is known, as formulated below:  

డ𝔼൫௫೛
೟ ,௫೜

೟൯

డ௫೛
೟ ൌ

డ

డ௫೛
೟ ቊ∆௦௔൫𝑥௣

௧ , 𝑥௤௧൯𝓡ቆ
𝑦௣௧

𝑦௤௧
ቇቋ    (7)  

where ∆௦௔ denotes the learning coefficient [4]. The WoLF-PHC 
algorithm removes such assumption by approximating the 
equilibrium using the average policy updated in each iteration. 
Hence, their dynamics are essentially the same [6], which can 
be further simplified as follows:  

డ𝔼൫௫೛
೟ ,௫೜

೟൯

డ௫೛
೟ ൌ ∆௦௔ሾ𝑦௣௧𝓦𝓡𝓦் ൅ ℛ௣,௤

௧ െ ℛ௤,௤
௧ ሿ      (8) 

It can be concluded from (5) and (8) that the speed of both 
the strategy change in RDEs and the policy change in WoLF-
PHC is proportional to ሾ𝑦௣௧𝓦𝓡𝓦் ൅ ℛ௣,௤

௧ െ ℛ௤,௤
௧ ሿ. Hence, it 

is reasonable to use RDEs for analyzing the factors affecting the 
bidding strategy of EPs.  

B. RDEs of EPs

Derived from (5), the RDEs are then formulated as follows:

𝑥௣௧ ൌ 𝑥௣௧଴ ൅ ׬
ௗ௫೛

೟

ௗ௧
 𝑑𝑡     (9) 

ℛଵ,ଵ
௧ ൌ 𝜆௘௡,ଵ

௧ 𝑃௘௡,௔௟௟௢,ଵ
௧ ൅ ሺ𝜆௘௡,ଶ

௧ െ 𝜆௘௡,ଵ
௧ ሻ𝜇௔௕𝐹௔௕

௧       (10) 

ℛଵ,ଶ
௧ ൌ 𝜆௘௡,ଶ

௧ 𝑃௘௡,௔௟௟௢,ଶ
௧ ൌ 𝜆௘௡,ଶ

௧ ൫𝑃௘௡,௥௘௤ െ 𝑃௘௡,௔௟௟௢,ଵ
௧ ൯    (11) 

ௗ௫భ
ௗ௧

ൌ 𝑥ଵ
௧ሺ1 െ 𝑥ଵ

௧ሻሺℛଵ,ଵ
௧ െ ℛଵ,ଶ

௧ ሻ      (12) 
ௗ௫మ
ௗ௧

ൌ 𝑥ଶ
௧ሺ1 െ 𝑥ଶ

௧ሻሺℛଵ,ଶ
௧ െ ℛଵ,ଵ

௧ ሻ      (13) 

(9) indicates that the proportion of the EP selecting the 𝑝௧௛

strategy at time 𝑡 is based on the initial value at time 𝑡଴, as well 
as the proportion change from 𝑡଴ to 𝑡. Here, EPs with price-
maker strategy are assumed to always submit higher price than 
those with price-taker strategy. Thus, the revenue of EPs 
selecting the price-taker strategy includes the energy trading 
payoff and the congestion surplus, while the revenue of EPs 
selecting the price-maker strategy constitutes the trading payoff 
only, as indicated in (10) and (11). In (12) and (13), the rate of 
change of EPs’ proportion is derived, which will be used to 
conduct the ESS analysis. 

IV. EVOLUTIONARY STRATEGY STABILITY (ESS) ANALYSIS

RDEs describe the procedure of players searching for the
optimal strategy with maximum revenue, and this procedure 
terminates when all the players are not motivated to change 
their strategies, which is referred as the state of ESS. Here, the 
following criteria [7] is introduced for subsequent discussions: 
Theorem 1. The strategy 𝑥௣ will reach to ESS if and only if 
ௗ௫೛
ௗ௧

ൌ 0 and 
ௗమ௫೛
ௗ௧మ

൏ 0. 

According to the formulated RDEs (16) and (17), if 
ௗ௫భ
ௗ௧

ൌ 0, 

then 𝑥ଵ ൌ 0, 𝑥ଶ ൌ 1, and 
ௗమ௫భ
ௗ௧మ

ൌ ℛଵ,ଵ
௧ െ ℛଵ,ଶ

௧ . Thus, the price-

taker strategy will reach to ESS if and only if: 
1) 𝑥ଵ ൌ 0, ℛଵ,ଵ

௧ െ ℛଵ,ଶ
௧ ൏ 0

 if  𝜆௘௡,ଶ
௧ ൐

ఒ೐೙,భ
೟ ሺ௉೐೙,ೌ೗೗೚,భ

೟ ିఓೌ್ிೌ ್
೟ ሻ

௉೐೙,ೝ೐೜ି௉೐೙,ೌ೗೗೚,భ
೟ ିఓೌ್ிೌ ್

೟ , then the proportion of

EPs selecting price-taker strategy will be zero, i.e. all the EPs 
will tend to select the price-maker strategy, thus they will 
constantly uplift their bidding price and the final converged 
price will be the highest limitation. 
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2) 𝑥ଵ ൌ 1, ℛଵ,ଵ
௧ െ ℛଵ,ଶ

௧ ൐ 0

 if  𝜆௘௡,ଶ
௧ ൏

ఒ೐೙,భ
೟ ሺ௉೐೙,ೌ೗೗೚,భ

೟ ିఓೌ್ிೌ ್
೟ ሻ

௉೐೙,ೝ೐೜ି௉೐೙,ೌ೗೗೚,భ
೟ ିఓೌ್ிೌ ್

೟ , then the proportion of

EPs selecting price-taker strategy will be one, i.e. all the EPs 
will tend to select the price-taker strategy, thus they will 
constantly decrease their bidding price and the final converged 
price will be the lowest limitation.  

It can be concluded from the above that, the bidding strategy 
preference is correlated with the severity of congestion, the 
imposed limitation of bidding price, and the total energy 
demand.  As EPs with price-taker strategy will be allocated with 
more offers than normal in the condition of excessive load 
demand and tie-line congestion, they will be motivated to uplift 
the bidding price to pursue for more benefits. This will 
subsequently result in the converged bidding price reaches to 
the maximum allowance. From the perspective of market 
operator, a lower price cap is effective to mitigate the potential 
abuse of such market force. 

V. CASE STUDY

A. Test Scenario 1: 2-Bus Network

A 2-bus test system shown in Fig.1 is designed to validate
the aforementioned conclusions. The bidding procedure of the 
two generators is simulated using the WoLF-PHC algorithm [4]. 
It shall be noted that in each time slot of actual power market, 
the EPs only need to submit the bid once. In the simulation, it 
is assumed that each iteration refers to one round of bidding in 
the same condition (i.e. the bidding price limitation, the tie-line 
capacity, the total energy demand, etc.). Hence, the simulation 
refers to how the EPs “learn” to submit an optimal bidding price 
and finally reach to the convergence in the same conditions. 

In case 1, the impact of congested capacity on the converged 
bidding price is first demonstrated by imposing different line 
capacity. In Scenario A, the bidding strategy converges to the 
price-taker strategy. In Scenario B, due to the deducted 40MW 
of line capacity, the price-maker with expensive bidding price 
will be allocated with more capacity than that in Scenario A. 
Thus, they will be motivated to submit higher prices, and the 
expected revenue of being a price-maker will be more than that 
of price-taker. In case 2, the impact of load demand on the 
converged bidding price is presented. As the load increases, 
both G1 and G2 will tend to uplift the bidding price to the 
maximum limitation. In case 3, with the price cap decreased 
from 280$/MWh to 200$/MWh, generators will tend to lower 
their bidding price, because the expected revenue of being a 
price-taker will be more than that of price-maker. 

The evolutionary learning dynamics of the above scenarios 
can be simulated using the Vensim software [8] by inputting the 
corresponding parameters to the formulated RDEs (9)-(13). The 
simulation results, i.e. the probability change of EPs selecting 
different biding strategies, are shown in Fig.3 (a)-(f), which 
correspond to the bidding procedure shown in Fig.2 (a)-(f). This 
further validates the relationship between EGT and MARL. It 
shall be noted that the “time” in the x-axis does not corresponds 
to the “time” in real world; instead, it represents a generalized 
time to measure the speed of probability change.  

B. Test Scenario 2: IEEE 14-Bus Network

The applicability of aforementioned conclusions is further
demonstrated using the IEEE 14-bus network with 5 EPs as a 
more complicated scenario. The network configuration, 
generator characteristics, the base load and peak load data are 
extracted from [9]. The parameter settings of different cases are 
summarized in Table II. 

Fig.1. 2-Bus Test Network 

TABLE I 
TEST SCENARIO 1: PARAMETERS OF DESIGNATED CASES 

Case 
Load Demand

(MW) 
Tie-line 

Capacity (MW) 
Bidding Price Limitation 

($/MWh) 

1 100 
Scenario A: 100 
Scenario B: 80 

[100,200] 

2 
Scenario C: 100 
Scenario D: 200 

100 [100,200]

3 100 100
Scenario E: [100,200] 
Scenario F: [100,280] 

Fig.2 Biding Price Convergence in Different Scenarios 

  (a)     (b) 

   (c)    (d) 

   (e)    (f) 

 Fig.3. Evolutionary Dynamics in Different Scenarios 
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TABLE II 
TEST SCENARIO 2: PARAMETERS OF DESIGNATED CASES 

Case Load Demand 
Tie-line 

Capacity (MW) 
Bidding Price 

Limitation ($/MWh) 
4 Base Load Rated [100,200]
5 Base Load Rated [100,300]
6 Base Load 80% of Rating [100,200] 
7 Peak Load Rated [100,200]

The simulation results of bidding procedure are shown in Fig.4. 
In case 4, all EPs prefer the price-taker strategy under a lower 
demand and price cap. In case 5, due to the higher price cap, all 
EPs except for EP4 converge to the price-maker strategy, while 
EP4 tends to be the price-taker because of a cheaper generation 
cost. In case 6 and 7, compared with case 4, both EP3, EP4 and 
EP5 would uplift their bidding prices for more benefits due to 
the adjacent line congestion and demand increase, while EP1 
and EP2 only slightly uplift the bidding price because the 
congestion in this area is not severe. 

The applicability of the MARL (WoLF-PHC) method and 
EGT with RDEs can therefore be summarized as follows. The 
MARL is capable of simulating the bidding procedure among 
many EPs, but the key factors that will affect the final 
converged results remain unknown, which however can be 
addressed by formulating the RDEs and conducting the ESS 
analysis. Though it would be difficult to formulate the RDEs in 
the condition of many EPs, a simple 2-EP model is sufficient to 
identify the key factors. Therefore, the combination of MARL 
and EGT would be an effective and promising tool to simulate 
and analyze behaviors of participants in emerging market 
paradigms. 

Fig.4. Biding Price Convergence in Different Cases 

VI. CONCLUSION

In this letter, the EGT with RDEs is adopted to analyze the 
learning dynamics of EP’s bidding strategy driven by MARL, 
based on the clarified empirical and numerical relationship 
between EGT and MARL. Three key factors that affect the 
converged bidding strategy are identified and analyzed. This 
methodology could be further extended to investigate behaviors 
of stakeholders in other emerging market paradigms.  
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