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Abstract: Robust and globally-referenced positioning is indispensable for autonomous driving vehicles. Global navigation
satellite system (GNSS) is still an irreplaceable sensor. Satisfactory accuracy (about 1 m) can be obtained in sparse areas.
However, the GNSS positioning error can be up to 100 m in dense urban areas due to the multipath effects and non-line-of-sight
(NLOS) receptions caused by reflection and blockage from buildings. NLOS is currently the dominant factor degrading the
performance of GNSS positioning. Recently, the camera has been employed to detect the NLOS and then to exclude the NLOS
measurements from GNSS calculation. The exclusion of NLOS measurements can cause severe distortion of satellite
distribution, due to the excessive NLOS receptions in deep urban canyons. Correcting the NLOS receptions with the aid of 3D
light detection and ranging after detection of NLOS receptions using a fish-eye camera was proposed in this study. Finally, the
GNSS positioning was improved by using the healthy and corrected NLOS pseudo-range measurements. The proposed method
is evaluated through real road tests in typical highly urbanised canyons of Hong Kong. The evaluation results show that the
proposed method can effectively improve the positioning performance.

1 Introduction
Insufficient positioning accuracy [1] in urban canyon areas is still
one of the key problems that postpone the arrival of the large
population of autonomous systems [2]. Light detection and ranging
(LiDAR), camera, and inertial navigation system (INS) [3] are
usually integrated with global navigation satellite system (GNSS)
positioning [4–7] to obtain robust positioning. In the integration,
the GNSS receiver is the one that can continually provide absolute
positioning. It can provide satisfactory performance if the receiver
receives enough directly transmitted signals. However, the GNSS
transmission may be reflected, diffracted, or blocked by
surrounding buildings and moving objects in a dense urban canyon,
such as Hong Kong, which can cause additional signal
transmission delay. Thus, it introduces additional pseudo-range
errors due to both multipath effect and non-light-of-sight (NLOS)
reception. As a result, the positioning error can be up to 100 m [8,
9]. According to a recent review paper [10], NLOS is currently the
major problem for using GNSS in the applications of the intelligent
transportation system in urbanised cities. As the majority of the
NLOS receptions are caused by static buildings, various research
studies [11–13] utilised 3D building models to identify the NLOS/
line-of-sight (LOS) signals. Then, these NLOS receptions were

excluded from further GNSS positioning. Interestingly, recent
research studies [14, 15] showed that dynamic vehicles can also
cause GNSS NLOS and improvement was made by excluding
NLOS receptions. However, excessive exclusion of NLOS
measurements can significantly distort the satellite distribution as
the majority of the GNSS measurements are NLOS in dense urban
areas. As a result, GNSS positioning can be even worse after
NLOS exclusion. An example is given in Fig. 1. The number of
satellites will decrease dramatically if all the NLOS are excluded.
More importantly, the value of the parameter, horizontal dilution of
precision, which reflects the quality of satellite distribution
increases significantly. Therefore, complete NLOS exclusion for
dense urban areas is not preferable.

A well-known method, GNSS shadow matching, was studied to
match the measured satellite visibility with the predicted satellite
visibility of hypothesised positions [16–18]. However, the
performance of shadow matching relies on the quality of satellite
visibility classification and the initial guess of the GNSS receiver.
A likelihood-based 3D-mapping-aided (3DMA) GNSS method,
which modelled the measurement uncertainty to mitigate the
NLOS and multipath effects, was also proposed to provide accurate
positioning in the along-street direction [19]. Owing to the
complementarity of shadow matching and likelihood-based 3DMA
GNSS, their integration was recently studied [20] for better
performance. Another range-based 3DMA GNSS method is to
correct the NLOS affected measurement for GNSS positioning
[21–24]. These methods were proposed to simulate signal
transmission routes using the ray-tracing method [25].

However, the drawbacks of these ray-tracing-based 3DMA
GNSS methods are the stringent requirements for (i) the accuracy
of the 3D mapping database, (ii) the initial guess at receiver
positions, and (iii) the computational power of the processors due
to the ray-tracing process. Interestingly, the map of the
environment can be constructed using 3D LiDAR and the map is
used to classify the visibility of satellites. A research paper
modelled the GNSS noise covariance through NLOS detection
based on a LiDAR-constructed map [26]. Besides, incorporating
the LiDAR map and 3D city model to exclude NLOS was
conducted in the application of unmanned aerial vehicles [27].

Fig. 1  Illustration of the numbers of satellite measurements (GPS/BeiDou) 
before (red) and after (blue) NLOS exclusion in an urban canyon in Hong 
Kong
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Recently, due to the fast development of the computer vision
technique, the camera has been applied to capture the sky view to
further identify the satellite visibility. To detect the visibility of
satellites, the researchers apply omnidirectional and fish-eye
cameras [28–30] to detect the sky views of the environment in the
urbanised area. NLOS receptions can be detected with the detected
sky views and improvements are made. Similar research studies
[31, 32] are conducted recently and the improved GNSS
positioning was integrated with visual simultaneous localisation
and mapping [33]. However, these methods still tend to exclude
NLOS receptions from GNSS positioning, which is not applicable
in dense urban areas, such as Hong Kong, Tokyo, and New York.
With the fast development of autonomous driving vehicles in the
past few decades, the 3D light detection and ranging (LiDAR)
system becomes an indispensable sensor that can provide abundant
3D point clouds. Compared with the optical scanning system, the
3D LiDAR sensor is more mature in terms of application in
autonomous driving vehicles. In our team's previous work [34, 35],
we employ the 3D LiDAR and building height to correct the NLOS
receptions. Improved GNSS positioning was obtained with the
NLOS correction method. However, the performance of this

method relies on the availability of a list of building height. Instead
of relying on the building height, both a 3D LiDAR and a cost-
effective sky-pointing monocular camera were employed to
improve the GNSS positioning in our preliminary research in [36].
However, due to the limited field of view (FOV) of a monocular
camera, satellite visibility cannot be fully classified.

Therefore, in this study, improving the GNSS single-point
positioning (SPP) by detecting the GNSS NLOS receptions, and
then correcting the NLOS receptions with the aid of real-time point
clouds from a 3D LiDAR was proposed. A sky-pointing fish-eye
camera was firstly applied to capture the sky-view image. Then,
the sky and non-sky areas were segmented using an image-
processing method. The GNSS satellites were projected into the
segmented image with the aid of the heading angle of the camera
provided by an attitude and heading reference system (AHRS). The
satellite visibility could be identified based on the segmented
image and the projected satellite positions inside the image. Instead
of excluding the NLOS satellites, the NLOS pseudo-range
measurements were corrected using a deterministic model of
NLOS pseudo-range delay proposed in our previous work [8].
Finally, GNSS positioning was conducted using healthy
measurements and corrected NLOS measurements.

The remainder of this paper is arranged as follows. An
overview of the proposed method is presented in Section 2. The
NLOS detection method by a sky-pointing fish-eye camera is
presented in Section 3. The experiment evaluation is presented in
Section 5 after the correction of GNSS NLOS with the 3D LiDAR
is introduced in Section 4. Finally, the conclusions and future work
are in Section 6.

2 Overview of the proposed method
In this study, detecting and correcting the NLOS receptions caused
by surrounding objects, such as buildings, trees, and others, were
proposed. To detect and correct the NLOS measurement, a method
was proposed and its flowchart is shown in Fig. 2. 

The GNSS raw measurements, including satellite elevation and
azimuth angles and pseudo-range measurements, were obtained
from the receiver. The sky-view image was collected using a sky-
pointing fish-eye camera with a FOV of −90 to +90° vertically. The
satellites were then projected into the segmented image with the
aid of the heading angle from the AHRS. The LOS/NLOS
measurements can be classified using the perceived and segmented
sky-view image. The 3D LiDAR provided the point clouds of the
surroundings. Therefore, the distance from the GNSS receiver to
the surroundings can be obtained from the raw point clouds. The
NLOS correction was then estimated using a deterministic NLOS
model [8]. Finally, the GNSS SPP was conducted using a weighted
least square (WLS).

3 GNSS NLOS detection using a fish-eye camera
The sky-view image captured from the fish-eye camera can
effectively represent the geometry distribution of surrounding
objects, such as buildings, tall dynamic vehicles, trees, and others.
To determine the LOS/NLOS GNSS measurements using the sky-
view image, four steps were proposed which can be seen in Fig. 3:
(i) transform the raw sky-view image from the local frame [37] to
the body (camera) frame [37] based on the heading angle from the
AHRS; (ii) segment the sky-view image and separate the sky and
non-sky areas; (iii) project the satellites onto the segmented image
based on the satellite elevation and azimuth angles; (iv) identify the
satellite visibility based on the segmented image and the satellite
position inside the image.

Step 1: The raw image from the fish-eye camera was put in the
body frame. In 3DMA GNSS [21], the 3D building models are
usually projected onto the skyplot [38] together with the satellite to
further determine whether the satellite is blocked by buildings. In
this study, directly projecting the satellite onto the image to
determine the satellite visibility was proposed. Therefore, the
satellite in the local frame should be transformed into the same
frame as an image in the body frame. Assuming that the fish-eye
camera is a sky-pointing camera, only the globally referenced

Fig. 2  Overview of the proposed algorithm. The main inputs are GNSS
raw measurements, the sky-view image from the fish-eye camera, and real-
time 3D point clouds from the 3D LiDAR. The auxiliary input is the heading
angle from the AHRS

Fig. 3  Illustration of the proposed method to classify satellite visibility by
the image captured by a fish-eye camera. The four steps are
(a) Step 1: coordination transformation from local frame to body frame, (b) Step 2:
segmentation of sky and non-sky areas, (c) Step 3: projection of satellites in image
coordinate, (d) Step 4: identification of satellite visibility
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heading (τh, see Fig. 3) of the vehicle (provided by AHRS) is
required to transform the satellite into the body frame.
Step 2: To separate the sky and non-sky areas, we first transformed
the colour image into a greyscale image. Then, the greyscale image
was transformed into a binary image with an adaptive threshold.
The noisy points inside the binary image were filtered by using a
median filtering algorithm. These functions were performed using
the OpenCV [39] library. The binary image is shown in Fig. 3b. If
the satellite is located inside the sky area, the satellite is visible to
the GNSS receiver and vice versa.
Step 3: To identify the satellite visibility based on the processed
image in step 2, the satellite needs to be projected onto the same
coordinate system. The illustration of projecting the satellite onto
the image is shown in Fig. 3c which is a typical fish-eye projection
model [40]. For each satellite associated with specific azimuth and
elevation angles, it possesses a pixel position inside the sky-view
image. We assumed that the optical centre of the camera is zenith
pointing. To determine the position of the satellite inside the image,
we needed, (i) the distance, dpix, from the centre of the sky-view
image in pixels which was correlated with the elevation angle, ∅sat,
of the satellite and (ii) the azimuth angle of the satellite. Assuming
that the satellite was projected onto the image plane shown in
Fig. 3c, the image coordinate system was inside the image plane.
dpix shown in Fig. 3c indicates the distance between the satellite
position in the image and the centre of the image. dpix is determined
by the satellite elevation angle and the focal length f c  of the fish-
eye camera. Angle θ satisfies

θ = π
2 − ∅sat (1)

Thus, dpix can be expressed as follows [40]:

dpix = 2 ⋅ f c tan θ /2 (2)
Given the centre of the sky-view image in a pixel position
ximage

c , yimage
c , the position of the given satellite inside the sky-view

image can be expressed as ximage
sat , yimage

sat

ximage
sat = ximage

c + dpix cos τh + αsat (3)

yimage
sat = yimage

c − dpix sin τh + αsat (4)

Algorithm 1: Satellite visibility identification

Input: binary image It shown in Fig. 3d, satellite position
ximage

sat , yimage
sat  in pixels inside the image, and the radius of the

searching circle: Rs
Output: satellite visibility stv (visible: stv = 1, invisible: stv = 0)
S1: initialise the searching point ximage

point, 0, yimage
point, 0 = ximage

c , yimage
c

starting from the centre of the image It , stv = 1, the searching
direction represented by angle ε (see Fig. 3d), which is calculated
based on the satellite position in the image plane ximage

sat , yimage
sat

S2: given a constant incremental value Δdpix, the searching point is
updated as follows:

ximage
point, k = ximage

point, k − 1 + Δdpix cos ε (5)

yimage
point, k = yimage

point, k − 1 + Δdpix sin ε (6)

S3: given the searching point ximage
point, k, yimage

point, k  as the centre of the
searching circle, calculate the mean value of pixel values of all the
points inside the searching circle as follows:

V̄ = ∑
i = 1

m
It xd, i, yd, i (7)

It xd, i, yd, i  represents the pixel value of point i inside the searching
circle with a radius of Rs.
S4: if V̄ > Vthreshod, set stv to 0.
S5: repeat steps 2 and 4 until the searching point reaches the
position ximage

sat , yimage
sat  of the given satellite.

4 Improved GNSS positioning with NLOS
correction
In this section, an NLOS error model is presented. NLOS error
correction is implemented subsequently. Finally, GNSS positioning
is conducted by WLS.

4.1 NLOS correction based on LiDAR point clouds

In terms of the measurements from the GNSS receiver, each
pseudo-range measurement ρn is written as follows [41]:

ρn = Rn + c δtr − δtnsv + In + Tn + en (8)

where Rn is the geometric range between the satellite and the
GNSS receiver, δtnsv denotes the satellite clock bias, and δtr

indicates the receiver clock bias. In represents the ionospheric
delay distance; Tn indicates the tropospheric delay distance. en
represents the errors caused by the multipath effects, NLOS
receptions, receiver noise, antenna delay, and others. In this study,
we focused on mitigating the NLOS errors caused by the related
environment buildings. In other words, shrinking en by mitigating
NLOS errors. The NLOS error model was proposed in [8]. α
represents the distance from the receiver to the building. It was
assumed that the building was vertical to the ground and GNSS
signal reflection satisfied the law of reflection. The direction of
actual signal transmission was parallel to the direction of the
expected signal transmission. Route distance difference γ between
the reflected signal and the expected signal is expressed as follows
[8]:

γ = αsec ∅sat 1 + cos 2∅sat (9)

Thus, the NLOS error can be calculated with the elevation angle
and the distance from the receiver to the building causing the
reflection. In this study, the distance from the GNSS receiver was
directly provided by the 3D LiDAR point clouds. The details about

Fig. 4  Illustration of satellite visibility classification result

here αsat is the azimuth angle of the satellite.
Step 4: After the satellite is projected onto the sky-view image as 
shown in Fig. 3d, we proposed a searching method to identify the 
satellite visibility. For a given satellite (see Fig. 3d) located inside a 
sky-view image, identifying the visibility using Algorithm 1 was
proposed. Vthreshod represents the threshold of the mean pixel value 
and is experimentally determined. A satellite visibility 
classification result is shown in Fig. 4. The satellites were 
projected onto the image with the red and green dots denoting the 
NLOS and healthy measurements, respectively.
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NLOS correction implementation can be found in the previous
work of our team in [34].

4.2 GNSS positioning based on corrected pseudo-range
measurements

The clock bias between the GNSS receiver and the satellites is
usually represented by the pseudo-range measurements. The
equation linking the receiver and the satellite positions can be
expressed as the following linearised formula using the least square
(LS) method:

x^ = (GTG)−1GTρ (10)

where G represents the observation matrix and consists of unit
LOS vectors between GNSS receivers’ position and the satellite
position. x^  indicates the estimated receiver position and ρ denotes
the pseudo-range measurements vector. Note that both the healthy
and corrected pseudo-range measurements were used.
Conventionally, to better represent the reliability of each
measurement based on the information measured by the receiver,
weightings of each measurement are needed. The function to
calculate the weighting by integrating the measurement C/N0 and
the satellite elevation angle is expressed as W [42]. Finally, the
GNSS receiver position can be estimated using the WLS method as

x^ = (GTWG)−1GTW ρ (11)

where pseudo-range vector ρ includes both the LOS and corrected
NLOS measurements. In this case, both the LOS and NLOS
measurements were applied to the GNSS positioning calculation.

5 Experiment evaluation
5.1 Experiment setup

To validate the effectiveness of the proposed method, two
experiments were conducted in typical urban canyons of Hong
Kong on 12 July 2019. The experimental scenes are shown in
Fig. 5. The left figure of Fig. 5 shows the test vehicle with all the
sensors installed in a compact sensor kit. The middle and right
figures show the tested urban canyons 1 and 2. The tested urban
scenarios contain static buildings, trees, and dynamic objects.

In both experiments, a u-blox M8 T GNSS receiver was used to
collect raw global positioning system (GPS)/BeiDou measurements
at the frequency of 1 Hz. The sky-pointing fish-eye camera was
employed to capture the sky-view image at the frequency of 10 Hz.
The Xsens Ti-10 IMU (which can also act as an AHRS) was
employed to collect data at the frequency of 100 Hz to provide the
heading angle for the fish-eye camera. In addition, the NovAtel
SPAN-CPT, a GNSS real-time kinetic/INS (fibre optic gyroscopes)
integrated navigation system, was used to provide the ground truth.
All the data were collected and synchronised under the robot
operation system [43]. The coordinate systems between all the
sensors were calibrated before the experiments. The values of the
applied parameters in this study are shown in Table 1. 

To verify the effectiveness of the proposed method, three GNSS
positioning methods were compared:

• WLS [44]
• WLS + NLOS exclusion (WLS-NE) — excluding the NLOS

measurements detected using a fish-eye camera and performing
WLS.

• WLS + NLOS correction (WLS-NC) — correcting the NLOS
measurements detected using a fish-eye camera and performing
WLS.

5.2 Evaluation in urban canyon 1 experiment

In urban canyon 1, both sides of the road are regular buildings of
almost similar heights which is suitable for NLOS detection and
correction. We first experimented in urban canyon 1 to validate the
performance of the proposed method. The GNSS positioning
performance of the listed three methods is shown in Table 2. A
mean positioning error of 27.18 m was obtained using the
conventional WLS method, with the maximum error reaching
131.81 m. After all the NLOS satellites detected using the fish-eye
camera being excluded from WLS calculation, the positioning error
increased to >58 m. Moreover, the standard deviation also
increased from 22.28 to 86.13 m. As a result of the excessive
NLOS exclusion, the availability of GNSS positioning decreased
from 100 to 9.70%. With the help of the proposed NLOS detection
and correction method, the GNSS positioning error decreased to
18.49 m and the standard deviation also decreased slightly
compared with that of the WLS. The improved GNSS positioning
performance showed the effectiveness of the proposed method.
Moreover, the availability of the proposed method was also
guaranteed using the proposed method. The detailed positioning
errors of the WLS and WLS-NC are shown in Fig. 6. The upper
graph shows the number of LOS and NLOS satellites. The lower
graph shows the positioning error using the WLS and proposed
method. It can be seen that the proposed method outperforms the
WLS almost throughout the test.

The LOS/NLOS satellite numbers are shown in Table 3. The
mean numbers of LOS and NLOS satellites are 2.89 and 8.08,
respectively. During the experiments, the NLOS satellites made up
73.65% of all the satellites due to the blockage from the
surrounding tall buildings. The minimum number of LOS satellites
was 0, which means all the satellites were NLOS receptions during
this epoch. Interestingly, at least 2 satellites were NLOS during the
experiment and the maximum number of NLOS satellites reached
14.

Fig. 5  Experimental vehicle and sensor setup in the left figure. Test
scenarios of urban canyons 1 and 2

Table 1 Parameter values used in this paper
Parameters Vthreshod Δdpix FOV f c
value 50 5 pixels (H/ V) 185° 583 pixels

Table 2 Performance of the GNSS SPP in urban Canyon 1
GNSS Positioning WLS WLS-NE WLS-NC
mean error 27.18 m 58.57 m 18.49 m
std 22.28 m 86.13 m 15.27 m
maximum error 131.81 m 156.29 m 73.37 m
availability 100% 9.70% 100%

Fig. 6  2D positioning error of the listed GNSS positioning methods in
urban canyon 1
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satellites near the building boundaries are misclassified, as shown
in Figs. 7a and i.

In short, the improved GNSS positioning accuracy in Table 2
and Fig. 6 shows the effectiveness of the proposed method. NLOS
detection performance is shown in Table 3 and Fig. 7. To find out
the correctness of the applied NLOS correction estimation method
presented in Section 4, we compared the estimated pseudo-range
delay (9) of the NLOS satellites using the proposed method with
the exact pseudo-range delay acquired by using the ray-tracing
method [21] (Table 4). Our previous work [21] employed the
building model and ray-tracing technique to recover the exact
NLOS delay caused by the reflection from the surrounding
buildings. Based on the ground truth position of the GNSS receiver
provided by the reference system, the potential NLOS pseudo-
range delay can be accurately recovered. Tables 5 and 6 show the
estimated and ground truth delays in several NLOS measurements
in two epochs. 

In Table 5, all seven satellites have an elevation angle of >40°.
In general, a satellite with a low elevation angle is more likely to
cause a larger NLOS delay [8]. According to (9), the NLOS delay
in the pseudo-range domain is determined by the satellite elevation
angle and the distance from the GNSS receiver to the signal
reflector. Therefore, satellite 88 with a larger elevation angle
(48.13°) can even cause a larger NLOS delay (14.14 m) than
satellite 5 (1.54 m). Besides, satellite 113 with small C/N0 (25 dB-
Hz) conversely has a smaller correction, compared with the one
caused by satellite 116 (36 dB-Hz). It can be seen from Table 5 that
some of the estimated NLOS delays are close to the actual NLOS
delay, e.g. satellites 17, 88, 113, and 116. One of the reasons that
the proposed method cannot perfectly estimate the actual NLOS
delay is that the proposed method relies on the detection of the
NLOS signal reflector. The reflector can be misidentified using the
proposed method, as illustrated in Fig. 8. The GNSS signal
transmitted can be reflected by building A or B. In fact, the
distance from the GNSS receiver to building B was significantly
larger than that of building A, causing a larger NLOS delay.
Therefore, if the NLOS signal reflector is not correctly detected,

Table 3 Satellite numbers in urban canyon 1
Satellite LOS NLOS LOS & NLOS
mean number 2.89 8.08 10.97
std 1.75 2.54 2.49
max number 12 14 16
min number 0 2 5
percentage 26.34% 73.65% —

Fig. 7  Illustration of sky-plot which indicates the satellite distribution
during the dynamic experiment. Green dots represent healthy satellites. Red
dots denote the NLOS satellites
(a) Epoch with 8 NLOS and 2 LOS satellites, (b) Epoch with 9 NLOS and 2 LOS
satellites, (c) Epoch with 9 NLOS and 1 LOS satellites, (d) Epoch with 6 NLOS and 1
LOS satellites, (e) Epoch with 5 NLOS and 2 LOS satellites, (f) Epoch with 6 NLOS
and 2 LOS satellites, (g) Epoch with 8 NLOS and 3 LOS satellites, (h) Epoch with 11
NLOS and 3 LOS satellites, (i) Epoch with 7 NLOS and 4 LOS satellites

Table 4 LOS/NLOS detection accuracy based on two
heading angle sources
Heading source LOS NLOS
AHRS (Xsens Ti-10 IMU) 93.01% 89.61%
reference system (NovAtel SPANCPT) 96.33% 95.20%

Table 5 NLOS pseudo-range correction (epoch 459017)
Satellite
Pseudorandom
noise (PRN)

Elevation
angle

C/N0
, dB-
Hz

Actual
pseudo-
range

correction

Estimated
pseudo-
range

correction
5 41.18° 30 1.54 m 6.41 m
17 52.47° 24 3.33 m 2.45 m
19 63.65° 26 0 m 0.93 m
88 48.13° 27 14.14 m 9.86 m
99 45.12° 24 5.17 m 10.07 m
113 52.14° 25 5.2 m 3.45 m
116 46.83° 36 12.51 m 11.52 m

Table 6 NLOS pseudo-range correction (epoch 459069)
Satellite
PRN

Elevation
angle

C/N0,
dB-Hz

Actual
pseudo-range

correction

Estimated
pseudo-range

correction
2 38.27° 30 14.91 m 9.73 m
5 41.50° 28 9.42 m 6.33 m
6 44.96° 26 11.95 m 12.28 m
9 30.73° 25 10.18 m 6.49 m
12 29.64° 33 61.01 m 7.98 m
17 52.24° 41 11.37 m 5.89 m
89 64.57° 32 7.98 m 10.37 m
94 47.65° 25 7.52 m 11.07 m

Fig. 8  Illustration NLOS signal transmission which can be reflected by
reflector A or B

The satellite distributions inside the sky-view image in several 
epochs are shown in Fig. 7. The red circle shows the NLOS 
satellite and blue circle shows the healthy satellite. The numbers 
inside the figures show the accuracy of WLS and WLS-NC, 
respectively. As the satellite classification accuracy relies on the 
performance of the image processing presented in Section 3, some 
of the NLOS satellites can be misclassified due to the illumination 
sensitivity of the image-processing algorithm. For example, the
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the estimated NLOS correction cannot introduce enough
improvement. To demonstrate this issue, another NLOS correction
result is shown in Table 6. In this epoch, the actual NLOS delay for
satellite 12 was 61.01 m and the estimated one was only 7.98 m.
The NLOS satellite with a low elevation angle is more likely to be
reflected by buildings far away. However, the proposed method can
still help to correct the NLOS delay even in this case, although the
improvement was not remarkable. In short, the proposed method
can improve the GNSS positioning from 27.18 to 18.49 m in the
test in urban canyon 1.

5.3 Evaluation in urban canyon 2 experiment

To verify the performance of the proposed method in this study, we
conducted another experiment in urban canyon 2 with irregular
building distribution where the heights of the buildings on both
sides were diverse (see Fig. 5 and for the sky-view image, see
Fig. 9). In such a case, the NLOS signal reflector detection can be
significantly harder than in urban canyon 1. Therefore, we believe
that urban canyon 2 is harder to obtain improvement compared
with the test in urban canyon 1.

The GNSS positioning results using the listed three methods are
shown in Table 7. A mean positioning error of 17.51 m was
obtained using the conventional WLS method and positioning
solution availability of 100% was obtained. The mean error
increased to 35.19 m with all the NLOS measurements excluded.
Moreover, the maximum error also slightly increased from 55.80 to
85.01 m. The availability decreased to 35.88% due to the excessive
NLOS exclusion. With the aid of the proposed method, the mean
error decreased to 12.07 m and the standard deviation also
decreased to 7.09 m. The availability was also guaranteed. Fig. 10
shows the details about the 2D positioning error during the test in
urban canyon 2. The upper graph shows the satellite number. The
lower graph shows GNSS positioning error using the WLS and
WLS-NC methods.

The mean number of LOS satellites was 5.03 which was larger
than that in urban canyon 1 (shown in Table 8). The percentages of

LOS and NLOS satellites were 40.40 and 59.60%, respectively.
The sky-view images in some epochs are shown in Fig. 9. It can be
seen that the building boundary distribution was not as regular as
that in urban canyon 1 (see Fig. 7). Therefore, the detection of the
NLOS signal reflector was more difficult to be identified as the
reflector could be a building far away from the ego-vehicle (see
Fig. 8). However, improved GNSS positioning accuracy was still
achieved, with the mean error decreasing from 17.51 to 12.07 m,
which again shows the effectiveness of the proposed method.

6 Conclusions and future work
Insufficient positioning accuracy and robustness is one of the main
problems preventing the arrival of autonomous vehicles. As
mentioned in [10], NLOS is the major cause of unsatisfactory
GNSS positioning results in super-urbanised cities. NLOS
exclusion is a commonly studied method to improve GNSS
positioning and improvements can be obtained in sub-urban
scenarios.

To correct the NLOS pseudo-range errors without relying on the
time-consuming ray-tracing process, in this study, detecting the
NLOS receptions and correcting the NLOS measurements with the
aid of real-time point clouds and a fish-eye camera was proposed.
The fish-eye camera is firstly applied to capture the sky-view
image. Then the sky-view image was segmented, and the satellites
were projected into the segmented image. The NLOS satellites
were detected accordingly. Instead of excluding the NLOS
receptions from GNSS positioning calculation, the NLOS
measurements were corrected by using an NLOS model. Both the
healthy and corrected pseudo-range measurements were employed
to conduct the GNSS positioning. The accuracy was improved both
in urban canyons 1 and 2, which shows the effectiveness of the
proposed method.

In the near future, the NLOS signal reflector detection method
will be studied. To improve the sky-view image segmentation
accuracy, we will adopt the deep learning-based image
segmentation method to enhance the satellite classification method.
Moreover, we will study the integration of GNSS and INS [3] by
using the proposed NLOS correction method to find out the
potential of the proposed method in GNSS/INS fusion for
autonomous systems [2].

Fig. 9  Illustration of sky-plot indicating satellite distribution during the
dynamic experiment. Green dots represent healthy satellites. Red dots
represent the NLOS satellites

Table 7 Positioning performance of the GNSS SPP in
urban canyon 2
GNSS positioning WLS WLS-NE WLS-NC
mean error 17.51 m 35.19 m 12.07 m
std 8.97 m 22.07 m 7.09 m
maximum error 55.80 m 85.01 m 43.45 m
availability 100% 35.88% 100%

Fig. 10  2D positioning error of the listed GNSS positioning methods in
urban canyon 2

Table 8 Satellite numbers in urban canyon 2
Satellite LOS NLOS LOS & NLOS
mean number 5.03 7.42 12.45
std 1.86 3.74 3.48
max number 12 14 21
min number 1 0 5
percentage 40.40% 59.60% —
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