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In long-term follow-up studies, data are often collected on repeated mea-
sures of multivariate response variables as well as on time to the occurrence
of a certain event. To jointly analyze such longitudinal data and survival time,
we propose a general class of semiparametric latent-class models that accom-
modates a heterogeneous study population with flexible dependence struc-
tures between the longitudinal and survival outcomes. We combine nonpara-
metric maximum likelihood estimation with sieve estimation and devise an
efficient EM algorithm to implement the proposed approach. We establish
the asymptotic properties of the proposed estimators through novel use of
modern empirical process theory, sieve estimation theory and semiparamet-
ric efficiency theory. Finally, we demonstrate the advantages of the proposed
methods through extensive simulation studies and provide an application to
the Atherosclerosis Risk in Communities study.

1. Introduction. Many clinical and epidemiological studies generate data on repeated
measures of response variables at multiple time points as well as on time to the occurrence
of a clinical event. In cardiovascular cohort studies, for example, data are often recorded for
both repeated measures of risk factors (e.g., blood pressures, cholesterol levels) and time to
a cardiovascular event (e.g., stroke, heart attack) or death [17]. Shared random-effect models
and joint latent-class models have been proposed to investigate the dynamic relationships
among such longitudinal and survival data.

In shared random-effect models, a linear mixed model with a set of unobserved random
effects is assumed for the longitudinal outcomes, and a proportional hazards model or trans-
formation model with the same random effects as covariates is assumed for the survival time
[4, 6, 18, 23, 24]. The shared random effects account for the dependence between the longitu-
dinal and survival outcomes. These models typically assume that, conditional on the random
effects, the distribution of the survival time and the effects of covariates on the longitudinal
and survival outcomes are the same across subjects.

Joint latent-class models assume that the population consists of subgroups and within each
subgroup, subjects have the same distributions of longitudinal and survival outcomes [9,
13]. These models allow the baseline risk of event and the association pattern between the
longitudinal and survival outcomes to vary flexibly across subgroups. However, the existing
work is mostly confined to fully parametric models. Lin et al. [5] proposed a semiparametric
latent-class model with a nonparametric baseline hazard function for the survival time in each
latent class but did not investigate the theoretical properties of the proposed nonparametric
maximum likelihood estimators (NPMLE). In fact, such NPMLEs are inconsistent [11, 20];
see Section S1 of the Supplementary Material [21].

We propose a general model for the joint analysis of multivariate longitudinal data and
survival time. We assume that the population consists of a mixture of latent subgroups such
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that within each subgroup, the joint distribution of the longitudinal and survival outcomes
is described by a separate random-effect model, in which the survival time is characterized
by a separate nonparametric baseline hazard function. This model naturally extends those of
Henderson, Diggle and Dobson [4] and Tsiatis and Davidian [18] by allowing the existence
of latent subgroups. The model can be used to address important scientific questions:

1. Identification of latent subgroups within a heterogeneous study population;
2. Estimation of the effects of baseline covariates, such as treatment, on longitudinal and

survival outcomes within each subgroup;
3. Evaluation of the event risk given baseline covariates and trajectories of longitudinal

outcomes; and
4. Estimation of the association between the trajectories of longitudinal outcomes and

covariates with proper adjustment of informative dropout due to the occurrence of the event.

The proposed modeling framework also extends existing work by accommodating multi-
variate longitudinal outcomes measured at multiple time points. This framework is particu-
larly useful in cardiovascular studies, where multiple risk factors, such as blood pressures and
cholesterol levels, are repeatedly measured. Including multivariate longitudinal outcomes not
only provides a comprehensive depiction of the dynamic relationships among the event of
interest and relevant risk factors but also helps identify the latent subgroup structure.

Due to the presence of multiple nonparametric components in the model and the lack of
a closed-form expression for the likelihood function, model estimation is highly challenging
both theoretically and computationally. To overcome the nonidentifiability of the fully non-
parametric likelihood approach, we propose to combine nonparametric likelihood estimation
with sieve estimation, such that the cumulative hazard function of a reference latent class is
estimated by a step function with jumps at the observed event times, and the ratios of the
baseline hazard functions across latent classes are estimated by spline functions. We develop
a stable and efficient (accelerated) EM algorithm [3] to compute the proposed estimators.

We prove that the proposed estimators are consistent and the parametric components of the
estimators are asymptotically efficient. The derivations involve novel applications of empiri-
cal process theory, sieve estimation theory and semiparametric efficiency theory. One major
challenge in our theoretical development is to show that the proposed model is identifiable
with an invertible information operator. Due to the presence of latent classes, techniques for
establishing model identifiability or invertibility of the information operator for semiparamet-
ric shared random-effect models are not directly applicable to the current setting. In addition,
existing methods for latent-class models are not readily applicable to semiparametric mod-
els. To establish model identifiability and the invertibility of the information operator, we note
that the likelihood and the score function are the sums of the terms arising from the likelihood
of semiparametric shared random-effect models and show that the terms in the summation
can be separated by properly varying the observed data values.

The rest of this article is structured as follows. In Section 2, we formulate the model and
describe the proposed estimation approach. In Section 3, we discuss the computation of the
proposed estimators, and in Section 4, we present the theoretical results. In Section 5, we
report the results from our simulation studies. In Section 6, we provide an application to
the Atherosclerosis Risk in Communities (ARIC) study [17]. In Section 7, we make some
concluding remarks. We relegate technical proofs to the Appendix.

2. Model, likelihood and sieve estimation. Suppose that there are G latent classes. Let
C denote the latent class membership, with C = g if a subject belongs to the gth latent class
(g = 1, . . . ,G). We relate C to a set of time-independent covariates W , which generally
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includes the constant 1, through a multinomial logistic regression model:

P(C = g | W ) = eαT
gW∑G

l=1 eαT
l W

,(1)

where αg is the vector of class-specific regression parameters. For model identifiability, we
set αG = 0. Each latent class is characterized by class-specific trajectories of multivariate
longitudinal outcomes and a class-specific risk of the event of interest. The longitudinal out-
comes and the event time are assumed to be conditionally independent given the latent class
membership and a multivariate random effect.

Suppose that there are J types of longitudinal outcomes and the j th type is measured at
Nj time points. For j = 1, . . . , J and k = 1, . . . ,Nj , let Yjk denote the kth measurement
of the j th longitudinal outcome and Xjk and X̃jk denote corresponding covariates, which
include the constant 1. The covariates Xjk , X̃jk and W may partially or completely overlap.
We relate Yjk to Xjk and X̃jk through the multivariate linear mixed model:

Yjk|C=g = βT
gXjk + bTX̃jk + εjk(2)

for g = 1, . . . ,G, where βg is a vector of class-specific regression parameters, b is a vector
of random effects assumed to follow the multivariate normal distribution with mean 0 and
variance �(ξg), (εj1, . . . , εjNj

) are independent zero-mean normal random variables with
variance σ 2

gj , and �(ξg) is a covariance matrix indexed by a vector of class-specific variance
parameters ξg .

Let T denote the event time of interest. We relate T to a set of potentially time-dependent
covariates Z(·) through the proportional hazards model:

λ(t |Z,b,C = g) = λg(t)e
γ T

gZ(t)+ηT
gb,(3)

where λg(·) is an arbitrary class-specific baseline hazard function, and γ g and ηg are class-
specific regression parameters. In the presence of censoring, we observe T̃ = T ∧ U and
� = I (T ≤ U), where U is the censoring time, and I (·) is the indicator function. Let Y =
(Y11, . . . , Y1N1, . . . , YJ1, . . . , YJNJ

)T, X = (X11, . . . ,X1N1, . . . ,XJ1, . . . ,XJNJ
)T, and X̃ =

(X̃11, . . . , X̃1N1, . . . , X̃J1, . . . , X̃JNJ
)T. The data consist of n independent observations Oi ≡

(Ni1, . . . ,NiJ ,Y i ,Xi , X̃i , T̃i ,�i,W i , {Zi (t)}t∈[0,T̃i ]) for i = 1, . . . , n, where τ is the end of
study time.

Let θ ≡ (α1, . . . ,αG−1,β1, . . . ,βG,σ 2
11, . . . , σ

2
1J , . . . , σ 2

GJ , ξ1, . . . , ξG,γ 1, . . . ,γ G,η1,

. . . ,ηG) denote the set of all Euclidean parameters and �g(t) = ∫ t
0 λg(u)du for g = 1, . . . ,G.

Under the assumption of noninformative censoring and longitudinal measurement times, rig-
orously formulated in Section S2 of the Supplementary Material [21], the likelihood function
concerning (θ ,�1, . . . ,�G) is proportional to

n∏
i=1

G∑
g=1

eαT
gW i∑G

l=1 eαT
l W i

∫ J∏
j=1

Nij∏
k=1

σ−1
gj e

− 1
2σ2

gj

(Yijk−βT
gXijk−bTX̃ijk)

2{
λg(T̃i)e

γ T
gZi (T̃i )+ηT

gb}�i

× exp
{
−
∫ T̃i

0
eγ T

gZi (t)+ηT
gb d�g(t)

}∣∣�(ξg)
∣∣−1/2

e− 1
2 bT�(ξg)−1b db.

(4)

We reparametrize the model by setting � = �1 and ψg = log(λg/λ1); we then estimate �

nonparametrically and approximate ψg using a sieve of B-spline functions for g = 2, . . . ,G.
In particular, we treat � as a step function that jumps at the observed event times and replace
λ1(T̃i) in the likelihood by �{T̃i}, where �{t} is the jump size of � at t . Let B1, . . . ,Bmn be
B-spline functions on a grid over [0, τ ], where the number of spline functions mn increases
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with the sample size. For g = 2, . . . ,G, we approximate ψg by
∑mn

s=1 agsBs , where a ≡
{ags}g=2,...,G;s=1,...,mn

is a set of regression parameters. Ideally, NPMLE would be adopted
for every nonparametric function because it does not require tuning and is more flexible than
splines. However, because the NPMLE for (�1, . . . ,�G) is inconsistent, we estimate the
cumulative baseline hazard function of a reference group using NPMLE and estimate the
remaining nonparametric functions using splines, so as to achieve as much model flexibility
as possible while ensuring estimation consistency.

Let (̂θn, �̂n, ân) be the maximizer of

n∏
i=1

G∑
g=1

eαT
gW i∑G

l=1 eαT
l W i

∫ J∏
j=1

Nij∏
k=1

σ−1
gj e

− 1
2σ2

gj

(Yijk−βT
gXijk−bTX̃ijk)

2

× [
�{T̃i}eγ T

gZi (T̃i )+∑mn
s=1 agsBs(T̃i )+ηT

gb]�i exp
{
−
∫ T̃i

0
eγ T

gZi (t)+∑mn
s=1 agsBs(t)+ηT

gb d�(t)

}
× ∣∣�(ξg)

∣∣−1/2
e− 1

2 bT�(ξg)−1b db,

and let ψ̂ng = ∑mn

s=1 ângsBs , where ângs is the corresponding element of ân. Let B =
(ψ2, . . . ,ψG). The sieve NPMLE of (θ ,�,B) is (̂θn, �̂n, B̂n), where B̂n = (ψ̂n2, . . . , ψ̂nG).

3. Computation of the sieve NPMLE. In this section, we use Z(·) to denote the
combination of the original set of time-dependent covariates and the B-spline functions
(B1, . . . ,Bm), with γ g being the corresponding vector of regression parameters for the gth
latent class. We compute the sieve NPMLE using an accelerated version of the EM algorithm,
with C and b treated as missing data. The proposed algorithm iteratively performs the EM
steps. Unlike the standard EM algorithm, an E-step may not be performed under the current
parameter estimates but under some function of the estimates at the previous steps.

We first introduce the standard EM algorithm. The complete-data log-likelihood function
is

n∑
i=1

G∑
g=1

I (Ci = g)

(
αT

gW i − log
( G∑

l=1

eαT
l W i

)
− 1

2
log

∣∣�(ξg)
∣∣− 1

2
bT

i �(ξg)
−1bi

−
J∑

j=1

Nij∑
k=1

{
1

2
logσ 2

gj + (Yijk − βT
gXijk − bT

i X̃ijk)
2

2σ 2
gj

}

+ �i

[
γ T

gZi (T̃i) + ηT
gbi + log�{T̃i}]− ∑

s≤T̃i

�{s}eγ T
gZi (s)+ηT

gbi

)
.

In the E-step, we compute the expectation of functions of (b,C) involved in the M-step. The
conditional density of bi given Ci = g and the observed data is proportional to

fig(bi ) ≡
(

J∏
j=1

σ
−Nij

gj

)
J∏

j=1

Nij∏
k=1

exp
{
−(Yijk − βT

gXijk − bT
i X̃ijk)

2

2σ 2
gj

}∣∣�(ξg)
∣∣−1/2

× exp
{
−1

2
bT

i �(ξg)
−1bi

}
e�i{γ T

gZi (T̃i )+ηT
gbi} exp

{
−
∫ T̃i

0
eγ T

gZi (t)+ηT
gbi d�(t)

}
,

and the conditional probability of Ci = g given the observed data is proportional to

qig ≡ eαT
gW i

∫
fig(b)db.
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The conditional expectation of any function h of (bi ,Ci) given the observed data is

E
{
h(bi ,Ci) | Oi

} =
G∑

g=1

p̂ig

∫
h(b, g)fig(b)db∫

fig(b)db
,

where p̂ig = qig/
∑G

l=1 qil . The integrations in the above equation can be approximated with
the adaptive Gauss–Hermite quadrature [7].

In the M-step, we update the parameters by maximizing the expected complete-data log-
likelihood function given the observed data. In particular, we update αg (g = 1, . . . ,G − 1)
by maximizing the weighted multinomial log-likelihood

n∑
i=1

{
G∑

g=1

p̂igα
T
gW i − log

(
G∑

g=1

eαT
gW i

)}

via the Newton–Raphson algorithm. Then we update βg and σ 2
gj (j = 1, . . . , J ;g =

1, . . . ,G) by maximizing

−1

2

J∑
j=1

n∑
i=1

p̂ig

[
Nij logσ 2

gj +
Nij∑
k=1

1

σ 2
gj

Êg

{(
Yijk − βT

gXijk − bT
i X̃ijk

)2}]

and update ξg (g = 1, . . . ,G) by maximizing

−1

2

n∑
i=1

p̂ig

[
log

∣∣�(ξg)
∣∣+ Êg

{
bT

i �(ξg)
−1bi

}]
,

where Êg denotes the conditional expectation with respect to bi given Ci = g and the ob-
served data. If closed-form solutions for the maximization problems are not available, then
we employ the Newton–Raphson algorithm. In addition, we update (γ g,ηg) (g = 1, . . . ,G)
by maximizing the (weighted) log-partial likelihood

n∑
i=1

�i

[
G∑

g=1

p̂ig

{
γ T

gZi (T̃i) + ηT
g Êg(bi )

}− log

{
G∑

g=1

n∑
j=1

I (T̃j ≥ T̃i)p̂jge
γ T

gZj (T̃i )Êg

(
eηT

gbj
)}]

via the Newton–Raphson algorithm. Finally, we update the cumulative baseline hazard func-
tion � by

�̂{T̃i} = �i∑G
g=1

∑n
j=1 I (T̃j ≥ T̃i)p̂jge

γ̂ T
gZj (T̃i )Êg(e

η̂T
gbj )

for i = 1, . . . , n, where (γ̂ g, η̂g) are the current estimates of the parameters.
The standard EM algorithm, which iteratively performs the E-step and M-step until con-

vergence, may be slow, especially when the number of parameters is large. To accelerate the
convergence, we adopt a modification of the EM algorithm proposed by Varadhan and Roland
[19]. Let ϑ denote the set of all parameters and s(ϑ) be the set of updated parameters after a
single EM step if the initial parameter value is ϑ . With ϑ (k) being the set of current estimates,
a step of the accelerated EM algorithm consists of:

1. Calculate ϑ1 = s(ϑ (k)).
2. Calculate ϑ2 = s(ϑ1).
3. Calculate r = ϑ1 − ϑ (k), v = ϑ2 − ϑ1 − r , and a = −‖r‖2/‖v‖2.
4. Update the parameter estimates by ϑ (k+1) = s(ϑ (k) − 2ar + a2v).
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To improve stability, we update the parameters using the standard EM steps at early steps of
the algorithm. Once the difference between consecutive parameter estimates becomes smaller
than a certain threshold, we perform the accelerated EM steps until convergence. When the
assumed number of latent classes is larger than the actual number, the model is nonidenti-
fiable and the parameter estimates may not converge; therefore, we terminate the algorithm
when the difference between the log-likelihood values of consecutive iterations is smaller
than a certain threshold.

The algorithm may converge to a local maximum of the log-likelihood. To improve the
chance of obtaining the global maximum, we can run the algorithm with different initial
values and set the estimates to the converged values that yield the largest log-likelihood. One
strategy for setting the initial values is to classify subjects into G classes by some clustering
method and set the parameter values for each class to be the estimates obtained from subjects
assigned to the class.

Upon convergence, we use Louis’s formula [10] to compute the observed information
matrix, essentially treating the model as parametric, with parameters θ , �{T̃i}i:�i=1, and
{ags}g=2,...,G;s=1,...,mn

. The submatrix of the inverse of the observed information matrix cor-
responding to θ can be used to estimate the standard errors of θ̂n. This submatrix is essentially
an estimate of the inverse of the efficient information matrix Ĩ defined in the proof of Theo-
rem 4.2, where the least-favorable directions are estimated by solving the empirical counter-
parts of the integral equations they satisfy. The consistency of this standard error estimator is
established in Theorem 4.3.

We propose to use the Bayesian information criterion (BIC) [15] to select the number of
latent classes G. Specifically, for each G, we estimate the model using the sieve NPMLE and
compute

BIC = −2 logLn(̂θn, �̂n, B̂n) + s logn,

where Ln is the likelihood function, and s is the number of free parameters in the model,
including the regression parameters for the B-spline functions. We select the G that yields
the smallest BIC value.

4. Asymptotic properties of the sieve NPMLE. Assume that the degree of the B-spline
functions is fixed at some p ≥ 1 and that the distance between adjacent knots is within
(K−1m−1

n ,Km−1
n ) for some large constant K . Let d be the dimension of the Euclidean pa-

rameters and 	 be a known, compact parameter space of θ . Let (θ0,�0,B0) denote the true
parameter values, where B0 = (ψ02, . . . ,ψ0G). Let �g(t) = ∫ t

0 λg(u)du and �0g be its true
value (g = 1, . . . ,G).

We impose the following conditions.

(C1) The parameter θ0 lies in the interior of 	, and the function �0g is continuously
differentiable up to the third order on [0, τ ] for g = 1, . . . ,G.

(C2) With probability one, P {T̃ = τ |W ,X, X̃,Z(·)} > δ0 for some fixed δ0 > 0.
(C3) With probability one, Z(·) has left-continuous sample paths on [0, τ ] with right

derivatives. In addition, there exists a large constant K such that

P
{

max
j=1,...,J

Nj + ‖W‖2 + ‖X‖2 + ‖X̃‖2 + sup
t∈[0,τ ]

∥∥Z(t)
∥∥

2 + sup
t∈[0,τ ]

∥∥Z′(t)
∥∥

2 < K
}

= 1,

where Z′ is the (componentwise) left derivative of Z.
(C4) The number of knots mn satisfies mn = O(nq) for some 1/12 < q < 1/8.

The next condition is more technical and ensures model identifiability and invertibility
of the information operator. Essentially, it requires that the covariates take enough distinct
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values such that the class-specific distributions of the longitudinal outcomes can be distin-
guished and the effect of each covariate on each class-specific distribution can be identi-
fied. Let �0g = diag(σ 2

0g11N1, . . . , σ
2
0gJ 1NJ

), 
0g = �0g(I +�T
0gX̃�−1

0g X̃
T
�0g)

−1�T
0g , and

�0Yg = X̃�0g�
T
0gX̃

T + �0g , where 1k is a k-vector of ones, �0g is an orthogonal matrix

such that �(ξ0g) = �0g�
T
0g , and σ 2

0gj and ξ0g are the true values of the corresponding pa-
rameters. Note that �0Yg is the covariance matrix of Y given C = g and (N1, . . . ,NJ ).

(C5) There exist some positive integers (n1, . . . , nJ ) such that P(N1 = n1, . . . ,NJ =
nJ ) > 0 and that the following holds. Let X be the set of possible values of (X, X̃) given
(N1 = n1, . . . ,NJ = nJ ) such that X̃

T
X̃ is invertible and

X̃�(ξ0g)X̃
T + �0g 	= X̃�(ξ0l)X̃

T + �0l

or
(
Xβ0g 	= Xβ0l and �−1

0YgXβ0g + �−1
0g X̃
T

0gη0g 	= �−1
0Y lXβ0l + �−1

0l X̃
T
0lη0l

)
whenever g 	= l. For k = 1, . . . , nj and j = 1, . . . , J , if WThW = 0, XT

jkhXjk = 0,

X̃
T
jkhX̃jk = 0, and Z(t)ThZ = 0 almost surely for all (X, X̃) ∈ X and t ∈ [0, τ ], then hW = 0,

hXjk = 0, hX̃jk = 0, and hZ = 0, where hW , hXjk , hX̃jk and hZ are fixed vectors of appro-
priate dimensions.

The final condition ensures that the least-favorable direction for the Euclidean parameters is
sufficiently smooth.

(C6) The conditional density of the censoring variable U given the observed covariates is
continuously differentiable on the support of U with respect to some dominating measure up
to the third order.

REMARK 1. Conditions (C1)–(C3) are common assumptions in the analysis of right-
censored data under semiparametric survival models. Condition (C4) pertains to the rate at
which the number of B-spline functions increases to infinity. Condition (C5) pertains to the
class-specific distributions of the longitudinal outcomes and event time. Instead of directly as-
suming the identifiability and invertibility of the information operator of the proposed model,
we derive these properties under assumptions on individual class-specific distributions. Con-
dition (C5) requires that after removing specific covariate values that yield equality of certain
quantities of the class-specific distributions of the observed variables, the set of possible
covariate values are linearly independent. For latent-class models in general, linear indepen-
dence of the covariates and distinctness of parameter values across latent classes are not suf-
ficient for the invertibility of the information operator. To see this, consider a simple model
with two latent classes, a known mixture probability of 0.5 for each class, a single binary
covariate X, and a single outcome variable Y with Y | (X,C = g) ∼ N(αg + βgX,1) for
g = 1,2, where C denotes the latent class membership. The score statistic along the direction
α1 = α01 + ε, α2 = α02 − ε, β1 = β01 − ε and β2 = β02 + ε is zero when α01 = α02, even if
β01 	= β02, where (α01, α02, β01, β02) are the true parameter values. This model does not sat-
isfy (a simplified version of) condition (C5) because the two latent classes are different only
at X 	= 0, but given X 	= 0, (1,X) is no longer linearly independent. A simple sufficient con-
dition for condition (C5) is that all covariates are linearly independent and the class-specific
variances of Y are distinct almost surely.

Let ‖ · ‖∞ be the supremum norm over [0, τ ]. We have the following results.
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THEOREM 4.1. Under conditions (C1)–(C5), there exists a local maximum of the non-
parametric likelihood in the sieve space, denoted by (̂θn, �̂n, B̂n), such that

‖θ̂n − θ0‖2
2 + ‖�̂n − �0‖2∞ +

G∑
g=2

∫ τ

0

∣∣ψ̂ng(t) − ψ0g(t)
∣∣2 dt = op

(
n1/2).

This theorem provides a preliminary, combined rate of convergence for the estimators of
the Euclidean and infinite-dimensional parameters. Based on this convergence rate, the fol-
lowing theorem establishes that the Euclidean parameter estimators converge at the optimal
n1/2 rate and attain the semiparametric efficiency bound [1].

THEOREM 4.2. Under conditions (C1)–(C6), n1/2(̂θn − θ0) converges weakly to the
normal distribution with zero mean, and its asymptotic variance attains the semiparametric
efficiency bound.

Let In be the negative Hessian matrix of the log-likelihood evaluated at the estimated
parameters, with the jump sizes of �̂n and the coefficients of the spline functions in
ψ̂n2, . . . , ψ̂nG treated as Euclidean parameters. Let V̂ n be the submatrix of (n−1In)

−1 that
corresponds to θ .

THEOREM 4.3. Under conditions (C1)–(C6), ‖V̂ n − Ĩ
−1‖2 = op(1), where Ĩ is the ef-

ficient information matrix of θ defined in the proof of Theorem 4.2.

The proofs of Theorems 4.1 and 4.2 are given in Appendix A, whereas the proof of Theo-
rem 4.3 is given in Section S3 of the Supplementary Material [21].

5. Simulation studies. We considered a longitudinal study where data were collected
on repeated measures of longitudinal outcomes as well as on the time to the occurrence
of an event of interest. Each subject was examined periodically until the event of interest
occurred or the subject was lost to follow-up. At the initial examination, a set of baseline
covariates, which may represent sex, age and other information, were measured, and at each
examination, two types of longitudinal outcomes were measured. The latent class for each
subject was generated from model (1) with G = 3 and W = (1,X1,X2)

T, where X1 and X2
are independent Bernoulli(0.5) and N(0,1), respectively. We set the examination times at
sk = 0.15(k − 1) for k = 1, . . . ,10. For j = 1,2 and k = 1, . . . ,10, we generated

Yjk |C=g = βT
gjXk + bj + b3 + εjk,(5)

where εjk | (C = g) ∼ N(0, σ 2
gj ), Xk = (1, sk,X1,X2)

T, bj | (C = g) ∼ N(0, ξ2
gj ), and

(b1, b2, b3) are independent of each other and of (X1,X2). Note that the random effects
b1 and b2 account for the dependence among repeated measures of a single type of longitu-
dinal outcome, whereas b3 accounts for the dependence between the two types of longitudi-
nal outcomes. The event time T was generated from model (3) with a single random effect
term b3 and Z(t) = (X1,X2)

T for all t , and the censoring variable U was generated from
Uniform(0, τ ) with τ = 5. Note that the number of longitudinal outcome measurements is
max{k : k ≤ 10, sk ≤ T ∧ U}.

The true values of the Euclidean parameters are given in Table S1 of the Supplemen-
tary Material [21]. The class-specific baseline hazard functions are λ1(t) = 0.5, λ2(t) =
exp(0.25t) and λ3(t) = 1. The proportions of subjects belonging to latent classes 1, 2 and
3 are approximately 35%, 35% and 30%, respectively. The average number of longitudinal
outcome measurements per subject is about 5.4. The censoring proportion is about 25%.
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We set the degree of the B-spline functions to be 1 and the number of interior knots to
be 2; in our experience, the results are largely insensitive to the choice of the number of
knots. The locations of the knots were set data-adaptively to be the 33% and 66% empiri-
cal quantiles of the observed event times. We considered G = 2, 3 and 4 latent classes and
used BIC to select G. To set the initial values, we use k-mean clustering based on the event
(or censoring) time, the censoring indicator, and the baseline longitudinal outcome values
to classify subjects into subgroups with k = G. Then we fit the generalized linear models
and survival models (without random effects) on each subgroup and set the initial parameter
values to be the corresponding estimated values. The initial values for the coefficients of the
B-splines and the regression parameters of the random effects are set to 0, the initial values
of Var(bj ) + Var(εjk) are set to be the estimated variances in the corresponding fitted linear
models with Var(bj ) = Var(εjk) (j = 1,2; k = 1, . . . ,10), and the variance of b3 is set to
be 0.1. The initial cumulative baseline hazard function is set to be the Breslow estimator.
We constrained all Euclidean parameter estimates (including the regression parameters for
the B-spline functions and the logarithm of the variance parameters) to be smaller than or
equal to 10 in absolute value. This constraint is imposed because in the early iterations of the
EM algorithm, the unconstrained estimates may sometimes become too extreme and cause
numerical problems. We set the sample size to be n = 1000 or 2000 and considered 1000
simulation replicates for each setting.

Under G = 3, in no replicates do any parameter estimates (in absolute value) equal the
boundary value of 10. Some parameter estimates are equal to the boundary value in about
60% of the replicates for G = 4 and in less than 5% of the replicates for G = 2. The con-
vergence to the boundary under G = 4 is expected, because the model is nonidentifiable. In
all but ten replicates under n = 1000, BIC selected the correct number of latent classes, and
thus we only present the estimation results under G = 3. Because the labels of the latent
classes are arbitrary, after convergence of the EM algorithm, we redefined the latent classes
such that the orders of the estimated values of certain parameters across latent classes match
the orders of the corresponding true parameter values. The estimation results for n = 1000
and n = 2000 are summarized in Tables S1 and S2 in the Supplementary Material [21], re-
spectively. The estimators of all parameters, including the class-specific cumulative baseline
hazard functions at particular time points, are virtually unbiased. The standard errors are es-
timated accurately, and the coverage probabilities of the confidence intervals are close to the
nominal level, especially for n = 2000. Thus, the proposed estimation method effectively un-
covers the latent structure of the population, produces consistent estimators, and yields valid
statistical inference.

6. A real study. The ARIC study is a prospective epidemiological cohort study con-
ducted in the United States. In the study, a total of about 15,000 subjects received a baseline
examination in 1987–1989 and potentially six subsequent examinations in 1990–1992, 1993–
1995, 1996–1998, 2011–2013, 2016–2017 and 2018–2019. At each examination, medical
data, such as body mass index (BMI), blood pressure and cholesterol levels, were collected.
The subjects were also followed through reviews of hospital records, and potentially right-
censored observations on time to myocardial infarction (MI), stroke and death were also
obtained.

We aimed to study the risk of cardiovascular diseases or death among African American
subjects and to detect the presence of latent subgroups. The event of interest is MI, stroke or
death. The African American subjects were recruited from two centers of study in Forsyth
County, NC and Jackson, MS. We set study location, sex and BMI, glucose level, smoking
status and age at the first examination as covariates; these are referred to as the baseline
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covariates in the sequel. We considered systolic blood pressure and total cholesterol level,
which were measured at each examination, as longitudinal outcomes. After removing 347
subjects with prior (or unknown status of) stroke or coronary heart disease at baseline and
178 subjects with missing data, the sample size is 3284, and the censoring proportion is
49.2%.

We fit models (1)–(3), where T is the time from the first examination to MI, stroke or
death, whichever occurred first, (Y1k, Y2k) are respectively the systolic blood pressure and
total cholesterol level at the kth examination, and Nj is the total number of examinations
(k = 1, . . . ,Nj ; j = 1,2). The set of covariates W consists of the baseline covariates (and
the constant 1 for the intercept). For the j th longitudinal outcome at the kth examination,
we assumed model (5) with the set of covariates Xk consisting of the baseline covariates
and the time of the kth examination. In the survival model, the set of covariates Z(t) is time-
independent and consists of the baseline covariates, and the set of random effects consists of a
single term b3. We set the degree of the B-spline functions to be 1 and considered 2–4 interior
knots. The locations of the knots were chosen to be empirical quantiles of the observed event
times. We ranged the number of latent classes G from 1 to 6.

For any numbers of knots for the B-spline functions, the BIC picked G = 4 latent classes.
The BIC values at G = 1, . . . ,6 under 2 interior knots are plotted in Figure S1 of the Sup-
plementary Material [21]. Since the estimation results across different numbers of knots are
similar, we reported the results under 2 interior knots. The point estimates, standard errors
and p-values of all Euclidean parameters in the survival model are given in Table 1, and the
estimated class-specific cumulative hazard functions are plotted in Figure 1; the estimation
results for the remaining Euclidean parameters are given in Tables S3 and S4 of the Supple-
mentary Material [21]. The estimated trajectories of the mean longitudinal outcomes for a
typical subject from each latent class are plotted in Figure S2 of the Supplementary Material
[21]. We classified a subject to a latent class if the (estimated) posterior probability of the
class is larger than 0.7; a subject is unclassified if none of the posterior probabilities is larger

TABLE 1
Estimation results for the Euclidean parameters in the survival model for the ARIC data

Parameter Estimate SE p-value Parameter Estimate SE p-value

γ1,Center 0.2431 0.3041 4.24E−01 γ3,Glucose 0.2304 0.0450 3.15E−07
γ1,BMI −0.0775 0.0949 4.14E−01 γ3,Smoke 0.8147 0.1487 4.26E−08
γ1,Glucose 0.4086 0.1325 2.04E−03 γ3,Sex 0.3840 0.1355 4.61E−03
γ1,Smoke 0.7848 0.1505 1.84E−07 γ3,Age 0.5433 0.0673 7.13E−16
γ1,Sex 0.5965 0.1617 2.25E−04 γ4,Center 0.0770 0.3369 8.19E−01
γ1,Age 0.6440 0.1303 7.75E−07 γ4,BMI −0.1136 0.1082 2.94E−01
γ2,Center 0.1269 0.1887 5.01E−01 γ4,Glucose 0.2954 0.0411 7.05E−13
γ2,BMI 0.1052 0.0552 5.65E−02 γ4,Smoke 0.5983 0.2039 3.34E−03
γ2,Glucose 0.0634 0.0403 1.16E−01 γ4,Sex 0.4959 0.1986 1.25E−02
γ2,Smoke 0.6472 0.1378 2.65E−06 γ4,Age 0.2654 0.0980 6.78E−03
γ2,Sex 0.3533 0.1298 6.49E−03 η1 1.8929 2.5689 4.61E−01
γ2,Age 0.3426 0.0721 2.00E−06 η2 1.5561 0.6952 2.52E−02
γ3,Center −0.0954 0.1920 6.19E−01 η3 0.9861 2.3893 6.80E−01
γ3,BMI 0.1853 0.0641 3.86E−03 η4 1.3614 1.0065 1.76E−01

NOTE: For the parameters labeled γ , the first subscript represents the latent class and the second subscript rep-
resents the covariate that corresponds to the parameter. “Center” is the indicator for the Jackson center; “Sex” is
the indicator for male; “Smoke” is the indicator for smoker; “Glucose” represents glucose level. All continuous
covariates are standardized. The parameter ηg is the regression parameter of b3 for the gth latent class.
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FIG. 1. Estimated class-specific baseline hazard functions for the ARIC data.

than 0.7. The Kaplan–Meier curves for the (predicted) latent classes are plotted in Figure S3
of the Supplementary Material [21].

Older subjects, males and smokers have higher risk of MI, stroke or death across all latent
classes. Subjects with higher BMI tend to have higher risk of disease or death in the third la-
tent class, but BMI has no significant association with the risk in other latent classes. Glucose
level has highly significant positive effect on the risk of disease or death in all but the sec-
ond latent class. The random effect b3, which captures the dependence of the systolic blood
pressure and the total cholesterol level, is significantly associated with the risk of disease
or death only in the second latent class. This suggests that systolic blood pressure and total
cholesterol level are associated with the risk of disease or death even conditional on the latent
class membership. The estimated class-specific cumulative hazard of the second latent class
is substantially higher than those of the other classes, and the empirical survival probabilities
of the second latent class are smaller. The mean systolic blood pressure of subjects in the
second latent class tends to be higher than those of the other classes. The results suggest that
the second latent class is characterized by elevated risk of disease or death. The other groups
also exhibit differences in the risk of disease or death, distributions of the longitudinal out-
comes, and effects of covariates on the longitudinal and survival outcomes. In the latent-class
membership model, the regression parameters for glucose level are significantly negative for
the first three latent classes, suggesting that the fourth latent class is characterized by high
glucose level. In addition, the second latent class is characterized by older subjects and the
third latent class is characterized by males and subjects with higher BMI.

Suppose that we are interested in the conditional survival function for a subject at risk
at time s given the trajectories of the longitudinal outcome measurements up to s. For a
subject with time-independent covariates in the survival model, this probability function can
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be estimated by h(t)/h(s) for t ≥ s, where

h(t) =
G∑

g=1

eαT
gW∑G

l=1 eαT
l W

∫
exp

{−�g(t)e
γ T

gZ+ηT
gb} J∏

j=1

Kj∏
k=1

σ−1
gj e

− 1
2σ2

gj

(Yjk−βT
gXjk−bTX̃jk)

2

× ∣∣�(ξg)
∣∣−1/2

e− 1
2 bT�(ξg)−1b db,

Kj is the number of observations on the j th longitudinal outcome by time s, and the param-
eters are evaluated at the sieve NPMLE. Figure S4 in the Supplementary Material [21] shows
the estimated curves for two hypothetical subjects at s = 10.

We use cross-validation to evaluate the robustness of the latent-class structure. We split
the data into 20 pairs of training and validation datasets with a ratio of sample sizes of 3 : 2.
On each training dataset, we fit the latent-class model with G = 4 and 2 interior knots for
the B-spline functions, and for each subject in the corresponding validation dataset, we used
the estimated model to compute the posterior probabilities of class membership given the
subject’s covariates and longitudinal outcomes (but not the event time). A subject is predicted
to belong to a latent class if the posterior probability of the class is larger than 0.7; a subject
is unclassified if none of the posterior probabilities is larger than 0.7. Note that the prediction
of latent class does not directly involve the event time of the subjects in the validation dataset.

To evaluate the explanatory power of the (predicted) latent classes, in each validation
dataset, we fit the Cox model with covariates, including the baseline systolic blood pressure,
the baseline total cholesterol level, and the predicted latent classes; unclassified subjects were
discarded. We tested the significance of the latent classes in the model using the likelihood-
ratio test. The combined p-value across data splits is 0.0248, where the combined p-value
is defined as �{0.05

∑20
s=1 �−1(ps)}, ps is the p-value for the sth split and � is the stan-

dard normal distribution function. In addition, we fit a stratified Cox model, stratifying on the
latent classes, with covariates including the baseline covariates, the baseline systolic blood
pressure, the baseline total cholesterol level and the interaction between the latent classes and
the other covariates. The combined p-value for the likelihood-ratio tests for the interaction
terms is 0.0250. These results suggest the existence of heterogeneity in the population that is
not captured by the observed covariates. Subjects from different latent classes have not only
different baseline hazards but also different association patterns between the covariates and
the risk of disease or death.

7. Discussion. In this article, we consider a semiparametric latent-class model for the
joint analysis of longitudinal outcomes and a potentially right-censored event time. We de-
velop a novel estimation approach that combines NPMLE and sieve estimation. We prove that
the nonparametric components of the proposed estimators are consistent at a rate of o(n1/4).
Although sieve estimators generally converge at a rate slower than n1/2, the Euclidean com-
ponents of the estimators are nevertheless n1/2-consistent and asymptotically normal.

Under the proposed model, covariates may be associated with the event time through the
latent class membership or directly through the class-specific survival models. The regres-
sion parameters in the survival models are best interpreted conditional on the latent variables
b and C, so that for a subject in a specific latent class, each covariate in the survival model
contributes multiplicatively to the baseline hazard. To obtain an “overall” effect of the co-
variates, we may adopt a Monte-Carlo approach: repeatedly generate data from the estimated
model and the observed covariates, and fit the Cox model on the generated event times and
covariates. The estimated regression parameters could be interpreted as the overall effects of
the covariates, combining the effects on the latent class membership and the class-specific
event-time distributions.
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We proposed to estimate the standard error of the estimators by the inverse of the observed
information matrix. This approach yields satisfactory performance in our extensive numer-
ical studies, but it may be numerically unstable in very large samples or models. If one is
interested only in the inference of the Euclidean parameters, then alternative methods based
on the profile likelihood can be adopted [22].

The constraints on the number of B-spline functions given by condition (C4) guarantee that
ψ̂ng (g = 2, . . . ,G) converges to the true value at a rate faster than n1/4, so that the Euclidean
parameters can attain the efficiency bound. Because ψ0g’s are continuously differentiable up
to the third order, the approximation error of the spline functions is of rate O(n−3q) and q >

1/12 is necessary for ‖ψ̂ng − ψ0g‖2 = op(n−1/4); this bound can be relaxed under stronger
assumptions on the smoothness of �0g’s. The upper limit q < 1/8 arises from the shrinking-
neighborhood-based argument for consistency. In the proof, we show that a local maximum
of the log-likelihood exists in an o(n−1/4)-neighborhood of the true parameter values. The
upper limit q < 1/8 is to guarantee that the second-order term in the linear expansion of the
log-likelihood dominates other terms in the expansion.

An intuitively appealing nonparametric estimation approach is to set each class-specific
cumulative baseline hazard function to be a step function that jumps at the observed event
times. This approach, however, yields inconsistent estimators even in the simple settings con-
sidered by Ma and Wang [11] and Wang, Garcia and Ma [20] because the parameter space is
overly complex. Each (uncensored) observation belongs to a specific latent class and should
only contribute to the jump of the corresponding cumulative baseline hazard function at the
observed event time. However, the latent class membership is unknown, and this nonparamet-
ric approach incorrectly allows all cumulative baseline hazard functions to jump at the event
time. To overcome this difficulty, we only estimate the cumulative baseline hazard function
of a reference class nonparametrically and approximate the relative magnitudes of the base-
line hazard functions between the reference class and other classes using spline functions.
With a properly chosen number of grid points for the spline functions, the complexity of the
parameter space is controlled to yield consistent estimators.

During the preparation of this article, independent work of Liu et al. [8] was brought to
our attention. Our model is more general than that of Liu et al. [8], which allows only a single
type of longitudinal outcome with a random intercept in the longitudinal outcome model, and
Liu et al. [8] adopted spline approximation for all nonparametric functions. In addition, we
establish the asymptotic properties of the proposed estimators under specific assumptions on
the proposed models and the observed data, whereas the assumptions in Liu et al. [8] are
expressed in very general terms and are difficult to verify for given models. To demonstrate
the extra flexibility of the proposed model over that of Liu et al. [8], we conducted a sim-
ulation study, which showed that misspecification of the latent variable structure may yield
substantial estimation bias; see Section S4 of the Supplementary Material [21].

Our work can be extended in several directions. First, one may be interested in the joint
analysis of multiple event times, such as the times to the occurrence of different diseases.
The proposed modeling framework can be readily extended to allow for multivariate event
times by assuming a separate regression model for each event time with a set of shared ran-
dom effects b. The sieve NPMLE can be easily extended to the multivariate setting, and its
theoretical properties can be established along the lines of the proofs of Theorems 4.1 and
4.2.

Second, one may consider interval-censored event time(s). In ARIC, the onset of asymp-
tomatic diseases, such as diabetes and hypertension, was not directly observed but was known
to fall within certain time intervals. To accommodate interval censoring, we can extend the
proposed methods and use the NPMLE [28] to estimate the cumulative baseline hazard func-
tion of the reference class. However, interval censoring results in a different likelihood func-
tion, which poses great challenges to the derivation of the asymptotic properties of the sieve
NPMLE.



500 K. Y. WONG, D. ZENG AND D. Y. LIN

Finally, it would be of interest to consider high-dimensional longitudinal outcomes or co-
variates. In current biomedical studies, different types of molecular data, such as DNA al-
teration and gene expression, are collected along with clinical data. Such molecular data are
often high dimensional, with the number of variables much larger than the sample size. These
data contain rich genetic information that can be used to classify subjects into biologically
distinct disease subtypes [16]. We can set variables for the molecular data as longitudinal
outcomes or covariates in models (1)–(3) and adopt a penalized (sieve) likelihood approach
for estimation.

APPENDIX A: PROOFS OF THEOREMS

In this Appendix, we prove Theorems 4.1 and 4.2. The proofs make use of the lemmas
given in Appendix B. To facilitate the presentation, we introduce the following notation.
Let MK = {� ∈ �∞[0, τ ] : � is monotone nondecreasing,�(0) = 0,�(τ) < K}. For some
large enough positive constant K , let �K ≡ 	 × MK × BVK [0, τ ]G−1 be the parameter
space of (θ ,�,ψ2, . . . ,ψG), where BVK [0, τ ] = {ψ ∈ �∞[0, τ ] : ‖ψ‖V < K}, and ‖ · ‖V is
the total variation over [0, τ ], such that

‖f ‖V = sup
0=t0≤t1<···<tm=τ

m∑
j=1

∣∣f (tj ) − f (tj−1)
∣∣.

The subscript K for the parameter spaces may be suppressed in the sequel. Let �(θ ,�,B)

denote

G∑
g=1

eαT
gW∑G

l=1 eαT
l W

∫ J∏
j=1

Nj∏
k=1

σ−1
gj e

− 1
2σ2

gj

(Yjk−βT
gXjk−bTX̃jk)

2{
eγ T

gZ(T̃ )+ψg(T̃ )+ηT
gb}�

× exp
{
−
∫ T̃

0
eγ T

gZ(t)+ψg(t)+ηT
gb d�(t)

}∣∣�(ξg)
∣∣−1/2

e− 1
2 bT�(ξg)−1b db,

so that the likelihood for a generic subject is proportional to �{T̃ }��(θ ,�,B). Let
�̇θ (θ ,�,B) denote the derivative of �(θ,�,B) with respect to θ , �̇�(θ ,�,B)[H ] denote
the derivative of �(θ ,�,B) with respect to � along the direction H , and �̇ψg(θ ,�,B)[h]
denote the derivative of �(θ ,�,B) with respect to ψg along the direction h.

In the sequel, we use ‖ · ‖ to denote the Euclidean norm for vectors and the L2-norm
with respect to the Lebesgue measure for functions over [0, τ ]. For a set of functions B ≡
(ψ2, . . . ,ψg), let ‖B‖2 = ∑G

g=2 ‖ψg‖2. Let P and Pn denote the true and empirical measures,
respectively.

PROOF OF THEOREM 4.1. Following Schumaker [14], under condition (C1), there ex-
ist functions (ψ̃n2, . . . , ψ̃nG) such that ‖ψ̃ng − ψ0g‖∞ = O(m−3

n ) for g = 2, . . . ,G, where
ψ̃ng = ∑mn

s=1 ãgsBs for some regression parameters ãgs (g = 2, . . . ,G; s = 1, . . . ,mn). Let

Nεn =
{
(ψ2, . . . ,ψG) : ψg =

mn∑
s=1

agsBs :
mn∑
s=1

|ags − ãgs |2 ≤ ε2
n, g = 2, . . . ,G

}
,

where εn is a positive sequence such that εn = o(m
−3/2
n ). For Bn ≡ (ψn2, . . . ,ψnG) ∈Nεn ,

‖ψng − ψ̃0g‖V ≤
mn∑
s=1

|ags − ãgs |
∥∥B ′

s

∥∥∞ = O(mn)
(
ε2
nmn

)1/2 = o(1).

Therefore, each function ψng of Nεn has bounded total variation and converges uniformly to
ψ0g .
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The outline of the proof is as follows. For any sequence of Bn ∈Nεn , we define(̂
θn[Bn], �̂n[Bn]) = arg max

(θ,�)

Pn�(θ ,�,Bn).

First, we show that (̂θn[Bn], �̂n[Bn]) →p (θ0,�0) uniformly over Bn ∈ Nεn . Then we derive
the rate of convergence of (̂θn[Bn], �̂n[Bn]) in terms of εn. Finally, we show that the maxi-
mum of the profile log-likelihood Pn�(̂θn[Bn], �̂n[Bn],Bn) over Bn ∈ Nεn lies in the interior

of Nεn for some εn = o(n−1/4m
1/2
n ) and for large enough n. For simplicity of presentation,

we suppress the argument Bn in θ̂n[Bn] and �̂n[Bn] in the sequel.

Step 1. We prove the existence of the NPMLE, that is, �̂n(τ ) < ∞. Let πg = eαT
gW /∑G

l=1 eαT
l W and fg(Y ,b) denote the joint density of (Y ,b) for the gth latent class (given

N1, . . . ,NJ ); we suppress the parameter or covariate values in the expressions for simplicity
of presentation. Note that

�(O; θ,�,B)
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for some constant κ > 1, where � denotes “smaller than up to a scaling factor.” Therefore,
if �(τ) = ∞, then the right-hand side of the above inequality is zero. We conclude that
�̂n(τ ) < ∞, so that the NPMLE exists.

Step 2. We show that the NPMLE is uniformly bounded. Note that

1

n
logLn(̂θn, �̂n,Bn) ≤ 1

n
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.

Let Ñn = n−1 ∑n
i=1 �iI (T̃i ≤ ·). We have

1

n
logLn(θ0, Ñn,Bn) ≥ −1

n

n∑
i=1

�i logn + Op(1),

where the second term on the right-hand side is asymptotically bounded uniformly over Bn ∈
Nεn . Thus,

1

n
logLn(̂θn, �̂n,Bn) − 1

n
logLn(θ0, Ñn,Bn)

≤ 1
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{
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}+ Op(1).

Using a partitioning argument similar to that of Murphy [12], we can show that the right-
hand side of the above inequality tends to −∞ if lim supn �̂n(τ ) = ∞. By the definition of
(̂θn, �̂n), the left-hand side of the inequality is nonnegative, so that

lim sup
n

sup
Bn∈Nεn

�̂n(τ ) < ∞.
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Step 3. We show that (̂θn, �̂n) is consistent. Because �̂n belongs to a function space with
bounded total variation, by Helly’s selection theorem, for every subsequence of {n}n=1,2,...,
there exists a further subsequence such that θ̂n → θ∗ and �̂n → �∗ for some (θ∗,�∗).
We show that θ∗ = θ0 and �∗ = �0 for any subsequence. With an abuse of notation, let
{n}n=1,2,... be the subsequence. Let

�̃n(t) = −
n∑

i=1

�iI (T̃i ≤ t)

{
n∑

j=1

�̇�(Oj ; θ0,�0,B0)[I (T̃i ≤ ·)]
�(Oj ; θ0,�0,B0)

}−1

.

Note that �̇�(θ ,�,B)[I (· ≥ t)] = −I (T̃ ≥ t)
∑G

g=1 πg

∫
Qg(O,b)eγ T

gZ(t)+ηT
gb+ψg(t) db,

where

Qg(O,b) = e{γ T
gZ(T̃ )+ηT

gb+ψg(T̃ )}� exp
{
−
∫ T̃

0
eγ T

gZ(t)+ηT
gb+ψg(t) d�(t)

}
fg(Y ,b).

By the definition of the NPMLE, Pn�(̂θn, �̂n,Bn) ≥ Pn�(θ0, �̃n,Bn), so

Pn� log
�̂n{T̃ }
�̃n{T̃ } + Pn log

�(̂θn, �̂n,Bn)

�(θ0, �̃n,Bn)
≥ 0.(6)

Note that

Pn log�(̂θn, �̂n,Bn) − P log�
(
θ∗,�∗,B0

)
= (Pn − P) log�(̂θn, �̂n,Bn) + P

{
log�(̂θn, �̂n,Bn) − log�

(
θ∗,�∗,B0

)}
,

where the first term on the right-hand side goes to zero almost surely because the class of
log�(θ,�,B) is Gilvenko–Cantelli by Lemma B.1, and the second term is o(1) by the dom-
inated convergence theorem; note that both terms converge uniformly over Bn ∈ Nεn . By a
similar argument on Pn log�(θ0, �̃n,Bn), the second term on the left-hand side of (6) is

Pn log
�(̂θn, �̂n,Bn)

�(θ0, �̃n,Bn)
= P log

�(θ∗,�∗,B0)

�(θ0,�0,B0)
+ op(1),

where the op(1) term tends to 0 almost surely.
Consider the first term on the left-hand side of (6). Note that

�̂n(t) =
∫ t

0

Pnν(θ0,�0,B0; s)
Pnν(̂θn, �̂n,Bn; s) d�̃n(s),(7)

where ν(θ ,�,B; t) = �̇�(θ ,�,B)[I (· ≥ t)]/�(θ,�,B). By Lemma B.1, {ν(θ ,�,B; t) :
t ∈ [0, τ ], (θ,�,B) ∈ �} is Glivenko–Cantelli, so∣∣∣ sup

t∈[0,τ ]
(Pn − P)ν(θ0,�0,B0; t)

∣∣∣+ ∣∣∣ sup
Bn∈Nεn

sup
t∈[0,τ ]

(Pn − P)ν(̂θn, �̂n,Bn; t)
∣∣∣ →a.s. 0.

By the dominated convergence theorem, Pν(̂θn, �̂n,Bn; t) converges to Pν(θ∗,�∗,B0; t) for
each t . In addition, it is easy to see that the derivative of Pν(̂θn, �̂n,Bn; t) with respect to t

is uniformly bounded, so that Pν(̂θn, �̂n,Bn; t) is equicontinuous with respect to t . Thus, by
the Arzela–Ascoli theorem, Pν(̂θn, �̂n,Bn; t) → Pν(θ∗,�∗,B0; t) uniformly in t ∈ [0, τ ].
Furthermore, we can follow the argument in Zeng, Lin and Lin [27, p. 374] to show by
contradiction that mint∈[0,τ ] |Pν(θ∗,�∗,B0; t)| > 0. Taking limit on both sides of (7) yields

�∗(t) =
∫ t

0

Pν(θ0,�0,B0; s)
Pν(θ∗,�∗,B0; s) d�0(s).
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We conclude that �∗ is absolutely continuous with respect to �0, and thus is differentiable.
Let λ∗ be the derivative of �∗. Combining the above results with (6), we have

P log
λ∗(T̃ )��(θ∗,�∗,B0)

λ0(T̃ )��(θ0,�0,B0)
≥ 0.

By the nonnegativity of the Kullback–Leibler divergence and Lemma B.2, the left-hand side
of the above inequality is nonpositive and is equal to zero if and only if (θ∗,�∗) = (θ0,�0).
Therefore, (̂θn, �̂n) is consistent.

Step 4. We derive a bound on ‖θ̂n − θ0‖ + ‖�̂n − �0‖∞ in terms of ‖Bn − B0‖. For any
hθ ∈ R

d and h� ∈ BV[0, τ ], let

�̇θ�(θ ,�,B)[hθ , h�] = ∂

∂ε
�

(
θ + εhθ ,� + ε

∫
h� d�,B

) ∣∣∣∣
ε=0

.

Clearly, Pn�̇θ�(̂θn, �̂n,Bn)[hθ , h�] = 0 and P�̇θ�(θ0,�0,B0)[hθ , h�] = 0 for any (hθ ,

h�). Suppressing the arguments (hθ , h�), we have

P�̇θ�(̂θn, �̂n,B0) − P�̇θ�(θ0,�0,B0)

= P�̇θ�(̂θn, �̂n,B0) − Pn�̇θ�(̂θn, �̂n,Bn)

= −(Pn − P)�̇θ�(̂θn, �̂n,Bn) − P
{
�̇θ�(θ0,�0,Bn) − �̇θ�(θ0,�0,B0)

}
− P

[{
�̇θ�(̂θn, �̂n,Bn) − �̇θ�(θ0,�0,Bn)

}− {
�̇θ�(̂θn, �̂n,B0) − �̇θ�(θ0,�0,B0)

}]
.

By Lemma B.1, the class {�̇θ�(θ ,�,B)[hθ , h�] : (θ ,�,B) ∈ �,‖hθ‖ ≤ 1,‖h�‖V ≤ 1} is
Donsker, so that the first term on the right-hand side above is Op(n−1/2) uniformly over
Bn ∈ Nεn . By repeated applications of the mean-value theorem, we can show that the second
term is O(‖Bn −B0‖) and the third term is o(‖θ̂n −θ0‖+‖�̂n −�0‖∞). To evaluate the left-
hand side of the above display, note that �̇θ�(θ ,�,B0) is the score statistic of a survival model
with a single nonparametric component; the model falls under the framework of, for example,
Zeng and Lin [25]. Using arguments analogous to the proof of Theorem 3.2 of Zeng and Cai
[24] and the proof of Theorem 2 of Zeng and Lin [26], we can show that the map (θ,�) �→
P�̇θ�(θ ,�,B0) is Frechet-differentiable with a derivative ∇P�̇θ� that takes the form of a
Fredholm operator. By Lemma B.4, ∇P�̇θ� (evaluated at the true parameter values) is one-to-
one, so it is continuously invertible. Therefore, there exists some positive constant c1 such that
‖∇P�̇θ�(̂θn − θ0, �̂n − �0)‖ ≥ c1(‖θ̂n − θ0‖ + ‖�̂n − �0‖∞), where the norm on the left-
hand side of the inequality is the supremum norm over {(hθ , h�) : ‖hθ‖ ≤ 1,‖h�‖V ≤ 1}.
By the consistency of (̂θn, �̂n) and the differentiability of P�̇θ�,∥∥P�̇θ�(̂θn, �̂n,B0) − P�̇θ�(θ0,�0,B0)

∥∥ ≥ {
c1 + o(1)

}(‖θ̂n − θ0‖ + ‖�̂n − �0‖∞
)
.

Combining the above results, we conclude that

‖θ̂n − θ0‖ + ‖�̂n − �0‖∞ ≤ An

(
n−1/2 + ‖Bn −B0‖),

where An is some random variable that may depend on Bn and satisfies supBn∈Nεn
|An| =

Op(1).
Step 5. We show that a local maximum of Pn�(̂θn, �̂n,Bn) with respect to Bn exists in

the interior of Nεn for large enough n. It suffices to show that supBn∈∂Nεn
Pn�(̂θn, �̂n,Bn) <

Pn�(θ0, �̃n, B̃n) with probability going to 1 as n → ∞, where B̃n = (ψ̃n2, . . . , ψ̃nG). Let

Bn = Pn�(̂θn, �̂n,Bn) − Pn�(θ0, �̃n, B̃n)

= (Pn − P)
{
�(̂θn, �̂n,Bn) − �(θ0, �̃n, B̃n)

}+ P
{
�(̂θn, �̂n,Bn) − �(θ0, �̃n,B0)

}
(8)

− P
{
�(θ0, �̃n, B̃n) − �(θ0, �̃n,B0)

}
.
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By Lemma B.1, the first term on the right-hand side of (8) can be written as Cnn
−1/2 for some

variable Cn such that supBn∈Nεn
|Cn| = op(1). To evaluate the second term on the right-hand

side above, let

ξ(ε;�) = P�

{
θ0 + ε(̂θn − θ0),� + ε

∫
ĥ� d�,B0 + ε(Bn −B0)

}
,

where ĥ� is a step function that jumps at the observed event times, with ĥ� = d�̂n/d�̃n − 1
at the jump points. The second term of the right-hand side of (8) is equal to ξ(1; �̃n) −
ξ(0; �̃n) = ξ ′(0; �̃n) + ξ ′′(ε; �̃n) for some ε ∈ [0,1]. Note that ξ ′(0; �̃n) is equal to

P

{
�ĥ�(T̃ ) + �̇(θ0, �̃n,B0)

[̂
θn − θ0,

∫
ĥ� d�̃n,Bn −B0

]/
�(θ0, �̃n,B0)

}
= P

{
�ĥ�(T̃ ) + �̇(θ0,�0,B0)

[̂
θn − θ0,

∫
ĥ� d�0,Bn −B0

]/
�(θ0,�0,B0)

}
+ P

{
�̇(θ0, �̃n,B0)

[̂
θn − θ0,

∫
ĥ� d�̃n,Bn −B0

]/
�(θ0, �̃n,B0)

− �̇(θ0,�0,B0)
[̂
θn − θ0,

∫
ĥ� d�0,Bn −B0

]/
�(θ0,�0,B0)

}
= Op

{‖�̃n − �0‖∞
(‖θ̂n − θ0‖ + ‖ĥ�‖V + ‖Bn −B0‖V

)}
,

where �̇(θ ,�,B)[hθ ,H�,hB] = �̇θ (θ,�,B)Thθ + �̇�(θ ,�,B)[H�] + ∑G
g=2 �̇ψg(θ ,�,

B)[hg] for hB = (h2, . . . , hG). The last equality above follows from the mean-value theorem
and that the score statistic is mean zero. By standard arguments for the NPMLE, ‖�̃n −
�0‖∞ = Op(n−1/2). Also, ‖ĥ�‖V = op(1) and ‖Bn − B0‖V = o(1), so the right-hand side
of the above equation is op(n−1/2). To evaluate ξ ′′(ε; �̃n), we write

ξ ′′(ε; �̃n) = {
ξ ′′(ε; �̃n) − ξ ′′(0; �̃n)

}+ {
ξ ′′(0; �̃n) − ξ ′′(0;�0)

}+ ξ ′′(0;�0).

Using the mean-value theorem, we can show that the first term on the right-hand side of the
above equation is Op(‖θ̂n−θ0‖3 +‖ĥ�‖3∞+‖Bn−B0‖3

3)+op(‖�̃n−�0‖∞). Following the
arguments for the evaluation of ξ ′(0; �̃n), we can show that the second term is op(n−1/2).
Note that the third term is the negative information of the one-dimensional submodel θ =
θ0 + εhθ , d� = (1 + εh�)d�0, and B = B0 + εhB , where hθ = θ̂n − θ0, h� = ĥ�, and
hB = Bn −B0. Let H =R

d ×L2[0, τ ]G. For any h ≡ (hθ , h�,hψ2, . . . , hψG) ∈ H, the score
statistic of the submodel along direction h is

�̇[h] =
G∑

g=1

πg

∫
Qg(T̃ ,�,Y ,b)

[{
1 −

∑G
l=1 πl

∫
Ql(T̃ ,�,Y , b̃)db̃∫

Qg(T̃ ,�,Y , b̃)db̃

}
WThαg

+ �
{
Z(T̃ )Thγg + bThηg + h�(T̃ ) + hψg(T̃ )

}
−
∫ T̃

0
e
Z(s)Tγ 0g+ηT

0gb+ψ0g(s){
Z(s)Thγg + bThηg + h�(s) + hψg(s)

}
d�0(s)

+ f (1)
g (Y ,b)ThYg

fg(Y ,b)

]
db

/ G∑
g=1

πg

∫
Qg(T̃ ,�,Y ,b)db

≡K(T̃ ,�,Y ;h),

where Qg(T̃ ,�,Y ,b) = Qg(O,b), f (1)
g (Y ,b) is the derivative of fg(Y ,b) with respect

to (βg,σ
2
g, ξg), hYg = (hT

βg, hσg,h
T
ξg)

T, (hαg,hβg,hσg,hξg,hγg,hηg) are the directions
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that correspond to the parameters (αg,βg,σ
2
g, ξg,γ g,ηg) for g = 1, . . . ,G, hαG = 0, and

hψ1(·) = 0. For h(1), h(2) ∈ H, we can write

P�̇
[
h(1)]�̇[h(2)] = h

(1)T
θ G1

(
h(2))+

G∑
g=1

∫ τ

0

{
h

(1)
� (t) + h

(1)
ψg(t)

}
G2g

(
t;h(2))dt,

where G1(h) is some linear function of h, and G2g(t;h) is equal to

E
{

πg

∫
Qg(t,1,Y ,b)db∑G

l=1 πl

∫
Ql(t,1,Y ,b)db

fT (t | Y )SU (t | Y )K(t,1,Y ;h)

}

− E
{
I (t ≤ T̃ )

πg

∫
Qg(T̃ ,�,Y ,b)e

Z(t)Tγ 0g+ηT
0gb+ψ0g(t) db∑G

l=1 πl

∫
Ql(T̃ ,�,Y ,b)db

K(T̃ ,�,Y ;h)

}
λ(t)

= aThθ + E
{

πg

∫
Qg(t,1,Y ,b)db∑G

l=1 πl

∫
Ql(t,1,Y ,b)db

fT (t | Y )SU (t | Y )

}
h�(t)

+
G∑

k=2

E
[
πgπk

∫
Qg(t,1,Y ,b)db

∫
Qk(t,1,Y ,b)db

{∑G
l=1 πl

∫
Ql(t,1,Y ,b)db}2

fT (t | Y )SU (t | Y )

]
hψk(t)

−
G∑

k=1

∫ τ

0

{
h�(s) + hψk(s)

}(
I (s ≤ t)E

[
πgπkfT (t | Y )SU (t | Y )

×
∫

Qg(t,1,Y ,b)db
∫

Qk(t,1,Y ,b)eZ(s)Tγ 0k+ηT
0kb+ψ0k(s) db

{∑G
l=1 πl

∫
Ql(t,1,Y ,b)db}2

]
+ I (t ≤ s)E

[
πgπk

×
∫

Qg(s,1,Y ,b)e
Z(t)Tγ 0g+ηT

0gb+ψ0g(t) db
∫

Qk(s,1,Y ,b)db

{∑G
l=1 πl

∫
Ql(s,1,Y ,b)db}2

fT (s | Y )SU (s | Y )

]

− E
[
I (s ≤ T̃ )I (t ≤ T̃ )πgπk

×
∫

Qg(T̃ ,�,Y ,b)e
Z(t)Tγ 0g+ηT

0gb+ψ0g(t) db
∫

Qk(T̃ ,�,Y ,b)eZ(s)Tγ 0k+ηT
0kb+ψ0k(s) db

{∑G
l=1 πl

∫
Ql(T̃ ,�,Y ,b)db}2

])
× λ0(s)ds,

where fT (· | Y ) is the conditional density of the survival time T given Y , SU(· | Y ) is the
conditional survival function of the censoring time U given Y , and a is a d-dimensional
vector. Define an inner product 〈·, ·〉 on H such that

〈
h(1), h(2)〉 = h

(1)T
θ h

(2)
θ +

∫ τ

0

{
h

(1)
� (t)h

(2)
� (t) +

G∑
g=2

h
(1)
ψg(t)h

(2)
ψg(t)

}
dt,

and let �̇∗ be the adjoint operator of �̇. By the definition of �̇∗, P�̇[h(1)]�̇[h(2)] = 〈h(1),

�̇∗�̇[h(2)]〉, such that

�̇∗�̇[h] =
(
G1(h),

G∑
g=1

G2g(·;h),G22(·;h), . . . ,G2G(·;h)

)
.

On the space H, we define a seminorm ‖h‖I = 〈h, �̇∗�̇[h]〉1/2. By Lemma B.4, ‖h‖I = 0
implies that h = 0, such that ‖ · ‖I is a norm in H. Clearly, ‖h‖I ≤ c2〈h,h〉1/2 for some



506 K. Y. WONG, D. ZENG AND D. Y. LIN

constant c2. By the bounded inverse theorem in Banach spaces, we have 〈h,h〉1/2 ≤ c3‖h‖I

for some constant c3. We conclude that

ξ ′′(0;�0) = −∥∥(̂θn − θ0, ĥ�,Bn −B0)
∥∥2
I

≤ −c−2
3

(
‖θ̂n − θ0‖2 + ‖ĥ�‖2 +

G∑
g=2

‖ψng − ψ0g‖2

)
.

By Donsker properties of the class of ν(θ ,�,B; t) and the mean-value theorem,

‖ĥ�‖∞ = Op

(‖θ̂n − θ0‖ + ‖�̂n − �0‖∞ + ‖Bn −B0‖2 + n−1/2).
In addition, a linear expansion argument shows that the third term of (8) is of order up to
‖B̃n −B0‖2∞. Combining the above results, we have

Bn ≤Dnn
−1/2 + En

(‖Bn − B̃n‖3
3 + ‖B̃n −B0‖2∞

)− c−2
3

G∑
g=2

‖ψng − ψ̃0g‖2

≤Dnn
−1/2 + c4En

(
m−1

n ε3
n + m−6

n

)− c−2
3

G∑
g=2

‖ψng − ψ̃0g‖2

for some sequences of positive variables Dn and En such that supBn∈Nεn
Dn = op(1) and

supBn∈Nεn
En = Op(1) and some positive constant c4. The second inequality holds because

by Theorem 5.2 of de Boor [2],

‖ψng − ψ̃ng‖3
3 = O

(
m−1

n

mn∑
s=1

|ags − ãgs |3
)

= O
(
m−1

n ε3
n

)
.

Suppose that Bn ∈ ∂Nεn . By the same theorem of de Boor [2], ‖ψng − ψ̃ng‖2 ≥ c5m
−1
n ε2

n for

some g and c5 > 0. Therefore, by choosing εn such that εn = o(n−1/4m
1/2
n ) and

ε2
n � sup

Bn∈Nεn

Dnn
−1/2mn + m−5

n ,

we have P(Bn < 0) → 1; the existence of such an εn with εn = o(m
−3/2
n ) is guaranteed

under condition (C4). We conclude that there exists a local maximum of Pn�(̂θn, �̂n,Bn)

with respect to Bn in the interior of Nεn ; let B̂n be the maximizer. Note that by Theorem 5.2
of de Boor [2], ‖ψng − ψ̃ng‖2 = O(m−1

n

∑mn

s=1 |ags − ãgs |2) = O(m−1
n ε2

n) for all Bn ∈ Nεn .
We have

‖θ̂n − θ0‖2 + ‖�̂n − �0‖2∞ + ‖B̂n −B0‖2 = Op

(
n−1 + ‖B̂n −B0‖2)

= Op

(
m−1

n ε2
n + m−6

n

) = op

(
n−1/2). �

PROOF OF THEOREM 4.2. Let ̇θ be the score statistic for θ , �̇�[h�] be the score statis-
tic for � along the submodel �+ ε

∫
h� d�, and �̇ψg[hψg] be the score statistic for ψg along

the submodel ψg + εhψg (g = 2, . . . ,G). For a set of functions h ≡ (h1, . . . , hd), let ̇�[h] =
(�̇�[h1], . . . , �̇�[hd ])T and ̇ψg[h] = (�̇ψg[h1], . . . , �̇ψg[hd ])T. Let h̃� and h̃ψg be the
least favorable directions for the nonparametric functions, such that (h̃�, h̃ψ1, . . . , h̃ψG) =
arg minh�,hψ2,...,hψG

P‖̇θ − ̇�[∫ h� d�0] −∑G
g=2 ̇ψg[hψg]‖2, where the integration in the

second term in the norm is carried out componentwise. The existence of h̃� and h̃ψg follows
from the invertibility of the information operator, established in Step 5 of the proof of The-
orem 4.1. In addition, from the expressions of �̇∗�̇ given in Step 5 of the proof of Theorem
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4.1 and condition (C6), each component of h̃ψg is continuously differentiable up to the third
order. Let h̃n,ψg be the (componentwise) projection of h̃ψg onto the sieve space, such that
‖h̃n,ψg − h̃ψg‖∞ = O(m−3

n ). By the definition of the sieve NPMLE, Pṅθ (̂θn, �̂n, B̂n) = 0,
Pṅ�(̂θn, �̂n, B̂n)[∫ h̃� d�̂n] = 0 and Pṅψg(̂θn, �̂n, B̂n)[h̃n,ψg] = 0. Note that

Pṅψg(̂θn, �̂n, B̂n)[h̃ψg]
= Pṅψg(̂θn, �̂n, B̂n)[h̃n,ψg] + Ṗψg(θ0,�0,B0)[h̃ψg − h̃n,ψg]

+ (Pn − P)̇ψg(̂θn, �̂n, B̂n)[h̃ψg − h̃n,ψg]
+ P

{
̇ψg(̂θn, �̂n, B̂n)[h̃ψg − h̃n,ψg] − ̇ψg(θ0,�0,B0)[h̃ψg − h̃n,ψg]}.

The first two terms of the right-hand side above are zero. By Lemma B.1, the class of
�̇ψg(θ ,�,B)[h] is Donsker, so that the third term is op(n−1/2). By the mean-value theorem,
Theorem 4.1, and condition (C4), the fourth term is op(n−1/2). Obviously, Ṗθ (θ0,�0,B0) =
0, Ṗ�(θ0,�0,B0)[∫ h̃� d�0] = 0, and Ṗψg(θ0,�0,B0)[h̃ψg] = 0. We have

n1/2(Pn − P)

{
̇θ (̂θn, �̂n, B̂n) − ̇�(̂θn, �̂n, B̂n)

[∫
h̃� d�̂n

]

−
G∑

g=2

̇ψg(̂θn, �̂n, B̂n)[h̃ψg]
}

= −n1/2
P

{
̇θ (̂θn, �̂n, B̂n) − ̇�(̂θn, �̂n, B̂n)

[∫
h̃� d�̂n

]

−
G∑

g=2

̇ψg(̂θn, �̂n, B̂n)[h̃ψg]

− ̇θ (θ0,�0,B0) + ̇�(θ0,�0,B0)
[∫

h̃� d�0

]
+

G∑
g=2

̇ψg(θ0,�0,B0)[h̃ψg]
}

+ op(1).

(9)

By Lemma B.1, the class{
̇θ (θ ,�,B)Tv − �̇�(θ ,�,B)[H�] −

G∑
g=2

̇ψg(θ,�,B)[h̃ψg] :

(θ ,�,B) ∈ �,‖v‖ ≤ 1,‖H�‖V ≤ 1

}
is Donsker. Therefore, the left-hand side of (9) is equal to

n1/2(Pn − P)

{
̇θ (θ0,�0,B0) − ̇�(θ0,�0,B0)

[∫
h̃� d�0

]
−

G∑
g=2

̇ψg(θ0,�0,B0)[h̃ψg]
}

+ op(1),

which converges in distribution to N(0, Ĩ ), where

Ĩ ≡ P

{
̇θ (θ0,�0,B0) − ̇�(θ0,�0,B0)

[∫
h̃� d�0

]
−

G∑
g=2

̇ψg(θ0,�0,B0)[h̃ψg]
}⊗2



508 K. Y. WONG, D. ZENG AND D. Y. LIN

is the efficient information matrix for θ . By the Taylor series expansion, Theorem 4.1 and the
definition of h̃� and h̃ψg (g = 2, . . . ,G), the right-hand side of (9) is

− n1/2(̂θn − θ0)
T
P

{
̈θθ − ̈�θ

[∫
h̃� d�0

]
−

G∑
g=2

̈ψgθ [h̃ψg]
}

+ op(1)

= n1/2Ĩ (̂θn − θ0) + op(1),

where ̈θθ , ̈�θ and ̈ψgθ are the derivatives of ̇θ , ̇� and ̇ψg with respect to θ , respectively.
As established in Step 5 in the proof of Theorem 4.1, the information operator is invertible, so
the efficient information matrix is invertible. We conclude that n1/2(̂θn − θ0) →d N(0, Ĩ

−1
).

Because θ̂n is an asymptotically linear estimator with the influence function lying in the space
spanned by the score functions, θ̂n is asymptotically efficient [1]. �

APPENDIX B: USEFUL LEMMAS

In this Appendix, we present four lemmas that are useful for the proofs of Theorems 4.1
and 4.2. The proofs of the lemmas are given in Section S3 of the Supplementary Material
[21].

LEMMA B.1. For any finite K , the classes of functions

G1 = {
log�(θ,�,B) : (θ,�,B) ∈ �K

}
,

G2 =
{
�̇θ (θ ,�,B)Tv

�(θ,�,B)
: (θ ,�,B) ∈ �K,‖v‖ < K

}
,

G3 =
{
�̇�(θ ,�,B)[H�]

�(θ ,�,B)
: (θ,�,B) ∈ �K,‖H�‖V < K

}
,

G4g =
{
�̇ψg(θ ,�,B)[hψg]

�(θ,�,B)
: (θ ,�,B) ∈ �K,‖hψg‖V < K

}
are Donsker.

LEMMA B.2. Under conditions (C1)–(C3) and (C5), the latent-class model given by
(1)–(3) is locally identifiable.

LEMMA B.3. Consider the following normal mixture model. Let W be a set of covari-
ates and C be a latent class indicator with distribution specified by (1). For g = 1, . . . ,G, let
Y g ∼ N(μg,�g), where (μ1, . . . ,μG) are vectors of mean parameters, and (�1, . . . ,�G)

are covariance matrices. The observed outcome variable is Y = ∑G
g=1 I (C = g)Y g . Let

(μ0g,�0g) be the true values of (μg,�g). If (μ01,�01), . . . , (μ0G,�0G) are distinct and
the components of W are linearly independent, then the score statistic along any submodel
is nonzero.

LEMMA B.4. Under conditions (C1)–(C3) and (C5), the score statistic along any one-
dimensional submodel for the latent-class model given by (1)–(3) is nonzero.
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Supplement to “Semiparametric latent-class models for multivariate longitudinal
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larity conditions, the proofs of Theorem 4.3 and Lemmas B.1–B.4, additional simulation
results and additional real data analysis results.
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