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Abstract: Recent technological advances have made it possible to measure multiple

types of many features in biomedical studies. However, some data types or features

may not be measured for all study subjects because of cost or other constraints.

We use a latent variable model to characterize the relationships across and within

data types and to infer missing values from observed data. We develop a penalized-

likelihood approach for variable selection and parameter estimation and devise an

efficient expectation-maximization algorithm to implement our approach. We es-

tablish the asymptotic properties of the proposed estimators when the number of

features increases at a polynomial rate of the sample size. Finally, we demonstrate

the usefulness of the proposed methods using extensive simulation studies and pro-

vide an application to a motivating multi-platform genomics study.

Key words and phrases: Adaptive lasso, factor models, integrative analysis, multi-

modality data, multi-platform genomics studies, penalized regression.

1. Introduction

Modern biomedical studies often collect multiple types of data, or multi-

modality data, on a large number of subjects. It is desirable to integrate such data

because different modalities play unique roles in complex biological systems. For

example, in the study of Alzheimer’s disease, the integration of data on magnetic

resonance imaging, positron emission tomography, and cerebrospinal fluid can

yield more accurate disease classification (Zhang, Shen and Alzheimer’s Disease

Neuroimaging Initiative (2012)). In cancer research, different types of genomics

data, such as DNA alterations, RNA expressions, and protein expressions, can

be integrated to identify disease subtypes and predict patient survival (Shen,

Olshen and Ladanyi (2009); Wang et al. (2012); Hoadley et al. (2014); Wong

et al. (2019)).

Owing to cost or other constraints, certain features may not be measured on
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all study subjects. For example, in The Cancer Genome Atlas (TCGA) (https://

cancergenome.nih.gov/), data on multiple types of genomic features, including

DNA alterations, methylation profiles, and the expressions of RNA and protein,

were collected for over 10,000 patients with 33 cancer types. For a substantial

number of the patients, however, data on protein expressions were not generated.

As another example, in the Trans-Omics for Precision Medicine (TOPMed) pro-

gram (https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-

medicine-initiative/topmed), whole-genome sequencing data will be available

for hundreds of thousands of subjects. However, other types of genomics data,

such as RNA expressions, methylation profiles, and metabolites, will be available

for only a few thousand subjects through ancillary studies of specific diseases.

It is highly desirable to identify a small subset of features that are associ-

ated with the outcome of interest and to estimate the effects of these features.

To perform variable selection and estimation with missing data, one may first

produce a complete data set, and then apply conventional penalized regression

methods (Tibshirani (1996); Fan and Li (2001); Zou (2006)) to the complete

data set. Complete data may be obtained by deleting entries with missing data,

mean imputation, and nearest-neighbor imputation (Troyanskaya et al. (2001)).

Recently, Cai, Cai and Zhang (2016) proposed an imputation method specific

to multi-modality data by assuming that the (complete) feature matrix is ap-

proximately low rank; the method is only applicable to a blockwise missing-data

pattern, where a data type is either entirely missing or entirely observed on a

subject. In general, the two-step approach to variable selection with missing

data is inefficient, because it discards available data and ignores associations be-

tween the observed and missing variables. Also, the two-step approach yields

inconsistent estimators when the data are not missing completely at random. To

accommodate the missing-at-random mechanism, Ibrahim, Zhu and Tang (2008),

Garcia, Ibrahim and Zhu (2010), and Jiang, Nguyen and Rao (2015) proposed

modeling the variables with missing values and performing variable selection us-

ing information-criterion or penalization methods. However, these approaches

are intractable when there are many variables with missing values, as in our case.

Regression analysis on large, multi-modality data sets with missing values is

highly challenging for two reasons. First, because different types of features tend

to be correlated, efficient methods ought to leverage their relationships. However,

it is difficult to formulate or estimate the intricate relationships between different

types of many features. Second, in the presence of missing data, a tractable

objective function for estimation is often unavailable; for instance, the likelihood

function would generally involve integration over many variables and not have a

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed
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closed form.

To address the aforementioned challenges, we propose a penalized-likelihood

approach in which the likelihood involves both an outcome model and a latent

factor model for the potentially missing features. The factor model uses a small

set of latent factors to explain the associations between features across or within

individual data types, effectively reducing the dimensionality of the data. In

multi-platform genomics studies, the latent factors can be interpreted as unob-

served biological processes that govern the activities of different genomic features.

This kind of model has been successfully used to combine multiple types of ge-

nomics data in order to understand the interactions between different types of

features, recover personal genomics characteristics of cancer patients, and dis-

cover cancer subtypes (Shen, Olshen and Ladanyi (2009); Shen, Wang and Mo

(2013); Lock et al. (2013)).

Because the observed-data likelihood involves integration over the features

with missing values, direct maximization of the (penalized) likelihood is com-

putationally intensive or even infeasible when the number of features is mod-

erately large. To efficiently compute the penalized estimators, we develop an

expectation-maximization (EM) algorithm (Dempster, Laird and Rubin (1977))

that, by using the low-dimensional structure of the latent factor model, involves

only low-dimensional integration. The algorithm is applicable to general missing-

data patterns with a large number of features.

Because the likelihood involves the latent factor model, the total number of

nonzero parameters is larger than the number of features. As a result, estimation

consistency cannot be established under conventional high-dimensional settings,

where the number of features is larger than the sample size. In fact, it is highly

challenging to establish the estimation and selection consistency of our penalized

estimators, even when the number of features is smaller than but diverges with

the sample size. In existing works on large latent factor models, estimation is

based on the principal components analysis (Bai (2003); Fan, Liao and Mincheva

(2013); Fan, Liu and Wang (2018)) or the maximization of the likelihood (Bai

and Li (2012); Bai and Liao (2016)). In those cases, the theoretical developments

rely heavily on the specific closed-form expressions of the estimators or the like-

lihood. In our setting, variables may be missing, and the latent factor model is

only a part of the full likelihood, which, in general, does not have a closed-form

expression. In addition, proofs for the estimation and selection consistency of

penalized regression methods for complete data (Fan and Peng (2004); Fan and

Lv (2011)) are not applicable, because an essential assumption about the lower

bound of the eigenvalues of the information matrix does not hold for the latent
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factor model.

The rest of this paper is structured as follows. In Section 2, we formulate

the model and define the maximum penalized-likelihood estimator. In Section 3,

we describe the numerical implementation of the proposed methods. In Section

4, we present the asymptotic properties of the penalized estimators. In Section

5, we report the results from our simulation studies. In Section 6, we provide

an application to a TCGA multi-platform genomics data set. We conclude the

paper in Section 7, and relegate the theoretical details to the Appendix.

2. Model, Likelihood, and Penalized Estimation

Let Y be an outcome variable, X be a vector of covariates, and (S(1), . . . ,

S(K)) be K types of potentially missing covariates, for some K ≥ 1. Let S =

(S(1)T, . . . ,S(K)T)T. Suppose that the dimension of X is fixed, whereas the

dimension of S, denoted by pn, may change with the sample size n. We specify

the following models for Y and S:

Y | (X,S) ∼ f(·;αTX + βTS, ξ),

S(k) = Γ(k)X + Ψ(0,k)U (0) + Ψ(k)U (k) + ε(k) for k = 1, . . . ,K,

where f is a parametric density function, α and β are vectors of regression pa-

rameters, ξ is a vector of low-dimensional nuisance parameters, U (k) is a vector

of multivariate standard-normal latent variables with dimension rk (rk ≥ 0), for

k = 0, . . . ,K, (Γ(k),Ψ(0,k),Ψ(k))k=1,...,K are matrices of regression parameters,

and (ε(1), . . . , ε(K)) are zero-mean normal variables with independent compo-

nents. The variables (U (0), . . . ,U (K), ε(1), . . . , ε(K)) are mutually independent.

The numbers of latent variables (r0, . . . , rK) are chosen to be much smaller than

the dimension of each type of features. To ensure model identifiability, we set

ψ
(0,1)
jl = 0 and ψ

(k)
jl = 0, for l > j and k = 1, . . . ,K, where ψ

(0,1)
jl and ψ

(k)
jl are

the (j, l)th elements of Ψ(0,1) and Ψ(k), respectively. In addition, we assume that

ψ
(0,1)
jj > 0 for j = 1, . . . , r0, and ψ

(k)
jj > 0 for j = 1, . . . , rk and k = 1, . . . ,K.

These conditions are analogous to condition (IC5) of Bai and Li (2012). They

are satisfied if the first rk components of the kth feature type depend on all cor-

responding type-specific latent variables U (k), the first r0 components of the first

feature type depend on all common latent variables U (0), and the correspond-

ing vectors of factor loadings are linearly independent. In this case, the latent

variables can be transformed to yield the desired structure for the factor loading

matrices. If these conditions are in doubt, we may refit the model under a dif-

ferent ordering of features. The model of Y , hereafter referred to as the outcome
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model, includes many common models, such as the linear and logistic regression

models, as special cases. The model of S is a latent factor model, which assumes

that S (conditional on X) follows a multivariate normal distribution, and the

associations between the multi-modality features are induced by a small set of

unobserved latent factors U ≡ (U (0)T, . . . ,U (K)T)T.

The factor model captures the associations between features across different

data types, as well as within individual data types. The set of latent variables

U (0) is shared among all data types and induces associations across all features.

For k = 1, . . . ,K, the set of latent variables U (k) is shared only among compo-

nents of S(k), and captures the associations between features of this data type

that are not explained by U (0). The factor model is plausible for many applica-

tions in which the features of individual or multiple types share common sources

of variability. For example, in multi-platform cancer genomics studies, different

types of genomic features are commonly affected by major biological processes,

such as growth suppressor evasion and cell death resistance (Hanahan and Wein-

berg (2011)); associations induced by such processes can be captured by U (0).

In contrast, some biological processes, such as miRNA regulation, may alter the

expression of genes with no effect on other types of features, such as mutations;

associations induced by such processes can be captured by the type-specific latent

variables U (k) (k = 1, . . . ,K).

We allow each component of S ≡ (S1, . . . , Spn)T to be missing and use Mj

to indicate, by the values one versus zero, whether Sj is observed or missing

(j = 1, . . . , pn), respectively. We assume that S is missing at random, such

that M ≡ (M1, . . . ,Mpn)T is independent of S conditional on (Y,X,S), where

S = {Sj : P (Mj = 1) = 1}. This assumption holds when missing data are

introduced by design, where subjects with specific values of (Y,X,S) are selected

for measurements of components of S (not included in S). The assumption also

holds when missing data arise from random technical errors in the data-collection

process that are independent of the data.

For a random sample of size n, the observed data consist of (Yi,Xi,Mi,Mi ◦
Si) (i = 1, . . . , n), where ◦ denotes componentwise multiplication. Let r =∑K

k=0 rk, Γ = (Γ(1)T, . . . ,Γ(K)T)T, Ψ be a (pn × r) matrix with

Ψ =


Ψ(0,1) Ψ(1) 0 · · · 0

Ψ(0,2) 0 Ψ(2) · · · 0
...

...
. . .

...

Ψ(0,K) 0 · · · 0 Ψ(K)

 , (2.1)
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and Σ be a (pn× pn) diagonal matrix with the diagonal elements being the vari-

ances of the components of (ε(1), . . . , ε(K)). Let θ ≡ (α,β, ξ,Γ,Ψ,Σ) denote the

collection of all parameters. The observed-data log-likelihood function concerning

θ is

`n(θ) =

n∑
i=1

log

∫
f(Yi;α

TXi + βTSi, ξ)φ(Si; ΓXi,ΨΨT + Σ) dS
(M)
i , (2.2)

where S
(M)
i is the vector of the missing components of Si, and φ(·;µ,Ω) is the

density of the multivariate normal distribution with mean µ and covariance ma-

trix Ω. We propose estimating θ using maximum penalized-likelihood estimation

with an adaptive lasso (Zou (2006)) penalty on β. Specifically, the penalized

estimator θ̂ ≡ (α̂, β̂, ξ̂, Γ̂, Ψ̂, Σ̂) maximizes

p`n(θ) ≡ `n(θ)− nλn
pn∑
j=1

wj |βj |,

where λn is a tuning parameter, and wj ≡ |β̃j |−1 is a weight term derived from

an initial estimator β̃j (j = 1, . . . , pn).

In general, the likelihood involves the conditional distribution of Y given the

observed components of S (and X) and the distribution of the observed com-

ponents of S. When the data are complete, the conditional distribution of Y

involves (α,β, ξ) only, and the distribution of S involves (Γ,Ψ,Σ) only, such

that the two sets of parameters can be estimated separately. With missing data,

however, the conditional distribution of Y given the observed components of S

involves (α,β, ξ) and functions of (Γ,Ψ,Σ) that capture the relationship be-

tween the missing and observed components of S. Therefore, valid estimation

and variable selection for the outcome model ought to properly account for the

relationships between different components of S. Mean imputation completely

ignores these relationships, and single imputation based on the observed compo-

nents of S alone may be biased when the missing-data mechanism depends on

(Y,X). Both approaches may yield inefficient or inconsistent estimation of the

outcome model.

To obtain the initial estimators β̃j (j = 1, . . . , pn), one may maximize `n(·)
with an L1 or L2 penalty on β. However, this approach involves an extra step

of tuning parameter selection and is computationally intensive, owing to the

missing data. An alternative approach is to fit a “marginal” regression model of

Y against (X, Sj) for each j, and use the regression parameter estimator for Sj as
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the initial estimator β̃j (j = 1, . . . , pn). In each model, we assume that Sj follows

a linear regression model with covariates X. Involving only a single incomplete

independent variable, the model can be estimated easily using the EM algorithm.

We adopt the marginal approach because it is computationally efficient and does

not require tuning. We expect the marginal approach to perform well when the

marginal effects of S have a sparsity structure similar to that of the conditional

effects.

3. Computation of the Penalized Estimators

It is convenient to introduce the notation Mi = {j : Mij = 0}, and MC
i =

{1, . . . , pn}\Mi. In the remainder of the paper, bij denotes the jth component

of the vector bi. Let S
(O)
i = (Si)MC

i
, β

(M)
i = βMi

, β
(O)
i = βMC

i
, ε

(M)
i =

(εi)Mi
, Γ

(M)
i = ΓMi

, and Ψ
(M)
i = ΨMi

, where bA is a vector that consists of all

components of b indexed by A, and BA is a matrix that consists of all rows of

B indexed by A. By the definition of the factor model, the likelihood function is

proportional to

n∏
i=1

∫
f(Yi;α

TXi + βTSi, ξ)

×
pn∏
j=1

σ−1
j exp

{
−

(Sij − γT
j Xi −ψT

j Ui)
2

2σ2
j

}
e−U

T
i Ui/2 d(Ui,S

(M)
i ),

where γT
j and ψT

j are the jth rows of Γ and Ψ, respectively, and σ2
j is the jth

diagonal element of Σ. With Sij = γT
j Xi + ψT

j Ui + εij , for Mij = 0, the above

expression becomes

n∏
i=1

∫
f(Yi;α

TXi + β
(O)T
i S

(O)
i + β

(M)T
i Γ

(M)
i Xi + β

(M)T
i Ψ

(M)
i Ui + β

(M)T
i ε

(M)
i , ξ)

×
pn∏
j=1

σ−1
j exp

[
− 1

2σ2
j

{
Mij(Sij − γT

j Xi −ψT
j Ui)

2 + (1−Mij)ε
2
ij

}]
× e−UT

i Ui/2 d(Ui, ε
(M)
i ). (3.1)

To obtain the penalized estimators, we adopt an EM algorithm with (Ui, ε
(M)
i )

(i = 1, . . . , n) as missing data. The algorithm iterates between the E-step and

M-step, described below, until convergence. In contrast to direct maximization of

the log-likelihood function, the EM algorithm avoids inversion of large matrices

and involves numerical integration of lower dimensions.
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In the E-step, we calculate the conditional expectation of functions of (Ui,

ε
(M)
i ) that are involved in the M-step. Because all functions of ε

(M)
i involved in the

M-step are linear or quadratic, we need only calculate the conditional expectation

of the functions of Ui and a one-dimensional linear transformation of ε
(M)
i . Let

p
(M)
i be the dimension of ε

(M)
i , ci = {

∑p
(M)
i

j=1 (β
(M)
ij σ

(M)
ij )2}1/2, and ε̃i = β

(M)T
i ε

(M)
i .

Because ε̃i is zero-mean normal with variance ci and is independent of Ui and

{εij : j ∈MC
i }, the joint density function of (Yi,Si,Ui, ε̃i) is proportional to

f(Yi,Si,Ui, ε̃i;Xi)

≡ f(Yi;α
TXi + β

(O)T
i S

(O)
i + β

(M)T
i Γ

(M)
i Xi + β

(M)T
i Ψ

(M)
i Ui + ε̃i, ξ)

× exp

{
−
∑
j∈MC

i

1

2σ2
j

(Sj − γT
j Xi −ψT

j Ui)
2 − ε̃2i

2c2
i

− 1

2
UT
i Ui

}
.

The conditional expectation of any function g of (Ui, ε̃i) given the observed data

is

C−1

∫
g(Ui, ε̃i)f(Yi,Si,Ui, ε̃i;Xi) d(Ui, ε̃i), (3.2)

where C is equal to the above integral evaluated at g(·, ·) = 1. In contrast to the

(r+p
(M)
i )-dimensional integration in (3.1), the integration in (3.2) is of dimension

(r + 1) only. To approximate (3.2), we extend the approach of Liu and Pierce

(1994) to the multivariate setting, and write (3.2) as∫
w(υ)e−(υ−µυ)TH−1

υ (υ−µυ)/2 dυ, (3.3)

where υ = (UT
i , ε̃i)

T, w(υ) = C−1g(Ui, ε̃i)f(Yi,Si,Ui, ε̃i;Xi)e
(υ−µυ)TH−1

υ (υ−µυ)/2,

µυ is the maximizer of f(Yi,Si,Ui, ε̃i;Xi) with respect to (Ui, ε̃i), and Hυ is the

Hessian matrix of − log f(Yi,Si,Ui, ε̃i;Xi) with respect to (Ui, ε̃i) evaluated at

µυ. Then, we can approximate (3.3) using the sparse-grid multivariate Gauss-

Hermite quadrature (Heiss and Winschel (2008)). Unlike a conventional multi-

variate quadrature, where the number of nodes increases exponentially with the

dimension of integration under a fixed level of accuracy, the number of nodes un-

der the sparse-grid quadrature increases only polynomially with the dimension.

All functions of ε
(M)
i involved in the M-step can be obtained from the first and

second moments of ε̃i. The relationship between the moments of (Ui, ε
(M)
i ) and

the moments of (Ui, ε̃i) is given in Appendix A.1.

To perform the M-step, we obtain a local quadratic approximation to the log-

likelihood of the outcome model. For i = 1, . . . , n, let η̂i = αTXi + β
(O)T
i S

(O)
i +
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β
(M)T
i Γ

(M)
i Xi + β

(M)T
i Ψ

(M)
i Ê(Ui) + Ê(ε̃i), where Ê(·) is the conditional expec-

tation obtained from the E-step, and the parameters are evaluated at the es-

timators obtained from the previous M-step (or the initial estimators for the

first iteration). By the Taylor series expansion of log f(Yi; η, ξ) at η = η̂i, we

can approximate log f(Yi; η, ξ) by −(zi − η)2/(2s2
i ) up to a constant term, where

s2
i = −∂2 log f(Yi; η, ξ)/∂η2|η=η̂i , and zi = η̂i + s−2

i ∂ log f(Yi; η, ξ)/∂η|η=η̂i .

In the M-step, we first update the parameters in the latent factor model in

a coordinate-wise fashion by maximizing

−
n∑
i=1

Ê

{
Mij

2σ2
j

(
Sij − γT

j Xi −ψT
j Ui

)2
+

1−Mij

2s2
i

(
zi −αTXi − β(O)T

i S
(O)
i − β(M)T

i Γ
(M)
i Xi − β(M)T

i Ψ
(M)
i Ui − ε̃i

)2}
with respect to (γj ,ψj , σ

2
j ) in turn, for j = 1, . . . , pn, where the remaining pa-

rameters are fixed at the current estimators. Note that if Sj belongs to the kth

data type (j = 1, . . . , pn; k = 1, . . . ,K), then only the components of ψj that cor-

respond to U (0) and U (k) need to be updated; the remaining components are set

to zero. Furthermore, under the identifiability conditions, the upper triangular

elements of Ψ(0,1) and Ψ(1), . . . ,Ψ(K) are set to zero. Then, we update α and β

by maximizing

n∑
i=1

zi
s2
i

{αTXi + βTÊ(S̃i)}

− 1

2s2
i

(αT,βT)

(
XiX

T
i XiÊ(S̃T

i )

Ê(S̃i)X
T
i Ê(S̃iS̃

T
i )

)(
α

β

)
− λn|w ◦ β|, (3.4)

where S̃i = Mi ◦ Si + (1−Mi) ◦ (Γ̂Xi + Ψ̂Ui + εi), and (Γ̂, Ψ̂) are the current

estimators of (Γ,Ψ). The estimators of (α,β) can be computed efficiently using

the coordinate-descent algorithm (Friedman, Hastie and Tibshirani (2010)) for

complete data. Finally, we update the estimator of ξ by maximizing the con-

ditional expected log-likelihood with other parameters evaluated at the current

estimators.

To obtain more stable estimators, we adopt the pathwise coordinate-descent

approach of Friedman, Hastie and Tibshirani (2010): instead of directly comput-

ing the penalized estimators at the selected value of λn, we perform the estimation

for a sequence of decreasing values of λn up to the selected value. The sequence

starts at λmax, the smallest value of λn under which all estimators of β are zero.
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In particular, λmax = maxj w
−1
j |n−1

∑n
i=1 s

−2
i (zi − αTXi)Ê(S̃ij)|, where α and

the parameters in si, zi, and Ê(·) are evaluated at the maximum likelihood es-

timators (MLE) under β = 0. For the linear outcome model, the estimator of

the error variance may vary greatly over different values of λn. Therefore, the

estimators of β obtained from maximizing (3.4) may be unstable over different

values of λn. To overcome this problem, we maximize (3.4) with si set to one in

each M-step, and also set si = 1 in the calculation of λmax.

4. Asymptotic Properties of the Penalized Estimators

We partition β as (βT
S ,β

T
N )T, such that βS is p1n-dimensional and has a

nonzero true value, and βN has a true value of 0. Write w = (w1, . . . , wpn)T, and

partition w = (wT
S ,w

T
N )T and S = (ST

S ,S
T
N )T to conform with the partitioning

of β. Assume that pn = O(nκ), for some positive κ < 1/5 and p1n = O(pn).

Let Z(η, ξ) = ∂ log f(Y ; η, ξ)/∂η, ˙̀(C)
α (θ) = Z(αTX + βTS, ξ)X, ˙̀(C)

βS
(θ) =

Z(αTX+βTS, ξ)SS , ˙̀(C)
βN

(θ)=Z(αTX+βTS, ξ)SN , ˙̀(C)
ξ (θ)=∂ log f(Y ;αTX+

βTS, ξ)/∂ξ, ˙̀(C)
Γ (θ) = Ω−1(S−ΓX)XT, ˙̀(C)

Ψ (θ) = Ω−1{(S−ΓX)(S−ΓX)T−
Ω}Ω−1Ψ, and ˙̀(C)

Σ (θ) = diag
[
Ω−1{(S−ΓX)(S−ΓX)T−Ω}Ω−1

]
, where Ω =

ΨΨT + Σ, and diag(D) is the diagonal matrix that consists of the diagonal

elements of D. Let

˙̀(C)
θS

(θ) ≡ ( ˙̀(C)
α (θ)T, ˙̀(C)

βS
(θ)T, ˙̀(C)

ξ (θ)T,

vec{ ˙̀(C)
Γ (θ)}T, vec{ ˙̀(C)

Ψ (θ)}T, vecd{ ˙̀(C)
Σ (θ)}T)T

be a vector of the score statistics for a subject with complete data, where vec(D)

denotes the vector obtained from stacking the columns ofD, and vecd(D) denotes

the vector of the diagonal elements ofD. Define V (α,β, ξ) = ∂2 log f(Y ;αTX+

βTS, ξ) /∂(αT,βT, ξT)T∂(αT,βT, ξT) and I(θ) = E
[
E{ ˙̀(C)

βN
(θ) | O}E{ ˙̀(C)

θS
(θ)T |

O}
]
, where O denotes the observed data, which consist of (Y,X) and a (random)

subset of S. Let β0 ≡ (βT
0S ,β

T
0N )T ≡ (β01, . . . , β0pn)T denote the true value of β

and θ0 ≡ (α0,β0, ξ0,Γ0,Ψ0,Σ0) denote the true value of θ. For k = 1, . . . ,K,

let Ψ
(0,k)
0 and Ψ

(k)
0 be the true values of Ψ(0,k) and Ψ(k), respectively. In the

following, ‖·‖ denotes the L2 norm for vectors or the Frobenius norm for matrices.

We impose the following conditions, some of which involve a generic, finite,

and positive constant C.

(C1) The vector of covariates X is bounded, and the eigenvalues of E(XXT)

lie within (C−1, C). Furthermore, each component of ( ˙̀(C)
α (θ0), ˙̀(C)

βS
(θ0),
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˙̀(C)
βN

(θ0), ˙̀(C)
ξ (θ0)) has a finite second moment, and λmin{−EV (α0,β0, ξ0)}

> C−1, where λmin(D) is the smallest eigenvalue ofD. In addition, within a

small neighborhood of (α0,β0, ξ0) and for any element v(α,β, ξ) of V (α,β,

ξ), v(α,β, ξ) is twice differentiable, with each component of its derivatives

up to the second order uniformly bounded by a function of (Y,X,S) that

has a finite second moment.

(C2) The probability P (M1 = 1, . . . ,Mpn = 1 | Y,X,S) > C−1 for almost

surely all (Y,X,S).

(C3) The initial estimators satisfy that |β̃j |−1 = Op(n
ρ) for j = 1, . . . , p1n and

some ρ ∈ [0, 1/2), and |β̃j | = Op(n
−τ ) for j = p1n + 1, . . . , pn and some

τ ∈ (κ, 1/2].

(C4) The tuning parameter λn satisfies λnn
1/2+ρ → 0 as n → ∞, where ρ is

defined in condition (C3).

(C5) The parameters (Γ,Ψ,Σ) satisfy that ‖γj‖+‖ψj‖ < C and σ2
j ∈ (C−1, C)

for j = 1, . . . , pn, and the limit of p−1
n ΨT

0 Σ−1
0 Ψ0 as n → ∞ exists and

has finite and positive eigenvalues. Furthermore, the true values of ψ
(0,1)
jj

(j = 1, . . . , r0) and ψ
(k)
jj (j = 1, . . . , rk; k = 1, . . . ,K) are bounded below

by C−1. In addition, for k = 1, . . . ,K, all eigenvalues of Ψ̃
(k)T
0 Ψ̃

(k)
0 are

bounded below by C−1, where Ψ̃
(k)
0 ≡ (Ψ

(0,k)
0 ,Ψ

(k)
0 ).

(C6) Let S(O) be an arbitrary subvector of S, ν = (α,β, ξ), νj be the jth

component of ν (j = 1, . . . , qn), and qn be the dimension of ν. Let H1 and

H2 be classes of functions defined as

H1 =

{
h : (Y,X,S,θ) 7→ ∂2

∂νj∂νk
log f(Y ;αTX+βTS, ξ); j, k=1, . . . , qn

}
,

H2 =

{
h : (Y,X,S,θ) 7→

{ ∂

∂νj
log f(Y ;αTX+βTS, ξ)

}k0 pn∏
h=1

Skhh ;

j = 1, . . . , qn; k0 = 0, 1, or 2;

(k1, . . . , kpn) are nonnegative integers;

pn∑
h=1

kh ≤ 4

}
,

and H = H1 ∪H2. Let f(S | Y,X,S(O);θ) be the conditional density func-

tion of S given (Y,X,S(O)), ḟ(S | Y,X,S(O);θ) = ∂f(S | Y,X,S(O);θ)/

∂θ, and S(M) be the vector of components of S that are not in S(O). For θ̃
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and θ within a small neighborhood of θ0 and for all h ∈ H, each component

of

E

∫
h(Y,X,S(O), θ̃)ḟ(S | Y,X,S(O);θ) dS(M)

is bounded by C, and E
{
h(Y,X,S,θ) | Y,X,S(O);θ

}
is four-times differ-

entiable with respect to θ, with each component of its derivatives up to the

fourth order uniformly bounded by a function of (Y,X,S(O)) that has a

finite second moment.

(C7) The score statistics for the outcome model satisfy E|Z(αT
0X+βT

0 S, ξ0)Sj |k ≤
k!Ck, for j = p1n + 1, . . . , pn and k ≥ 2.

(C8) For some η ∈ (1− τ, 1− κ),

sup
θ
‖I(θ)‖2,∞ = O(nτ+η−1),

where ‖D‖2,∞ = ‖ sup‖v‖=1Dv‖∞, the supremum is taken in a small neigh-

borhood of θ0, and τ is defined in condition (C3).

(C9) The tuning parameter λn satisfies λnn
3/2−κ−η → ∞, where η is chosen in

condition (C8).

Remark 1. Condition (C1) pertains to regularity conditions on the outcome

model, and guarantees that with complete data, a local maximizer of the log-

likelihood function is consistent for (α,β, ξ). Condition (C2) requires that a

nonvanishing proportion of subjects have complete data. Condition (C3) requires

that the initial estimators of the nonzero parameters do not tend to zero at a rate

faster than n−ρ, whereas the estimators of the zero parameters are nτ -consistent.

This condition implies that the signal strength of Sj (j = 1, . . . , p1n) is bounded

below by Cn−ρ, for some positive constant C. Condition (C5) pertains to regular-

ity conditions for consistent estimation of the latent factor model, and condition

(C6) pertains to regularity conditions on the conditional density function of the

missing data, given the observed data. Condition (C7) pertains to high-order

moments of the score statistics of the outcome model, and condition (C8) is a

general and weaker version of the strong irrepresentable condition (Zhao and Yu

(2006)); these two conditions are imposed to ensure consistent model selection.

Conditions (C4) and (C9) jointly require that n1/2+ρ � λ−1
n � n3/2−κ−η. They

ensure that the penalty for β is strong enough to impose model sparsity, but

weak enough to yield consistent estimation of the nonzero parameters.

Remark 2. If we set the marginal estimators described in Section 2 as the initial
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estimators, then condition (C3) pertains to the relationships between the factor

loadings across different features. Note that the marginal estimators are the

MLE under the full likelihood (that incorporates the distribution of the incom-

plete variables), and thus are n1/2-consistent for the “true” marginal regression

parameters. In light of Proposition 1 of Fan and Song (2010), we can show that

a marginal regression parameter under a generalized linear model of Y tends to

zero at a certain rate if and only if the correlation between the corresponding

feature and ST
Sβ0S tends to zero at the same rate. Therefore, condition (C3)

holds if |
∑p1n

j=1 β0jψ
T
0jψ0k + β0kσ

2
0k| > Cn−ρ for k = 1, . . . , p1n and some positive

constant C, and
∑p1n

j=1 β0jψ
T
0jψ0k = O(n−τ ) for k = p1n + 1, . . . , pn, where for

j = 1, . . . , pn, ψT
0j is the jth row of Ψ0, and σ2

0j is the jth diagonal element of

Σ0.

Let H be the projection matrix onto the linear space of Σ
−1/2
0 Ψ0. Our main

theoretical results are summarized in the following theorem, the proof of which

is given in Appendix A.2.

Theorem 1. Under Conditions (C1)–(C9), a local maximizer of p`n(θ), denoted

by θ̂ ≡ (α̂, β̂S , β̂N , ξ̂, Γ̂, Ψ̂, Σ̂), satisfies that

1. ‖α̂ − α0‖ + ‖β̂S − β0S‖ + ‖ξ̂ − ξ0‖ + ‖(I −H)Σ
−1/2
0 (Γ̂ − Γ0)‖ + ‖(I −

H)Σ
−1/2
0 (Ψ̂−Ψ0)‖+ ‖Σ̂−Σ0‖ = Op(n

−1/2p
1/2
n );

2. ‖HΣ
−1/2
0 (Γ̂− Γ0)‖+ ‖HΣ

−1/2
0 (Ψ̂−Ψ0)‖ = Op(n

−1/2pn); and

3. P (β̂N = 0)→ 1 as n→∞.

Remark 3. This theorem provides the rate of convergence for the estimators of

the nonzero parameters, and states that the estimators of the zero parameters

are equal to zero with probability tending to one. A major step in the proof of

Theorem 1 is to construct a shrinking neighborhood N of the true parameter

values, and to show that p`n(θ0) > supθ∈∂N p`n(θ) with probability tending to

one, where ∂N denotes the boundary of N ; similar approaches were adopted

by Fan and Li (2001) and Fan and Peng (2004) to prove the consistency of the

smoothly clipped absolute deviation estimator. The proof is substantially more

difficult for the factor model than for conventional regression models, because the

largest eigenvalues of (ΨΨT +Σ) diverge to infinity (Bai and Liao (2016)). A key

innovation in our proof is to identify the few eigenvalues of the Hessian matrix of

p`n(·) that tend to zero (as a result of the unboundedness of the eigenvalues of

(ΨΨT + Σ)), and to construct an “elliptical” N with diameter of order n−1/2pn
in directions that correspond to their eigenvectors, and with diameter of order
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n−1/2p
1/2
n in other directions. This construction guarantees that the second-order

term in the Taylor series expansion of p`n(θ) at θ0 is negative and dominates

the first-order term at any θ ∈ ∂N , with probability tending to one. Using

this construction, we prove that the projections of Σ
−1/2
0 Γ̂ and Σ

−1/2
0 Ψ̂ along

the linear space of Σ
−1/2
0 Ψ0 are consistent at the (n1/2p−1

n )-rate, whereas the

estimators of all other nonzero parameters, including the regression parameters

of interest, are consistent at the conventional (n1/2p
−1/2
n )-rate.

Remark 4. Bai and Li (2012) proved that the MLE of an unstructured factor

loading matrix Ψ with complete data is n−1/2p
1/2
n -consistent; this rate is faster

than that given in Theorem 1. However, the arguments of Bai and Li (2012)

are not applicable to our setting, especially when the missing-data mechanism

depends on S (through Y ). The asymptotic properties of the MLE of the factor

model in the presence of missing data have not been previously studied, and it is

unclear whether the convergence rates given in Theorem 1 can be improved.

Remark 5. The dimension of the features, pn, that we allow is smaller than

that in existing works on penalized regression with complete data (Fan and Peng

(2004); Fan and Lv (2011)), for three reasons. First, because the likelihood in-

volves the model of the incomplete variables, the number of (nonzero) parameters

is much larger than that of existing works under the same number of features.

Second, the rate of convergence of the proposed estimators is slower than that of

existing works, such that a smaller pn is required for the consistency of certain

functions of the parameters, such as the information matrix. Third, owing to

the structure of the factor model, the sizes of the derivatives of the log-likelihood

function are potentially larger than those in conventional regression models, such

that a smaller pn is required to guarantee the concavity of the (observed) log-

likelihood function around the true parameter values.

5. Simulation Studies

We considered two types of features, S(1) and S(2), both with dimension p/2.

We generated the features from the following factor model:

S(k) = ψ(0,k)U (0) +ψ(k)U (k) + ε(k) for k = 1, 2,

where U (0), U (1), and U (2) are independent standard normal variables, ε(1) and

ε(2) are independent (p/2)-variate standard normal variables, and ψ(0,1), ψ(0,2),

ψ(1), and ψ(2) are (p/2)-vectors of factor loadings. We set
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ψ(0,1) = ψ(0,2) = (0.2, . . . , 0.2︸ ︷︷ ︸
20 terms

,−0.2, . . . ,−0.2︸ ︷︷ ︸
(p/4−10) terms

, 0.2, . . . , 0.2︸ ︷︷ ︸
(p/4−10) terms

)T,

ψ(1) = ψ(2) = (0.4, . . . , 0.4︸ ︷︷ ︸
20 terms

, 0.4, . . . , 0.4︸ ︷︷ ︸
(p/4−10) terms

,−0.2, . . . ,−0.2︸ ︷︷ ︸
(p/4−10) terms

)T.

In this setting, the first 20 components of each type of features are positively

associated with both the common and the type-specific latent variables, whereas

the remaining components are negatively associated with either the common or

the type-specific latent variable. As a result, the first 20 components of each type

of features are relatively strongly associated with each other, but they are weakly

associated with other features. We let the outcome variable Y be continuous

or binary. For the continuous case, we set Y =
∑15

j=1 0.05(S
(1)
j + S

(2)
j ) + δ,

where δ follows a standard normal distribution, and S
(k)
j is the jth compo-

nent of S(k) (k = 1, 2). For the binary case, we set P (Y = 1 | S(1),S(2)) =

logit−1{−3 +
∑15

j=1 0.15(S
(1)
j + S

(2)
j )}, such that P (Y = 1) ≈ 0.1. We set S(1) to

be completely observed and S(2) to be missing for 50% of the subjects, based on

one of the following missing-data mechanisms: (1) missing completely at random

(MCAR); and (2) missing at random (MAR), such that in the case of the con-

tinuous outcome variable, S(2) is observed for subjects with extreme values of Y ,

and in the case of the binary outcome variable, S(2) is observed for all subjects

with Y = 1 and for a random subset of subjects with Y = 0.

We adopted two penalization methods: the lasso (Tibshirani (1996)) and

adaptive lasso (Zou (2006)). For the lasso, we set each weight term wj to

one. For the adaptive lasso, we used the MLE of the regression parameters

in the marginal regression models of Y against S
(k)
j (j = 1, . . . , p/2; k = 1, 2)

as the initial estimators. The tuning parameter for each method was selected

using five-fold cross-validation, where the cross-validation error is defined as the

negative log-likelihood value, and the grid for λ is {(0.01)j/100λmax}j=0,1,...,99.

For each penalization method, we considered four methods for handling missing

data: (1) variable selection on complete cases only; (2) variable selection with

missing data (singly) imputed using the structured matrix completion method

of Cai, Cai and Zhang (2016), where the row thresholding parameter is set to

2{p/length(S(2))}1/2 ≈ 2.828; (3) variable selection with missing data imputed

by the posterior expectation under the proposed factor model, with the factor

model estimated using only (S(1),S(2)); and (4) the proposed penalized-likelihood

method. For method (4) and the estimation of the factor model in method (3),

we used the function GQN2 ORDER of the C++ software SPARSE GRID HW
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(available at https://people.math.sc.edu/Burkardt/cpp_src/sparse_grid_

hw/sparse_grid_hw.html) and set level = 3 to generate the nodes and weights

for the sparse-grid quadrature. We terminated the EM algorithm when the max-

imum absolute difference between the parameter estimators of two consecutive

iterations became smaller than 10−5. For methods (3) and (4), we considered

models with (r0, r1, r2) ∈ {(r0, r1, r2) :
∑2

k=0 |rk − 1| ≤ 1, r0 6= 0}, and selected

the model using the Bayesian information criterion (BIC) (Schwarz (1978)). Note

that the models considered differ from the true model by at most one latent vari-

able. Models with r0 = 0 assume independence between the two types of features,

and thus were not considered. In all models, we set X = 1.

We set n = 500 and p = 100 or 300. For each method, we report the number

of variables selected, false discovery rate, true positive rate, and prediction error.

The false discovery rate is defined as the proportion of selected variables that have

a zero true parameter value, and the true positive rate is defined as the proportion

of variables with nonzero true parameter values that are selected. The prediction

error is defined as E{S(1)T(β̂(1)−β(1)
0 )+S(2)T(β̂(2)−β(2)

0 )}2, where β̂(k) and β
(k)
0

are the estimated and the true values, respectively, of the regression parameters

of S(k) (k = 1, 2). For the single imputation method based on the factor model

and the proposed method, we also report the proportion of replicates in which

the correct numbers of latent variables are selected. The results, which are based

on 200 replicates, are summarized in Tables 1 and 2.

With the sparse-grid numerical integration, the mean computing time for a

single E-step is about 0.1–0.2 seconds under p = 100, and about 0.3–0.7 seconds

under p = 300, in various settings. In all scenarios, the proposed method performs

substantially better than the complete-case analysis, because the latter discards

subjects with partial information, and thus is less efficient. Single imputation

based on the factor model has overall better variable selection and prediction

performance than that based on structured matrix completion, because the for-

mer assumes a correct imputation model. Under MCAR, the proposed method

and the single imputation method based on the factor model perform similarly,

possibly because the structure of the factor model can be accurately recovered

using (S(1),S(2)) alone. Under MAR, however, the proposed method yields a

substantially smaller prediction error and similar or better false discovery and

true positive rates than those of the single imputation methods, owing to either

the estimation bias of the factor model or the failure to recover the low-rank

structure underlying (S(1),S(2)) in the single imputation methods. Note that,

in general, the proposed method yields better results under MAR than under

MCAR, because subjects with extreme outcome values contain more information

https://people.math.sc.edu/Burkardt/cpp_src/sparse_grid_hw/sparse_grid_hw.html
https://people.math.sc.edu/Burkardt/cpp_src/sparse_grid_hw/sparse_grid_hw.html
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Table 1. Simulation results for the continuous outcome variable.

Lasso A-Lasso

Variables Pred Correct Variables Pred Correct

selected FDR TPR error model selected FDR TPR error model

MCAR; p = 100

Complete 26.4 0.372 0.531 0.125 N/A 22.4 0.280 0.526 0.122 N/A

SMC 28.9 0.377 0.584 0.120 N/A 23.7 0.276 0.555 0.122 N/A

Imputed 30.2 0.354 0.632 0.098 1 25.0 0.243 0.616 0.096 1

Proposed 25.6 0.294 0.592 0.105 1 23.0 0.218 0.591 0.098 1

MAR; p = 100

Complete 32.0 0.350 0.670 0.160 N/A 26.3 0.231 0.661 0.206 N/A

SMC 28.8 0.355 0.589 0.150 N/A 22.2 0.203 0.570 0.152 N/A

Imputed 31.7 0.371 0.644 0.134 1 25.3 0.239 0.629 0.149 1

Proposed 27.9 0.269 0.668 0.089 1 24.5 0.186 0.654 0.080 1

MCAR; p = 300

Complete 29.9 0.497 0.454 0.156 N/A 35.6 0.533 0.507 0.168 N/A

SMC 34.3 0.485 0.547 0.130 N/A 32.4 0.428 0.577 0.123 N/A

Imputed 34.0 0.462 0.567 0.124 0.910 36.9 0.465 0.607 0.130 0.910

Proposed 24.2 0.366 0.495 0.140 0.910 27.6 0.367 0.556 0.120 0.915

MAR; p = 300

Complete 36.9 0.473 0.600 0.153 N/A 34.2 0.412 0.626 0.236 N/A

SMC 40.1 0.504 0.616 0.157 N/A 35.9 0.408 0.649 0.198 N/A

Imputed 34.0 0.462 0.568 0.151 0.995 34.4 0.427 0.615 0.189 0.995

Proposed 26.5 0.320 0.586 0.118 0.995 27.2 0.294 0.615 0.094 0.995

NOTE: “A-Lasso” stands for adaptive lasso; “Complete,” “SMC,” “Imputed,” and “Proposed” stand
for the complete-case analysis, the structured matrix completion method of Cai, Cai and Zhang (2016),
single imputation based on the factor model, and the proposed method, respectively; “Variables selected,”
“FDR,” “TPR,” “Pred error,” and “Correct model” stand for the average number of variables selected,
the false discovery rate, the true positive rate, the prediction error, and the proportion of replicates in
which the correct factor model is selected, respectively.

than do randomly selected subjects. Owing to estimation bias, however, the sin-

gle imputation methods fail to capture the extra information and perform worse

under MAR. For the single imputation method based on the factor model and

the proposed method, the BIC selects the correct factor model in the majority of

replicates.

In general, the adaptive lasso yields a lower false discovery rate and a smaller

prediction error than those of the lasso; in some cases, the lasso yields a higher

true positive rate than that of the adaptive lasso, probably because the lasso

selects more variables. These results agree with the expectation that by assigning

larger penalties to less important variables, the adaptive lasso outperforms the

lasso.
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Table 2. Simulation results for the binary outcome variable.

Lasso A-Lasso

Variables Pred Correct Variables Pred Correct

selected FDR TPR error model selected FDR TPR error model

MCAR; p = 100

Complete 20.0 0.356 0.408 1.486 N/A 17.1 0.286 0.396 1.507 N/A

SMC 23.2 0.364 0.468 1.451 N/A 18.8 0.274 0.439 1.370 N/A

Imputed 24.8 0.343 0.522 1.214 1 20.7 0.251 0.504 1.113 1

Proposed 24.4 0.353 0.506 1.277 1 20.5 0.251 0.502 1.100 1

MAR; p = 100

Complete 25.8 0.340 0.550 1.134 N/A 20.4 0.227 0.515 1.075 N/A

SMC 23.7 0.338 0.498 1.464 N/A 19.0 0.220 0.481 1.530 N/A

Imputed 25.0 0.337 0.534 1.272 1 20.5 0.232 0.513 1.430 1

Proposed 27.2 0.341 0.577 1.101 1 21.8 0.227 0.552 0.966 1

MCAR; p = 300

Complete 23.4 0.508 0.338 1.827 N/A 26.8 0.535 0.388 2.300 N/A

SMC 28.4 0.495 0.432 1.592 N/A 27.6 0.462 0.460 1.462 N/A

Imputed 29.1 0.488 0.452 1.515 0.915 30.4 0.478 0.490 1.488 0.915

Proposed 27.5 0.487 0.426 1.624 0.880 30.7 0.486 0.484 1.389 0.910

MAR; p = 300

Complete 30.9 0.498 0.484 1.371 N/A 27.4 0.422 0.499 1.379 N/A

SMC 31.4 0.488 0.494 1.502 N/A 28.1 0.409 0.523 1.975 N/A

Imputed 25.7 0.440 0.446 1.531 0.990 27.3 0.425 0.491 2.003 0.990

Proposed 31.5 0.479 0.511 1.346 0.990 30.8 0.443 0.540 1.182 0.990

NOTE: See NOTE to Table 1.

We conducted additional simulation studies to investigate the performance

of the proposed methods under a misspecified latent factor model. We show that

when every feature depends on all three latent variables, the proposed method

with r0 = r1 = r2 = 1 still yields superior performance over the complete-case

analysis and imputation methods. Details of the simulation settings and results

are presented in Section S1 of the Supplementary Material.

6. A Real Study

We considered the TCGA data (available at http://gdac.broadinstitute.

org/) on two smoking-related, upper aerodigestive tract cancers: head and neck

squamous cell carcinoma (HNSC) and lung adenocarcinoma (LUAD). After re-

moving patients with missing clinical data, the total sample size was 955, with

448 HNSC patients and 507 LUAD patients. We considered the outcome variable

tumor stage, dichotomized into stage I/II and stage III/IV. The proportions of

patients with later stages were 0.77 for HNSC and 0.22 for LUAD. We considered

http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
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two types of genomic features, namely, gene expressions and protein expressions,

with 18,028 and 155 variables, respectively. A total of 400 patients had no protein

data, owing to insufficient tissue sample left for protein expression measurement,

so the missing mechanism does not depend on the protein expression values. In

addition, patients missed 763 gene expressions, on average, and among patients

with some protein data, an average of 4.3 protein expressions are missing; the

missing data did not exhibit a blockwise pattern. The missing-data pattern is

plotted in Figure S1 in the Supplementary Material.

We first screened the gene expressions according to their marginal associa-

tions with tumor stage, such that the resulting number of variables and sam-

ple size were comparable. We tested each gene expression’s marginal associa-

tion with tumor stage using the score test (adjusted for cancer type), with the

model for missing data included in the likelihood, and selected the 500 vari-

ables with the smallest p-values. Then, we fit a logistic regression model for

tumor stage, with cancer type as X and the screened gene expressions and pro-

tein expressions as S. For the latent factor model, we set cancer type as a

covariate and ranged the total number of latent variables r from three to six

with (r0, r1, r2) ∈ {(r0, r1, r2) :
∑2

k=0 rk ≤ 6, rk ≥ 1 for k = 0, 1, 2}. We used

the adaptive-lasso penalty with the marginal regression parameter estimators as

the initial estimators and selected the tuning parameter using five-fold cross-

validation.

The BIC picked (r0, r1, r2) = (2, 3, 1) for the factor model. A total of 53

genomic features were selected, with 45 gene expressions and eight protein ex-

pressions; the selected features are presented in Table S3 in the Supplementary

Material. Several selected genes, including WDR37, FUT7, and DDIT4, were

previously reported to be associated with metastasis or patient survival (Ogawa,

Inoue and Koide (1997); Läubli et al. (2006); Wang et al. (2015)). The selected

proteins include the epidermal growth factor receptor, which is known to be in-

volved in the pathogenesis and progression of different types of cancer (Nicholson,

Gee and Harper (2001); Normanno et al. (2006)).

The estimated outcome model and factor model enabled us to construct

a personal genomic risk score. For each patient, we calculated the posterior

expectation of the latent variable, denoted by Û , and imputed the missing values

of the genomic features by the corresponding element of ΓX + ΨÛ , where the

parameters were evaluated at their estimated values. The risk score is defined as

βTŜ, with β evaluated at its estimated value and Ŝ the vector of the observed

or imputed genomic features.

We evaluated the association between the risk score and progression-free
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survival time (since initial diagnosis). For each cancer type, we fit a stratified

Cox model of progression-free survival time against the risk score, stratified by

tumor stage. The likelihood-ratio p-values for the effects of the risk score are

4.20× 10−4 and 6.41× 10−6 for HNSC and LUAD, respectively. These p-values

are highly significant, suggesting that the selected genomic features are highly

relevant to cancer progression. Note that the results are not due to overfitting,

because progression-free survival time is not involved in the calculation of the

risk score, and all evaluations are stratified by tumor stage and cancer type.

For comparison, we performed similar analyses using imputed data and the

complete cases only. (The method developed by Cai, Cai and Zhang (2016) is not

applicable to the general missing-data pattern exhibited in this data set.) For

the single imputation, we imputed the missing values using k-nearest-neighbor

imputation (Troyanskaya et al. (2001)) with k = 10, and performed the adaptive

lasso. For the complete-case analysis, because very few patients have complete

data, we removed only those patients with no protein expression data; we imputed

the missing values for the remaining patients using 10-nearest-neighbor imputa-

tion, and performed the adaptive lasso on the imputed data set. In constructing

the risk scores, we again imputed missing values of S using 10-nearest-neighbor

imputation.

For the complete-case analysis, the likelihood-ratio p-values for the associa-

tion between the risk score and progression-free survival time under the stratified

Cox model are 0.024 and 3.98× 10−6 for HNSC and LUAD, respectively. While

the p-value for LUAD is as significant as that of the proposed method, the p-value

for HNSC is only mildly significant. For the single imputation, the likelihood-

ratio p-values are 1.84×10−3 and 1.80×10−5 for HNSC and LUAD, respectively.

Single imputation yields similar results to those of the proposed method, with

slightly less significant p-values for both cancer types.

As a by-product of the proposed method, we obtained a low-dimensional

projection of the genomic features, Û . We constructed an alternative risk score,

defined as βTΨÛ , which is the estimated effect of the projected genomic features

on tumor stage. For each cancer type and tumor stage group, we divided patients

into two equal-sized risk groups according to their risk scores. The Kaplan–Meier

curves of the progression-free survival times for the risk groups are given in Fig-

ure 1. We also tested the association between the risk score and progression-free

survival time under the stratified Cox model, and the likelihood-ratio p-values

are 1.55 × 10−5 and 2.22 × 10−3 for HNSC and LUAD, respectively. Remark-

ably, patients classified into high-risk groups tend to have lower (progression-free)

survival probabilities than patients in the corresponding low-risk groups. In ad-
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Figure 1. Kaplan–Meier curves for risk groups defined by the projected genomic features.

dition, the likelihood-ratio tests are significant for both cancer types, and the p-

value for HNSC is smaller than those obtained from the original risk score (using

the proposed method, single imputation, or complete-case analysis). A possible

explanation is that the projection of the genomic features contains less noise than

do the individual genomic features, and thus better represents patients’ genomic

characteristics.

Finally, we compared the three methods for handling missing data using

cross-validation. We first independently sampled 10 training sets from the full

data set. Each training set consists of 60% of the patients (n = 573); the training

set and the full data set have approximately equal distributions of cancer type,

tumor stage, and missing-data proportion. In each training set, we followed the

procedures used in the analyses of the whole data set: we screened the gene

expressions by selecting the 500 gene expressions with the strongest association

with tumor stage (after adjusting for cancer type), and performed a complete-case

analysis, single imputation by 10-nearest-neighbor imputation, and the proposed

method on the screened variables over a sequence of tuning parameter values.

For the proposed method, we set the numbers of latent variables in the factor

model to r0 = 2, r1 = 3, and r2 = 1.

To evaluate the performance of each method, we used 10-nearest-neighbor
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imputation to impute the missing values in the full data set, and let each valida-

tion set consist of patients that were not part of a corresponding training set. For

each training and validation data split and each method, we performed the anal-

ysis using the training set over a series of tuning parameter values, and computed

the area under the receiver operating characteristic curve (AUC) of the resulting

risk scores in the validation set. Each method produces a curve of AUC against

tuning parameter values for each data split. Because the variables in the regres-

sion analyses differ across data splits owing to screening, it is not appropriate to

combine the results over splits at the same tuning parameter values. Instead, we

averaged the AUC values over splits at models with the same number of selected

variables.

The complete-case analysis yields the smallest average AUC at any given

model size, and the average AUC values between the single imputation and the

proposed method are similar. Specifically, the maximum average AUC values

for the complete-case analysis, single imputation, and the proposed method are

0.802, 0.816, and 0.817, respectively. Possibly because of the small sample size of

the training data sets, the single imputation and the proposed method perform

similarly.

7. Discussion

We have proposed a penalized-likelihood approach to variable selection and

parameter estimation for multiple types of many features with missing data.

Our approach accommodates arbitrary missing-data patterns, including, but not

restricted to blockwise missing data. We prove the estimation and model selection

consistency of the penalized estimator, and develop an efficient EM algorithm

for its computation. A key advantage of the proposed estimator is that it is

consistent under MAR, whereas single imputation is biased, in general, when the

missing-data mechanism depends on the outcome variable.

The structure of the latent factor model facilitates efficient computation of

the penalized estimator under general missing-data patterns. Under the factor

model, the conditional distribution of S(M) given (U ,S(O)) is equal to the con-

ditional distribution of S(M) given U alone. This structure makes it simpler to

evaluate the conditional distribution of the variables with missing values given

the observed variables in the E-step. (By contrast, if an unstructured covariance

matrix for S is assumed, then the conditional expectation may involve inver-

sions of large matrices.) In addition, because of the conditional independence of

components of S, the factor loadings for each component of S can be updated
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separately with closed-form solutions in the M-step.

Under the normality assumption on the error term ε in the factor model, the

EM algorithm involves only a low-dimensional numerical integration, even when

the dimension of the incomplete variables is high. This assumption ensures the

existence of a linear transformation of ε, denoted by ε̃, such that the components

of ε̃ are independent, and the outcome variable depends on ε only through a single

component of ε̃. For general distributions of ε, such a linear transformation is

not available, and the integration in the likelihood function cannot be simplified.

We use the BIC to select the numbers of common and type-specific latent

variables. When the number of feature types is large, this approach may involve

evaluating a large number of models, and may be computationally intensive.

Alternatively, we can consider penalization approaches similar to those of Ibrahim

et al. (2011) and Caner and Han (2014), which penalize the variances of the latent

variables or columns of the factor loading matrix.

One application of the proposed approach lies in the dimension reduction

of multi-modality features. In genomics studies, low-dimensional projections of

genomic features have been used to pick out technical errors (Leek et al. (2010)),

characterize the activities of gene sets (Fan et al. (2011)), and discover molec-

ular subtypes of patients (Shen, Olshen and Ladanyi (2009); Shen, Wang and

Mo (2013)). Most projection methods do not account for missing data, much

less a missing-not-at-random mechanism. Under the proposed framework, if the

missing-data mechanism depends on an external variable (that is associated with

S), then we can set the variable as the outcome variable Y , and the resulting fac-

tor model can be estimated without bias and be used to generate the projection.

Our work can be extended in several directions. First, we may consider a

potentially right-censored outcome variable that follows the Cox proportional

hazards model. This extension would find applications in many multi-platform

genomics studies in which the outcome of interest is time to death or disease

progression. For this extension, the penalized estimator can be computed using

the EM algorithm, where the M-step maximizes a quadratic approximation of the

(expected) log-partial likelihood using the coordinate-descent algorithm (Simon

et al. (2011)).

Another extension is to allow associations between features beyond those ex-

plained by the latent variables. The extra associations can be accommodated by

adopting an approximate factor model of S, which allows nonzero, but sparse

off-diagonal elements in Σ. A sparse estimator of Σ can be obtained by in-

cluding a penalty term on the off-diagonal elements of the covariance matrix in

the penalized likelihood (Bai and Liao (2016)). This generalization, however,
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imposes considerable computational challenges by complicating the conditional

distribution of S given U , and introducing an extra tuning parameter.

A third extension is to consider nonnormal incomplete features. We may fit

a semiparametric factor model, such that each latent variable is a nonparametric

monotone transformation of a Gaussian variable. We can adopt penalized sieve

maximum likelihood methods for estimation and the EM algorithm for computa-

tion. Another possibility is to assume that transformations of components of S

follow the (Gaussian) factor model, and then fit a regression model of Y on the

transformed S.

Finally, we have only established the estimation and selection consistency of

the penalized estimator. It is plausible that the estimator for the nonzero param-

eters exhibits the so-called oracle properties (Fan and Li (2001)) under further

regularity conditions. However, inference based on the oracle properties ignores

the variability arising from variable selection, and thus is seldom conducted in

practice. A possible future research direction is to investigate a “de-biased” ver-

sion of the penalized estimator (van de Geer et al. (2014); Zhang and Zhang

(2014)), which yields more reliable inference at the expense of nonsparsity of the

estimators.

Supplementary Material

The Supplementary Material contains additional theoretical results, simula-

tion results, and details of the real-data analysis.
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Appendix A: Computational and Technical Details

A.1. Details of the EM algorithm

To express the first and second conditional moments of S̃i given Oi ≡
(Yi,Xi,S

(O)
i ) in terms of those of (Ui, ε̃i), we define β̃

(M)
i = (β

(M)
i )j:β(M)

ij 6=0,

σ̃
(M)
i = (σ

(M)
i )j:β(M)

ij 6=0, and p̃
(M)
i to be the dimension of β̃

(M)
i , where σ

(M)
i =

(σ1, . . . , σpn)T
Mi

. Let ϑ̃i1 = c−1
i (β̃

(M)
i1 σ̃

(M)
i1 , . . . , β̃

(M)
ip̃(M) σ̃

(M)
ip̃(M))

T, and set (ϑ̃i2, . . . ,
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ϑ̃ip̃(M)
i

) to be p̃
(M)
i -dimensional unit vectors that are orthogonal to ϑ̃i1 and to

each other. The first and second (conditional) moments of S̃i involve E(Ui | Oi),
E(ε

(M)
i | Oi), E(UiU

T
i | Oi), E(Ψ̂

(M)
i Uiε

(M)T
i | Oi), and E(ε

(M)
i ε

(M)T
i | Oi). The

moments of Ui are readily available from (3.2) by setting g(Ui, ε̃i) = Ui or UiU
T
i .

For the other terms in the moments of S̃i, we have

E(εij |Oi) =

{
c−1
i σ

(M)
ij ϑ̃i1,mi(j)E(ε̃i |Oi) if β

(M)
ij 6=0,

0 otherwise,

E(Ψ̂
(M)
i Uiε

(M)T
i |Oi)jk =

{
c−1
i σ

(M)
ik ϑ̃i1,mi(k)

∑r
h=1 ψ̂

(M)
ijh E(Uihε̃i |Oi) if β

(M)
ik 6=0,

0 otherwise,

E(ε
(M)
i ε

(M)T
i |Oi)jk=


c−2
i σ

(M)
ij σ

(M)
ik δjk if β

(M)
ij =0 or β

(M)
ik =0,

c−2
i

∑p̃
(M)
i

h=1 {I(h=1)E(ε̃2i |Oi)
+I(h 6=1)}σ(M)

ij σ
(M)
ik ϑ̃ih,mi(j)ϑ̃ih,mi(k) otherwise,

where ϑ̃ijk is the kth component of ϑ̃ij , mi(j) is such that β̃
(M)
i,mi(j)

= β
(M)
ij , ψ̂

(M)
ijk

is the (j, k)th element of Ψ̂
(M)
i , and δjk = I(j = k).

A.2. Proofs of technical results

Before proving Theorem 1, we present the following lemma, which pertains

to an estimator of the nonzero parameters. Let θ̂Oracle ≡ (α̂Oracle, β̂Oracle, ξ̂Oracle,

Γ̂Oracle, Ψ̂Oracle, Σ̂Oracle) be a local maximizer of p`n(θ) when βN is fixed at 0.

For any potentially random real-valued sequences an and bn, we say that an is

dominated by bn if |an/bn| = op(1). We have the following result about the oracle

estimator.

Lemma 1. Under Conditions (C1)–(C6), there is a version of θ̂Oracle that satis-

fies

‖α̂Oracle −α0‖+ ‖β̂Oracle − β0‖+ ‖ξ̂Oracle − ξ0‖+ p−1/2
n ‖HΣ

−1/2
0 (Γ̂Oracle − Γ0)‖

+ ‖(I −H)Σ
−1/2
0 (Γ̂Oracle − Γ0)‖+ p−1/2

n ‖HΣ
−1/2
0 (Ψ̂Oracle −Ψ0)‖

+ ‖(I −H)Σ
−1/2
0 (Ψ̂Oracle −Ψ0)‖+ ‖Σ̂Oracle −Σ0‖ = Op(n

−1/2p1/2
n ).

The proof of Lemma 1 is presented in Section S3 of the supplementary materials.

Proof of Theorem 1. By Lemma 1, θ̂Oracle converges in probability to θ0 at

the desired rate of convergence, so it suffices to show that there exists a local

maximizer of p`n(θ), denoted by θ̂, such that P (θ̂ = θ̂Oracle) → 1 for some
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version of the oracle estimator θ̂Oracle. Let θS be the vector that consists of

(α,βS , ξ,Γ,Ψ,Σ). The desired result follows if the following Karush–Kuhn–

Tucker conditions hold:{
Pn

∂

∂θS
`(θ)− λnwS ◦ sgn(βS)

}∣∣∣∣
θ=θ̂Oracle

= 0,∣∣∣∣Pn ∂

∂βj
`(θ)

∣∣∣
θ=θ̂Oracle

∣∣∣∣ < λnwj for j = p1n + 1, . . . , pn,

λmin

{
− Pn

∂2

∂θS∂θT
S
`(θ)

∣∣∣∣
θ=θ̂Oracle

}
> 0,

where `(θ) denotes the log-likelihood function for a single subject, Pn denotes the

empirical process measure, and sgn(βS) is the vector of the signs of βS . The first

condition holds by the definition of θ̂Oracle, and the third condition follows from

condition (C1) and the fact that the Hessian matrix of the log-likelihood function

with respect to (Γ,Ψ,Σ) is negative definite for large enough n (as established

in the proof of Lemma 1). To verify the second condition, let un = nτ+η+κ−1 for

some η < 1− κ, and let

Sn =

{∣∣∣n1/2 ∂

∂βj
Pn`(θ0)

∣∣∣ ≤ un for j = p1n + 1, . . . , pn

}
.

For k ≥ 1 and j = p1n + 1, . . . , pn,

E

∣∣∣∣ ∂∂βj `(θ)
∣∣∣
θ=θ0

∣∣∣∣k = E

∣∣∣∣ ∫ Z(αT
0X + βT

0 S, ξ0)Sjf(S(M) | S(O), Y,X) dS(M)

∣∣∣∣k
≤E|Z(αT

0X + βT
0 S, ξ0)Sj |k,

where f(S(M) | S(O), Y,X) is the true conditional density function of S(M) given

(S(O), Y,X), and the inequality follows from Jensen’s inequality. By condition

(C7) and the Bernstein inequality, there exists some fixed positive constants c0

and c1 such that

P

(∣∣∣n1/2 ∂

∂βj
Pn`(θ)

∣∣∣
θ=θ0

∣∣∣ > un

)
≤ c0e

−c1un

for j = p1n + 1, . . . , pn. Therefore, P (Sn) ≥ 1− c0pne
−c1un = 1−O(eκ logn−c1un),

which tends to 1 because, by conditions (C3) and (C8), η can be chosen such

that un dominates log n. Under Sn and for θ̃ such that the θS-component of θ̃
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is close enough to its true value and the βN -component of θ̃ is zero,

∂

∂βj
Pn`(θ)

∣∣∣∣
θ=θ̃

=
∂

∂βj
Pn`(θ)

∣∣∣∣
θ=θ0

+
∂2

∂βj∂θT
S
Pn`(θ)

∣∣∣∣
θ=θ̌

(θ̃ − θ0)

≤ n−1/2un + sup
θ∗

∥∥∥∥ ∂2

∂βj∂θT
S
Pn`(θ)

∣∣∣∣
θ=θ∗

(θ̃ − θ0)

∥∥∥∥
≤ n−1/2un + sup

θ∗

∥∥∥∥ ∂2

∂βN∂θT
S
Pn`(θ)

∣∣∣∣
θ=θ∗

∥∥∥∥
2,∞
‖θ̃ − θ0‖

for j = p1n + 1, . . . , pn and large enough n, where θ̌ takes some value between

θ̃ and θ0, and the supremum is taken within the small neighborhood around θ0

defined in condition (C8). Note that

sup
θ∗

∥∥∥∥ ∂2

∂βN∂θT
S
Pn`(θ)

∣∣∣∣
θ=θ∗

∥∥∥∥
2,∞

= sup
θ∗

∥∥∥∥ ∂2

∂βN∂θT
S
P`(θ)

∣∣∣∣
θ=θ∗

∥∥∥∥
2,∞

+Op(n
−1/2p2

n)

= sup
θ∗
‖I(θ∗)‖2,∞ + op(1)

= Op(n
τ+η−1),

where the third equality follows from condition (C8), and P is the true probability

measure. Therefore,

max
j>p1n

∣∣∣∣λ−1
n w−1

j

∂

∂βj
Pn`(θ)

∣∣∣
θ=θ̂Oracle

∣∣∣∣
≤ max

j>p1n
Op(λ

−1
n w−1

j n−1/2un + λ−1
n w−1

j nτ+η−1pnn
−1/2)

= Op(λ
−1
n n−τn−1/2un + λ−1

n nη−3/2nκ),

where the equality follows from condition (C3). The right-hand side of the equal-

ity above is bounded by Op(λ
−1
n n−3/2+κ+η), which is op(1) by condition (C9).

The desired result follows.
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