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Abstract

Instrumental variable (IV) methods are popular in non-experimental set-

tings to estimate the causal effects of scientific interventions. These approaches

allow for the consistent estimation of treatment effects even if major con-

founders are unavailable. There have been some extensions of IV methods to

survival analysis recently. We specifically consider the 2-Step Residual Inclu-

sion (2SRI) estimator for the additive hazards model in this paper. Assuming

linear structural equation models for the hazard function, we may attain a

closed-form, two-stage estimator for the causal effect in the additive hazards

model. The asymptotic properties of the estimators are rigorously established

and the resulting inferences are shown to perform well in simulation studies.

Keywords: Additive hazards model; instrumental variable; two-stage least squares

estimation; survival analysis.

1 Introduction

Instrumental variable (IV) approaches have been widely used in Econometric studies

and recently became an active research area for biostatistical community. One of

the areas that still need our attention is how to apply IV approaches properly for

censored survival data. Li et al. (2015) first proposed to adapt the familiar 2-step

regression approaches for additive hazards model. While other survival models may

also be considered in practice, it remains unclear whether the standard IV approaches
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can be easily accommodated. We confine our attention to additive hazards model in

this paper.

Most applications of IV methods in the medical and epidemiologic literature are

based on two-stage least squares estimation of structural equation models. Robins

and Tsiatis (1991) proposed an IV estimator to correct for non-compliance in random-

ized trials with the error distributions in the structural equations unspecified. These

methods require that the censoring time is always observed and are not applicable

with random loss to follow-up where only the minimum of the event and censoring

times is known. Tang and Lee (1998) proposed parametric maximum likelihood esti-

mators, with numerical studies presented in Posner and Baker (2000). Related work

on parametric discrete time models is found in Muthen and Masyn (2005) and Chen

et al. (2011). For the usual right censoring set-up, most of the above developments

rely heavily on specified parametric models and may not be attractive in the med-

ical study where semiparametric models with unknown error distributions are the

default. Loeys and Goetghebeur (2003) extended the Robins-Tsiatis approach to

causal proportional hazards models with observed censoring times. Bijwaard (2008)

studied endogeneity for duration data under the generalized accelerated failure time

model and extended the IV approach to rank estimation with known censoring times.

Terza et al. (2008) considered the two-stage predictor substitution as well as the two-

stage residual inclusion for parametric likelihood estimation with uncensored dura-

tion data. Li et al. (2015) proposed a new methodology to address the usual right

censoring encountered in medical applications. Moreover, the semiparametric addi-

tive hazards model considered in Li et al. (2015) is more flexible than the parametric
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models in the previous literature.

Recently Chan (2015) pointed out an alternative way of fitting instrumental vari-

able additive hazards model using the well-known 2-stage residual inclusion (2SRI)

approach. This approach complements the 2-stage predictor substitution (2SPS)

approach proposed in Li et al. (2015) since 2SPS requires a relatively stronger condi-

tional independence assumption for the random censoring time. In linear regression

these two approaches are often interchangeable since they agree numerically and the-

oretically. For nonlinear models they are in general not identical and thus should be

chosen by the practitioners with proper consideration.

Chan (2015) carried out extensive simulation studies to examine the performance

of 2SRI approach and compare with 2SPS approach. However, no theoretical works

were provided to justify the validity of 2SRI estimator. In this paper we attempt to

fill in this gap by carefully establishing the technical conditions and supplying the

mathematical argument for the asymptotic properties of 2SRI estimator. Consistency

and asymptotic normality for the 2SRI estimator under additive hazards model are

given in the main theorems of this paper. In addition, we also carry out an efficiency

comparison between 2SRI and 2SPS estimators.

To complement the numerical works in Chan (2015), we select settings where

assumptions for 2SRI and 2SPS might not hold. The robustness of the approaches

against model misspecification is assessed via our simulations.
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2 Estimation

Suppose the true model for explaining the causal effects of covariates on the hazard

function of the survival time T is

h(t;Xe,Xo,Xu) = h0(t) + βeXe + βTo Xo + η, (1)

where Xe is an endogenous variable whose coefficient is of interest, Xo is a p−vector

of observed exogenous variables, and the error η involves some unobserved covariates

Xu. In the literature of lifetime data analysis model (1) is referred to as the additive

hazards model (Lin and Ying (1994)).

Further suppose we have an instrumental variable XI such that

Xe = αc + αIXI + αT
oXo + v, (2)

where αc, αI ,αo are coefficients for the constant intercept, the instrumental variable,

and the observed exogenous variable, respectively. The error v may involve unob-

served covariates. The model (2) assumes a standard structure for the endogenous

variable in IV estimation.

When survival time is subject to right censoring, the observed data consist

of n independent realizations of Y = min(T,C),∆ = I(T ≤ C) and covariates

{Xe,Xo, XI}, where C is a random censoring time which may prevent observation

of T . We shall denote these n samples as Yi = min(Ti, Ci),∆i = I(Ti ≤ Ci) and

{Xei,Xoi, XIi}, i = 1, . . . , n.
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To implement the 2SPS approach, we first obtain (α̂c, α̂I , α̂
T
o ) with a least squares

approach and predict the endogenous variable X̂e = α̂c + α̂IXI + α̂T
oXo. Then we

fit the additive hazards model using X̂e and Xo as the covariates. The asymptotic

properties of the resulting 2SPS estimator were studied in Li et al. (2015).

To implement the 2SRI approach, we first obtain (α̂c, α̂I , α̂
T
o ) from a first stage

least squares estimation and predict the residuals v̂ = Xe − α̂c − α̂IXI − α̂T
oXo.

In the second stage we fit the additive hazards model using X̂e, Xo and ν̂ as the

covariates. The asymptotic properties of the resulting 2SRI estimator were provided

in the following section.

3 Asymptotic Properties

We first introduce some notations. Denote β = (βe,β
T
o , γv)

T where γv is given in con-

dition (C2), XIOi = (1, XIi,X
T
oi)

T , XIO = [XIO1 · · ·XIOn]T , Xe = (Xe1, . . . , Xen)T ,

XIOEi = (1, XIi,X
T
oi, Xei)

T , XIOE = [XIOE1 · · ·XIOEn]T , and vi = Xei−αc−αIXIi+

αToXoi.

The residual of the first-stage least squares prediction can be written as

v̂i = Xei −XT
IOi[X

T
IOXIO]−1XIOiXe. (3)

Denote

XEOV =


(0, 0,0Tp , 1)

(0p,0p, Ip,0p)

(−XT
eXIO[XT

IOXIO]−1, 1),
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where 0p is a vector of zeros with length p and Ip is the p × p dimensional identity

matrix. Denote the true value of the coefficients as βT = (βTe,β
T
To, γTv)

T and let

X̄IOE(t) =

∑n
i=1Ai(t)XIOEi∑n

i=1Ai(t)
,

where Ai(t) = I(Yi ≥ t) is a 0-1 at-risk process indicating whether the subject i is

at risk at time t.

We impose the following technical conditions:

(C1) XI ,Xu and Xo are mean zero random variables with bounded supports.

(C2) η = γvv + ε. αI 6= 0, γv 6= 0.

(C3) XI is independent of (T,Xu) conditional on Xo.

(C4) Xu and Xo are independent.

(C5) v is independent of XI and Xo with variance V ar(v) = σ2; ε is a white noise

and is independent of XI ,Xu and Xo.

(C6) C is conditionally independent of T given (Xe, XI ,Xo).

(C7) The matrix
∑n

i=1

∫∞
0

[XIOE(XIOi − X̄IO(t))]⊗2Ai(t)dt is non-singular.

(C8) There exists (p+2)× (p+2) positive definite matrices Σ,Ω and Ψ such that

n−1σ2γ2Tv

n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]XT
IOi[X

T
IOXIO]−1XIOi

[XEOV (XIOEi − X̄IOE(t))]TAi(t)dt
a.s.→ Σ,

1

n

n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]⊗2Ai(t)dt
a.s.→ Ω,
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and

n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]⊗2dNi(t)
a.s.→ Ψ.

Here Ni(t) = I(Yi ≤ t,∆i = 1) is the counting process for the ith subject.

Denote the 2SRI estimator of β as β̂. β̂ is then the solution of U(β) = 0 where

U(β) =
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))][dNi(t)− βTXEOVXIOEiAi(t)dt]. (4)

It can be shown that β̂ has the following closed-form:

β̂ =

{
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]⊗2Ai(t)dt

}−1

×

{
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]dNi(t)

}
.

We denote the true parameter as βT in the following theorems.

Theorem 3.1 (Strong Consistency.) Under Conditions (C1) - (C7), we have β̂ →

βT almost surely as n→∞.

Theorem 3.2 (Asymptotic Normality.) Under Conditions (C1) - (C8), we have

√
n(β̂ − βT )→ N(0p+2,Ω

−1(Ψ + Σ)Ω−1) in distribution as n→∞.

Following Lin and Ying (1994), the estimator for the confounded (with the unob-

served covariates) baseline cumulative hazard H†0(t) = − logS†0(t) can be estimated
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by

Ĥ0
†
(t) =

∫ t

0

∑n
i=1{dNi(u)− β̂TXEOVXIOEiAi(u)du}∑n

i=1Ai(u)
.

Consequently, the covariate specific survival function S(t;xe,xo, v) as in (5) can be

estimated by

Ŝ(t;xe,xo, v) = exp{−Ĥ0

†
(t)− t(β̂exe + β̂To xo + γ̂vv)}.

Assuming that:

(C9) For a given τ <∞, there exists continuous and bounded functions g(t) and

G(t) such that

sup
t∈(0,τ ]

∣∣∣∣∫ t

0

n
∑n

i=1 dNi(u)

{
∑n

i=1Ai(u)}2
− g(t)

∣∣∣∣ p→ 0

sup
t∈(0,τ ]

∥∥∥∥∥
n∑
i=1

XEOVXIOEi

∫ t

0

dNi(u)∑n
i=1Ai(u)

−G(t)

∥∥∥∥∥
max

p→ 0.

The following theorem establishes the asymptotic properties of Ŝ†(t;xe,xo, v):

Theorem 3.3 (Weak Convergence of Survival Function) Under Conditions (C1) -

(C9), we have as n→∞,

sup
t∈(0,τ ]

∣∣∣Ŝ(t;xe,xo, v)− S(t;xe,xo, v)
∣∣∣ p→ 0.

Furthermore,
√
nŜ(t;xe,xo, v)−S(t;xe,xo, v) converges weakly to a mean zero Gaus-

sian process over t ∈ (0, τ ] and the covariance function at (t1, t2) for t1, t2 ∈ (0, τ ] is
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given by:

S(t1;xe,xo, v)S(t2;xe,xo, v){g(min(t1, t2)) +

(xe,x
T
o , v)Ω−1(Ψ + σ2Σ)Ω−1(xe,x

T
o , v)T t1t2}+ (xe,x

T
o , v)Ω−1[G(t1)t2 + G(t2)t1].

We next establish the equivalence of the 2SRI and 2SPS estimators of βe under

appropriate assumptions. Denote β̂e and β̃e as the estimators of βe using 2SRI

and 2SPS respectively. Write X̂ei = XT
IOi[X

T
IOXIO]−1XIOiXe, Xsi = (X̂e,X

T
oi)

T ,

Xs = [Xs1, . . . ,Xsn]T and denote:

X̄s(u) =

∑n
i=1Ai(u)Xsi∑n
i=1Ai(u)

.

Similarly, write Xsvi = (X̂e,X
T
oi, v̂i)

T and Xtv = [Xsv1, . . . ,Xsvn]T and define

X̄sv(u) =

∑n
i=1Ai(u)Xsv∑n
i=1Ai(u)

.

Denote

εe,n =
1

n

n∑
i=1

∫ ∞
0

(
X̂ei −

∑n
j=1Aj(u)X̂ej∑n
j=1Aj(u)

)(
v̂i −

∑n
j=1Aj(u)v̂j∑n
j=1Aj(u)

)
Ai(u)du

Similarly, denote the jth element of

1

n

n∑
i=1

∫ ∞
0

(
Xoi −

∑n
j=1Aj(u)Xoj∑n
j=1Aj(u)

)(
v̂i −

∑n
j=1Aj(u)v̂j∑n
j=1Aj(u)

)
Ai(u)du
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as εoj,n, and write

B =
1

n

n∑
i=1

∫ ∞
0

[Xsi − X̄s(u)]⊗2Ai(u)du,

C = (εe,n, εo1,n, . . . , εop,n)T ,

D =
1

n

n∑
i=1

∫ ∞
0

(
v̂i −

∑n
j=1Aj(u)v̂j∑n
j=1Aj(u)

)2

Ai(u)du,

α = (D − CTB−1C)−1,

YN = (YN,1, . . . , YN,p+2) =
1

n

n∑
i=1

∫ ∞
0

[Xsvi − X̄sv(u)]dNi(u)

Assume that the conditions for 2SPS Li et al. (2015) and conditions (C1)-(C8)

hold. The following theorem indicates that when η in linear in Xu as in 2SRI, the

two estimators obtained using 2SRI and 2SPS are asymptotically equivalent. For

any given matrix M we denote its first row as M1,·. Similarly, the first element of a

vecot V is denoted as V1.

Theorem 3.4 Uder the assumptions for 2SPS and conditions (C1)-(C9), we have,

β̂e = β̃e + α[B−1C(B−1C)T ]1,·(YN,1, . . . , YN,p+1)
T − α(B−1C)1YN,p+2 = β̃e +Op(n

−1/2).

Consequently we have,

V ar(β̂e) = V ar(β̃e) + V ar(α(B−1C)1YN,p+2)− 2Cov(β̃e, α(B−1C)1YN,p+2) +O(n−3/2)

= V ar(β̃e) +O(n−1).
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4 Numerical study

Chan (2015) clearly indicated a potential weakness of 2SRI in that the first stage

residual η and the second stage residual ν in the two stage models must be linearly

associated (Condition (C2) above). Such a structural requirement could be quite

restrictive in practice. For example, using notations from Li et al. (2015), let us

consider a very common setting where η = βTuXu and ν = αT
uXu + ε. Here Xu

denotes the q−vector of unobserved confounding variables. The condition (C3) can

be trivially satisfied if q = 1. Sometimes it is reasonable to assume the unobserved

confounding effects could be attributed to a single latent variable. This kind of spec-

ification has been practiced widely in longitudinal data analysis where the random

intercept model has been applied to model the unobservable subject specific effects.

However, it is quite likely that different independent sources of latent factors could

be involved in Xu. When q > 1, it is hard to assess if the regression coefficients from

the two stages are proportional. In practice the number of latent variables is usually

unknown. When likelihood methods are considered for estimation, some authors

considered using an information criterion to determine the number of factors (Bai

and Li (2014)). There are some limited discussions in econometrics and further study

is still needed. On the other hand, when q > 1, the condition (C3) may still hold if

Xu follows a multivariate normal distribution. The normality might be plausible for

many biological characteristics symmetrically distributed across the population.

All simulations in Li et al. (2015) and Chan (2015) were carried out under the

setting q = 1 and multivariate normality. Therefore the consistency of the 2SPS and

2SRI is witnessed. In this section we consider a few more general settings. In the
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following, we consider q = 2 with Xu = (Xu1, Xu2)
T . We assume Xe is generated by

Xe = 1 + 0.5XI +Xo + .75Xu1 + .5Xu2 + .2ε,

where XI , Xo, Xu1 and ε are all standard normal random variates. Three types of

distributions for Xu2 are considered: (A) uniform distribution over (1, 2); (B) log

standard normal distribution; (C) Bernoulli distribution with success probability 0.5.

The exact failure time is generated according to the following additive hazards model

h(t) = 9.5 + .5Xe + .5Xo + .75Xu1 + 5.5Xu2.

The censoring time is generated from an exponential distribution with a hazard rate

2.5.

The results from 2SPS and 2SRI are summarized in Table 1. In the first case

the performance of 2SPS appears to be slightly better than 2SRI. The 2SRI works

well when the distribution of Xu2 is uniform and only a slight departure from the

normal. However, in the second case where the unobserved confounder follows a

positively skewed distribution, the estimation bias based on 2SRI is much larger

than that based on 2SPS. In the third case, we examine the performance when Xu2

is discrete. It is noted that 2SRI yields higher bias than 2SPS with n ≤ 800. When

the sample size is extremely large, the binomial distribution converges to the normal

distribution. The two methods are thus quite agreeable at n = 1200. In all cases,

2SRI seem to produce larger estimation variances than 2SPS.
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Table 1: Performance of estimation results for β̂e in 1000 simulations. Bias refers to
the average biases over 1000 simulations. Var refers to the empirical variances of the
estimates. Cov refers to the coverage of 95% confidence intervals.

2SPS 2SRI
Case Sample size Bias Var Cov (%) Bias Var Cov (%)

A 200 -.136 8.842 93 -.1462 9.006 92
A 400 .133 4.191 93 .206 4.221 92
A 800 .163 2.003 91 .170 2.012 91
A 1200 .0244 .996 92 .0253 0.998 90
B 200 .803 10.14 92 10.15 50.53 29
B 400 .449 9.43 86 13.71 29.53 8
B 800 1.48 188 89 3.78 373 12
B 1200 -.562 71.5 90 8.003 138.8 14
C 200 -.176 3.92 96 -.217 3.97 95
C 400 -.0011 1.876 94 .0085 1.89 91
C 800 -.1478 .990 96 -.1585 .995 94
C 1200 .1065 .609 91 .0983 .610 91
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5 Censoring assumption

We agree that the censoring assumption in Li et al. (2015) is stronger than that in

Chan (2015). Many useful statistical methods in survival analysis depend critically

on the underlying censoring assumption. It is strongly encouraged that practitioners

examine how realistic to make the conditional independence assumption. Specifically,

if Xe is categorical variable, one may adopt some goodness-of-fit test procedures to

examine whether censoring time is independent of Xe. When the independence is

acceptable, then application of structural equation modeling may be justified.
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Appendix

Proof of Theorem 3.1 Note that

S(t;Xe,Xo, v, ε, ε
′) = S0(t) exp{−t(βeXe + βTo Xo + η}

= S0(t) exp{−t(βeXe + βTo Xo + γvv + ε′}. (5)
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We have:

S(t;Xe,Xo, v) =

∫ ∞
0

S0(t) exp{−t(βeXe + βTo Xo + γvv)} exp{−ε′t}dF (ε′)

= S†0(t) exp{−t(βeXe + βTo Xo + γvv)},

where S†0(t) = S0(t)
∫∞
0

exp{−ε′t}dF (ε′) is a modified baseline survival function that

does not involve Xe,Xo and v. Let h†0 and H†0 be the hazard and cumulative hazard

function corresponding to S†0 given above. For every i and t, the counting process

Ni(t) then admits the following unique decomposition:

Ni(t) = Mi(t) +

∫ ∞
0

Ai(s)dH
†(s;Xei,Xoi),

where H†(s;Xei,Xoi, vi) =
∫ †
0
h†0(s)ds + t(βTeXei + βTToXo + γTvvi). Together with

(4) we have

U(β)

=
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]dMi(t) +

n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt× [βTeXei + βTToXo + γTvvi − βTXEOVXIOEi].

Using the strong law of large numbers for martingale and the dominated convergence

theorem we can show that n−1 of the first term in the right hand side of the above
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equality converges to zero almost surely. The second term is equal to

n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt× [(βTe − βe)Xei + (βTo − βo)
TXo + γTvvi − γvv̂i].

Under the assumed conditions and the law of large number, n−1 of the above equation

converges almost surely to zero if and only if β = βT . The strong convergence of

β̂ is then obtained by noticing that it is the solution of an asymptotic unbiased

estimating equation.

Proof of Theorem 3.2 From Taylor expansion we have:

√
n(β̂ − βT ) =

√
n

{
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]⊗2Ai(t)dt

}−1
U(βT ) + op(1)

d→ n−1/2Ω−1U(βT ).

Hence it suffices to show that n−1/2U(βT ) is asymptotically normal with mean 0p+2

and covariance matrix Ψ + Σ.

Note that

n−1/2U(βT ) = n−1/2
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]dMi(t) +

n−1/2
n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt× [γTv(vi − v̂i)].

Denote the two terms on the right hand side of the above equation as I1 and I2.

Clearly, I1 is a martingale integral and is asymptotically normally distributed with

zero mean and covariance matrix Ψ. For I2, note that for i = 1, . . . , n, by Conditions
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(C5) and (C8) we have

lim
n→∞

{
[γTv(vi − v̂i)]2

n∑
i=1

∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt

×XEOV (XIOEi − X̄IOE(t))]TAi(t)dt
}−1 ∫ ∞

0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt

×[γTv(vi − v̂i)]

= lim
n→∞

Σ−1n−1
∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt× [γTv(vi − v̂i)] = 0.

By the Lindberg-Feller central limit theorem we know that I2 is asymptotically nor-

mally distributed with zero mean and covariance matrix Σ. Next we finish the proof

by showing that the covariance between I1 and I2 converges to zero in probability.

Note that

Cov(I1, I2) = n−1
n∑
i=1

Cov
(∫ ∞

0

[XEOV (XIOEi − X̄IOE(t))]dMi(t),∫ ∞
0

[XEOV (XIOEi − X̄IOE(t))]Ai(t)dt× [γTv(vi − v̂i)]
)

+n−1
∑

1≤i 6=j≤n

Cov
(∫ ∞

0

[XEOV (XIOEi − X̄IOE(t))]dMi(t),∫ ∞
0

[XEOV (XIOEj − X̄IOE(t))]Aj(t)dt× [γTv(vj − v̂j)]
)
.

By noticing that γTv(vj − v̂j) converges to zero in probability for every i = 1, . . . , n,

we immediately have that Cov(I1, I2)
p→ 0.
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Proof of Theorem 3.3 The 2SPS estimator of β can then be written as

β̃ =

{
1

n

n∑
i=1

∫ ∞
0

[Xsi − X̄s(u)]⊗2Ai(u)du

}−1
×

{
1

n

n∑
i=1

∫ ∞
0

[Xsi − X̄s(u)]dNi(u)

}
,

After some calculation it can be shown that the 2SRI estimator of β can be

written as

β̂ =

{
1

n

n∑
i=1

∫ ∞
0

[Xsvi − X̄sv(u)]⊗2Ai(u)du

}−1
×

{
1

n

n∑
i=1

∫ ∞
0

[Xsvi − X̄sv(u)]dNi(u)

}
,

Note that X̃ei is independent of vi, and X̂ei and v̂i are root-n consistent. We have

εe,n =
1

n

n∑
i=1

∫ ∞
0

(
X̃ei −

∑n
j=1Aj(u)X̃ej∑n
j=1Aj(u)

)(
vi −

∑n
j=1Aj(u)vj∑n
j=1Aj(u)

)
Ai(u)du+Op(n

−1/2)

= Op(n
−1/2).

Similarly, it can be shown that εoj,n = Op(n
−1/2) for j = 1, . . . , p. Using the matrix

inversion formula in block form we immediately have:

β̂e = β̃e + α[B−1C(B−1C)T ]1,·(YN,1, . . . , YN,p+1)
T − α(B−1C)1YN,p+2

= β̃e +Op(n
−1) +Op(n

−1/2).

Consequently, we have

V ar(β̂e) = V ar(β̃e) + V ar(α(B−1C)1YN,p+2)− 2Cov(β̃e, α(B−1C)1YN,p+2) +O(n−3/2).
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