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Abstract

The purpose of this paper is to present a network realization theory for a class of mixed quantum-classical linear stochastic systems.
Two forms, the standard form and the general form, of this class of linear mixed quantum-classical systems are proposed. Necessary
and sufficient conditions for their physical realizability are derived. Based on these physical realizability conditions, a network synthesis
theory for this class of linear mixed quantum-classical systems is developed, which clearly exhibits the quantum component, the classical
component, and their interface. An example is used to illustrate the theory presented in this paper.
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1 Introduction

Linear systems are of basic importance to classical con-
trol engineering, and also arise in the modeling and con-
trol of quantum systems; see, e.g., Gardiner and Zoller
(2004), Mirrahimi and van Handel (2007), Gough and James
(2009), Sayed Hassen et al. (2009), Wiseman and Milburn

a (2010), Dong and Petersen (2010), Zhang and James
(2011), Zhang and James (2012), Jacobs (2014), Gough
and Zhang (2015), Wilson et al. (2015), Wang and Dong
(2017), Wang et al (2017), Zhang et al. a (2017), Nurdin
and Yamamoto (2017), Zhang et al. b (2018). A classical
linear system described by the state space representation can
be realized using electrical components by linear electrical
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network synthesis theory, see Anderson and Vongpanitlerd
(1973). Linear quantum optical systems may be described

by linear quantum differential equations in the Heisenberg
picture of quantum mechanics, Gardiner and Zoller (2004),
James et al. (2008), Nurdin et al. a (2009), Wiseman and
Milburn a (2010), Gough and James (2009), Wang et al.
b (2013), Gough and Zhang (2015), Wilson et al. (2015),
Nurdin and Yamamoto (2017), Zhang et al. b (2018). Such
quantum linear systems described by the state space repre-
sentation can be built by optical cavities, degenerate para-
metric amplifiers (DPA), phase shifters, beam splitters, and
squeezers, etc; interested readers may refer to Leonhardt
(2003), Bachor and Ralph (2004), Nurdin et al. b (2009),
Nurdin and Yamamoto (2017) for a more detailed intro-
duction to these optical devices. Quantum technologies of-
ten comprise quantum systems interconnected with classi-
cal (non-quantum) devices, which means that the two types
of systems may be connected as an integral whole (called
mixed quantum-classical systems in this paper) by appro-
priate interfaces that convert quantum signals to classical
signals, and vice-versa. Traditionally, such quantum optical
networks would be implemented on an optical table. Howev-
er, it is now becoming possible to consider implementation
in semiconductor chips, Beausoleil et al. (2007), O’Brien
et al. (2009), Wang et al. b (2013).
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In classical control engineering, many methods have been
developed for designing controllers that meet various control
specifications. The design process begins with some form of
specification for the system, and concludes with a physical
realization of the controller that meets the specifications. Of-
ten, mathematical models for the controller are used in the
design process, such as state space equations for the con-
troller. These state space equations may result from a math-
ematical optimization procedure, such as H∞, LQG, or some
other procedure. The process of going from such mathemat-
ical models to the desired physical systems is a process of
synthesis or physical realization, part of the design method-
ologies widely used in classical engineering Anderson and
Vongpanitlerd (1973). Analogous design issues are begin-
ning to present themselves in quantum technology. A quan-
tum control system often has both quantum and classical
components. Indeed, in measurement-based feedback con-
trol, a classical controller is used to control a quantum plant.
That is, a quantum control system is often a mixed quantum-
classical system. Figure 1 illustrates an example of a mixed
quantum-classical linear system studied in Sayed Hassen et
al. (2009). In this measurement-based feedback control sys-
tem, a Fabry-Perot optical cavity Bachor and Ralph (2004),
Nurdin et al. b (2009), Walls and Milburn (2008), which
is described quantum-mechanically, is connected to a clas-
sical controller via a homodyne detector (HD) and a piezo-
electric actuator Wiseman and Milburn a (2010), Wiseman
and Milburn b (1993). The light field (quantum signal) re-
flected from the cavity is first separated from the incoming
laser beam by an optical isolator, and then is detected by a
HD (a quantum-to-classical converter), thus yielding a pho-
tocurrent which is a classical signal. The classical controller
processes such classical signals to generate a classical con-
trol input u, which is then fed back to regulate the optical
path length of the cavity via the piezo-electric actuator in
order to actuate the resonant frequency of the cavity. Inter-
ested reader may refer to Sayed Hassen et al. (2009) for
more details.

The purpose of this paper is to propose canonical represen-
tations for a class of linear stochastic differential equations
that may describe mixed quantum-classical systems and then
develop a network synthesis theory for such class of equa-
tions that reveals in a clear way the internal structure of a
mixed quantum-classical system. Furthermore, arbitrary lin-
ear stochastic differential equations for mixed systems need
not correspond to a physical system, and so we derive con-
ditions ensuring that they do; that is, physical realizability.
This work generalizes and extends earlier work James et al.
(2008), Nurdin (2011), Wang et al. a (2012). In Wang

et al. a (2012), we only consider a standard model for
mixed quantum-classical linear stochastic systems for the
design process. However, in this paper, we will investigate
a more general model for the physical realization of mixed
quantum-classical linear stochastic systems.

The rest of the paper is organized as follows. Section 2
introduces some concepts about classical and quantum ran-
dom variables as well as probabilities, briefly describes
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Fig. 1. A mixed quantum-classical system (Cavity locking feed-
back control loop) studied in Sayed Hassen et al. (2009).

closed quantum harmonic oscillators, and also gives a brief
overview of linear non-commutative stochastic systems and
non-demolition conditions. Section 3 proposes two models
of mixed quantum-classical linear stochastic systems for
the design process and presents a connection between these
models. Section 4 presents physical realizability definitions
and constraints for the two models defined in Section 3,
respectively. Section 5 develops a network synthesis theory
for a mixed quantum-classical system. Section 6 presents
a potential application of the main results of Section 5.
Finally, Section 7 gives the conclusion of this paper.

2 Preliminaries

2.1 Notation

The notations used in this paper are as follows. The imag-
inary unit is i =

√
−1. The commutator of two operators

A and B is defined by [A, B] = AB−BA. If x and y are
column vectors of operators, the commutator is defined by
[x, yT ] = xyT − (yxT )T . If X = [x jk] is a matrix of lin-
ear operators or complex numbers, then X# = [x∗jk] denotes
the operation of taking the adjoint of each element of X ,
and X† = [x∗jk]

T . We also define ℜ(X) = (X +X#)/2 and
ℑ(X) = (X−X#)/2i. The symbol Ik denotes the k×k identi-
ty matrix, 0 j×k denotes the j×k zero matrix and 0k ≡ 0k×k.
Let J = [0 1;−1 0] and diagk(M) denote a block diagonal
matrix with the square matrix M appearing k times on the di-
agonal block. A symplectic matrix V of dimension 2k×2k is
a real matrix satisfying V ΘkV T = Θk, where Θk = diagk(J).
We set h̄ = 1 throughout this paper.

2.2 Classical and quantum random variables

A classical random variable, usually written as X , is a vari-
able whose possible values are numerical outcomes of a ran-
dom phenomenon. A random variable X with mean µ =E[X ]
and variance σ2 = E[(X−µ)2] is said to be Gaussian if its
probability distribution function F is Gaussian, i.e.,
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F(a < X ≤ b) =
∫ b

a
pX (x)dx, ∀−∞ < a < b < ∞, (1)

where pX (x) = 1
σ
√

2π
exp(− (x−µ)2

2σ 2 ) is of course the well-known
Gaussian probability density function.

In quantum physics, a quantum random variable A is an operator
defined on a Hilbert space H. In particular, if A is self-adjoint, it
is called an observable and can be used to represent some phys-
ical quantity. Because an observable is self-adjoint, by the spec-
tral theory, its spectra are real numbers. Actually, an observable
can be physically measured to generate outcomes which are re-
al numbers. On the other hand, a quantum state ψ encodes an
experimenter’s knowledge or information about some aspect of
reality and is given mathematically as a vector of H, permitting
the calculation of expected values of quantum random variables.
If an observable A is measured on a quantum system prepared
in the state ψ , then its mean value is given by the inner product
〈ψ,Aψ〉=

∫
∞

−∞
ψ(q)∗Aψ(q)dq. In quantum mechanics, the Dirac

“ket” notation |ψ〉 is always used to denote a pure quantum state
ψ . The adjoint of |ψ〉 is the “bra” vector 〈ψ|. Then, we can write
the previous inner product as 〈ψ,Aψ〉 = 〈ψ|Aψ〉. Moreover, we
can associate a density operator ρ with state |ψ〉 as ρ = |ψ〉〈ψ|.
The density operator ρ defined in this way corresponds to a pure
state and is a rank-1 projector, but in general ρ can also be used
to describe a classical mixture of pure states, Merzbacher (1998);
Wiseman and Milburn a (2010).

Consider an example of a quantum harmonic oscillator with am-
plitude quadrature operator Q and phase quadrature operator P, a
model for an optical mode in a cavity. The two observables Q and
P are defined by

(Qψ)(q) = qψ(q), (Pψ)(q) =−i
d

dq
ψ(q) (2)

for ψ ∈H= L2(R), respectively. In quantum mechanics, the am-
plitude and phase quadrature observables satisfy the commutation
relation [Q, P] = 2i, and such non-commuting observables are re-
ferred to as being incompatible. The state vector

ψ(q) = (2π)−
1
4 σ
− 1

2 exp
(
− (q−µ)2

4σ2

)
(3)

is an instance of what is known as a quantum Gaussian state.
For this particular Gaussian state, the means of P and Q are
given by

∫
∞

−∞
ψ(q)∗Qψ(q)dq = µ , and

∫
∞

−∞
ψ(q)∗Pψ(q)dq = 0,

and similarly the variances are σ2 and 1
4σ 2 , respectively.

2.3 Classical probability and quantum probability

In the classical probability theory, a probability model is given by
a triple (Ω,F ,ν), where

(1) the sample space Ω is the set of all possible outcomes of
some experiment;

(2) F is a collection of events, which are subsets of Ω;

(3) ν is a probability measure.

Classical random variables can be defined on the probability space
(Ω,F ,ν). For instance, when Ω = R, F is the σ -field generated
by all the sets of the form (a,b], and probability measure ν is
defined in terms of pX (x) used given in Eq. (1), specifically,
ν(A) =

∫
A pX (x)dx, ∀A ∈F , then the associated random variable

X is a Gaussian random variable.

The quantum probability model, a generalization of the classical
probability model Hudson and Parthasarathy (1984), Bouten et al.
(2007), can be defined at the level of von Neumann algebra and

density operators. More specifically, a quantum probability model
(A ,ρ) (also called a quantum probability space) consists of

(1) a von Neumann algebra A generated by a collection of
projection operators on a Hilbert space H (the projections
E ∈A are called events in A );

(2) a density operator ρ . The trace tr[ρE] gives the probability
that an event E ∈ A occurs, where events in a quaantum
probability space are represented by projection operators.

The quantum probability model is the most natural non-
commutative generalization of classical probability, in the sense
that every classical probability space can be embedded in a quan-
tum probability space. For example, given a vector of classical
Gaussian random variables X̃ = [X1 X2 · · · Xk]

T with joint
probability density function

f (q) = (2π)−
k
2 |Σ|−

1
2 exp

(
−1

2
(q− µ̃)T

Σ
−1(q− µ̃)

)
(4)

with mean µ̃ ∈ Rk and covariance matrix Σ ∈ Rk×k, we
may define the quantum state ψ =

√
f (q) and a vector of

quantum observables X̌Q = [Q1 Q2 · · · Qk]
T by means of

(Q jψ)(q) = q jψ(q) for j = 1, . . . ,k. It is easy to show that the
classical Gaussian random variables X̃ and the quantum Gaussian
random variables X̌Q have the same mean and variance values,
thus having the identical distribution. So statistically, X̃ ≡ X̌Q.
In the similar way as in Eq. (2), we may define a vector of
quantum observables X̌P = [P1 P2 · · · Pk]

T by means of
(Pjψ)(q) = −i ∂

∂q j
ψ(q) for j = 1, . . . ,k. Then it is easy to see

that [X̌Q, X̌T
P ] = 2iIk. Let P ∈ R2k×2k be a permutation matrix

such that PX̌ = [Q1 P1 · · · Qk Pk]
T . Then the commutation

relation becomes [(PX̌), (PX̌)T ] = 2idiagk(J)≡ 2iΘk. The quan-
tum vector X̌ = [X̌T

Q X̌T
P ]T is called an augmentation of X̃ . The

relation between classical and quantum random variables may be

expressed as X̃ ≡ [ Ik 0k ]

 X̌Q

X̌P

. In the rest of the paper, we

use symbol “=” instead of “≡” to represent such equivalence
relation. However, “=” here only means that the classical ran-
dom variable X̃ and the quantum observable X̌Q have the same
probability distribution. Recall that the probability distribution νQ
of X̌Q can be defined as follows. Let EQ j be the spectral mea-
sure of Q j (i.e., the projection operator-valued measure such that
Q j(A) =

∫
A xEQ j (dx) for all Borel subsets A of R). Let B(R j)
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denote the σ -algebra generated by the Borel subsets of R j for
any positive integer j. Then the probability distribution of X̌Q is
the probability measure νQ on the measurable space (Rn,B(Rn))

defined as νQ(A1×A2× ·· · ×A j) = tr(ρ ∏
k
j=1 EQ j (A j)) for any

Al ∈ B(R), l = 1, . . . ,k and then uniquely extended to a prob-
ability measure on (Rk,B(Rk)). Note that EQ j (A) and EQk (B)
commute for any j 6= k and any A,B, and EQ j (A j) under the trace
should be interpreted as the amplitation of EQ(A j) to a projection
operator on the composite Hilbert space of the k oscillators.

2.4 Classical linear stochastic systems

As is well known, in control engineering, a state-space represen-
tation is a mathematical model of a physical system as a set of
input, output and state variables described by a set of ordinary
differential equation. Consider a classical linear system G1 given
in a state space representation which may describe an electrical
or electronic circuit as:

dxc(t) = A′ccxc(t)dt +B′cduc(t), (5)
dyc(t) =C′ccxc(t)dt +D′cduc(t), (6)
y′c1(t) =C′c1

xc(t), y′c2(t) =C′c2
xc(t), t ≥ 0. (7)

Here, xc(t) represents a vector of nc classical variables; yc, y′c1
and y′c2 are vectors of classical output signals of dimension nyc ,
2nw1 , and 2nw2 respectively 1 . The classical input signal uc(t) has
the form duc(t) = αc(t)dt + dwc(t), where wc(t) is a vector of
independent standard classical Wiener processes, and αc(t) is a
vector of real stochastic processes of locally bounded variation.
A′cc, B′c, C′cc, D′c, C′c1

and C′c2
are all real constant matrices.

2.5 Quantum linear stochastic systems and physical exam-
ples

In this subsection, we will introduce some basic examples of phys-
ical systems that are linear quantum stochastic systems, coming
from the field of quantum optics. At the end of the section we
then provide a description of a general class of linear quantum
stochastic systems.

Before presenting the basic examples, we start with a model of
a closed quantum harmonic oscillator which may help readers
better understand our models proposed later in the paper. For a
more detailed exposition, we refer to Gardiner and Collett (1985);
Gardiner and Zoller (2004); Gough and James (2009); Nurdin
and Yamamoto (2017).

2.5.1 Closed quantum harmonic oscillator

A quantum harmonic oscillator is said to be a closed quantum har-
monic oscillator if it is completely isolated from any external envi-
ronment. In other words, it does not interact with an environment

1 As the classical system G1 will become part of the mixed
quantum-classical system (29)-(30) , we specify the numbers of
system variables and outputs for future use. The number of inputs
will be given later. Moreover, the superscript ′ indicates that these
matrices or outputs are for interconnections. Similar convention is
used for the quantum system G2 to be given in Eqs. (14)-(16).

and evolves only under its own Hamiltonian. Now we describe the
dynamics of a closed quantum harmonic oscillator with position
and momentum operators Q and P as defined in Subsection 2.2. Its
Hamiltonian Ho is given by Ho =

P2

2m + 1
2 mω2Q2, where m is the

oscillator’s mass and ω is the angular frequency of the oscillator.
The Heisenberg equations of motion for Q and P given by dQ

dt
dP
dt

=

 0 1
m

−mω2 0

 Q

P

 . (8)

Therefore, Q(t) = cos(ωt)Q(0) − sin(ωt)P(0), P(t) =
sin(ωt)Q(0) + cos(ωt)P(0). Next we we will allow quantum
harmonic oscillators to interact with electromagnetic fields to
produce open quantum systems. The dynamical behavior of
open quantum systems plays a key role in many applications of
quantum mechanics.

2.5.2 Quantum fields and examples of open quantum opti-
cal systems

No quantum system is completely isolated from its environment.
The quantum system is said to be an open quantum system if it is
interacting with an environment. In particular, in quantum optics
this environment can take the form of an external electromagnetic
(EM) field, which is a boson field.

Under some physical assumptions regarding the interaction of the
field and the oscillator, the field can be modelled as an operator-
valued white noise field b(t) satisfying the singular commutation
relation [b(t),b∗(s)] = δ (t − s). These assumptions can include
a combination of rotating wave approximation and the Markov
assumption, or the weak coupling limit between the oscillator and
the field and coarse graining of time, depending on the system
being considered. For a detailed discussion of these assumptions
and their physical motivations, we refer the reader to the seminal
contributions of Gardiner and Collett Gardiner and Collett (1985)
and the physics text (Gardiner and Zoller , 2004, Chapters 3, 5
and 10) and Accardi et al (1985). The class of models described
herein are widely accepted as highly accurate models for linear
quantum optical devices as well as for devices from other related
domains such as optomechanics and microwave superconducting
circuits. The interaction Hamiltonian Hint(t) between the oscillator
and the field, given in the interaction picture with respect to the
free-field dynamics, takes the form Hint(t) =−i(b(t)∗L−L∗b(t)),
where L is an operator of the oscillator. Let a = Q+iP

2 be the
annihilation operator for the oscillator, satisfying the commutation
relation [a,a∗] = 1. For the concrete examples below L takes on
the form L =

√
κa, where κ is a constant called the decay rate

and a is the annihilation operator of the field.

1) Optical Cavity: Consider a single open optical cavity as shown
in Figure 2. This type of cavity is known as a Fabry-Perot cavity
with a mode corresponding to a standing light field formed between
the mirrors M1 and M2 by the bouncing of light back and forth
between them. The cavity alone is modeled by a single quantum
harmonic oscillator with Hamiltonian Hcav = ωcava∗a with the
resonance frequency ωcav and the cavity annihilation operator a
is as defined before. However, the optical cavity in the figure
will interact with an external EM field through the mirror M2,
therefore it is an open quantum system. At this mirror there can be
an exchange of photon between the cavity and the external field.
It is convenient to work with the integrated version of the white
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Fig. 2. Open optical cavity. The cavity consists of two mirrors:
M1 denotes a fully reflecting mirror and M2 denotes a partially
transmitting mirror.

noise field B(t) =
∫ t

0 b(s)ds = (wq(t)+ iwp(t))/2, where wq(t) and
wp(t) are self-adjoint non-commuting quantum Wiener processes.
These processes can be realized as on symmetric Fock space over
the space of square integrable complex functions Hudson and
Parthasarathy (1984); Gough and James (2009). We remark that
each of the processes wq(t) and wp(t) are individually isomorphic
to a classical Wiener process but, since they do not commute, they
cannot be realized on a common classical probability space.

As alluded to earlier, for the optical cavity, L =
√

κa, where
a is the cavity annihilation operator. The joint dynamic-
s of an open optical cavity coupled to the bosonic field
B(t) may be described by a unitary propagator U(t) sat-
isfying the quantum stochastic differential equation Hud-
son and Parthasarathy (1984); Walls and Milburn (2008),
dU(t) =

(√
γdB∗(t)a−√γa∗dB(t)−(iHcav+

κ

2 a∗a)dt
)
U(t), with

initial condition U(0) = 1. For each t ≥ 0, the solution of this
equation is unitary, U(t)∗U(t) = U(t)U(t)∗ = I. The Heisen-
berg picture evolution of the cavity’s annihilation operator a and
creation operator a∗, are respectively, a(t) = U(t)∗aU(t) and
a∗(t) = U(t)∗aU(t). They satisfy the linear quantum stochastic
differential equation, Gardiner and Zoller (2004); Gough and
James (2009):

da(t)

da∗(t)

=
− κ

2−iωcav 0

0 − κ

2+iωcav

 a(t)

a∗(t)

dt−
√

κ

dB(t)

dB∗(t)

. (9)

After interacting with the cavity the field B(t) also undergoes
a transformation in the Heisenberg picture, yielding the output
field Bout(t) =U(t)∗B(t)U(t). This is the field reflected from the
cavity that contains any photons that have escaped from the cavity
through the mirror M2, see Fig. 2. The output field Bout(t) satisfies
the output equation:

dBout(t) =
√

κa(t)dt +dB(t). (10)

2) Degenerate Parametric Amplifier: Now we briefly describe a
degenerate parametric amplifier (DPA) as shown in Figure 3. It is
an open oscillator with a classical pump that can produce squeezed
output field (a field with reduced fluctuations along one of its
quadratures and increased fluctuations on the conjugate quadra-
ture). The pump field provides quanta and interacts with the cavity
mode in a type of crystal called a χ(2) crystal. In this crystal one
photon from the pump field is annihilated to produce two photons
of the cavity mode. The amplifier’s Hamiltonian can be written
as HSQ = ωcava∗a+ i

2 (εe−iωpta∗2− ε∗eiωpta2), where ωp is the
frequency of the pump beam and ε a measure of the effective
pump amplitude. Following the same procedure as for the optical
cavity, the Heisenberg picture dynamics of a degenerate paramet-
ric amplifier coupled to a bosonic field B(t) is now given by (see
(Gardiner and Zoller , 2004, Chapter 10))

a
Nonlinear 

crystal
Vacuum input 

Squeezed output 

Pump field

Fig. 3. Degenerate parametric amplifier coupled to an bosonic
field.

 da(t)

da∗(t)

=
− κ

2 − iωcav εe−iωpt

ε∗eiωpt − κ

2 + iωcav

a(t)

a∗(t)

dt−
√

κ

dB(t)

dB∗(t)

 ,
dBout(t) =

√
κa(t)dt +dB(t).

If we now switch to a rotating frame at half of the pump
beam frequency ωp/2, we can remove the time-dependence in
the system matrices to transform the system into a time-invariant
one. This entails making the substitution a(t) → a(t)e−iωpt/2,
a∗(t)→ a∗(t)eiωpt/2, B(t)→ B(t)e−iωpt/2, B∗(t)→ B∗(t)eiωpt/2,
and Bout(t)→ Bout(t)e−iωpt/2. These substitutions yield the time-
invariant equation,

da(t)

da∗(t)

=
− κ

2−i(ωcav−
ωp
2 ) ε

ε∗ − κ

2 + i(ωcav−
ωp
2 )

a(t)

a∗(t)

dt−

√
κ

 dB(t)

dB∗(t)

 ,
dBout(t) =

√
κa(t)dt +dB(t). (11)

The output field of a degenerate parametric amplifier as shown
in Fig. 3 will be a squeezed field.

2.5.3 More general model of open quantum stochastic sys-
tems

It can be seen from from (9)-(10) and (11), that the system
coefficients are complex. However, for solving the control en-
gineering problems, it is sometimes more convenient to work
with systems with real-valued coefficients. Using the relations
xq1 = Q(t) = a(t)+a∗(t), xq2 = P(t) =−i(a(t)−a∗(t)), w′1(t) =
B(t)+B∗(t), w′2(t) =−i(B(t)−B∗(t)), yq1 = Bout(t)+B∗out(t) and
yq2 = −i(Bout(t)−B∗out(t)), we can rewrite (9) and (10) in the
quadrature representation (all system coefficients are real) as fol-
lows

dxq(t) =

 − κ

2 ωcav

−ωcav − κ

2

xq(t)dt−
√

κdw′(t),

dyq(t) =
√

κxq(t)dt +dw′(t), t ≥ 0, (12)

where xq(t) =

 xq1

xq2

, yq(t) =

 yq1

yq2

 and w′(t) =

 w′1
w′2

.

Similarly, (11) can be rewritten as
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dxq(t)=

 − κ

2+ℜ{ε} ωcav−ωp/2+ℑ{ε}
−ωcav+ωp/2+ℑ{ε} κ

2−ℜ{ε}

xq(t)dt−

√
κdw′(t),

dyq(t) =
√

κxq(t)dt +dw′(t), t ≥ 0. (13)

The optical cavity and degenerate parametric amplifier that we
have briefly illustrated above are two important examples of linear
quantum stochastic systems. We are now in the position to present
a more general model for an open linear stochastic quantum system
denoted by G2 in the quadrature form given by

dxq(t) = Aqqxq(t)dt +Bqdw′(t)+Eu(t)dt, (14)
dyq(t) =Cqqxq(t)dt +Dqdw′(t), (15)
dy′q(t) =C′qqxq(t)dt +D′qdw′(t), t ≥ 0, (16)

where xq(t) denotes nq pairs of amplitude and phase quadrature
operators defined on a Hilbert space H , w′(t) is a vector of 2m
quantum stochastic processes that can be represented as self-adjont
operators defined on a Fock space F , while yq(t) is a vector
of 2nyq quantum outputs and y′q(t) is a vector of 2ny′q quantum
outputs, such that nyq +ny′q ≤ m.

By the laws of quantum mechanics, the quantum system G2 is
required to possess the following properties; see (Nurdin and Ya-
mamoto , 2017, Section 2.5), Gough et al. (2010) for a more
detailed discussion.

(a) The system variables preserve commutation relations, James
et al. (2008):

[xq(t), xq(t)T ] = [xq(0), xq(0)T ] = 2iΘnq , t ≥ 0, (17)

where Θnq is a skew-symmetric real matrix. Moreover, the ma-
trix Θnq is said to be canonical if it has the form Θnq = diagnq

(J).

(b) The system variables and the output satisfy the non-demolition
condition Belavkin b (1991), Belavkin a (1994):xq(t),

 yq(r)

y′q(r)

T
= 0, t ≥ r ≥ 0. (18)

In other words, the current system variables are compatible
with past outputs.

(c) Define skew-symmetric real matrices Θw and Θqq′ by means
of [

dw′(t), dw′(t)T
]
= 2iΘw, (19)

 dyq(t)

dy′q(t)

 ,
 dyq(t)

dy′q(t)

T
= 2iΘqq′ , t ≥ 0. (20)

Then

Θqq′ =

 Dq

D′q

Θw

 Dq

D′q

T

. (21)

This simply means that the quantum noise component at the
output corresponds to a boson field, just like the input.

It turns out that the when Dq

D′q

= [I2(nyq+ny′q )
02(m−nyq−ny′q )

], (22)

the above properties are guaranteed when the real constant ma-
trices Aqq, Bq, Cqq, Dq, C′qq, and D′q satisfy the so-called physical
realizability conditions, (James et al. , 2008, Theorem 3.4):

BqΘw

 Dq

D′q

T

=−Θnq [Cqq C′qq ]
T (23)

AqqΘnq +Θnq AT
qq +BqΘwBT

q = 0. (24)

We remark that (22) is not the most general form possible for
[DT

q ,(D
′
q)

T ]T . The general setting only requires that (21) holds
without imposing any further conditions on the structure or form
of [DT

q ,(D
′
q)

T ]T . Moreover, in the general setting the requirements
for properties (a) and (b) are again given by (23) 2 and (24),
respectively (Nurdin and Yamamoto , 2017, Theorems 2.1 and
2.2).

Remark 1 In fact, as shown in the proof of (James et al. , 2008,
Theorem 3.4), Eq. (17) is equivalent to Eq. (24). Moreover, noticing

 dyq(t)

dy′q(t)

 ,
 dyq(t)

dy′q(t)

T
= [dw′(t), dw′(t)T ],

Eq. (22) leads to Eq. (21). Finally, for the special form of Dq and
D′q as in Eq. (22), Eq. (18) is equivalent to Eq. (23).

Finally, since the system G2 is a quantum linear system, it has
an effective Hamiltonian of the form Hq = 1

2 xT
q Rqxq + xT

q Kqu(t),
where Rq = RT

q ∈R2nq×2nq , and Kq =−Θnq E ∈R2nq×2m. The first
term of Hq, namely 1

2 xT
q Rqxq, is the isolated Hamiltonian (also

called free Hamiltonian) of the system G2, while its second term
xT

q Kqu(t), often called a control Hamiltonian, is induced by the
coupling to the external environment through the classical signal
u(t) which is a vector of real locally square integrable functions.
Some discussions on effective Hamiltonians for the linear case
can be found in, e.g., (Wiseman and Milburn a , 2010, Chapter
6) (in particular Eq. (6.219) in Wiseman and Milburn a (2010)),
and discussions on more general nonlinear case can be found in,
e.g., (Kuang and Cong , 2008, Eq. (2) and Sec. 5) and (Ticozzi
and Viola , 2009, Sec. 1-C). More details on the implementation
of xT

q Kqu using classical devices can be found in, e.g., Yamamoto
et al. (2008), Gough a (2008).

2 Note that James et al. (2008) writes (23) in the equivalent form

(that is valid when (22) holds) Bq

 Dq

D′q

T

= Θnq

Cqq

C′qq

T

Θw
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2.6 Mixed quantum-classical linear stochastic systems
with quantum inputs and quantum outputs

Equations (14)-(16) look superficially like the classical state s-
pace equations familiar to control engineers, but in fact are fun-
damentally different because they are equations for a collection
of quantum degrees of freedom (noncommutative variables), not
a collection of classical degrees of freedom (commutative vari-
ables). Even so, the classical system described by (5)-(7) and the
quantum system given by (14)-(16) may be interconnected as a
mixed quantum-classical system via appropriate interfaces (homo-
dyne detectors and modulators 3 4 ). As introduced in Subsection
2.3, any classical probability model (Ω,F ,ν) can be viewed as
a commutative quantum probability model (A ,ρ), which means
that classical components can be treated within the formalisms of
quantum mechanics by embedding them as commutative subsys-
tem in a quantum system. The problem of putting quantum and
classical degrees of freedom within the same formalism has al-
so been discussed in Nielsen and Kapral (2001); ?); James et
al. (2008); Gough and James (2009); Nurdin (2011); Tsang
and Caves (2012) and the references therein. In particular, in the
physics literature the formalism is known as the Koopman-von
Neumann formulation (of classical mechanics) and the embedding
of a classical dynamical system in a quantum one is referred to as
a “quantum mechanics-free subsystem” Tsang and Caves (2012).
In this paper, we aim to develop a mathematical representation for
a class of mixed quantum-classical linear stochastic systems.

We briefly review some results about mixed quantum-classical
linear stochastic systems with quantum inputs and quantum out-
puts studied in James et al. (2008) and Nurdin (2011). Let x
have both quantum and classical degrees of freedom, such that
x = [xT

q xT
c ]

T . To be interpreted a classical variable, we require
that the entries of xc(t) commute with one another and with en-
tries of the vector of quantum observables xq(t). Thus, the com-
mutation relation for x(t) satisfies [x(t), x(t)T ] = 2iΘn, where
Θn = diag(Θnq ,0nc×nc). In particular, if Θnq = diagnq

(J), then Θn
is said to be degenerate canonical, James et al. (2008). Actually,
we require more, that xc(t) is isomorphic to a classical stochastic
process. That is, [xc(t),xc(s)]T = 0 for all s ≥ 0 not necessarily
equal to t. This does in fact hold, and we will say more about this
immediately after Theorem 1. Following James et al. (2008), we
thus consider a linear mixed quantum-classical system of the form

dx(t) = Ax(t)dt +Bdw(t), (25)
dyq(t) =Cqx(t)dt +Dqdw(t), (26)

where w(t) and yq(t) are quantum input and output fields, respec-
tively, and A∈Rn×n, B∈Rn×2m, Cq ∈R2nyq×n and Dq ∈R2nyq×2m,
n = 2nq + nc. As discussed in Subsection 2.3, if we are given a
component of a vector of classical system variables xc denoted by

3 Homodyne detectors are used to measure quadratures of an opti-
cal field and the measurement outputs are classical signals (photo-
current) that can be injected into classical systems. Modulators
are utilized to merge quantum and classical signals to form a third
signal with desirable characteristics of both in a manner suitable
for transmission to quantum systems.
4 As introduced in Subsection 2.3, the measurement results may
be seen as operation of selecting classical elements of quantum
signals while the modulation results may be viewed as quantum
representation of classical signals Wang et al. b (2013).

xck , we may consider xck as one of the quadratures of a quantum
harmonic oscillator, say the amplitude quadrature qk. Then we may

define an augmentation of xck (t), say x̃k(t) =

 qk(t)

pk(t)

. Therefore,

x(t) can be embedded in a larger vector x̃(t) = [x(t)T η(t)T ]T ,
where any element of η(t) = [p1(t) p2(t) · · · pnc(t)]

T commutes
with any component of xq(t), and are conjugate to the compo-
nents of xc(t), satisfying [xc j (t),ηk(t)] = 2iδ jk, where δ jk is the
Kronecker delta function. As a result, the commutation relation
for x̃(t) is [x̃(t), x̃(t)T ] = 2iΘ̃, where

Θ̃=

 Θn

 0

Inc

[
0 −Inc

]
0


is an invertible matrix satisfying Θ̃Θ̃ =−I and Θ̃ =−Θ̃T . More-
over, as shown in James et al. (2008), there is an augmentation
of the system (25)-(26) in terms of x̃, which can be written as

dx̃(t) = Ãx̃(t)dt + B̃dw(t), (27)
dyq(t) = C̃x̃(t)dt +Dqdw(t), (28)

where Ã=

 A 0

A′ A′′

, B̃=

 B

B′

, and C̃=
[

Cq 0
]
.

We first have the following definition when Dq takes on a particular
form.

Definition 1 [James et al. (2008)] Let Dq = I2m or Dq =
[I2nyq

02(m−nyq )
]. The mixed quantum-classical system (25)-(26)

with quantum inputs and quantum outputs is physically realizable
if there exists an augmentation of the form (27) and (28) that is a
physically realizable fully quantum system. That is, if there exist
matrices A′, A′′, B′ such that (23)-(24) hold with matrices Aqq,

Bq,

Cqq

C′qq

 and

 Dq

D′q

 replaced by corresponding matrices Ã,

B̃, C̃, Dq, respectively.

The following result gives the physical realizability conditions for
the mixed quantum-classical system (25)-(26) that follow from
those for the fully quantum system (27)-(28). Note that the con-
ditions below do not depend on A′, A′′, B′. That is, the conditions
are intrinsic on the system (25)-(26). If these conditions are ful-
filled then there exist suitable choices of A′, A′′, B′ to construct a
physically realizable augmentation.

Theorem 1 [James et al. (2008)] Let Dq = I2m or Dq =
[I2nyq

02(m−nyq )
]. The mixed quantum-classical system (25)-(26)

with quantum inputs and quantum outputs is physically realizable
if and only if

AΘn +ΘnAT +Bdiagm(J)B
T = 0, ΘnCT =−Bdiagm(J)D

T
q .

From the above theorem, it will be guaranteed that [x(t),x(t)T ] =
2iΘn for all t ≥ 0. However, as alluded to earlier, for xc(t) to
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be interpretable as a classical stochastic process, we require that
[xc(t),xc(s)T ] = 0 for all s ≥ 0 not necessarily equal to t. In a
more general setting to be given in Definition 4, we make this
explicit by imposing the requirement that the entries of xc(t) com-
mute will every entry of xc(s) for any time s≥ 0 not necessarily
equal to t. That this is indeed the case will be seen in the proof of
Theorem 3 where it emerges as an easy consequence of the equal
time commutation relations [xc(t),x(t)T ] = 0. In other words, the
equal time commutation relations that forms a basis for the phys-
ical realizability of the augmentation (27) and (28) is enough to
characterize the mixed quantum-classical system given by (25)-
(26). Yet another way to view this is that the definition of physi-
cal realizability in Definition 1 given through an augmentation of
(25)-(26) is perfectly consistent with xc(t) being isomorphic to a
classical stochastic process, despite the fact that this requirement
is not explicitly stated in the definition.

Remark 2 We have the following observations for the abstractly
defined mixed quantum-classical linear stochastic system (25)-
(26) with quantum inputs and outputs, as studied in James et al.
(2008):

(a) The inputs and outputs are all purely quantum;

(b) The matrix Dq is in the form of Dq = I2m (or Dq =
[I2nyq

02(m−nyq )
] if nyq < m).

(c) It is not immediately apparent how quantum and the classical
components are interconnected and what are the interfaces that
are required make the interconnection.

In the sections that will follow, we will relax the requirements (a)
and (b) and also address (c) in a more general setting.

3 Canonical representation of mixed linear stochastic
systems

In this section, we give two forms for mixed quantum-classical
linear stochastic systems described by LSDEs, one being a general
form in which the mixed system is often obtained in real exper-
iments and the other being a standard form in which the mixed
system can be easily decomposed for analysis and synthesis. We
also derive relations between the two forms. Notice that in this
paper we allow the general form to include classical inputs and
outputs as well as scattering processes, which are more general
than the mixed quantum-classical linear stochastic systems of the
form (25)-(26) with quantum inputs and outputs, as discussed in
Subsection 2.6; cf. Remark 2.

3.1 A standard form for mixed linear stochastic systems
with quantum inputs and mixed outputs

Consider the following mixed linear stochastic system with quan-
tum inputs and mixed outputs:

dx(t) = Ax(t)dt +Bdw(t), (29)
dy(t) =Cx(t)dt +Ddw(t). (30)

As specified before, the system variables are x = [xT
q xT

c ]
T , the

system outputs are y = [yT
q yT

c ]
T . Define a constant real matrix

Fy by

dy(t)dy(t)T = Fydt. (31)

Also, define a real skew-symmetric matrix Θyq in terms of
[dyq(t), dyq(t)T ] = 2iΘyq . Clearly, the mixed output yq(t) is a vec-
tor of dimension ny = 2nyq +nyc . For later use, the system input
w(t) is partitioned to be w(t) = [w1(t)T w2(t)T ]T where w1(t)
is of dimension 2nw1 and w2(t) is of dimension 2nw2 . However,
instead of being of the form I or [ I 0 ] as in Eq. (22), or equiv-
alently Dq specified in Theorem 1, in general, the matrix D is
associated with gauge processes representing the photon exchange
among the external fields represented here by w(t).

Remark 3 It will be shown later in Remark 7 that

[dw(t), dw(t)T ] = 2iΘw, (32)

where the skew-symmetric matrix Θw is given in Eq. (19).

The transfer function for system (29)-(30) is

ΞS(s) =

[
A B
C D

]
(s) =C (sIn−A)−1 B+D.

Definition 2 The mixed quantum-classical linear stochastic sys-
tem (29)-(30) is said to be standard if the following holds:

(1) Θn = diag(Θnq ,0nc×nc) with Θnq = diagnq
(J).

(2) Θw = diagm(J).

(3) The matrix Fy defined in Eq. (31) satisfies Fy = Iny +
idiag(Θyq ,0nyc×nyc

), where Θyq = diagnyq
(J).

Now let the matrices A, B, C, D be partitioned compatibly with
partitioning of x(t) into xq(t) and xc(t) as

A=

Aqq Aqc

Acq Acc

,B=
Bq

Bc

,C=
Cq

Cc

=
Cqq Cqc

Ccq Ccc

,D=
Dq

Dc

 . (33)

Then, the system (29)-(30) can be rewritten as follows:

dxq(t) = [ Aqq Aqc ]x(t)dt +Bqdw(t), (34)

dxc(t) = [ Acq Acc ]x(t)dt +Bcdw(t), (35)

dyq(t) = [Cqq Cqc ]x(t)dt +Dqdw(t), (36)

dyc(t) = [Ccq Ccc ]x(t)dt +Dcdw(t). (37)
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Remark 4 The features presented in Definition 2 allow us to con-
sider classical variables xc(t), characterized by zero commutation
relations, as well as classical noise processes yc(t), corresponding
to the absence of the imaginary part in the Ito products, James et al.
(2008), Nurdin (2011). The first item of Definition 2 indicates that
x(t) has both quantum and classical degrees of freedom, where Θnq

corresponds to the quantum degrees of freedom xq(t), while 0nc×nc

corresponds to the classical degrees of freedom xc(t). The second
item of Definition 2 shows that input signals of the system (29)-
(30) are fully quantum. Finally, let Θy =

[dy(t), dy(t)T ]
2i =

Fy−(Fy)
T

2i .
Clearly, Θy = diag(Θyq ,0nyc

). Therefore, the third item of Defini-
tion 2 implies that Θyq corresponds to quantum outputs yq(t) while
the matrix 0nyc

corresponds to classical outputs yc(t). Finally, in
analogy to Eq. (21), we have

Θy = DΘwDT . (38)

Remark 5 The difference between the mixed linear systems (25)-
(26) and (29)-(30) is that the latter explicitly exhibits classical
output signals, and the matrix D has a more general form satisfying
condition (38), which is equivalent to the following equations:

DqΘwDT
q = Θyq , (39)

DqΘwDT
c = 0, (40)

DcΘwDT
c = 0. (41)

3.2 A general form for mixed linear stochastic systems with
mixed inputs and mixed outputs

In Definition 2, the quantum-classical nature of the standard form
is captured in the matrices Θn, Θw, Fy specifying the commutation
relations of the system and signal. In general, we may take the
commutation matrix to be an arbitrary real skew-symmetric matrix,
while the Ito matrix F is a free non-negative Hermitian matrix.
To this end, consider a general form for linear mixed quantum-
classical stochastic systems given by

dx(t) = Ax(t)dt +Bdv(t), (42)
dy(t) = Cx(t)dt +Ddv(t), (43)

where A ∈ Rn×n, B ∈ Rn×nv , C ∈ Rny×n and D ∈ Rny×nv ; x(t)
includes quantum and classical system variables satisfying the
commutation relation, such that [x(t), (x(t))T ] = 2iΘ̂n with a
skew-symmetric matrix Θ̂n; the vector v(t) represents the input
signals, which contains quantum and classical noises; y(t) rep-
resents mixed quantum-classical outputs. Fv and Fy are nonnega-
tive definite Hermitian matrices satisfying dv(t)dv(t)T = Fvdt and
dy(t)dy(t)T = Fydt. Define Θy = (Fy− (Fy)

T )/2i. The transfer
function ΞG(s) for a system of the form (42)-(43) is given by

ΞG(s) =

[
A B
C D

]
(s) = C(sIn−A)−1 B+D.

3.3 Relations between the General and Standard Forms

The standard form (29)-(30) and the general form (42)-(43) can
be related by the following lemmas and theorem:

Lemma 1 Given an arbitrary n× n real skew-symmetric matrix
Θ̂n (n≥ 2), there exists a real nonsingular matrix Pn and a block
diagonal matrix Θn = diag(Θnq ,0nc×nc) such that Θn = PnΘ̂nPT

n .

A similar proof of Lemma 1 can be found in (Horn and Johnson
, 1985, Theorem 2.5.8) and hence the proof is omitted here.

Lemma 2 Given an arbitrary m×m nonnegative definite Hermi-
tian matrix Fv, there exists a 2m×2m matrix Fw=I2m+i diagm(J)
and a m×2m real matrix W such that

Fv =WFwW T . (44)

Proof: Hermitian matrices Fv and Fw can be diagonalized by
unitary matrices Uv and Uw, respectively, such that

Fv =UvΛvU†
v , Fw =UwΛwU†

w, (45)

where Λv=diag(λ1,λ2, · · ·λm), (λ j ≥ 0 is an eigenvector of Fv),

Λw=diagm

 0, 0

0, 2

, Uw=diagm

√2
2

 i, i

−1, 1

. Since Λv

and Λw are two real diagonal matrices, there exists a m×2m com-
plex matrix Q = [q1,q2, · · · ,q2m] such that

Λv = QΛwQ†. (46)

In order to let (46) hold, for simplicity we choose q2 =[√
λ1
2 0 · · · 0

]T
, q4 =

[
0
√

λ2
2 0 · · · 0

]T
, · · · , q2m =[

0 · · · 0
√

λm
2

]T
, and q1,q3, · · · ,q2m−1 now are arbitrary column

vectors of length m and to be determined later. Combining (45)
and (46) gives

Fv =UvQU†
wFw(UQU†

w)
†. (47)

Let W be defined as W =UvQU†
w. Then we have

UvQ = [Uvq1,Uvq2, · · · ,Uvq2m]. (48)

Next, we will show that Q can be chosen to let W be real. Observing

the structure of Uw, such that Uw = diagm

√2
2

 i, i

−1, 1

 , we

require that q1,q3, · · · ,q2m−1 be chosen as

q1=−U†
v U#

v q2, q3=−U†
v U#

v q4, · · · , q2m−1=−U†
v U#

v q2m.

The matrix Q is hence constructed as

Q=
[
−U†

v U#
v q2, q2, −U†

v U#
v q4, q4, · · · −U†

v U#
v q2m, q2m

]
.
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We can get the representation (44) with W =UvQU†
w. �

Let us look at an example applying Lemma 2.

Example 1: Consider a nonnegative definite Hermitian matrix giv-
en by

Fv=


8.9286 −0.2143+4.8107i 0.1429+7.2161i

−0.2143−4.8107i 8.3571+0.0000i 0.4286−2.4054i

0.1429−7.2161i 0.4286+2.4054i 8.7143

.
It is easily obtained that Fv =UvΛvU† with

Uv =


0.6814 0.6814 0.2673

−0.1572−0.3922i −0.1572+0.3922i 0.8018

0.1048−0.5883i 0.1048+0.5883i −0.5345



and Λv =


18 0 0

0 0 0

0 0 8

 . Now following the construction in the

proof of Lemma 2, we want to find a real matrix W . Choosing
q2 = [3 0 0]T ,q4 = [0 0 0]T and q6 = [0 0 2]T we get
q1 = [0 −3 0]T ,q3 = [0 0 0]T and q5 = [0 0 −2]T . So

the matrix Q =


0 3 0 0 0 0

−3 0 0 0 0 0

0 0 0 0 −2 2

. It follows from the above

construction that W =


0 2.8909 0 0 0 0.7559

−1.6641 −0.6671 0 0 0 2.2678

−2.4962 0.4447 0 0 0 −1.5119

. It

is easily checked that Fv =WFwW T with Fw=I6+i diag3(J).

Theorem 2 Given a mixed quantum-classical stochastic system of
the general form (42)-(43), there exists a corresponding standard
form (29)-(30).

Proof: By Lemmas 1 and 2, there exist matrices Pn, W and
Py such that the coordinate transformations x = Pnx, y = Pyy, w =

W T v yields

Θn = PnΘ̂nPT
n , Θy = PyΘyPT

y , Θv =WΘwW T ,

A = PnAP−1
n , B = PnBW, C = PyCP−1

n , D = PyDW.

 (49)

Substituting (49) into (42)-(43) gives (29)-(30). Now, we can ver-
ify the following relation between the standard ΞS(s) and general
ΞG(s) transfer functions:

ΞS(s) =C (sIn−A)−1 B+D

= PyCP−1
n

(
sPnP−1

n −PnAP−1
n

)−1
PnBW +PyDW

= PyΞG(s)W.

Thus, the general form (42)-(43) can be linearly transformed into
its corresponding standard form (29)-(30). �

4 Physical realizability of mixed quantum-classical lin-
ear stochastic systems

In this section, we will introduce the definition of physical realiz-
ability of the standard form (29)-(30) and a theorem on necessary
and sufficient conditions for its physical realizability. Analogous
physical realizability definition and conditions for the general for-
m (42)-(43) are also presented in this section.

4.1 Physical realizability for the standard form

The following concepts and lemmas will be used for introducing
the definition of physical realizability of the system (29)-(30).

The Belavkin’s nondemolition principle requires an observable
X(t) at a time instant t to be compatible with the past output
process Y (s) (s≤ t) Belavkin b (1991), Belavkin a (1994), that
is:

[X(t), Y (s)T ] = 0, ∀ t ≥ s≥ 0. (50)

Condition (50) is known as non-demolition condition.

Lemma 3 Non-demolition condition [x̃(t), yq(s)T ] = 0, ∀ t ≥ s≥
0 for the augmented system (27)-(28) of the system (25)-(26) holds,
if and only if

B̃ΘwDT
q =−Θ̃C̃T . (51)

Proof: First, we will argue that [x̃(t),yq(s)T ] = 0 is equivalent
to [x̃(t),yT

q (t)] = 0, for all t ≥ s ≥ 0. Let gs(t) = [x̃(t),yq(s)T ],
for all t ≥ s ≥ 0, where s is fixed. From [x̃(t),yq(t)T ] = 0 for all
t ≥ s≥ 0, we can infer that gs(s) = 0 and then have

dgs(t) = d[x̃(t),yq(s)T ] = Ã[x̃(t),yq(s)T ]dt = Ãgs(t)dt.

Solving the above equation gives gs(t) = exp
(
Ã(t− s)

)
gs(s) = 0.

Therefore, [x̃(t),yq(t)T ] = 0 implies [x̃(t),yq(s)T ] = 0, for all t ≥
s ≥ 0. Conversely, it is trivial to verify that [x̃(t),yq(s)T ] = 0 for
all t ≥ s≥ 0 implies [x̃(t),yq(t)T ] = 0 for all t ≥ 0.

Thus, we just need to consider the case where t = s. Let g(t) =
[x̃(t),yq(t)T ] with g(0) = 0 and then we have

dg(t) = d[x̃(t),yq(t)T ]

= [dx̃(t),yq(t)T ]+ [x̃(t),dyq(t)T ]+ [dx̃(t),dyq(t)T ]

= Ãg(t)dt +2i(Θ̃C̃T + B̃ΘwDT
q )dt.

Solving the above equation gives

g(t)=exp(Ãt)g(0)+2i
∫ t

0
exp(Ã(t−τ))

(
Θ̃C̃T+B̃ΘwDT

q

)
dτ. (52)

It can be easily verified from (52) that g(t) = 0 holds for all t ≥ 0,
if and only if Θ̃C̃T + B̃ΘwDT

q = 0, which is Eq. (51). �
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Lemma 4 Non-demolition condition [x(t),y(s)T ] = 0, ∀ t ≥ s≥ 0
for the system (29)-(30) holds, if and only if

BΘwDT =−ΘnCT . (53)

The proof of Lemma 4 is similar to that of Lemma 3 and is thus
omitted.

For a better understanding of Definitions 3 and 4 to be given lat-
er, a discussion regarding the physical realizability of the standard
form (29)-(30) will be given first. The system (29)-(30) can be di-
vided into two parts: one is the system (25)-(26), or equivalently
the system (34)-(36), with Dq satisfying Eq. (39); the other is the
output equation (37). Therefore, the system (29)-(30) is physically
realizable if the two parts are both physically realizable. First, we
consider physical realizability conditions of the system (25)-(26).
From the structure of system matrices of the augmented system
(27)-(28), it is clear that the dynamics of x(t) of system (25)-(26)
embedded in system (27)-(28) are not affected by the augmenta-
tion, and moreover, it will be shown in the proof of Theorem 3
below that matrices A′,A′′,B′ in system (27)-(28) can be chosen
to preserve commutation relations for augmented system variables
x̃ . As given in Definition 1, the system (25)-(26) with Dq satisfy-
ing (39) is physically realizable if its augmented system (27)-(28)
is physically realizable, with explicit physical realizability condi-
tions stated in Theorem 1. It is worthing noting that these physical
realizability conditions are only suitable for an augmented system
(27)-(28) with Dq = I or Dq = [ I 0 ] (no scattering processes in-
volved). However, the matrix Dq in the standard form system (27)-
(28) is allowed to be more general, namely, the one satisfying Eq.
(39). To deal with this, we need to extend the physical realizability
condition of the system (27)-(28) by allowing a general matrix Dq
satisfying Eq. (39). We first transform the augmented system (27)-
(28) into a familiar form without scattering processes. Suppose
that non-demolition condition [x̃(t),yq(s)T ] = 0, ∀ t ≥ s≥ 0 holds.
So, we apply Eq. (51) in Lemma 3 to the quantum output yq in Eq.
(28) to get yq = Dqȳq with ȳq defined as dȳq = C̄x̃(t)dt +dw(t),
where C̄ = ΘwB̃T Θ̃. Then, a reduced system for the augmented
system (27)-(28) is defined as

dx̃(t) = Ãx̃(t)dt + B̃dw(t), (54)
dȳq = C̄x̃(t)dt +dw(t). (55)

It is straightforward to verify that the reduced system (54)-(55) is
physically realizable in the sense of Definition 1 and satisfying the
conditions of Theorem 1. The definition of physical realizability
of an augmented system of the system (25)-(26) is as follows:

Definition 3 An augmentation (27)-(28) of the system (25)-(26)
with a general matrix Dq is said to be physically realizable if the
following statements hold:

(1) The reduced system (54)-(55) is physically realizable in the
sense of Definition 1.

(2) For the augmented system (27)-(28), non-demolition condi-
tion [x̃(t),yq(s)T ] = 0, ∀ t ≥ s≥ 0 holds.

(3) Dq is of the form [ Inyq
0 ]Ṽ with Ṽ a symplectic matrix

Gough et al. (2010) or unitary symplectic Nurdin et al. b
(2009) such that relation (39) holds.

Next we will consider physical realizability conditions of the sys-
tem (37). Classical systems are always regarded as being physi-
cally realizable since they can be approximately built via digital
and analog circuits. Thus, we just need to make sure that output
equation (37) is classical. Now, we can present a formal definition
of physical realizability of the system (29)-(30).

Definition 4 A system of the standard form (29)-(30) is said to
be physically realizable if the following statements hold:

(1) There exists an augmented system (27)-(28) of the system
(25)-(26) with Dq satisfying (39), which is physically real-
izable in the sense of Definition 3.

(2) For the system (29)-(30), non-demolition condition
[x(t), y(s)T ] = 0, ∀ t ≥ s≥ 0 holds.

(3) The output (37) and system variables xc both represent clas-
sical stochastic processes in the sense of the following com-
mutation relations [xc(t), xT

c (s)] = 0, [xc(t), yT
c (s)] = 0, and

[yc(t), yT
c (s)] = 0 for all t,s≥ 0.

The following theorem shows necessary and sufficient conditions
for physical realizability of system (29)-(30).

Theorem 3 A system of the form (29)-(30) is physically realiz-
able, if and only if matrices A,B,C, and D satisfy the following
constraints:

AΘn +ΘnAT +BΘwBT = 0, (56)
BΘwDT =−ΘnCT , (57)

DΘwDT = Θy. (58)

Proof: (Sufficiency.) Let conditions (56)-(58) hold. we proceed
along the following steps.

(i) Post-multiplying both sides of (57) by

 I2nyq

0

, we get

BΘwDT
q =−ΘnCT

q . (59)

It follows by inspection that under conditions (56) and (59), there
exist matrices Ã, B̃,C̃ and Θ̃ satisfying the following conditions

ÃΘ̃+ Θ̃ÃT + B̃ΘwB̃T = 0, (60)
C̃ = DqΘwB̃T

Θ̃, (61)

where A′, A′′, B′ are given by the following relations:

B′ΘwDT
q = [0 I]CT

q , (62)

[0 I]A′T −A′

 0

I

= B′ΘwB′T , (63)

A′′ =
(

A′Θn− [0 I]AT +B′ΘwBT
) 0

I

 . (64)
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From (28) and (61), we get

C̄ = ΘwB̃T
Θ̃. (65)

Conditions (60) and (65) imply the reduced system (54)-(55)
satisfies the physically realizability condition of Theorem 1. By
Lemma 3, condition (61) implies that [x̃(t),yq(s)T ] = 0, ∀ t ≥ s≥ 0
holds, which satisfies the second condition of Definition 3. Pre-
multiplying and post-multiplying both sides of (58) by [ I 0 ] and I

0

 respectively, we can obtain (39). Thus, the augmented system

(27)-(28) is physically realizable in the sense of Definition 3.

(ii) By Lemma 4, condition (57) implies that [x(t),y(s)T ] =
0, ∀ t ≥ s ≥ 0 holds, which satisfies the second condition of
Definition 4.

(iii) Combining conditions (41), (57) and using the same approach
as shown in the proof of Lemma 3, we get dt [yc(t),yc(s)T ] =
0,dt [yc(s),yc(t)T ] = 0 and d[yc(t),yc(t)T ] = 0, for all t ≥ s ≥ 0
(here the symbol dt denotes the forward differential with respect to
t), which imply that [yc(t),yc(s)T ] = 0 holds for all t,s≥ 0 under
the fact that [yc(0),yc(0)T ] = 0 given in Definition 4. Applying a
similar trick, we have [xc(t),xc(s)T ] = 0, [yc(t),xc(s)T ] = 0 for all
t,s≥ 0. We infer that output (37) and xc are both classical in the
sense of the third item of Definition 4. Therefore, we conclude
that the system (29)-(30) is physically realizable in the sense of
Definition 4, which shows that (56)-(58) are sufficient for physical
realizability.

(Necessity.) Conversely, now suppose that a system of the form
(29)-(30) is physically realizable. It follows from Theorem 1 and
the first item of Definition 4 that condition (60) holds. Then,
reading off the first n rows and columns of both sides of (60) gives
us condition (56). By the second item of Definition 4, we have
condition (57) in the sense of Lemma 4. Since the system (29)-
(30) is a standard form, it follows from the third item of Definition
2 that condition (58) holds. Therefore, constraints (56)-(58) are
necessary for physical realizability. �

4.2 Physical realizability for the general form

In this subsection, we give an definition of the physical realizability
definition for the general form (42)-(43). A necessary and sufficient
condition is also given.

Definition 5 A system of the general form (42)-(43) is said to be
physically realizable if its corresponding standard form (29)-(30)
is physically realizable in the sense of Definition 4.

Theorem 4 A system of the general form (42)-(43) is physically
realizable, if and only if the following constraints are satisfied:

AΘ̂n + Θ̂nAT +BΘvBT = 0, (66)
BΘvDT =−Θ̂nCT , (67)

DΘvDT = Θy. (68)

Proof: Suppose that equations (66)-(68) hold. It follows from
Theorem 2 that the general system (42)-(43) can be transformed
to its corresponding standard system (29)-(30). Using relations
(49) and equations (66)-(68), we get constraints (56)-(58). The
corresponding standard system (29)-(30) is physically realizable
in the sense of Theorem 3. Therefore, we conclude that (66)-(68)
are sufficient for physical realizability.

Conversely, suppose that a system of the general form (42)-(43)
is physically realizable. It follows from Definition 5 and Theo-
rem 3 that constraints (56)-(58) hold. Conditions (66)-(68) can
be obtained from constraints (56)-(58) by direct substitution us-
ing relations (49). Thus, constraints (66)-(68) are necessary for
realizability. �

5 Systematic synthesis of mixed quantum-classical lin-
ear stochastic systems

By Theorem 2 and Definition 5, we know that a system of the gen-
eral form (42)-(43) can be physically realized, if its corresponding
standard form (29)-(30) is physically realizable. Therefore, our
purpose in this section is to develop a network synthesis theory
only for a mixed quantum-classical system of the standard form
(29)-(30) that generalizes the results in Nurdin (2011).

Lemma 5 The mixed quantum-classical linear stochastic system
(29)-(30) is physically realizable if and only if conditions (39)-(41)
and the constraints below are all satisfied

AqqΘnq +Θnq AT
qq +BqΘwBT

q = 0, (69)

AcqΘnq +BcΘwBT
q = 0, (70)

BcΘwBT
c = 0, (71)

BcΘwDT
q = 0, (72)

BqΘwDT
q =−ΘnqC

T
qq, (73)

BcΘwDT
c = 0, (74)

BqΘwDT
c =−ΘnqC

T
cq. (75)

Proof: By Theorem 3, it is easily checked that conditions
(39)-(41) are equivalent to (58) while (69)-(75) are equivalent to
(56)-(57). �

Lemma 6 If a matrix Dq satisfies the condition DqΘwDT
q = Θyq ,

then there exists a matrix D′q such that Dq

D′q

Θw

 Dq

D′q

T

= Θw. (76)

Proof: The matrix Dq can be written in the form of

Dq =
[

I 02nyq×(2m−2nyq )

] Dq

D′q

 , (77)

where D′q is a (2m−2nyq)×2m matrix to be constructed. Let the
rows of Dq be denoted by d1,d2, · · · ,d2nyq

. Let P(a|b1,b2, · · · ,bk)
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denote the orthogonal projection of the row vector a onto the
subspace spanned by the row vectors b1,b2, · · · ,bk. Now, we
build a (2m− 2nyq)× 2m matrix D′q, following analogously the
construction of the matrix V defined in (Nurdin , 2011, Lemma
6). First, choose a row vector v(1)1 ∈ R2m linearly independent of

d1,d2, · · · ,d2nyq
, and set v(2)1 = v(1)1 −P(v(1)1 |d1,d2, · · · ,d2nyq

) and

v1 = v(2)1 Θw. Next, choose a row vector v(1)2 ∈ R2m linearly inde-

pendent of d1,d2, · · · ,d2nyq
and set v(2)2 = v(1)2 −P(v(1)2 |d1,d2, · · · ,

d2nyq
,v1) and v2 = v(2)2 Θw. Repeat this procedure analogous-

ly for k = 3, · · · ,m− nyq to obtain vectors vk = v(k)k Θw with

v(k)k = v(k−1)
k − P(v(k−1)

k |d1,d2, · · · ,d2nyq
,v1, · · · ,vk−1). Then,

we choose a row vector w(1)
1 ∈ R2m that is linearly inde-

pendent of d1,d2, · · · ,d2nyq
and v2,v3, · · · ,vm−nyq

such that

(w(1)
1 − P(w(1)

1 |d1,d2, · · · ,d2nyq
, v2,v3, · · · ,vm−nyq

))vT
1 6= 0. Set

w(2)
1 = w(1)

1 − P(w(1)
1 |d1,d2, · · · ,d2nyq

, v2,v3, · · · ,vm−nyq
) and

w1 = w(2)
1 Θw/(v1w(2)T

1 ). Next, we choose w(1)
2 ∈ R2m that is lin-

early independent of d1,d2, · · · ,d2nyq
and v1,w1,v3,v4, · · · ,vm−nyq

such that (w(1)
1 −P(w(1)

1 |d1,d2, · · · ,
d2nyq

, v1,w1,v3,v4 · · · ,vm−nyq
))vT

2 6= 0. Set w(2)
2 = w(1)

2 −

P(w(1)
2 |d1,d2, · · · ,d2nyq

,v1,w1,v3,v4, · · · ,vm−nyq
) and w2 =

w(2)
2 Θw/(v2w(2)T

2 ). Repeat the procedure in an analogous
manner to construct w3,w4, · · · , wm−nyq

. Then the matrix

D′q ∈ R2(m−nyq )×2m is defined as

D′q = [vT
1 ,w

T
1 ,v

T
2 ,w

T
2 , · · · ,vT

m−nyq
,wT

m−nyq
]T . (78)

By the construction above it is clear that Eq. (76) holds. �

Remark 6 According to Eq. (76), the matrix Dq can be embedded
into a symplectic matrix

Ṽ =

 Dq

D′q

 ∈ R2m×2m (79)

which satisfies Ṽ ΘwṼ T = Θw.

Suppose that the system (29)-(30), or equivalently system (34)-
(37), is physically realizable. We are now in a position to explain
how to realize the system (29)-(30) as an interconnection of a
classical system G1 described by (5)-(7) and a quantum system
G2 described by (14)-(16). To do this, we have to determines the
system matrices for G1 and G2. Notice that Aqq,Bq,Cqq,Dq are
already given in Eq. (33) for system (34)-(37), all the undetermined
matrices are those with superscript ′. In what follows we show how
they can all be determined under the assumption of the physical
realizability of the system (29)-(30).

First of all, in analogy to the partitioning of w(t) in Subsection

3.1, we partition w′(t) =

 w′1(t)

w′2(t)

, where w′k(t) is of the same

dimension as wk(t), (k = 1,2).

Secondly, by Lemma 6, the matrix D′q in Eq. (16) can be con-
structed.

Thirdly, the matrix C′qq in Eq. (16) can be constructed by means of

C′qq = D′qΘwBT
q Θnq . (80)

Finally, the remaining undefined system matrices, input and out-
put signals appearing in (5)-(16) can be found in the following
theorem, which also presents a feedback architecture for the real-
ization of the system (29)-(30).

Theorem 5 Assume that the system (29)-(30), or equivalently sys-
tem (34)-(37) with system matrices given in Eq. (33), is physically
realizable and all its system matrices are already known. Then

there exist matrices C′c ≡

 C′c1

C′c2

, G, B′c, and D′c, such that

DqC′c =Cqc, (81)
B′cGC′qq = Acq, (82)

B′cGD′q = Bc, (83)

D′cGC′qq =Ccq, (84)

D′cGD′q = Dc. (85)

Moreover, a feedback network realization of the system (29)-(30)
shown in Figure 4 1 , with the identification

E = Aqc−BqC′c, (86)
A′cc = Acc−B′cGD′qC′c, (87)

C′cc =Ccc−D′cGD′qC′c, (88)
u(t) = xc(t), (89)

uc(t) = Gy′q(t), (90)

w′1(t) = y′c1
(0)+

∫ t

0
y′c1

(s)ds+w1(t), (91)

w′2(t) = y′c2
(0)+

∫ t

0
y′c2

(s)ds+w2(t), (92)

is a physical realization of the system (29)-(30) consisting of a
classical system G1 described by (5)-(7) and a quantum system
G2 described by (14)-(16). The network G in Figure 4, which
corresponds to measurement processes, can realize the matrix
G = KV (to be given in Eq. (99) below) to produce classical
signals uc = Gy′q(t) satisfying [uc(t), uc(s)T ] = 0,∀t,s ≥ 0; the
network S realizes the symplectic transformation Ṽ in Eq. (79).

Proof: The proof consists of the following six steps.

Step 1. Construct the matrix C′c satisfying Eq. (81). It follows
from Eq. (39) with an invertible Θyq that the matrix Dq has full

row rank and thus rank(Dq)= rank
(
[ Dq Cqc ]

)
. Consequently,

the solution of Eq. (81) can be given as C′c = DT
q (DqDT

q )
−1Cqc +

N(Dq), where N(Dq) denotes a matrix of the same dimension as
C′c whose columns are in the kernel space of Dq.

Step 2. Let

1 The two sets of modulators (MODs) presented in Figure 4
displace the vectors of vacuum quantum fields w1 and w2 to
produce the quantum signals w′1(t) and w′2(t) by the classical
vector signals y′c1

(t) and y′c2
(t), respectively.
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w2

w2

w1

w1

Fig. 4. Feedback interconnection of a classical system G1 and a
quantum system G2.

B̄c = B′cG, D̄c = D′cG. (93)

Then Eqs. (83) and (85) can be re-written as

 B̄c

D̄c

D′q =

 Bc

Dc

 . (94)

We show that Eq. (94) has a solution

 B̄c

D̄c

. Combining Eqs.

(40), (72) and (76) gives

 Dq

D′q

Θw(D′q)
T =

 02nyq×(2m−2nyq )

Θy′q

 , (95)

 Dq

D′q

Θw

[
BT

c DT
c

]
=

 02nyq×(nc+nyc )

D′qΘw

[
BT

c DT
c

]  , (96)

where Θy′q = diag(m−nyq )
(J). From equations (95) and (96), we

can infer that rank
(
(D′q)

T ) = rank(Θy′q) , rank
(
[BT

c DT
c ]
)
=

rank
(

D′qΘw[BT
c DT

c ]
)

. Given that Θy′q has full row rank, we

can conclude that rank
(

Θy′q

)
= rank

([
Θy′q D′qΘw[BT

c DT
c ]
])

,

which implies that rank
(
(D′q)

T ) = rank
([

(D′q)
T BT

c DT
c

])
.

So, there exist B̄c and D̄c satisfying Eq. (94).

Step 3. We construct matrices C′c, G, and B′c. We get from equations
(41), (71), (74), (83), (85), and (95) that

 B̄c

D̄c

Θy′q

 B̄c

D̄c

T

= 0. (97)

From equation (97), we know that the matrix

 B̄c

D̄c

 with

rank

 B̄c

D̄c

 = r can be decomposed as

 B̄c

D̄c

 = PZKV = P1Z

P2Z

KV , where P =

 P1

P2

 is a permutation matrix; Z is a

matrix of the form Z =

 Ir

X

 if r < nc + nyc , where X is some

(nc +nyc − r)× r matrix, Z = I(nc+nyc )
if r = nc +nyc ,

K =


k1

k2
...

kr

=
[

Ir 0r×(ny′q−r)

]
∈ Rr×ny′q , (98)

and V is a symplectic matrix (see (Nurdin , 2011, Lemma 6)
for details). Being symplectic, the matrix V can be realized as a
suitable static quantum optical network, Leonhardt and Neumaier
(2004). We define

G = KV, B′c = P1Z, D′c = P2Z. (99)

Step 4. From Eqs. (70), (75), and C′qq defined in Eq. (80), we
conclude that Eq. (83) implies Eq. (82), and Eq. 85 implies Eq.
(84), respectively.

Step 5. It is straightforward to verify from Eqs. (81)-(92) that
interconnecting the classical system G1 and the quantum system
G2 gives the standard form (29)-(30), or equivalently described
by (34)-(37). Now let us check that the system G2 is a physi-
cally realizable fully quantum system. It follows from conditions
(39) and (69) that the system G2 satisfies constraints (56) and
(58) in the sense of Theorem 3 with matrices A, B, D, Θn and
diag(Θyq ,0nyc×nyc

) replaced by corresponding matrices Aqq, Bq,
Dq, Θnq and Θyq , respectively. The system G2 also satisfies con-
straint (57) with its matrices replaced by corresponding matrices
in equations (5)-(7) with the proof as follows:

−Θnq

 Dq

D′q

ΘwBT
q Θnq

T

= BqΘw

 Dq

D′q

T

.

So, the system G2 is a physically realizable quantum system, where
y′q is the input to the network G.

Step 6. By Eqs. (98) and (99), Applying K to V y′q(t) is to measure
the first r amplitude quadrature components of V y′q(t) to obtain the
measurement result uc(t) = KV y′q(t) = Gy′q(t). So, G represents
measurement processes, Nurdin (2011), Nurdin and Yamamoto
(2017). Then we can show that

[uc(t), uc(s)T ] = G[y′q(t), y′q(s)
T ]GT

= 2iδtsGΘy′q GT = 2iδts×0 = 0,∀t,s≥ 0,
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which implies that uc is classical. Thus G1 described by (5)-(7)
is a classical system, where the classical vector signals y′c1

(t) and
y′c2

(t) are used to modulate w1(t) and w2(t) to produce the quantum
signals w′1(t) and w′2(t) which are then injected into G2. �

Remark 7 By Eqs. (91)-(92), we have [dw′1(t), dw′2(t)
T ] =

[dw1(t), dw2(t)T ].

6 Application

When a system is described by a certain mathematical model, it is
often important to perform some form of analysis on it. Our paper
provides a mathematical means to convert a general representation
of a mixed system to a standard form in which the system can
be decomposed into two subsystems which make clear the quan-
tum and classical components of the system. The main results of
this paper may thus have a practical application in the analysis
of measurement-based feedback control of quantum systems de-
scribed by LSDEs, where the plant is a quantum system while the
controller is a classical system Wiseman and Milburn a (2010),
Yamamoto (2014), Wilson et al. (2015), Nurdin and Yamamoto
(2017). This decomposition results in the mixed system with a

more illuminating structure, making it easier to draw conclusions
on the system’s quantum and classical subspaces. Then the quan-
tum subsystem can be synthesized by quantum optical devices like
beam splitters, phase shifters, optical cavities, squeezers, etc, and
the classical subsystem can be built by standard analog or digital
electronics; see Nurdin et al. a (2009), Wang et al. b (2013), Nur-
din and Yamamoto (2017). Now an example is given to illustrate
our main results.

Example 2: Consider a mixed quantum-classical system of the
standard form with A,B,C,D satisfying the physical realizability
conditions (56)-(58),

A=


−9 −3 −1

1 −7 −3

−0.72 −0.6 −12

, B=


1 2 −7 0 −3 5

2 5 1 −3 6 −8

0 0.12 0 0 0 −0.16

 ,

C =


38 46 −42

0.31 0.4 0.35

4.2 −6 5

 , D =


8 0 10 0 6 0

0 0.04 0 0.05 0 0.03

0 0.8 0 −1 0 0.6

 .
Following the construction in the proof of Theorem 5, we have

the classical system G1 described by

dxc(t) =−12xc(t)+ [3.6836 −0.4345]duc(t),
dyc(t) = 12xc(t)dt +[−0.2065 1.2388]duc(t),

y′c1
(t) = 0, y′c2

(t) =
[
−4.2 7 0 0

]T
xc(t),

the quantum system G2 given by

dxq(t)=

−9 −3

1 −7

xq(t)dt+

1 2 −7 0 −3 5

2 5 1 −3 6 −8

dw1(t)

dw2(t)

+
−30.4

22.2

du(t),

dyq(t) =

 38 46

0.31 0.4

xq(t)dt +

 8 0 10 0 6 0

0 0.04 0 0.05 0 0.03

 dw1(t)

dw2(t)


,

dy′q(t) =

 dy′q1
(t)

dy′q2
(t)

=


−1.1 2.3

4.2 −6

−47 −14

−0.72 −0.6

xq(t)dt+


0.4 0 −0.5 0 0.3 0

0 0.8 0 −1 0 0.6

3 0 0 0 −4 0

0 0.12 0 0 0 −0.16


 dw1(t)

dw2(t)

 ,

and the matrix G=

0 0.0971 0 0.2769

0 0.8235 0 0.0462

.

It can be easily checked that the closed-loop system described
by (29)-(30) with the above matrices A, B, C, D is obtained by
making the identification

u(t) = xc(t), dw′1(t) = dw1(t),

duc(t) =

 0.2086 −0.7489

3.4253 −4.9684

xq(t)dt +

0 0.1109 0 −0.0971 0 0.014

0 0.6643 0 −0.8235 0 0.4867

 dw1(t)

dw2(t)

 ,
dw′2(t) =

[
−4.2 7 0 0

]T
xc(t)dt+dw2(t).

The realization of this mixed system is shown in Figure 5. The
details of the construction and the individual components involved
can be found in James et al. (2008), Nurdin et al. b (2009), Wang
et al. b (2013), Nurdin and Yamamoto (2017) and the references
therein.

7 Conclusion

In this paper, we explicitly detail how to obtain mathematical rep-
resentations for a class of mixed quantum-classical linear stochas-
tic systems; two forms (a standard form and a general form) are
presented for the physical realization of such mixed systems. We
have also established the relation between these two forms. Three
physical realization constraints are derived for the standard form
and the general form, respectively. A network theory is then devel-
oped for synthesizing linear dynamical mixed quantum-classical
stochastic systems of the standard form in a systematic way. One
feedback network architecture is proposed for this network real-
ization.
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Fig. 5. A realzation of the mixed quantum-classical system in
Example 2. Black rectangles denote fully reflecting mirrors.
M1,M21,M22 and M3 represent transmitting mirrors with coupling
constants κ1,κ21,κ22 and γ , respectively (γ� 1,γ� κ1,κ21,κ22);
BS1,BS21,BS22,BS3,BS4,BS5 and BS6 represent beam splitter-
s; TS1,TS21 and TS22 represent two-mode squeezers; PS1, PS21,
PS22 represent phase shifters; Si (i = 1,2 · · · ,8) represents a
squeezer; DPA is short for degenerate parametric amplifier; Modi
(i = 1,2,3,4) represents a modulator; HDi (i = 1,2) represents
a homodyne detector; A1 is a amplifier with gain 1/

√
γ . f̃ can

be realized using a computer. w1,w21,w22,w3 are vacuum noises
and the contribution of w3 to quantum system noise is negligible
compared to that of other vacuum noises. G2 can be realized by
electrical and electronic devices, see Anderson and Vongpanitlerd
(1973).
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