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Abstract. We consider the extended Newton method for approaching a Pareto optimum of a
multiobjective optimization problem, establish quadratic convergence criteria, and estimate a radius
of convergence ball under the assumption that the Hessians of objective functions satisfy an L-average
Lipschitz condition. These convergence theorems significantly improve the corresponding ones in
[J. Fliege, L. M. G. Drummond, and B. F. Svaiter, SIAM J. Optim., 20 (2009), pp. 602--626]. As
applications of the obtained results, convergence theorems under the classical Lipschitz condition or
the \gamma -condition are presented for multiobjective optimization, and the global quadratic convergence
results of the extended Newton method with Armijo/Goldstein/Wolfe line-search schemes are also
provided.
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1. Introduction. Let U \subseteq \BbbR l be an open set, and let F : U \rightarrow \BbbR m be a twice
continuously differentiable function. In the present paper, we consider the following
multiobjective optimization problem:

(1.1) min
x\in U

F (x).
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This type of problem has been widely studied in [6, 8, 24] and extensively applied
in various areas, such as engineering [16], management science [2], environmental
analysis [28], economy [44], radiotherapy [38], statistical regression [31], and so on.
In particular, the intensity modulated radiotherapy and multiple ridge regression are
reformulated by (possibly unconstrained) strongly convex multiobjective optimization
problems in [38, 31], respectively.

Motivated by its extensive applications, a great amount of attention has been at-
tracted to the development of optimization algorithms, and many iterative methods
have been proposed to approach a Pareto optimum of multiobjective optimization; see
[3, 6, 7, 12, 13, 14, 15, 21, 22, 23, 41, 46] and references therein. Among them, there
are mainly two different approaches for solving multiobjective optimization. One is
based on the scalarization technique (see [7, 15]), and the other is based on descent
methods; see [3, 12, 13, 14, 22, 23]. Scalarization methods compute the Pareto or
weakly Pareto solutions by choosing some parameters in advance and reformulating
them as single objective optimization problems. As shown in [22, p. 618], scalarization
methods might be problematic for some examples, where most choices of the param-
eters lead to unbounded (and thus unsolvable) scalar problems. Usually, the descent
methods do not require any parameter information. For example, a steepest descent
method was proposed in [23] to solve multiobjective optimization problems, where
neither ordering information (i.e., an ordering of importance of the components of
the objective function vector) nor weighting factors are assumed to be known. Other
descent methods, such as the Newton method [22], the projected gradient method
[12], the proximal point method [4, 9], the trust-region method [37], and so on, have
been proposed and studied extensively for multiobjective optimization problems with
an ordering defined by the nonnegative orthant. Moreover, the Newton method in
[22] has also been extended to solve multiobjective optimization problems with an or-
dering defined by a closed, convex, and pointed cone or a variable ordering structure,
respectively, in [13, 3], and the convergence properties were studied therein.

In the present paper, we focus on the Newton method for solving multiobjective
optimization problems. Its original idea is from the classical Newton method for solv-
ing nonlinear equations, the study of which has a long history; see [45]. One of the
most famous results on Newton method is the well-known Kantorovich theorem (cf.
[26]), which provides a criterion ensuring the quadratic convergence under some mild
conditions around the initial point x0. Another important result is Smale's point
estimate theory (i.e., \alpha -theory and \gamma -theory) developed in [39, 40], which provides
the rules to judge an initial point to be an approximate zero, depending on the in-
formation of the analytic nonlinear operator at this initial point or at a solution. A
significant development in this direction was made by Wang in [42], where the notion
of the generalized L-average Lipschitz condition was introduced for developing the
convergence theory of the Newton method for solving an equation in a Banach space
and unifying Kantorovich's theorem and Smale's point estimate theory. Extensions
of the mentioned results on the Newton method have also been made for finding the
singularities of the vector fields on Riemannian manifolds [11, 20, 30].

The extended Newton method (with the Armijo line-search scheme) which we
considered here for solving multiobjective optimization problems was introduced by
Fliege, Drummond, and Svaiter [22] for unconstrained (strongly) convex multiobjec-
tive optimization problems. Compared with other iterative methods for multiobjec-
tive optimization, as pointed out in [22], the extended Newton method enjoys several
advantages: (a) it has a fast convergence rate under some mild conditions; (b) its
subproblems can be solved effectively; and (c) it does not require a priori weighting
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factor or any other priori information for the objective functions. Due to these ben-
efits, there is a great demand for further investigating the convergence theory of the
extended Newton method, which is formally stated as follows.

Algorithm 1.1.
Step 1. Choose x0 \in U and \sigma \in (0, 1), and set n := 0.
Step 2. Solve the direction search problem

min
s\in \BbbR l

max
j=1,...,m

\nabla Fj(xn)
T s+

1

2
sT\nabla 2Fj(xn)s

to obtain its minimizer s(xn) and its minimal value \theta (xn).
Step 3. If \theta (xn) = 0, then stop; otherwise, proceed to Step 4.
Step 4. Choose \alpha n as the maximal value of \{ 2 - i : i \in \BbbN \} such that

xn + \alpha ns(xn) \in U,Fj(xn + \alpha ns(xn)) \leq Fj(xn) + \sigma \alpha n\theta (xn) for all j = 1, . . . ,m.

Step 5. Define xn+1 = xn + \alpha ns(xn), and set n := n+ 1. Go back to Step 2.

It is worth mentioning that the idea of the extended Newton method was also pro-
posed in [35, section 2.5] to solve the minimax problems of continuously differentiable
and convex functions.

Under the assumption that each \nabla 2Fj(\cdot ) is positive definite and Lipschitz contin-
uous on a convex subset of U (with a nonempty interior), the authors in [22] studied
the convergence of Algorithm 1.1 for problem (1.1) and established three different
quadratic convergence results, which are in particular as follows: the first one is a
semilocal convergence theorem, in which the quadratic convergence to a local Pareto
optimum is established under the assumptions, depending on a lot of parameters, at
the initial point (see [22, Theorem 6.1] for details); the second one is a local con-
vergence theorem (i.e., [22, Corollary 6.2]), in which, for each local Pareto optimum
x\ast , there exists r > 0 such that the generated sequence converges to a local Pareto
optimum at a quadratic rate whenever the initial point falls in B(x\ast , r); the last one is
a global convergence theorem (i.e., [22, Corollary 6.3]), in which the sequence starting
from any initial point is shown to converge to a local Pareto optimum at a quadratic
rate.

The purpose of the present paper is to continue the theoretical study of the
extended Newton method for multiobjective optimization problems. We focus on
the case when each \nabla 2Fj(\cdot ) is Lipschitz continuous and develop a new approach to
provide the quantitative convergence analysis for the extended Newton methods, not
only for Algorithm 1.1 but also the one without the line-search scheme (see Algorithm
3.1). Under the classical Lipschitz continuity assumption for the second derivatives
\nabla 2Fj(\cdot ), our main results, concerning also the three types of convergence properties
mentioned above, are described as follows:

\bullet Our theorem (i.e., Theorem 4.1) regarding the semilocal convergence prop-
erty provides some explicit convergence criteria, which are only based on the
data at an initial point and the Lipschitz constants of the second derivatives
\nabla 2Fj(\cdot ) around the initial point, for ensuring the convergence (to a local
Pareto optimum) of Algorithms 3.1 and 1.1.

\bullet Our theorem (i.e., Theorem 4.2) regarding the local convergence property
provides some explicit estimates, which only depend on the data of a given
local Pareto optimum and the Lipschitz constants of the second derivatives
\nabla 2Fj(\cdot ) around the local Pareto optimum, for the radius of the convergence
balls of Algorithms 3.1 and 1.1.
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\bullet Our theorem (i.e., Theorem 4.5) regarding the global convergence property
provides some sufficient conditions on the cluster point for ensuring the global
convergence of the extended Newton method, not only with the Armijo line-
search scheme (i.e., Algorithm 1.1) but also with Goldstein/Wolfe line-search
schemes (i.e., Algorithm 3.2).

\bullet The results obtained in the present paper, containing the local, semilocal,
and global types, provide explicit error estimates for any sequence generated
by Algorithm 3.1 or 3.2 (and so Algorithm 1.1) in terms of the correspond-
ing parameters/modulus, which improve the corresponding ones in [22]; see
Theorem 6.1 and Corollaries 6.2 and 6.3 therein.

Most of the results (such as Theorems 3.4, 3.5, 3.7, 3.9, and so on) in this paper are
new, and some of them (i.e., Theorems 4.1, 4.2, and 4.5), where less data is required,
extend/improve partially the corresponding ones in [22, Theorem 6.1 and Corollaries
6.2 and 6.3], as explained in Remark 4.1; in particular, an example is provided to show
the case where the convergence result in the present paper (Theorem 4.1) is available
but not the one in [22, Theorem 6.1]; see Example 4.1 for details.

Another important extension of the present paper is that the L-average Lipschitz
condition, introduced by Wang [42] mentioned above, is involved in the convergence
analysis of the extended Newton method. This idea has been used extensively in
numerical analysis and optimization problems (see [17, 18, 29, 30] and references
therein) but has not been found to be applicable to studying multiobjective opti-
mization problems. Note that the L-average Lipschitz condition implies actually the
classical Lipschitz condition (with the Lipschitz constant being the supremum of the
function L(\cdot ) in the involved ball). However, as shown in Theorems 4.1 and 4.2, the
convergence criteria and/or the radius of the convergence ball of the extended Newton
method depend heavily on the choice of the function L(\cdot ) for the involved function F
to satisfy. In fact, the larger the value of the function L(\cdot ), the stricter the convergence
criteria and the smaller the estimated radius of the convergence ball. This means that
using the classical Lipschitz condition in our theorems rather than the L-average Lip-
schitz condition would produce the weaker results on the convergence criteria and/or
on the radius of the convergence ball. One of the main advantages of adopting the
L-average Lipschitz condition is shown in Example 4.2. That is, when the theorem
under the classical Lipschitz condition is not applicable, it provides the possibility to
choose a suitable nonnegative and monotonically increasing function L such that the
convergence theorem (which we will establish under the general L-average Lipschitz
condition) is applicable for ensuring the convergence of the extended Newton method.

It should be remarked that the analysis tool used in the present paper is the
majorizing function technique, which deviates significantly from that of [22]. The
majorizing function technique has been widely used in the convergence analysis of
the Newton method for nonlinear equations [17, 19, 42, 43] and of the Gauss--Newton
method for convex composite optimization [18, 29], which enables us to establish an
explicit convergence criterion and provides a precise estimation of the convergence
radius. To the best of our knowledge, this is the first work to develop the majorizing
function technique for the convergence analysis of the extended Newton method for
multiobjective optimization.

The paper is organized as follows. In section 2, we present the notation and
preliminary results to be used in the present paper. The quadratic convergence cri-
terion and the estimation of the radius of convergence ball of the extended Newton
method for multiobjective optimization problems are provided in section 3, under the
L-average Lipschitz condition. In section 4, theorems under the classical Lipschitz
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condition, the global quadratic convergence results of the extended Newton method,
and theorems under the \gamma -condition are presented for multiobjective optimization
problems. In section 5, a preliminary numerical study is provided to show the high
efficiency of the extended Newton method for solving some convex biobjective opti-
mization problems.

2. Notation and preliminary results. The notations used in the present pa-
per are standard in Euclidean spaces. As usual, for x \in \BbbR l and r > 0, let B(x, r)
and B[x, r], respectively, denote the open and closed balls in \BbbR l, and let \BbbR m

+ and
\BbbR m

++ denote the nonnegative orthant and positive orthant of \BbbR m, respectively. The
standard simplex in \BbbR m is denoted by \Delta m, i.e.,

\Delta m :=

\Biggl\{ 
\lambda \in \BbbR m

+ :

m\sum 
i=1

\lambda i = 1

\Biggr\} 
.

Let \BbbR m\times l denote the space of all m\times l matrices, and let I denote the identity matrix
in \BbbR l\times l. For M \in \BbbR m\times l, the range of M is denoted by R(M). The following lemma
regarding the inverses of the perturbations of nonsingular matrix is well known; see,
for example, [34, p. 45].

Lemma 2.1. Let A,B \in \BbbR l\times l be such that A is invertible and \| A - 1\| \| A - B\| < 1.
Then B is invertible and

\| B - 1\| \leq \| A - 1\| 
1 - \| A - 1\| \| A - B\| 

.

If A and B are additionally symmetric, then B is positive definite.

2.1. Preliminary results about multiobjective optimization. In the pres-
ent paper, we consider the multiobjective optimization problem (1.1) with U \subseteq \BbbR l

being an open (not necessarily convex) set and F : U \rightarrow \BbbR m being a vector-valued
function, denoted by

(2.1) F := (F1, . . . , Fm)T ,

where each Fi : U \rightarrow \BbbR is a twice continuously differentiable and real-valued function.
For a convex subset V \subseteq U , F is said to be \BbbR m-convex on V if Fi is convex on V for
each i = 1, . . . ,m. The following notions consider Pareto optima (also called efficient
points).

Definition 2.2. A point x\ast \in U is said to be
(a) a (global) Pareto optimum of F on U if there does not exist y \in U such that

F (x\ast ) - F (y) \in \BbbR m
+ and F (y) \not = F (x\ast ),

(b) a weak Pareto optimum of F on U if there does not exist y \in U such that
F (x\ast ) - F (y) \in \BbbR m

++, and
(c) a local Pareto optimum (resp., local weak Pareto optimum) if there exists a

neighborhood V \subseteq U of x\ast such that x\ast is a Pareto optimum (resp., weak
Pareto optimum) of F on V .

Obviously, every Pareto optimum is also a weak Pareto optimum, and each local
Pareto optimum is a (global) Pareto optimum if U is convex and F is \BbbR m-convex on
U .

For each i \in \BbbN := \{ 1, 2, . . . \} , Ci(U,\BbbR m) denotes the set of ith continuously
differentiable functions from U to \BbbR m. Let x \in U , f \in C2(U,\BbbR ), and F \in C2(U,\BbbR m)
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be given by (2.1). We use \nabla f(x) \in \BbbR l and \nabla 2f(x) \in \BbbR l\times l to denote the gradient and
the Hessian of f at x, respectively, while the Jacobian and the second derivative of F
at x are denoted by DF (x) and D2F (x), respectively, that is,

DF (x) = (\nabla F1(x), . . . ,\nabla Fm(x))T and D2F (x) = (\nabla 2F1(x), . . . ,\nabla 2Fm(x))T .

We say that D2F (x) is positive definite if so is each \nabla 2Fi(x).
The notion of a critical point is recalled in the following definition, which char-

acterizes a necessary (but in general not sufficient) condition for Pareto optimality
and was used in [23, 22] to investigate a steepest descent algorithm and an extended
Newton method for multiobjective optimization, respectively.

Definition 2.3. A point \=x \in U is said to be a critical point of F if R(DF (\=x)) \cap 
( - \BbbR m

++) = \emptyset .
Note that, in the case when m = 1, R(DF (\=x)) \cap ( - \BbbR m

++) = \emptyset is reduced to the
classical optimality condition of scalar optimization. It follows from [22, Theorem 3.1]
that if F \in C2(U,\BbbR m) and x\ast \in U is such that D2F (x\ast ) is positive definite, then

(2.2) x\ast is a critical point of F \leftrightarrow x\ast is a local Pareto optimum of F .

Following [22], associated to (1.1), we consider, for a point x \in U such that
D2F (x) is positive definite, the following optimization problem:

(2.3) min
s\in \BbbR l

max
j=1,...,m

\nabla Fj(x)
T s+

1

2
sT\nabla 2Fj(x)s,

the solution of which is the Newton direction of the extended Newton method. By the
positive definiteness of the Hessians, the function s \mapsto \rightarrow \nabla Fj(x)

T s + 1
2s

T\nabla 2Fj(x)s is
strongly convex for each j = 1, . . . ,m, and so problem (2.3) has a unique minimizer.
Let V \subseteq U be convex such that D2F (x) is positive definite for each x \in V . We use
the functions s : V \rightarrow \BbbR l and \theta : V \rightarrow \BbbR to denote the unique minimizer and the
minimal value of problem (2.3), respectively, that is, for each x \in V ,

(2.4) s(x) := arg min
s\in \BbbR l

max
j=1,...,m

\nabla Fj(x)
T s+

1

2
sT\nabla 2Fj(x)s,

(2.5) \theta (x) := min
s\in \BbbR l

max
j=1,...,m

\nabla Fj(x)
T s+

1

2
sT\nabla 2Fj(x)s.

By the KKT optimality condition for problem (2.3), for each x \in V , there exist
parameters \lambda (:= \lambda (x)) \in \Delta m such that (see [22] for details)

(2.6) s(x) =  - 

\left[  m\sum 
j=1

\lambda j(x)\nabla 2Fj(x)

\right]   - 1
m\sum 
j=1

\lambda j(x)\nabla Fj(x).

We end this subsection by recalling in the following lemmas some useful properties
of the functions s(x) and \theta (x). Lemma 2.4 is taken from [22, Lemma 3.2].

Lemma 2.4. Let V \subseteq U be convex, and let \=x \in V . Suppose that D2F (\=x) is positive
definite. Then the following statements are true:
(i) \theta (\=x) \leq 0.
(ii) \=x is not a critical point \leftrightarrow [\theta (\=x) < 0] \leftrightarrow [s(\=x) \not = 0].
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(iii) If D2F (x) is positive definite for each x \in V , then s is bounded on any compact
subset of V and \theta is continuous on V .

Let F := (F1, . . . , Fm)T \in C2(U,\BbbR m). Throughout the whole paper, we define

(2.7) F\lambda (\cdot ) :=
m\sum 
j=1

\lambda jFj(\cdot ) for each \lambda := (\lambda 1, . . . , \lambda m)T \in \Delta m.

Let \lambda \in \Delta m and x \in U , and let \rho min(\lambda , x) and \rho max(\lambda , x) denote the minimum and
maximum eigenvalues of the matrix \nabla 2F\lambda (x), respectively, that is,

\rho min(\lambda , x) := min\{ zT\nabla 2F\lambda (x)z : \| z\| = 1\} = \| \nabla 2F\lambda (x)
 - 1\|  - 1

and

(2.8) \rho max(\lambda , x) := max\{ zT\nabla 2F\lambda (x)z : \| z\| = 1\} = \| \nabla 2F\lambda (x)\| .

Relation (2.9) and the first inequality of (2.10) in the following lemma are known in
[22, Lemmas 4.2 and 4.3], while the second inequality of (2.10) is a direct consequence
of the first inequality of (2.9) and the first inequality of (2.10).

Lemma 2.5. Let x \in U , and let \lambda \in \Delta m be such that \nabla 2F\lambda (x) is positive definite.
Then the following relations hold:

(2.9)
\rho min(\lambda , x)

2
\| s(x)\| 2 \leq | \theta (x)| \leq \rho max(\lambda , x)

2
\| s(x)\| 2,

(2.10) | \theta (x)| \leq 1

2
\| \nabla 2F\lambda (x)

 - 1\| \| \nabla F\lambda (x)\| 2 and \| s(x)\| \leq \| \nabla 2F\lambda (x)
 - 1\| \| \nabla F\lambda (x)\| .

2.2. Preliminary results about majorizing function. To study the conver-
gence properties of the extended Newton method for multiobjective optimization, we
first recall some auxiliary results of a majorizing function. The majorizing function,
originally introduced by Wang [42], is a powerful tool for the study of convergence
criteria of the Newton method. Let R > 0, and let L : [0, R) \rightarrow \BbbR + be a nondecreasing
and integrable function. Let a > 0 satisfy

(2.11)
1

R

\int R

0

L(u)(R - u)du >
1

a
.

Associated to the triple (a, \beta ;L), we define the pair of positive constants (ra, ba) and
the majorizing function ha : [0, R) \rightarrow \BbbR by

(2.12) a

\int ra

0

L(u)du = 1, ba = a

\int ra

0

L(u)udu

(noting that ra, ba are well defined as in (2.11) and ba < ra; see [42, Lemma 1.2] and
[29, p. 615]) and

(2.13) ha(t) := \beta  - t+ a

\int t

0

L(u)(t - u)du for each t \in [0, R),

respectively. Then, we have
\int ra
0

L(u)du <
\int R

0
L(u)du, and so ra < R (as L is positive)

because
\int ra
0

L(u)du = 1
a < 1

R

\int R

0
L(u)(R  - u)du by (2.12) and (2.11). Note that ha

is twice differentiable on [0, R) with its derivatives being given by

(2.14) h\prime 
a(t) = a

\int t

0

L(u)du - 1 and h\prime \prime 
a(t) = aL(t) for each t \in [0, R),
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where here and throughout the whole paper, h\prime 
a(0) means the right derivative of ha

at 0.
Let \{ ta,n\} denote a sequence generated by the classical Newton method for ap-

proaching the zeros of the majorizing function ha with the initial value ta,0 = 0. That
is,

(2.15) ta,n+1 := ta,n  - h\prime 
a(ta,n)

 - 1ha(ta,n) for each n \in \BbbN .

Some properties of the majorizing function ha and the sequence \{ ta,n\} are presented in
the following proposition, which will be useful in the quantitative convergence analysis
of the extended Newton method. Part (i) of Proposition 2.6 is taken from [42, Lemma
1.2], while part (ii) is well known in the literature of the Newton method (cf. [42]).

Proposition 2.6. Suppose that 0 \leq \beta \leq ba. Then, the following assertions are
true:
(i) ha is strictly decreasing on [0, ra] and strictly increasing on [ra, R) with

ha(\beta ) > 0, ha(ra) = \beta  - ba \leq 0, and lim
t\rightarrow R - 

ha(t) > \beta > 0.

Moreover, if \beta < ba, then ha has two zeros r\ast a and r\ast \ast a such that

(2.16) \beta < r\ast a <
ra
ba

\beta < ra < r\ast \ast a ;

if \beta = ba, then ha has a unique zero r\ast a \in (\beta ,R) (in fact, r\ast a = ra).
(ii) \{ ta,n\} is monotonically increasing and converges to r\ast a.
(iii) If \beta < b\alpha , then

(2.17)

lim
n\rightarrow \infty 

2ta,n+1  - ta,n  - r\ast a
ta,n+1  - ta,n

= 1 and lim
n\rightarrow \infty 

r\ast a  - ta,n+1

(2ta,n+1  - ta,n  - r\ast a)
2
\leq  - aL(r\ast a)

2h\prime (r\ast a)
.

Proof. To complete the proof, we only need to show assertion (iii). For simplicity,
we omit the first subscript a in the sequence \{ ta,n\} , namely write \{ tn\} for \{ ta,n\} .
Then, one has by (2.15) and assertion (ii) of this proposition that

lim
n\rightarrow \infty 

2tn+1  - tn  - r\ast a
tn+1  - tn

= 2 + lim
n\rightarrow \infty 

1

 - h\prime 
a(tn)

 - 1 ha(tn) - ha(r\ast a)
tn - r\ast a

= 1,

that is, the equality of (2.17) holds. On the other hand, note again by (2.15) that

r\ast a  - tn+1 = r\ast a  - tn + h\prime 
a(tn)

 - 1ha(tn)

=  - h\prime 
a(tn)

 - 1
\int 1

0
[h\prime 

a(tn + t(r\ast a  - tn)) - h\prime 
a(tn)](r

\ast 
a  - tn)dt

=  - h\prime 
a(tn)

 - 1
\int 1

0

\int 1

0
h\prime \prime 
a(tn + \tau t(r\ast a  - tn))t(r

\ast 
a  - tn)d\tau (r

\ast 
a  - tn)dt

\leq  - h\prime 
a(tn)

 - 1 aL(r\ast a)
2 (r\ast a  - tn)

2,

where the inequality holds because h\prime 
a(tn) < 0 (cf. (2.12) and (2.14)), h\prime \prime 

a(\cdot ) = aL(\cdot )
(cf. (2.14)), and L(\cdot ) is nondecreasing. Then, we obtain

r\ast a  - tn+1

(2tn+1  - tn  - r\ast a)2
\leq 

 - h\prime 
a(tn)

 - 1 aL(r\ast a)

2
(r\ast a  - tn)

2

( - 2h\prime 
a(tn) - 1ha(tn) + tn  - r\ast a)2

=
 - h\prime 

a(tn)
 - 1 aL(r\ast a)

2

( - 2h\prime 
a(tn) - 1 ha(tn) - ha(r\ast a)

tn - r\ast a
+ 1)2

,

and thus the inequality of (2.17) is seen to hold. The proof is complete.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2396 J. WANG, Y. HU, C. K. W. YU, C. LI, AND X. YANG

The following lemma is useful for the convergence analysis of the Newton method
and is taken from [42, pp. 175]. Recall that R > 0 and L : [0, R) \rightarrow \BbbR + is a
nondecreasing and integrable function.

Lemma 2.7. Let 0 \leq \zeta < R, and let \varphi : (0, R - \zeta ) \rightarrow \BbbR + be defined by

\varphi (t) :=
1

t2

\int t

0

L(\zeta + u)(t - u)du for each 0 < t < R - \zeta .

Then, \varphi is increasing on (0, R - \zeta ).

3. Convergence analysis of the extended Newton method. This section
aims to establish the quadratic convergence criterion of the extended Newton method
(without or with the line-search scheme) for multiobjective optimization under an
L-average Lipschitz condition. The extended Newton method without the line-search
scheme for solving the multiobjective optimization problem (1.1) is formally stated
as follows.

Algorithm 3.1.
Step 1. Choose x0 \in U , and set n := 0.
Step 2. Solve problem (2.3) at xn to obtain s(xn) as in (2.4).
Step 3. Update xn+1 := xn + s(xn), and set n := n+ 1. Go back to Step 2.

The Armijo rule, the Goldstein rule, and the Wolfe rule are three popular and typ-
ical line-search rules for the descent method for solving scalar optimization problems;
see [1, 27, 33]. Below, we extend these three line-search schemes for the extended
Newton method for solving multiobjective optimization problems.

Definition 3.1. Let \sigma \in (0, 1), and let \nu \in (\sigma , 1). Given n \in \BbbN and xn \in U , let
s(xn) and \theta (xn) be given by (2.4) and (2.5), respectively. A stepsize \alpha n \in (0,+\infty )
such that xn + \alpha ns(xn) \in U is said to satisfy
(i) the Armijo rule if

\alpha n = \mathrm{m}\mathrm{a}\mathrm{x}\{ 2 - i : i \in \BbbN , Fj(xn+2 - is(xn)) \leq Fj(xn)+\sigma 2 - i\theta (xn) for all j = 1, . . . ,m\} ;

(ii) the Goldstein rule if \alpha n satisfies

(3.1) Fj(xn + \alpha ns(xn)) \leq Fj(xn) + \sigma \alpha n\theta (xn) for all j = 1, . . . ,m

and
Fj(xn + \alpha ns(xn)) \geq Fj(xn) + \nu \alpha n\theta (xn) for all j = 1, . . . ,m;

(iii) the Wolfe rule if \alpha n satisfies (3.1) and

\nabla Fj(xn + \alpha ns(xn))
T s(xn) \geq \nu \theta (xn) for all j = 1, . . . ,m.

The extended Newton method with the line-search scheme for solving the multi-
objective optimization problem (1.1) is formally stated as follows.

Algorithm 3.2.
Step 1. Choose x0 \in U , \sigma \in (0, 1), and \nu \in (\sigma , 1), and set n := 0.
Step 2. Solve problem (2.3) at xn to obtain s(xn) and \theta (xn) as in (2.4) and (2.5),

respectively.
Step 3. If \theta (xn) = 0, then stop. Otherwise, proceed to Step 4.
Step 4. If xn + s(xn) \in U and

Fj(xn + s(xn)) \leq Fj(xn) + \sigma \theta (xn) for all j = 1, . . . ,m,

then set xn+1 := xn + s(xn), and go to Step 6. Otherwise, go to Step 5.
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Step 5. Choose a stepsize \alpha n \in (0,+\infty ) satisfying the Armijo rule, the Goldstein rule,
or the Wolfe rule. Set xn+1 := xn + \alpha ns(xn).

Step 6. Set n := n+ 1. Go back to Step 2.

Obviously, a sequence generated by Algorithm 1.1 can be regarded as the one
generated by Algorithm 3.2 with Step 5 using the Armijo rule.

Remark 3.1. The major computation cost of Algorithms 3.1 and 3.2 is on solving
the subproblem (2.3) at each iteration. Since it is a minimax problem of convex
quadratic functions, there are many effective algorithms for solving problem (2.3)
(see, e.g., [33, 35]), and thus the resulting extended Newton method is practically
attractive in applications. In particular, problem (2.3) can be reformulated as

(3.2)
min \rho 
s.t. \nabla Fj(x)

T s+ 1
2s

T\nabla 2Fj(x)s - \rho \leq 0, j = 1, . . . ,m,
(\rho , s) \in \BbbR \times \BbbR n,

which is a standard convex quadratically constrained quadratic problem (QCQP).
The QCQP can be cast into the semidefinite programming (SDP) and thus can be
solved efficiently by several classical algorithms, such as the interior point method
and the path following method; see, e.g., [5, 32]. Hence, solving problem (2.3) can be
implemented via several popular solvers based on MATLAB, such as CVX,1 MOSEK,2

and TOMLAB.3 The numerical experiments in section 5 validate the high efficiency
of applying CVX in solving problem (2.3) for some examples.

The notion of the L-average Lipschitz condition was introduced by Wang in [42]
(but using the terminology ``the center Lipschitz condition in the inscribed sphere
with L-average"") and has been widely used to analyze the convergence properties of
the Newton method; see [29, 30] and references therein. We extend in the following
definition the notion of the L-average Lipschitz condition to the setting of vector-
valued functions. Recall that F := (F1, . . . , Fm)T \in C2(U,\BbbR m) and that L : [0, R) \rightarrow 
\BbbR + is nondecreasing and integrable.

Definition 3.2. Let x0 \in U and r \in (0, R) be such that B(x0, r) \subseteq U . D2F is
said to satisfy the L-average Lipschitz condition on B(x0, r) if, for each i = 1, . . . ,m
and any x, y \in B(x0, r) with \| x - x0\| + \| y  - x\| < r, the following inequality holds:

\| \nabla 2Fi(y) - \nabla 2Fi(x)\| \leq 
\int \| x - x0\| +\| y - x\| 

\| x - x0\| 
L(u)du.

By definition, we can check that the L-average Lipschitz condition on B(x0, r)
implies the classical Lipschitz condition with the Lipschitz constant being L(r). The
introduction of the L-average Lipschitz condition is beneficial to provide the more
precise convergence criterion and estimation of the convergence radius for the Newton
method.

Fixing the triple (x; a, r) with x \in U and (a, r) \in \BbbR 2
+, we consider the following

assumption for F \in C2(U,\BbbR m) associated to the triple (x; a, r) and L:
(3.3)
\bullet L : [0, R) \rightarrow \BbbR + is nondecreasing and integrable;
\bullet a satisfies (2.11), and D2F (x) is positive definite with each \| \nabla 2Fi(x)

 - 1\| \leq a;
\bullet D2F (\cdot ) satisfies the L-average Lipschitz condition on B(x, r) \subseteq U.

1http://cvxr.com/cvx/
2https://www.mosek.com/
3https://tomopt.com/tomlab/

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://cvxr.com/cvx/
https://www.mosek.com/
https://tomopt.com/tomlab/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2398 J. WANG, Y. HU, C. K. W. YU, C. LI, AND X. YANG

Lemma 3.3. Suppose that F satisfies assumption (3.3) associated to (x0; a, r) and
L and that r \leq ra. Let x \in B(x0, r), \lambda \in \Delta m, and F\lambda be defined as in (2.7). Then,
\nabla 2F\lambda (x) is positive definite, and

\| \nabla 2F\lambda (x)
 - 1\| \leq \| \nabla 2F\lambda (x0)

 - 1\| 
1 - a

\int \| x0 - x\| 
0

L(u)du
\leq a

1 - a
\int \| x0 - x\| 
0

L(u)du
.

Proof. By assumption, one has that

\| \nabla 2F\lambda (x0)
 - 1\| \| \nabla 2F\lambda (x) - \nabla 2F\lambda (x0)\| \leq a

\int \| x0 - x\| 

0

L(u)du < a

\int ra

0

L(u)du = 1

(by (2.12)). Hence, Lemma 2.1 is applicable and the conclusions hold.

3.1. Convergence criterion. One of the main results of this subsection is pre-
sented in the following theorem, in which we provide a quadratic convergence criterion
of the extended Newton method for multiobjective optimization under the assump-
tion that the Hessians of objective functions satisfy the L-average Lipschitz condition.
Theorem 3.4 not only extends [22, Theorem 6.1] under a weaker condition but also
improves it in the sense that the quantitative convergence result is provided here (see
(3.7) below).

Theorem 3.4. Suppose that

(3.4) \| s(x0)\| \leq \beta \leq ba

and F satisfies assumption (3.3) associated to (x0; a, r
\ast 
a) and L. Then, the sequence

\{ xn\} generated by Algorithm 3.1 with initial point x0 is well-defined, stays in B(x0, r
\ast 
a),

and converges to a local Pareto optimum \=x \in B[x0, r
\ast 
a]. Moreover, the following error

estimates hold for each n \geq 0:

(3.5) \| xn+1  - xn\| = \| s(xn)\| \leq ta,n+1  - ta,n

and

(3.6) \| xn  - \=x\| \leq r\ast a  - ta,n.

Moreover, if \beta < ba, then there exists N \in \BbbN such that

(3.7) \| xn+1  - \=x\| \leq r\ast a  - ta,n+1

(2ta,n+1  - ta,n  - r\ast a)
2
\| xn  - \=x\| 2 for each n \geq N,

and so \{ xn\} converges quadratically to \=x.

Proof. Since r\ast a \leq ra (cf. Proposition 2.6(i)), Lemma 3.3 is applicable to conclud-
ing that

(3.8) \nabla 2F\lambda (x) is positive definite for any x \in B(x0, r
\ast 
a) and \lambda \in \Delta m.

Furthermore, by assumption (3.3), it is easy to see that there exists a constant c > 0
such that

(3.9) sup
\lambda \in \bfDelta m,x\in \bfB (x0,r\ast a)

\rho max(\lambda , x) \leq c,
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where \rho max(\lambda , x) is given by (2.8). We first show that \{ xn\} is well-defined and then
show (3.5). For simplicity, we, as before, omit the first subscript a in the sequence
\{ ta,k\} , writing \{ tk\} for \{ ta,k\} . Thus, in view of Algorithm 3.1, (3.8), and (3.4), one
has that x1 is well-defined and \| x1  - x0\| = \| s(x0)\| \leq \beta = t1  - t0 (due to (2.15)),
namely (3.5) holds for n = 0. Fix k \in \BbbN . Below, we show the following implication:
(3.10)

[xn is well-defined for all n = 0, 1, . . . , k + 1 and (3.5) holds for all n = 0, . . . , k]

\Rightarrow xk+2 is well-defined and \| s(xk+1)\| \leq (tk+2  - tk+1)
\Bigl( 

\| s(xk)\| 
tk+1 - tk

\Bigr) 2
.

Granting this, \{ xn\} is well-defined and (3.5) is shown by mathematical induction. To
proceed, suppose that xn is well-defined for all n = 0, 1, . . . , k + 1 and (3.5) holds for
all n = 0, . . . , k. Recall from (2.6) that there exists \lambda = (\lambda 1, . . . , \lambda m)T \in \Delta m such
that

(3.11) s(xk) =  - 

\left[  m\sum 
j=1

\lambda j\nabla 2Fj(xk)

\right]   - 1
m\sum 
j=1

\lambda j\nabla Fj(xk) =  - \nabla 2F\lambda (xk)
 - 1\nabla F\lambda (xk).

Note by the induction assumption that

(3.12) \| xk+1  - x0\| \leq 
k\sum 

i=0

\| xi+1  - xi\| \leq 
k\sum 

i=0

(ti+1  - ti) = tk+1 < r\ast a

(by Proposition 2.6(ii)). Consequently, xk+1 \in B(x0, r
\ast 
a). Thus, in view of Algorithm

3.1, (3.8), and (3.4), one has that xk+2 is well-defined. Furthermore, Lemma 3.3 is
applicable to concluding that

(3.13) \| \nabla 2F\lambda (xk+1)
 - 1\| \leq a

1 - a
\int \| xk+1 - x0\| 
0

L(u)du
\leq  - a ha

\prime (tk+1)
 - 1

because, by (2.14),

 - ha
\prime (tk+1)

 - 1 =
1

1 - a
\int tk+1

0
L(u)du

.

Observe further from (3.11) that

\nabla 2F\lambda (xk)s(xk) +\nabla F\lambda (xk) = 0.

Thus, by the L-average Lipschitz condition assumption, we obtain

(3.14)

\| \nabla F\lambda (xk+1)\| = \| \nabla F\lambda (xk + s(xk)) - (\nabla 2F\lambda (xk)s(xk) +\nabla F\lambda (xk))\| 
\leq 
\int 1

0
\| \nabla 2F\lambda (xk + ts(xk)) - \nabla 2F\lambda (xk)\| \| s(xk)\| dt

\leq 
\int 1

0

\int \| xk - x0\| +t\| s(xk)\| 
\| xk - x0\| L(u)du\| s(xk)\| dt

=
\int \| s(xk)\| 
0

L(\| xk  - x0\| + u)(\| s(xk)\|  - u)du.

Since, by inductive assumption, \| s(xk)\| \leq tk+1  - tk, it follows from Lemma 2.7 and
(3.12) (with k in place of k + 1) that\int \| s(xk)\| 

0

L(\| xk - x0\| +u)(\| s(xk)\|  - u)\mathrm{d}u \leq \| s(xk)\| 2

(tk+1  - tk)2

\int tk+1 - tk

0

L(tk+u)(tk+1 - tk - u)\mathrm{d}u.
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Note by (2.13)--(2.14) that
(3.15)

a

\int tk+1 - tk

0

L(tk+u)(tk+1 - tk - u)du = ha(tk+1) - ha(tk) - ha
\prime (tk)(tk+1 - tk) = ha(tk+1),

where the last equality holds because tk+1 - tk =  - h\prime 
a(tk)

 - 1ha(tk) (see (2.15)). Hence,
we have from (3.14)--(3.15) that

a\| \nabla F\lambda (xk+1)\| \leq \| s(xk)\| 2

(tk+1  - tk)2
ha(tk+1).

Note by (2.10) that \| s(xk+1)\| \leq \| \nabla 2F\lambda (xk+1)
 - 1\| \| \nabla F\lambda (xk+1)\| . It follows from (3.13)

that

\| s(xk+1)\| \leq  - ha
\prime (tk+1)

 - 1ha(tk+1)
\| s(xk)\| 2

(tk+1  - tk)2
= (tk+2  - tk+1)

\biggl( 
\| s(xk)\| 
tk+1  - tk

\biggr) 2

.

Thus, implication (3.10) is proved.
Now, we show the convergence of \{ xn\} to a local Pareto optimum. Since \{ tn\} is

monotonically increasing and converges to r\ast a (by Proposition 2.6(ii)), (3.5) shows that
\{ xn\} is a Cauchy sequence, and so there exists \=x \in B[x0, r

\ast 
a] such that limn\rightarrow \infty xn = \=x.

Furthermore, (3.5) says that limn\rightarrow \infty \| s(xn)\| = 0. Observe further from (2.9) and
(3.9) that | \theta (xn)| \leq c

2\| s(xn)\| 2 for each n \in \BbbN , and then, passing to the limits, we get
that limn\rightarrow \infty | \theta (xn)| = 0. Note by Lemma 2.4(iii) that \theta is continuous and so \theta (\=x) = 0.
Then, by Lemma 2.4(ii), one has that \=x is a critical point, and thus it is a local Pareto
optimum (by (2.2)). Fix n \in \BbbN . One has by (3.5) that \| xn+l  - xn\| \leq tn+l  - tn for
each l \in \BbbN , and so (3.6) is seen to hold by passing to the limits (as l \rightarrow \infty ).

Finally, we prove the quadratic convergence rate of \{ xn\} to \=x. Fix n \in \BbbN , and
note from (3.5) and implication (3.10) that

(3.16) \| s(xn+j)\| \leq (tn+j+1  - tn+j)

\biggl( 
\| s(xn)\| 
tn+1  - tn

\biggr) 2

for each j \in \BbbN .

In view of Algorithm 3.1, one sees that \| xi  - xn+1\| \leq 
\sum i - 1

j=n+1 \| s(xj)\| for each
i > n+1. Letting i \rightarrow \infty , one has by the convergence of \{ xn\} to \=x and by (3.16) that

(3.17) \| \=x - xn+1\| \leq 
\infty \sum 

j=n+1

\| s(xj)\| \leq (r\ast a  - tn+1)

\biggl( 
\| s(xn)\| 
tn+1  - tn

\biggr) 2

\leq r\ast a  - tn+1

tn+1  - tn
\| s(xn)\| 

(by (3.5)). Then, it follows that

(3.18) \| \=x - xn\| \geq \| xn+1  - xn\|  - \| \=x - xn+1\| \geq 2tn+1  - tn  - r\ast a
tn+1  - tn

\| s(xn)\| .

By the assumption that \beta < ba, Proposition 2.6(iii) is applicable, and then we have
by the equality of (2.17) that there exists N \in \BbbN such that

2tn+1  - tn  - r\ast a
tn+1  - tn

> 0 for each n \geq N.

Therefore, combining (3.17) and (3.18), we obtain (3.7). This, together with the
inequality of (2.17), ensures the quadratic convergence rate of \{ xn\} to \=x. The proof
is complete.
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Theorem 3.5 below shows that under almost the same conditions as in Theorem
3.4, a sequence \{ xn\} generated by Algorithm 1.1 or 3.2 with initial point x0 is the one
generated by Algorithm 3.1 with the same initial point x0. Hence, all the conclusions
of Theorem 3.4 hold for Algorithm 1.1 or 3.2.

Theorem 3.5. Suppose that F satisfies assumption (3.3) associated to (x0; a, ra)
and L and that

(3.19) \| s(x0)\| \leq \beta \leq 
3(1 - \sigma )

\Bigl( 
1 - a

\int r\ast a
0

L(u)du
\Bigr) 

aL(r\ast a)
.

Then, with initial point x0, any sequence \{ xn\} generated by Algorithm 3.2 coincides
with the one generated by Algorithm 3.1; consequently, the conclusions of Theorem
3.4 hold.

Proof. Below, we only show the case when \{ xn\} is a sequence generated by Al-
gorithm 1.1 with initial point x0 because the proof is similar for Algorithm 3.2. To
finish the proof of this theorem, fix i \in \BbbN . First, we show the following implication:

(3.20) [\| s(xi)\| \leq ti+1  - ti, \| xi  - x0\| + \| s(xi)\| \leq r\ast a] \Rightarrow [xi+1 = xi + s(xi)].

For this purpose, we assume that

(3.21) \| s(xi)\| \leq ti+1  - ti and \| xi  - x0\| + \| s(xi)\| \leq r\ast a.

Noting by Proposition 2.6 that r\ast a \leq ra, we have xi \in B(x0, ra) and then obtain from
Lemma 3.3 and (2.14) that for each \lambda \in \Delta m, \nabla 2F\lambda (xi) is positive definite and

(3.22) \| \nabla 2F\lambda (xi)
 - 1\| \leq  - ah\prime 

a(\| xi  - x0\| ) - 1.

By assumption (3.21), one has xi + s(xi) \in B(x0, ra). Fix j \in \{ 1, . . . ,m\} . By the
Taylor formula, one has that

Fj(xi + s(xi))
= Fj(xi) +\nabla Fj(xi)

T s(xi) +
1
2s(xi)

T\nabla 2Fj(xi)s(xi)

+
\int 1

0
s(xi)

T (\nabla 2Fj(xi + ts(xi)) - \nabla 2Fj(xi))s(xi)(1 - t)dt

\leq Fj(xi) +\nabla Fj(xi)
T s(xi) +

1
2s(xi)

T\nabla 2Fj(xi)s(xi) +
L(r\ast a)

6 \| s(xi)\| 3,

where the inequality holds because

\| \nabla 2Fj(xi + ts(xi)) - \nabla 2Fj(xi)\| \leq 
\int \| xi - x0\| +t\| s(xi)\| 

\| xi - x0\| 
L(u)du \leq L(r\ast a)\| s(xi)\| t

(due to assumption (3.3) and the fact that L(\cdot ) is nondecreasing and positive). By
the definition of \theta (cf. (2.5)), this implies that

(3.23)
Fj(xi + s(xi)) \leq Fj(xi) + \theta (xi) +

L(r\ast a)
6 \| s(xi)\| 3

= Fj(xi) + \sigma \theta (xi) + (1 - \sigma )\theta (xi) +
L(r\ast a)

6 \| s(xi)\| 3,

where \sigma \in (0, 1) is the parameter in Algorithm 1.1. Recall from (2.9) and Lemma
2.4(i) that

(3.24) \theta (xi) \leq  - \rho min(\lambda , xi)

2
\| s(xi)\| 2.
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Recalling by (2.8) that \rho min(\lambda , xi) = \| \nabla 2F\lambda (xi)
 - 1\|  - 1, it follows from (3.22) and

(3.24) that

(3.25) \theta (xi) \leq 
1

2a
h\prime 
a(\| xi  - x0\| )\| s(xi)\| 2 \leq 1

2a
h\prime 
a(r

\ast 
a)\| s(xi)\| 2,

where the last inequality holds because that h\prime (\cdot ) is monotonically increasing on [0, r\ast a].
Note that \{ ti+1  - ti\} is monotonically decreasing (cf. [29, Lemma 2.4]), and so, for
each i \in \BbbN , ti+1  - ti \leq t1  - t0 = \beta (by (2.15)). This, together with (3.21), implies
that

\| s(xi)\| \leq ti+1  - ti \leq t1  - t0 = \beta \leq 
3(1 - \sigma )

\bigl( 
1 - a

\int r\ast a
0

L(u)du
\bigr) 

aL(r\ast a)
=

 - 3(1 - \sigma )h\prime 
a(r

\ast 
a)

aL(r\ast a)
,

where the last inequality is due to (3.19). Combining this with (3.25) yields that

(1 - \sigma )\theta (xi)+
L(r\ast a)\| s(xi)\| 

6
\| s(xi)\| 2 \leq 

\biggl( 
L(r\ast a)\| s(xi)\| 

3
+

(1 - \sigma )h\prime 
a(r

\ast 
a)

a

\biggr) 
\| s(xi)\| 2

2
\leq 0;

then, (3.23) implies that

Fj(xi + s(xi)) \leq Fj(xi) + \sigma \theta (xi) for all j = 1, . . . ,m.

Thus, in view of Algorithm 1.1, we have xi+1 = xi + s(xi), and so (3.20) is seen to
hold.

Below, we show by induction that \{ xn\} coincides with the sequence generated by
Algorithm 3.1 with the same initial point x0; namely, the following assertion holds
for each n \in \{ 0\} \cup \BbbN :

(3.26) xn+1 = xn + s(xn).

Since \| s(x0)\| \leq \beta = t1  - t0 \leq r\ast a by (3.19) and Proposition 2.6(i), it follows from
(3.20) that (3.26) holds for n = 0. Suppose that x1, . . . , xk are the same points as
generated by Algorithm 3.1. Then, by Theorem 3.4, we have that xi \in B(x0, r

\ast 
a) and

\| s(xi)\| \leq ti+1  - ti for i = 1, . . . , k and that

\| xk  - x0\| + \| s(xk)\| \leq \| xk  - xk - 1\| + \cdot \cdot \cdot + \| x1  - x0\| + \| s(xk)\| \leq tk+1 < r\ast a.

This implies that the assumptions of implication (3.20) hold when i = k. Then, it
follows from implication (3.20) that \alpha k = 1, and so (3.26) holds for n = k. Thus, xk+1

is the same point as generated by Algorithm 3.1. Then, we obtain inductively that
\{ xn\} is the same as the sequence generated by Algorithm 3.1 with the same initial
point x0. Hence, the conclusions of Theorem 3.4 hold and the proof is complete.

3.2. Estimation of convergence radius. This subsection is devoted to provid-
ing an estimate of the radius of the convergence ball of the extended Newton method
(without or with the line-search scheme) for multiobjective optimization under the
L-average Lipschitz condition. For this purpose, let a\ast > 0 be such that (2.11) is
reduced to

(3.27)
1

R

\int R

0

L(u)(R - u)du >
1

a\ast 
.

Let (ra\ast , ba\ast ) be the pair of positive constants given by (2.12) with a\ast in place of a.
Let x\ast \in U be a local Pareto optimum of F , and assume that F satisfies assumption
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(3.3) associated to (x\ast ; a\ast , ra\ast ) and L. Throughout this subsection, we always assume
that L(\cdot ) is left-hand continuous. Write

(3.28) \xi \ast := max\{ \| \nabla 2Fi(x
\ast )\| : i = 1, . . . ,m\} .

A useful proposition is as follows.

Proposition 3.6. Suppose F satisfies assumption (3.3) associated to (x\ast ; a\ast , ra\ast )
and L. Let x0 \in B

\bigl( 
x\ast , ba\ast 

1+a\ast \xi \ast 

\bigr) 
. Then, the following assertions hold:

(i) F satisfies assumption (3.3) associated to (x0; \=a, \=r) and \=L given by

(3.29) \=a :=
a\ast 

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
, \=r := ra\ast  - \| x0  - x\ast \| 

and

(3.30) \=L(u) := L(\| x0  - x\ast \| + u) for each u \in [0, R - \| x0  - x\ast \| );

(ii) s(x0) satisfies that

(3.31) \| s(x0)\| \leq 
a\ast 
\int \| x0 - x\ast \| 
0

L(u)(\| x0  - x\ast \|  - u)du+ a\ast \xi \ast \| x0  - x\ast \| 

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
.

Proof. (i) Write \=R := R  - \| x0  - x\ast \| . We first show (2.11) holds with \=a, \=R, \=L in
place of a,R, L. By the definition of ra\ast in (2.12) (applied to a\ast in place of a), one
has

(3.32) a\ast 
\int ra\ast 

0

L(u)du = 1.

Thus, it suffices to show that

(3.33)

\int R

\| x0 - x\ast \| 
L(u)(R - u)du \geq (R - \| x0  - x\ast \| )

\int ra\ast 

\| x0 - x\ast \| 
L(u)du,

thanks to the definitions of \=a, \=R, \=L. To do this, by (3.27), one has\int R

\| x0 - x\ast \| L(u)(R - u)du \geq R
a\ast  - 

\int \| x0 - x\ast \| 
0

L(u)(R - u)du

= R
\int ra\ast 

\| x0 - x\ast \| L(u)du+
\int \| x0 - x\ast \| 
0

L(u)udu,

where the equality holds because, by (3.32),

R

a\ast 
= R

\int ra\ast 

0

L(u)du = R

\int ra\ast 

\| x0 - x\ast \| 
L(u)du+R

\int \| x0 - x\ast \| 

0

L(u)du.

Hence, (3.33) is seen to hold, showing (2.11) (with \=a, \=R, \=L in place of a,R, L), namely
the first assumption in (3.3) (associated to (x0; \=a, \=r) and \=L). To show the second
assumption in (3.3), noting first that \| x0  - x\ast \| < ba\ast 

1+a\ast \xi \ast < ba\ast < ra\ast , Lemma 3.3

is applicable to concluding that, for each j = 1, . . . ,m, \nabla 2Fj(x0) is positive definite
and that

\| \nabla 2Fj(x0)
 - 1\| \leq \| \nabla 2Fj(x

\ast ) - 1\| 
1 - a\ast 

\int \| x0 - x\ast \| 
0

L(u)du
\leq a\ast 

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
= \=a;
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consequently, the second assumption in (3.3) (associated to (x0; \=a, \=r) and \=L) is checked.
Now let us verify the last assumption in (3.3) (associated to (x0; \=a, \=r) and \=L). To do
this, let x, y \in B(x0, \=r) be such that \| x - x0\| + \| y  - x\| < \=r, and fix j. Then,

\| x - x\ast \| + \| y  - x\| \leq \| x0  - x\ast \| + \| x - x0\| + \| y  - x\| \leq \| x0  - x\ast \| + \=r = ra\ast .

Thus, it follows from the last assumption in (3.3) (associated to (x\ast ; a\ast , ra\ast ) and L)
that

\| \nabla 2Fj(y) - \nabla 2Fj(x)\| \leq 
\int \| x0 - x\ast \| +\| x0 - x\| +\| x - y\| 

\| x0 - x\ast \| +\| x0 - x\| 
L(u)du =

\int \| x0 - x\| +\| x - y\| 

\| x0 - x\| 
\=L(u)du.

This shows the third assumption in (3.3) (associated to (x0; \=a, \=r) and \=L), and the
proof for assertion (i) is complete.

(ii) Noting that x\ast is a local Pareto optimum of F , we obtain from (2.2) that x\ast 

is a critical point of F . Therefore, it follows from Lemma 2.4 that s(x\ast ) = 0. Note
by (2.6) that there exists \lambda (:= \lambda (x\ast )) \in \Delta m (the KKT multipliers of problem (2.3))
such that

s(x\ast ) =  - 

\left[  m\sum 
j=1

\lambda j(x
\ast )\nabla 2Fj(x

\ast )

\right]   - 1
m\sum 
j=1

\lambda j(x
\ast )\nabla Fj(x

\ast ) =  - \nabla 2F\lambda (x
\ast ) - 1\nabla F\lambda (x

\ast ),

where F\lambda is given by (2.7). Hence, \nabla F\lambda (x
\ast ) = 0, and

\| \nabla F\lambda (x0) - \nabla 2F\lambda (x
\ast )(x0  - x\ast )\| 

=

\bigm\| \bigm\| \bigm\| \bigm\| \int 1

0

(\nabla 2F\lambda (x
\ast + \tau (x0  - x\ast )) - \nabla 2F\lambda (x

\ast ))(x0  - x\ast )d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq 
\int 1

0

\int \| x0 - x\ast \| \tau 

0

L(u)\| x0  - x\ast \| dud\tau 

=

\int \| x0 - x\ast \| 

0

L(u)(\| x0  - x\ast \|  - u)du,

thanks to the third assumption in (3.3) (associated to (x\ast ; a\ast , ra\ast )). Therefore,
(3.34)

a\ast \| \nabla F\lambda (x0)\| \leq a\ast \| \nabla F\lambda (x0) - \nabla 2F\lambda (x
\ast )(x0  - x\ast )\| + a\ast \| \nabla 2F\lambda (x

\ast )\| \| x0  - x\ast \| 
\leq a\ast 

\int \| x0 - x\ast \| 
0

L(u)(\| x0  - x\ast \|  - u)du+ a\ast \xi \ast \| x0  - x\ast \| .

Furthermore, by Lemma 3.3, one has that

\| \nabla 2F\lambda (x0)
 - 1\| \leq \| \nabla 2F\lambda (x

\ast ) - 1\| 
1 - a\ast 

\int \| x0 - x\ast \| 
0

L(u)du
\leq a\ast 

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
.

This, together with (2.10) and (3.34), implies that

\| s(x0)\| \leq \| \nabla 2F\lambda (x0)
 - 1\| \| \nabla F\lambda (x0)\| 

\leq 
a\ast 
\int \| x0 - x\ast \| 
0

L(u)(\| x0  - x\ast \|  - u)du+ a\ast \xi \ast \| x0  - x\ast \| 

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
.

The proof is complete.
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Theorem 3.7. Suppose that F satisfies assumption (3.3) associated to (x\ast ; a\ast , ra\ast )
and L. Let x0 \in B(x\ast , ba\ast 

1+a\ast \xi \ast ). Then, the sequence \{ xn\} generated by Algorithm 3.1
with initial point x0 is well-defined and converges quadratically to a local Pareto op-
timum of F .

Proof. By Proposition 3.6, F satisfies assumption (3.3) associated to (x0; \=a, \=r)
and \=L defined as in (3.29) and (3.30), respectively. Let

(3.35) \=\beta :=
a\ast 
\int \| x0 - x\ast \| 
0

L(u)(\| x0  - x\ast \|  - u)du+ a\ast \xi \ast \| x0  - x\ast \| 

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
.

Then, \| s(x0)\| \leq \=\beta (by (3.31)). Thus, to apply Theorem 3.4 with \=\beta , \=a, \=L, in place of
\beta , a, L, we have to show that

(3.36) \=\beta < \=b\=a and \=r\ast \=a \leq \=r,

where \=r\ast \=a and \=b\=a denote, respectively, the corresponding r\ast a and ba given by (2.16) and
(2.12) with \=\beta , \=a, \=L in place of \beta , a, L. To do this, write \tau := \| x0  - x\ast \| for simplicity.
Let \=r\=a be the corresponding ra defined as in (2.12) with \=a, \=L in place of a, L. Then,

(3.37)
a\ast 
\int \=r\=a
0

L(\| x0  - x\ast \| + u)du

1 - a\ast 
\int \| x0 - x\ast \| 
0

L(u)du
= \=a

\int \=r\=a

0

L(\tau + u)du = 1

by the definition of \=a (see (3.29)). By the definition of ra\ast (see (3.32)), it follows from
(3.37) that

a\ast 
\int \=r\=a

0

L(\tau + u)du = 1 - a\ast 
\int \tau 

0

L(u)du

= a\ast 
\int ra\ast 

0

L(u)du - a\ast 
\int \tau 

0

L(u)du

= a\ast 
\int ra\ast 

\tau 

L(u)du;

hence

(3.38)

\int \=r\=a+\tau 

\tau 

L(u)du =

\int ra\ast 

\tau 

L(u)du.

Since a\ast > 0 and L(\cdot ) is positive and nondecreasing, it follows from (3.38) and the
definition of \tau that

(3.39) \=r\=a + \| x0  - x\ast \| = \=r\=a + \tau = ra\ast .

This, together with the definition of \=b\=a, implies that

\=b\=a = \=a

\int \=r\=a

0

\=L(u)udu = \=a

\int ra\ast  - \| x0 - x\ast \| 

0

L(\| x0  - x\ast \| + u)udu

= \=a

\int ra\ast 

\| x0 - x\ast \| 
L(u)(u - \| x0  - x\ast \| )du.

Note also by the definition of \=\beta in (3.35) that

\=\beta = \=a

\Biggl( \int \| x0 - x\ast \| 

0

L(u)(\| x0  - x\ast \|  - u)du+ \xi \ast \| x0  - x\ast \| 

\Biggr) 
.
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Therefore, \=\beta < \=b\=a if and only if

\xi \ast \| x0  - x\ast \| <

\int ra\ast 

0

L(u)(u - \| x0  - x\ast \| )du =
ba\ast 

a\ast 
 - \| x0  - x\ast \| 

a\ast 

(noting that a\ast 
\int ra\ast 

0
L(u)du = 1 and ba\ast = a\ast 

\int ra\ast 

0
L(u)udu by definition), which

holds by the assumption that 0 < \| x0  - x\ast \| < ba\ast 
1+a\ast \xi \ast . Hence, \=\beta < \=b\=a and so, by

(2.16) (with \=\beta , \=a, \=L in place of \beta , a, L), one has \=r\ast \=a \leq \=r\=a = ra\ast  - \| x0  - x\ast \| = \=r (by
(3.39)). Consequently, (3.36) is proved and the proof is complete.

For the following theorem, we need some more notations and an additional lemma.
Fix \tau \in (0, ra\ast ), and set

(3.40) a\tau :=
a\ast 

1 - a\ast 
\int \tau 

0
L(u)du

and \beta \tau :=
a\ast 
\int \tau 

0
L(u)(\tau  - u)du+ a\ast \xi \ast \tau 

1 - a\ast 
\int \tau 

0
L(u)du

.

Let \=ha\tau 
(\cdot ) be the majorizing function given by (2.13) with \beta \tau , a\tau , L(\tau + \cdot ) in place of

\beta , a, L(\cdot ), that is,

\=ha\tau 
(t) := \beta \tau  - t+ a\tau 

\int t

0

L(\tau + u)(t - u)du for each t \in [0, R - \tau ).

Lemma 3.8. Let \tau \in 
\bigl( 
0, ba\ast 

1+a\ast \xi \ast 

\bigr) 
. Then, \=ha\tau 

has two zeros on [0, R - \tau ), and

there exists r \in 
\bigl( 
0, ba\ast 

1+a\ast \xi \ast 

\bigr) 
such that

(3.41) \beta \tau \leq 
3(1 - \sigma )

\Bigl( 
1 - a\tau 

\int \=r\ast a\tau 
0

L(\tau + u)du
\Bigr) 

a\tau L(\tau + \=r\ast a\tau 
)

for each \tau \in (0, r),

where \=r\ast a\tau 
is the smaller zero of \=ha\tau 

on [0, R - \tau ).

Proof. Let \=ra\tau 
and \=ba\tau 

denote, respectively, the corresponding ra and ba given by
(2.12) with \beta \tau , a\tau , L(\tau + \cdot ) in place of \beta , a, L(\cdot ). Then, as we did for proving (3.39)
and that \=\beta < \=b\=a in the proof of Theorem 3.7 (cf. (3.36)), we can verify that

(3.42) \beta \tau < \=ba\tau 
and \=ra\tau 

= ra\ast  - \tau .

Thus, Proposition 2.6 is applicable (to \beta \tau , a\tau , L(\tau + \cdot ) in place of \beta , a, L(\cdot )) to con-
cluding that \=ha\tau has two zeros on [0, R - \tau ), and the proof of the first assertion is
complete. To show the second assertion, note by definition that lim\tau \rightarrow 0+ \beta \tau = 0,
lim\tau \rightarrow 0+ a\tau = a\ast , lim\tau \rightarrow 0+

\=ba\tau 
= ba\ast (see (3.40) and (2.12)), and lim\tau \rightarrow 0+ \=ra\tau 

= ra\ast by
(3.42). Hence, lim\tau \rightarrow 0+ \=r\ast a\tau 

= 0 thanks to (2.16) (applied to \beta \tau , a\tau , L(\tau + \cdot ) in place of

\beta , a, L(\cdot )) and so lim\tau \rightarrow 0+ a\tau 
\int \=r\ast a\tau 
0

L(\tau +u)du = 0. Thus, it follows from the assumed
left-hand continuity assumption for L that

lim
\tau \rightarrow 0+

3(1 - \sigma )
\Bigl( 
1 - a\tau 

\int \=r\ast a\tau 
0

L(\tau + u)du
\Bigr) 

a\tau L(\tau + \=r\ast a\tau 
)

\geq 3(1 - \sigma )

a\ast L(r\ast a)
> 0.

Since lim\tau \rightarrow 0+ \beta \tau = 0 and the function \tau \mapsto \rightarrow \beta \tau is continuous on [0, ra\ast ), it follows
that there exists 0 < r \leq ba\ast 

1+a\ast \xi \ast satisfying (3.41), and the proof is complete.
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Theorem 3.9 shows that if F satisfies assumption (3.3) associated to (x\ast ; a\ast , ra\ast )
and L, then there exists r > 0 such that any sequence \{ xn\} generated by Algorithm
1.1 or 3.2 with initial point x0 \in B(x\ast , r) converges quadratically to a local Pareto
optimum of F . In the next section, we provide an explicitly estimate of the radius r
for the special case when L(\cdot ) is a constant function.

Theorem 3.9. Suppose that F satisfies assumption (3.3) associated to (x\ast ; a\ast , ra\ast )
and L. Let r \in 

\bigl( 
0, ba\ast 

1+a\ast \xi \ast 

\bigr) 
satisfy (3.41), and let x0 \in B(x\ast , r). Then, any sequence

\{ xn\} generated by Algorithm 3.2 with initial point x0 converges quadratically to a local
Pareto optimum of F .

Proof. Note by assumption that x0 \in B
\bigl( 
x\ast , ba\ast 

1+a\ast \xi \ast 

\bigr) 
. The proof is similar to that

for Theorem 3.7. Indeed, let \=\beta , \=a, \=r, \=r\=a, \=r\ast \=a, and \=L be as in the proof of Theorem
3.7. Then, one has that \=r\=a = \=r (by (3.39)), and that \| s(x0)\| \leq \=\beta and F satisfies as-
sumption (3.3) associated to (x0; \=a, \=r) and \=L (by Proposition 3.6) and so to (x0; \=a, \=r\=a).
Thus, by Theorem 3.5 (applied to \=\beta , \=a, \=L in place of \beta , a, L), it suffices to show that

(3.43) \=\beta \leq 
3(1 - \sigma )

\bigl( 
1 - \=a

\int \=r\ast \=a
0

\=L(u)du
\bigr) 

\=a\=L(\=r\ast \=a)
.

To do this, we write \tau := \| x0  - x\ast \| for simplicity. Then, one has by definition
that \beta \tau = \=\beta , a\tau = \=a, and \=r\ast a\tau 

= \=r\ast \=a, where \beta \tau and a\tau are defined as in (3.40).
Since \tau = \| x0  - x\ast \| < r by assumption, (3.43) follows from (3.41) because \=L(\cdot ) =
L(\| x0  - x\ast \| + \cdot ) = L(\tau + \cdot ), and the proof is complete.

4. Applications. By virtue of the results established in the preceding section,
this section is devoted to establishing convergence analysis theorems under the classi-
cal Lipschitz condition or the \gamma -condition for multiobjective optimization. In particu-
lar, the global convergence of Algorithm 3.2 is established under the classical Lipschitz
condition.

4.1. Theorems under the classical Lipschitz condition and global ver-
sion of the extended Newton method with its convergence.

4.1.1. Theorems under the classical Lipschitz condition. Kantorovich's
theorem [26] is one of the famous results for the Newton method, which provides a
criterion for ensuring its quadratic convergence under the classical Lipschitz condi-
tion. The main point of the Kantorovich-type premise is to let L(\cdot ) mentioned in
the preceding section be a constant function. In this case, the L-average Lipschitz
condition of \nabla 2Fj is reduced to the classical Lipschitz condition of \nabla 2Fj for each
j = 1, . . . ,m. That is, there are L > 0 and r > 0 such that

\| \nabla 2Fj(x) - \nabla 2Fj(y)\| \leq L\| x - y\| for each x, y \in B(x0, r).

Then, the function L(\tau + \cdot ) is independent of the choice of \tau and coincides with L;
that is, L(\tau + \cdot ) = L(\cdot ) = L on \BbbR +. Thus, for any a > 0, one has that

ba =
1

2aL
, ra =

1

aL
,

and the majorizing functions ha defined as in (2.13) is reduced to

ha(t) = \beta  - t+
aL

2
t2 for each t \in \BbbR .
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Therefore, if \beta \leq 1
2aL , one has by (2.12), (2.15), and (2.16) (see also [42]) that

(4.1) r\ast a =
1 - 

\surd 
1 - 2aL\beta 

aL
,

ta,n =
1 - q2

n - 1
a

1 - q2na
r\ast a and ta,n+1  - ta,n =

1 - qa
1 - q2n+1

a

q2
n - 1

a r\ast a for each n \in \BbbN ,

where

(4.2) qa :=
1 - 

\surd 
1 - 2aL\beta 

1 +
\surd 
1 - 2aL\beta 

,

and we adopt the convention that
1 - q2

n - 1
a

1 - q2na
:= 1  - ( 12 )

n and 1 - qa
1 - q2n+1

a

:=
\bigl( 
1
2

\bigr) n+1
if

qa = 1.
Theorem 4.1 follows directly from Theorems 3.4 and 3.5 and establishes a quan-

titative convergence criterion of the extended Newton method for multiobjective op-
timization under the classical Lipschitz condition.

Theorem 4.1. Suppose that \| s(x0)\| \leq \beta and F satisfies assumption (3.3) asso-
ciated to (x0; a, r

\ast 
a) and L(\cdot ) \equiv L. Let qa be given by (4.2). Then, with initial point

x0, we have the following assertions:
(i) If \beta \leq 1

2aL , then the sequence \{ xn\} generated by Algorithm 3.1 is well-defined,
stays in B(x0, r

\ast 
a), and converges to a local Pareto optimum \=x \in B[x0, r

\ast 
a] with the

following error estimates:
(4.3)

\| xn+1 - xn\| \leq 1 - qa
1 - q2n+1

a

q2
n - 1

a r\ast a and \| xn - \=x\| \leq 1 - qa
1 - q2na

q2
n - 1

a r\ast a for each n \in \BbbN .

(ii) If \beta < 1
2aL , then the sequence \{ xn\} generated by Algorithm 3.1 converges

quadratically to \=x with the following error estimate for some N \in \BbbN :

(4.4) \| xn+1  - \=x\| \leq qa(1 - q2
n+1

a )

(1 - qa)(1 - q2na )2r\ast a
\| xn  - \=x\| 2 for each n \geq N.

(iii) If \beta \leq  - 9(1 - \sigma )2+3(1 - \sigma )
\surd 

1+9(1 - \sigma )2

aL , then \beta < 1
2aL , and any sequence \{ xn\} 

generated by Algorithm 3.2 coincides with the one generated by Algorithm 3.1 and
satisfies (4.3) and (4.4).

Proof. Assertions (i) and (ii) follow directly from Theorem 3.4. Then, it remains

to show assertion (iii). In fact, assume that \beta \leq  - 9(1 - \sigma )2+3(1 - \sigma )
\surd 

1+9(1 - \sigma )2

aL . Then,

\beta < 1
2aL because  - 9(1 - \sigma )2+3(1 - \sigma )

\sqrt{} 
1 + 9(1 - \sigma )2 < 1

2 . Since L(\cdot ) \equiv L, it follows

from (4.1) that
3(1 - \sigma )(1 - a

\int r\ast a
0 L(u)du)

aL(r\ast a)
= 3(1 - \sigma )

\surd 
1 - 2aL\beta 

aL . Thus, (3.19) holds because it

is equivalent that aL\beta \leq 3(1 - \sigma )
\surd 
1 - 2aL\beta , which is true by assumption. Hence,

the conclusion follows from Theorem 3.5.

Remark 4.1. Under the assumption made in Theorem 4.1, we see that there exist
V \subseteq B(x0, r

\ast 
a), \=a := 1

a , and
\=b > 0 such that \=aI \leq \nabla 2Fj(x) \leq \=bI for all x \in V and

all j = 1, . . . ,m, where, for A, B \in \BbbR n\times n, A \geq B means that A  - B is positive
semidefinite. Thus, [22, Theorem 6.1] could apply. However, Theorem 4.1 cannot
be derived via a direct application of [22, Theorem 6.1]. In fact, Example 4.1 below
illustrates the case where Theorem 4.1 is applicable but not [22, Theorem 6.1].
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Example 4.1. Let \sigma \in ( 12 , 1), and let \tau satisfy

(4.5) (1 - \sigma )\sigma < \tau \leq  - 9(1 - \sigma )2 + 3(1 - \sigma )
\sqrt{} 

1 + 9(1 - \sigma )2.

Consider problem (1.1) with m = l = 1 and F : \BbbR \rightarrow \BbbR defined by

F (x) :=  - \tau x+
1

2
x2  - 1

6
x3 for each x \in \BbbR .

Then,

(4.6) F \prime \prime (x) = 1 - x for each x \in \BbbR .

Let x0 = 0. Then, one checks that

(4.7) a := \| F \prime \prime (x0)
 - 1\| = 1, \| s(x0)\| = \|  - (F \prime \prime (x0))

 - 1F \prime (x0)\| = \tau ,

and F \prime \prime satisfies the Lipschitz condition with modulus L = 1 on [ - 1, 1]. By (4.5), we
see that Theorem 4.1(iii) is applicable, and we can conclude that any sequence \{ xn\} 
generated by Algorithm 3.2 (and so Algorithm 1.1) with initial point x0 converges to
a local Pareto optimum. We show below that [22, Theorem 6.1] is not applicable. To
do this, suppose on the contrary that [22, Theorem 6.1] is applicable. Then, there
exist 0 < r < 1 and positive numbers ar, br, \delta , \varepsilon such that
(4.8)
\varepsilon 

ar
\leq 1 - \sigma , \| s(x0)\| \leq min

\biggl\{ 
\delta , r(1 - \varepsilon 

ar
)

\biggr\} 
, ar \leq F \prime \prime (x) \leq br for all x \in ( - r, r),

and \| F \prime \prime (x) - F \prime \prime (y)\| \leq \varepsilon for all x, y \in ( - r, r) with \| x - y\| \leq \delta . Then, by (4.6), with-
out loss of generality, we take ar = 1 - r and \delta = \varepsilon \leq (1 - r)(1 - \sigma ). Thus, if r \geq 1 - \sigma ,
one has that \| s(x0)\| \leq \delta \leq \sigma (1 - \sigma ). Below we show that this is also true if r \leq 1 - \sigma .
Granting this, one has from (4.7) that \tau \leq \sigma (1 - \sigma ), which is a contradiction to (4.5).
To proceed, assume r \leq 1  - \sigma , and note that the function t \mapsto \rightarrow min\{ t, r(1  - t

1 - r )\} 
attains its maximum t0 on [0, (1  - r)(1  - \sigma )] at t0 satisfying t0 = r(1  - t0

1 - r ), i.e.,

t0 = r(1  - r). Since \sigma \in ( 12 , 1) by assumption, it follows that r \leq 1  - \sigma \leq 1
2 and

so min\{ \delta , r(1  - \delta 
1 - r )\} \leq t0 = r(1  - r) \leq \sigma (1  - \sigma ). Thus we have by (4.8) that

\| s(x0)\| \leq min\{ \delta , r(1 - \delta 
1 - r )\} \leq \sigma (1 - \sigma ), as desired.

Theorem 4.2 below follows directly from Theorems 3.7 and 3.9 and provides ex-
plicit estimates of the convergence radius of the extended Newton method for multi-
objective optimization under the classical Lipschitz condition. In particular, assertion
(ii) improves the corresponding result in [22, Corollary 6.2], which only asserts the
existence of such a convergence radius under the stronger assumption than that for
assertion (ii). Recall that x\ast is a local Pareto optimum of F and \xi \ast is defined as in
(3.28).

Theorem 4.2. Suppose F satisfies assumption (3.3) associated to (x\ast ; a\ast , 1
a\ast L )

with L(\cdot ) \equiv L. Let x0 \in B(x\ast , 1
2(1+a\ast \xi \ast )a\ast L ). Then, with initial point x0, we have the

following assertions:
(i) The sequence \{ xn\} generated by Algorithm 3.1 is well-defined and converges

quadratically to a local Pareto optimum of F .

(ii) If \| x0  - x\ast \| \leq  - 9(1 - \sigma )2+3(1 - \sigma )
\surd 

1+9(1 - \sigma )2

(1+4a\ast \xi \ast )a\ast L , then any sequence \{ xn\} generated

by Algorithm 3.2 with initial point x0 is well-defined and converges quadratically to a
local Pareto optimum of F .
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Proof. Assertion (i) follows directly from Theorem 3.7. Then, it remains to ver-

ify assertion (ii). To do this, write r :=
 - 9(1 - \sigma )2+3(1 - \sigma )

\surd 
1+9(1 - \sigma )2

(1+4a\ast \xi \ast )a\ast L . Then, r <
1

2(1+a\ast \xi \ast )a\ast L (due to the fact that  - 9(1  - \sigma )2 + 3(1  - \sigma )
\sqrt{} 
1 + 9(1 - \sigma )2 < 1

2 ), and

La\ast \tau < 1
2(1+a\ast \xi \ast ) < 1

2 for each \tau \in (0, r). As L(\cdot ) \equiv L, one checks that, for each

\tau \in (0, r),

\beta \tau =
a\ast \int \tau 

0
L(u)(\tau  - u)\mathrm{d}u+ a\ast \xi \ast \tau 

1 - a\ast 
\int \tau 

0
L(u)\mathrm{d}u

=
L
2
a\ast \tau 2 + a\ast \xi \ast \tau 

1 - La\ast \tau 
<

\biggl( 
1

2
+ 2a\ast \xi \ast 

\biggr) 
\tau \leq 

\biggl( 
1

2
+ 2a\ast \xi \ast 

\biggr) 
r.

Moreover, since a\tau L = a\ast L
1 - a\ast L\tau < 2a\ast L, it follows that, for each \tau \in (0, r),

3(1 - \sigma )
\bigl( 
1 - a\tau 

\int \=r\ast a\tau 
0 L(\tau +u)du

\bigr) 
a\tau L(\tau +\=r\ast a\tau 

) = 3(1 - \sigma )
\surd 
1 - 2a\tau L\beta \tau 

a\tau L

\geq 3(1 - \sigma )
\surd 

1 - 2(1+4a\ast \xi \ast )a\ast Lr

2a\ast L

=
\bigl( 
1
2 + 2a\ast \xi \ast 

\bigr) 
r,

where the last equality holds by the definition of r. Thus, one checks that r \in 
(0, ba\ast 

1+a\ast \xi \ast ) satisfies (3.41), and the conclusion follows from Theorem 3.9.

4.1.2. Global convergence of Algorithm 3.2. This subsection aims to estab-
lish the global convergence of Algorithm 3.2 under the classical Lipschitz condition.

The following proposition shows that any accumulation point of a sequence \{ xn\} 
generated by Algorithm 3.2, where the stepsize \{ \alpha n\} satisfies the Armijo rule, the
Goldstein rule, or the Wolfe rule, is a critical point of F .

Proposition 4.3. Let \{ xn\} be a sequence generated by Algorithm 3.2. Then,
any accumulation point x\ast of \{ xn\} such that D2F (x\ast ) is positive definite and D2F is
Lipschitz continuous around x\ast is a local Pareto optimum of F .

Proof. Let x\ast be an accumulation point of \{ xn\} such that D2F (x\ast ) is positive
definite and D2F is Lipschitz continuous around x\ast . Then, it is easy to show that
D2F (\cdot ) is positive definite around x\ast . By (2.2), we only need to verify that x\ast is a
critical point of F . As x\ast is an accumulation point of \{ xn\} , there exists a subsequence
\{ xni

\} such that limi\rightarrow \infty xni
= x\ast . Let j \in \{ 1, . . . ,m\} . Noting that \{ Fj(xn)\} is

monotonically nonincreasing (by Algorithm 3.2) and Fj is continuous, it follows that

(4.9) lim
n\rightarrow \infty 

Fj(xn) = lim
i\rightarrow \infty 

Fj(xni
) = Fj(x

\ast ).

By (i) and (ii) of Lemma 2.4, to complete the proof, it suffices to verify that \theta (x\ast ) \geq 0.
To do this, let

K1 := \{ i : Fj(xni
+ s(xni

)) \leq Fj(xni
) + \sigma \theta (xni

) for all j = 1, . . . ,m\} .

Then, we divide the proof into two cases.
Case 1. K1 is infinite. Then, there exists a subsequence of \{ xni\} , denoted by

itself, such that

(4.10) Fj(xni
+ s(xni

)) \leq Fj(xni
) + \sigma \theta (xni

) for all i \in \BbbN and j = 1, . . . ,m.

In view of Step 4 of Algorithm 3.2, one has that xni+1 = xni
+ s(xni

). Passing to the
limit as i \rightarrow \infty in (4.10), we get from (4.9) that \theta (x\ast ) \geq 0 and the proof is complete
in this case.
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Case 2. K1 is finite. Then, there exist j0 \in \{ 1, . . . ,m\} and a subsequence of
\{ xni

\} , denoted by itself, such that

Fj0(xni
+ s(xni

)) > Fj0(xni
) + \sigma \theta (xni

) for all i \in \BbbN .

Thus, in view of Step 5 in Algorithm 3.2 (cf. (3.1)) and Lemma 2.4(i), we have

Fj0(xni
) - Fj0(xni+1) \geq  - \sigma \alpha ni

\theta (xni
) \geq 0,

where each \alpha ni
\in (0,+\infty ) satisfies the Armijo rule, the Goldstein rule, or the Wolfe

rule. This, together with (4.9), implies that limi\rightarrow \infty \alpha ni\theta (xni) = 0. Recall that \theta 
is continuous around x\ast (due to Lemma 2.4) and that limi\rightarrow \infty xni = x\ast . We only
need to consider the case when limi\rightarrow \infty \alpha ni

= 0 because, otherwise, one has that
limi\rightarrow \infty \alpha ni

> 0 and thus

\theta (x\ast ) lim
i\rightarrow \infty 

\alpha ni
\geq lim

i\rightarrow \infty 
\alpha ni

\theta (xni
) = 0;

this implies \theta (x\ast ) \geq 0. To proceed, let \zeta := min\{ \sigma , \nu \} , and define for each ni

(4.11)

\Theta (xni
) := max

k=1,2

\biggl\{ 
Fj0(xni + k\alpha nis(xni)) - Fj0(xni)

k\alpha ni

,\nabla Fj0(xni
+ \alpha ni

s(xni
))T s(xni

)

\biggr\} 
.

Then, \zeta \in (0, 1). Below, we show that

(4.12) lim
i\rightarrow \infty 

\Theta (xni
) \leq \theta (x\ast ) and \zeta \theta (xni

) \leq \Theta (xni
) for each ni.

Granting this and noting that limi\rightarrow \infty \theta (xni
) = \theta (x\ast ), one checks that \theta (x\ast ) \geq \zeta \theta (x\ast )

and so \theta (x\ast ) \geq 0 (as \zeta \in (0, 1)), completing the proof.
Note by Definition 3.1 that if \alpha ni satisfies the Armijo rule, then

\Theta (xni
) \geq Fj0(xni

+ 2\alpha ni
s(xni

)) - Fj0(xni
)

2\alpha ni

> \sigma \theta (xni
) \geq \zeta \theta (xni

),

where the first and the last inequalities hold by the definition of \Theta (xni
) (see (4.11))

and \zeta , respectively. A similar argument is also valid for the Goldstein rule or the Wolfe
rule, and thus the second relation in (4.12) is seen to hold. To show the first one in
(4.12), we first note that \theta is continuous around x\ast and \{ s(xni

)\} is bounded (due to
Lemma 2.4(iii)). Note further that\nabla Fj0 is continuous. It follows from limi\rightarrow \infty \alpha ni = 0
and the inequality \nabla Fj0(xni)

T s(xni) \leq \theta (xni) (due to the definition of \theta ) that

lim
i\rightarrow \infty 

\nabla Fj0(xni
+ \alpha ni

s(xni
))T s(xni

)

\leq lim
i\rightarrow \infty 

((\nabla Fj0(xni + \alpha nis(xni)) - \nabla Fj0(xni))
T s(xni) + \theta (xni))

= lim
i\rightarrow \infty 

\theta (xni
) = \theta (x\ast ).

Thus, it remains to verify that

(4.13) lim
i\rightarrow \infty 

Fj0(xni
+ k\alpha ni

s(xni
)) - Fj0(xni

)

k\alpha ni

\leq \theta (x\ast ) for k = 1, 2.

To do this, consider a sequence \{ tni
\} \subseteq (0,+\infty ) converging to zero. Then, we have

that

lim
i\rightarrow \infty 

\int 1

0

(\nabla Fj0(xni
+ \tau tni

s(xni
)) - \nabla Fj0(xni

))T s(xni
)d\tau = 0,(4.14)
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as \nabla Fj0 is continuous and \{ s(xni
)\} is bounded. Note for each i \in \BbbN that

Fj0(xni + tnis(xni)) - Fj0(xni)

tni

=
\int 1

0
(\nabla Fj0(xni + \tau tnis(xni)) - \nabla Fj0(xni))

T s(xni)\mathrm{d}\tau 

+\nabla Fj0(xni)
T s(xni).

Hence, thanks again to the inequality \nabla Fj0(xni)
T s(xni) \leq \theta (xni) (due to the defini-

tion of \theta ) and using again the continuity of \theta , we conclude from (4.14) that

lim
i\rightarrow \infty 

Fj0(xni
+ tni

s(xni
)) - Fj0(xni

)

tni

\leq lim
i\rightarrow \infty 

\theta (xni
) = \theta (x\ast ).

Applying this fact to \{ \alpha ni\} and \{ 2\alpha ni\} in place of \{ tni\} , one sees that (4.13) holds,
and the proof is complete.

Corollary 4.4. Let \{ xn\} be a sequence generated by Algorithm 3.2. Suppose
that the set

\bigcap 
j=1,...,m\{ x \in U : Fj(x) \leq Fj(x0)\} is bounded. Then, there exists an

accumulation point x\ast of \{ xn\} . Furthermore, if x\ast satisfies that D2F (x\ast ) is positive
definite and D2F is Lipschitz continuous around x\ast , then x\ast is a local Pareto optimum
of F .

Proof. Note by Algorithm 3.2 that \{ Fj(xn)\} is monotonically nonincreasing for
each j = 1, . . . ,m. Hence, by assumption, we have that \{ xn\} \subseteq 

\bigcap 
j=1,...,m\{ x \in U :

Fj(x) \leq Fj(x0)\} and so \{ xn\} is bounded. Thus, there exists an accumulation point
of \{ xn\} . Then, the conclusion follows from Proposition 4.3.

Now we are ready to establish the global quadratic convergence of a sequence
generated by Algorithm 3.2.

Theorem 4.5. Let \{ xn\} be a sequence generated by Algorithm 3.2. Suppose that
\{ xn\} has an accumulation point x\ast such that D2F (x\ast ) is positive definite and D2F is
Lipschitz continuous around x\ast . Then, x\ast is a local Pareto optimum of F and \{ xn\} 
converges quadratically to x\ast .

Proof. In view of Proposition 4.3, it suffices to show that \{ xn\} converges quadrat-
ically to x\ast . For this purpose, note by the Lipschitz continuity assumption that there
exists a pair of positive numbers (r, L) such that each D2F satisfies the Lipschitz
condition with modulus L on B(x\ast , r). Since each \nabla 2Fj(x

\ast ) is positive definite by
assumption, we can take

a\ast > max
j=1,...,m

\biggl\{ 
1

rL
, \| \nabla 2Fj(x

\ast ) - 1\| 
\biggr\} 
.

Then, F satisfies assumption (3.3) associated to (x\ast ; a\ast , 1
a\ast L ) and L(\cdot ) \equiv L. Let

\^r =
 - 9(1 - \sigma )2 + 3(1 - \sigma )

\sqrt{} 
1 + 9(1 - \sigma )2

(1 + 4a\ast \xi \ast )a\ast L
,

and let \{ xni\} \subseteq \{ xn\} be a subsequence such that limi\rightarrow \infty xni = x\ast . Then there exists
i0 \in \BbbN such that \| xni0

 - x\ast \| \leq \^r. Thus, Theorem 4.2(ii) is applicable to concluding
that the sequence \{ xn\} \infty n=ni0

converges quadratically to a local Pareto optimum of F .
This completes the proof.
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4.2. Theorems under the \bfitgamma -condition. The notion of the \gamma -condition was
introduced by Wang in [42] for differentiable operator and was used to improve Smale's
corresponding results for convergence analysis of the Newton method (cf. [40]). Below,
we present an analogue of the \gamma -condition (with a slight modification). Let r > 0 and
\gamma > 0 be such that r\gamma \leq 1.

Definition 4.6. Let x0 \in U and r > 0 be such that B(x0, r) \subseteq U . DF is said to
satisfy the \gamma -condition on B(x0, r) if

\| \nabla 3Fi(x)\| \leq 2\gamma 

(1 - \gamma \| x - x0\| )3
for each i \in \{ 1, . . . ,m\} and x \in B(x0, r).

Remark 4.2. As in [42], one checks by definition that if F is analytic at x0, then
DF satisfies the \gamma -condition on B(x0,

1
\gamma ), where

\gamma := max
i=1,...,m

\biggl\{ 
sup
k\geq 2

\| 1

k!
F

(k+1)
i (x0)\| 

1
k - 1

\biggr\} 
.

The following proposition shows that the \gamma -condition of DF implies the L-average
Lipschitz condition of D2F , the proof of which is easy and so is omitted here.

Proposition 4.7. Suppose that DF satisfies the \gamma -condition on B(x0, r). Then,
D2F satisfies the L-average Lipschitz condition on B(x0,

1
\gamma ) with the function L :

[0, 1
\gamma ) \rightarrow \BbbR + defined by

(4.15) L(u) :=
2\gamma 

(1 - \gamma u)
3 for each u \in 

\biggl[ 
0,

1

\gamma 

\biggr) 
.

Let a > 0 and \beta \geq 0. For L(\cdot ) given by (4.15), the majoring function ha defined
as in (2.13) is reduced to

ha(t) = \beta  - t+
a\gamma t2

1 - \gamma t
for each 0 \leq t <

1

\gamma 
.

Then, it follows from (2.12) that

ra =

\biggl( 
1 - 

\sqrt{} 
a

1 + a

\biggr) 
1

\gamma 
and ba =

\Bigl( 
1 + 2a - 2

\sqrt{} 
a(1 + a)

\Bigr) 1

\gamma 
.

Let \{ ta,n\} denote a sequence generated by the classical Newton method for approach-
ing the zeros of ha with the initial value t0 = 0, and assume

\gamma \beta \leq 1 + 2a - 2
\sqrt{} 

a(1 + a).

Then, by [42, p. 180], the smaller zero r\ast a of ha and the Newton sequence \{ ta,n\} have
the following closed forms:

(4.16) r\ast a =
1 + \gamma \beta  - \surd 

\varrho 

2(1 + a)\gamma 
and ta,n =

1 - \mu 2n - 1

1 - \mu 2n - 1\eta 
r\ast a for each n \in \BbbN ,

where \varrho := (1 + \gamma \beta )2  - 4(1 + a)\gamma \beta \geq 0,

(4.17) \mu :=
1 - \gamma \beta  - \surd 

\varrho 

1 - \gamma \beta +
\surd 
\varrho 

and \eta :=
1 + \gamma \beta  - \surd 

\varrho 

1 + \gamma \beta +
\surd 
\varrho 
.
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Fixing the triple (x; a, r) with x \in U and (a, r) \in \BbbR 2
+, we consider the following

assumption for F \in C3(U,\BbbR m) associated to the triple (x; a, r):

(4.18)
\bullet D2F (x) is positive definite with each \| \nabla 2Fi(x)

 - 1\| \leq a;
\bullet DF satisfies the \gamma -condition on B(x, r) \subseteq U.

Then, we have the following theorem about the quadratic convergence criterion
of the extended Newton method under the \gamma -condition.

Theorem 4.8. Suppose that \| s(x0)\| \leq \beta and F satisfies assumption (4.18) as-
sociated to (x0; a, r

\ast 
a). Let \mu and \eta be given by (4.17). Then, with initial point x0, we

have the following assertions:
(i) If \beta \leq 

\bigl( 
1+2a - 2

\sqrt{} 
a(1 + a)

\bigr) 
1
\gamma , then the sequence \{ xn\} generated by Algorithm

3.1 is well-defined, stays in B(x0, r
\ast 
a), and converges to a local Pareto optimum \=x \in 

B[x0, r
\ast 
a] with the following error estimate for each n \in \BbbN :

(4.19) \| xn  - \=x\| \leq (1 - \eta )\mu 2n - 1

1 - \mu 2n - 1\eta 
r\ast a.

(ii) If \beta <
\bigl( 
1+2a - 2

\sqrt{} 
a(1 + a)

\bigr) 
1
\gamma , then the sequence \{ xn\} generated by Algorithm

3.1 converges quadratically to \=x with the following error estimate for some N \in \BbbN :

(4.20) \| xn+1  - \=x\| \leq \mu (1 - \mu 2n+1 - 1\eta )(1 - \mu 2n - 1\eta )2

(1 - \eta )(1 - \mu 2n(2 - \mu 2n - 1\eta ))2r\ast a
\| xn  - \=x\| 2 for each n \geq N.

(iii) If \beta \leq 3(1 - \sigma )(1 - \gamma \beta )(1 - 2\gamma \beta (1+2a)+\gamma 2\beta 2)
2a\gamma (1+\gamma \beta )3 , then any sequence \{ xn\} generated by

Algorithm 3.2 coincides with the one generated by Algorithm 3.1 and satisfies (4.19)
and (4.20).

Proof. With L defined as in (4.15), one checks that \gamma 
\int 1

\gamma 

0 L(u)
\bigl( 
1
\gamma  - u

\bigr) 
du = +\infty 

and so (2.11) holds with 1
\gamma in place of R. This and assumption (4.18) in combination

with Proposition 4.7 imply that F satisfies assumption (3.3) associated to (x0; a, r
\ast 
a)

and L. Hence, Theorem 3.4 is applicable to concluding that assertions (i) and (ii)
hold. Then, it remains to show assertion (iii). In fact, as L(\cdot ) is given by (4.15), it
follows that

(4.21)
3(1 - \sigma )

\bigl( 
1 - a

\int r\ast a
0

L(u)du
\bigr) 

aL(r\ast a)
=

3(1 - \sigma )(1 - r\ast a\gamma )((1 + a)(1 - r\ast a\gamma )
2  - a)

2a\gamma 
.

Note further by (4.16) that

r\ast a\gamma =
1 + \gamma \beta  - \surd 

\varrho 

2(1 + a)
=

(1 + \gamma \beta )2  - \varrho 

2(1 + a)(1 + \gamma \beta +
\surd 
\varrho )

\leq 2\gamma \beta 

1 + \gamma \beta 
.

Combining this with (4.21) gives that

3(1 - \sigma )(1 - \gamma \beta )(1 - 2\gamma \beta (1 + 2a) + \gamma 2\beta 2)

2a\gamma (1 + \gamma \beta )3
\leq 

3(1 - \sigma )
\bigl( 
1 - a

\int r\ast a
0

L(u)du
\bigr) 

aL(r\ast a)
.

Thus, if \beta \leq 3(1 - \sigma )(1 - \gamma \beta )(1 - 2\gamma \beta (1+2a)+\gamma 2\beta 2)
2a\gamma (1+\gamma \beta )3 , then (3.19) holds. Hence, the conclusion

follows from Proposition 4.7 and Theorem 3.5.
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Similarly, we have the following results by using Theorem 3.7 in combination
with Proposition 4.7, regarding an estimate of the radius of the convergence ball of
the extended Newton method for multiobjective optimization under the \gamma -condition.
Recall that x\ast is a local Pareto optimum of F and \xi \ast is defined as in (3.28).

Theorem 4.9. Suppose F satisfies assumption (4.18) associated to (x\ast ; a\ast , ra\ast ).

Let x0 \in B
\bigl( 
x\ast ,

1+2a\ast  - 2
\surd 

a\ast (1+a\ast )

(1+a\ast \xi \ast )\gamma 

\bigr) 
. Then, with initial point x0, we have the following

assertions:
(i) The sequence \{ xn\} generated by Algorithm 3.1 is well-defined and converges

quadratically to a local Pareto optimum of F .

(ii) Let 0 < r <
1+2a\ast  - 2

\surd 
a\ast (1+a\ast )

(1+a\ast \xi \ast )\gamma satisfy (3.41). Then , for any x0 \in B(x\ast , r),

any sequence \{ xn\} generated by Algorithms 3.2 with initial point x0 converges quadrat-
ically to a local Pareto optimum of F .

The advantage of considering the L-average Lipschitz condition rather than the
classical Lipschitz condition is shown in the following example, for which Theorem
4.8 is applicable but not Theorem 4.1.

Example 4.2. Consider problem (1.1) with m = l = 1 and F : \BbbR \rightarrow \BbbR defined by

F (x) :=

\biggl\{ 
(\tau  - 1)x - ln(1 - x), x \leq 1

2 ,

(\tau + 1)x - 2x2 + 8
3x

3  - 5
6 + ln 2, x \geq 1

2 .

where \tau \in (10
\surd 
2 - 14, 3 - 2

\surd 
2). Then, one checks that

F \prime \prime (x) =

\biggl\{ 1
(1 - x)2 , x \leq 1

2 ,

 - 4 + 16x, x \geq 1
2 ,

and F
\prime \prime \prime 
(x) =

\biggl\{ 2
(1 - x)3 , x \leq 1

2 ,

16, x \geq 1
2 .

Let x0 := 0 and \gamma := 1. It follows that a := \| F \prime \prime (x0)
 - 1\| = 1 and that F \prime satisfies the

\gamma -condition on B(x0, 1). Note that

\beta := \| s(x0)\| = \|  - (F \prime \prime (x0))
 - 1F \prime (x0)\| = \tau < 3 - 2

\surd 
2.

Therefore, Theorem 4.8 is applicable to concluding that the sequence \{ xn\} generated
by Algorithm 3.1 with initial point x0 converges to a local Pareto optimum of F . We
below show that Theorem 4.1 is not applicable. To do this, we first note that F \prime \prime is
also Lipschitz continuous on B(x0, r) with the smallest Lipschitz constant Kr given
by

(4.22) Kr :=

\biggl\{ 2
(1 - r)3 , r \leq 1

2 ,

16, r \geq 1
2 .

Now suppose on the contrary that Theorem 4.1 is applicable. Then there exists a
positive constant L such that

(4.23) L \geq Kr, r \geq 1 - 
\surd 
1 - 2L\tau 

L
, and \tau \leq 1

2L
\leq 1

2Kr
,

as a = 1 and \beta = \tau . Recalling \tau > 10
\surd 
2  - 14 > 1

32 , we have that Kr < 16, and
then it follows from (4.22) that r < 1

2 . Hence, L \geq Kr = 2
(1 - r)3 \geq 2. Consequently,

by the second inequality in (4.23), we have that \tau \leq r  - Lr2

2 and so \tau \leq r  - r2.
Combining this and the last inequality in (4.23), along with (4.22), we have that
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\tau \leq min\{ (1 - r)3

4 , r  - r2\} . Since the function r \mapsto \rightarrow (1 - r)3

4 is decreasing and r \mapsto \rightarrow r  - r2

increasing on [0, 1
2 ], it follows that, for each r \in (0, 1

2 ),

min

\biggl\{ 
(1 - r)3

4
, r  - r2

\biggr\} 
\leq s0  - s20 = 10

\surd 
2 - 14,

where s0 := 3 - 2
\surd 
2 is the least positive root of equation (1 - s)3

4 = s - s2. Therefore,

\tau \leq 10
\surd 
2  - 14, which contradicts the choice of \tau , and thus Theorem 4.1 is not

applicable.

We end this section with the following example, which concerns nontrivial exam-
ples of functions (F,L) satisfying the L-average Lipschitz condition.

Example 4.3. Let \{ \gamma n\} be a positive sequence, and let F : U \subseteq \BbbR l \rightarrow \BbbR m be
an analytic operator (at least locally around the point x0 under consideration). Let
x0 \in U . Suppose that

(4.24) max
j=1,...,m

\| F (n+2)
j (x0)\| \leq \gamma n for each n \geq 1.

Let \gamma , c \in (0,+\infty ) and p \in ( - 1, 0) \cup (0,+\infty ). Below, we consider some special
examples of the sequence \{ \gamma n\} used by Wang in [42]:

(4.25)

Exponential type: \{ \gamma n\} := \{ c\gamma n\} ;
Binomial type: \{ \gamma n\} := \{ c (p+n)!

p! \gamma n\} ;
The first logarithmic type: \{ \gamma n\} := \{ cn!\gamma n\} ;
The second logarithmic type: \{ \gamma n\} := \{ c(n - 1)!\gamma n\} .

Then, one can check, as done in [42], that D2F satisfies the L-average Lipschitz
condition on B(x0, R) with L defined by

(4.26) L(u) := g\prime \prime (u) for each 0 \leq u < R,

and that the majorizing function ha is given by

ha(t) := \beta  - t+ ag(t) for each t \in [0, R),

where R and the function g : [0, R) \rightarrow \BbbR corresponding to the sequences \{ \gamma n\} given
by (4.25) are listed in Table 4.1.

Table 4.1
Values of R and g.

\gamma n R g(t)

c\gamma n +\infty c
\gamma 

\bigl( 
e\gamma t  - \gamma t - 1

\bigr) 
c
(p+n)!

p!
\gamma n 1

\gamma 
c
p\gamma 

\bigl( 
(1 - \gamma t) - p  - p\gamma t - 1

\bigr) 
cn!\gamma n 1

\gamma 
c
\gamma 
ln 1

1 - \gamma t
 - ct

c(n - 1)!\gamma n 1
\gamma 

c
\gamma 
(1 - \gamma t) ln(1 - \gamma t) + ct

Let a > 0, and assume further that a > 1
c in the case when \{ \gamma n\} is the second

logarithmic type. Then, (2.11) holds because 1
R

\int R

0
L(u)(R - u)du = limu\rightarrow R - 

1
ug(u)

is equal to c if \{ \gamma n\} is the second logarithmic type, and to +\infty otherwise. Thus,
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assuming (4.24) with \{ \gamma n\} given by each in (4.25), F satisfies assumption (3.3) as-
sociated to (x0; a, ra) (and so to (x0; a, r

\ast 
a)) and L defined as in (4.26). Therefore,

Theorems 3.4 and 3.5 and Theorems 3.7 and 3.9 (assuming (4.24) with x\ast in place of
x0, and a\ast > 1

c in the case when \{ \gamma n\} is the second logarithmic type) are applicable to
establish the corresponding results regarding the convergence criteria and the radius
of convergence balls for Algorithms 3.1 and 3.2, respectively. As illustrating examples,
we provide in Table 4.2 the values of ba and the radius r = ba\ast 

1+a\ast \xi \ast of the convergence

balls for Algorithm 3.1, where \xi \ast is defined as in (3.28).

Table 4.2
Values of ba and r.

\gamma n ba r

c\gamma n ac+1
\gamma 

ln ac+1
ac

 - 1
\gamma 

1
\gamma (1+a\ast \xi \ast )

\bigl( \bigl( 
a\ast c+ 1

\bigr) 
ln a\ast c+1

a\ast c  - 1
\bigr) 

c
(p+n)!

p!
\gamma n 1

\gamma 
+ ac

\gamma 
p+1
p

\bigl( 
1 - 

\bigl( 
ac+1
ac

\bigr) p
p+1

\bigr) 
1

\gamma (1+a\ast \xi \ast )

\bigl( 
1 + a\ast c p+1

p

\bigl( 
1 - 

\bigl( 
a\ast c+1
a\ast c

\bigr) p
p+1

\bigr) \bigr) 
cn!\gamma n 1

\gamma 
 - ac

\gamma 
ln ac+1

ac
1

\gamma (1+a\ast \xi \ast )

\bigl( 
1 - a\ast c ln a\ast c+1

a\ast c

\bigr) 
c(n - 1)!\gamma n 1

\gamma 
 - ac

\gamma 
+ ac

\gamma 
e - 

1
ac 1

\gamma (1+a\ast \xi \ast )

\bigl( 
1 - a\ast c+ a\ast ce - 

1
a\ast c

\bigr) 

5. Numerical experiments. The purpose of this section is to carry out some
numerical experiments and demonstrate the numerical performance of the extended
Newton method for some multiobjective optimization problems. All numerical ex-
periments are implemented in MATLAB R2014a and executed on a personal desktop
(Intel Core Duo i7-6700, 3.40 GHz, 8.00 GB of RAM).

Two classical biobjective optimization problems are tested as follows. Example
5.1 is taken from [25] and has been tested as a benchmark problem in various works;
see [22, 25] and references therein. Example 5.2 is an extension of Example 5.1 to the
negative likelihood function of logistic regression.

Example 5.1. Consider problem (1.1) with F : \BbbR n \rightarrow \BbbR 2 defined by

F1(x) :=
1

n
\| x\| 2 and F2(x) :=

1

n
\| x - 2e\| 2 for each x \in \BbbR n,

where e denotes the vector of ones in \BbbR n.

Example 5.2. Consider problem (1.1) with F : \BbbR n \rightarrow \BbbR 2 defined by

F1(x) :=
1

n
\| x\| 2 and F2(x) :=  - 1

m

m\sum 
i=1

log(1 + exp( - bix
Tai)) for each x \in \BbbR n,

where A := (a1, . . . , am) \in \BbbR n\times m and b \in \BbbR m are randomly generated i.i.d. Gaussian
ensembles according to the logistic regression model (cf. [10]).

For each test problem, we set the dimension of variables n from [100,1000], and
for each n, we apply the extended Newton method to solve the corresponding prob-
lem in 500 simulations by using random initial points from a joint uniform random
distribution. In particular, the initial points in Example 5.1 are randomly selected
via the MATLAB script x0 := 2 \ast rand \ast rand(n, 1), and the ones in Example 5.2 are
x0 :=  - 

\surd 
n \ast rand \ast rand(n, 1). The solver and the parameters used in the extended

Newton method are described as follows. The subproblem (2.3) of finding Newton
direction is implemented by adopting the CVX solver to solve the corresponding prob-
lem (3.2); see Remark 3.1 for the explanation. We use the Armijo line-search with
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\sigma = 0.1 and set the stopping criterion of the extended Newton method as \theta (xk) \leq 1e-6
or the number of iterations is greater than 100.

By taking the average of these 500 simulations, the numerical results of applying
the extended Newton method to solve Examples 5.1 and 5.2 are illustrated in Figures
5.1 and 5.2, respectively. In these figures, subfigures (a) plot the Pareto frontier
generated by the extended Newton method when n = 100 and by using different
(random) initial points, subfigures (b) plot the error bars of the number of outer
iterations used by the extended Newton method in these 500 simulations along with
the dimensions of variables, and subfigures (c) plot the error bars of the cost CPU
time (in seconds) for solving each subproblem (2.3) in these 500 simulations along
with the dimensions of variables.

Three observations are indicated by Figures 5.1 and 5.2 consistently: (a) most of
the Pareto frontier could be constructed by the extended Newton method via using
many different (random) initial points; (b) the extended Newton method usually
converges very fast and particularly achieves a Pareto solution within only a few
iterations; (c) the subproblem (2.3) could be solved efficiently by the CVX solver,
even for large-scale problems.
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(a) Pareto frontier (n = 100)
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Fig. 5.1. Numerical performance of the extended Newton method in Example 5.1.
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Fig. 5.2. Numerical performance of the extended Newton method in Example 5.2.

Finally, we test on two more challenging biobjective optimization problems. Ex-
ample 5.3 is a convex problem taken from [22], and Example 5.4 is a 2-dimensional
nonconvex problem taken from [36].

Example 5.3. Consider problem (1.1) with F : \BbbR n \rightarrow \BbbR 2 defined by

F1(x) :=
1

n2

n\sum 
i=1

i(xi  - i)4 \mathrm{a}\mathrm{n}\mathrm{d} F2(x) :=
1

n(n+ 1)

n\sum 
i=1

i(n - i+ 1)e - xi \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h} x \in \BbbR n.
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Fig. 5.3. Numerical performance of the extended Newton method in Example 5.3. The blue and
red symbols (colors distinguishable online only) denote the different random initialization strategies,
x0 := 2 \ast rand(n, 1) and x0 := 2 \ast rand(n, 1). \ast [1 : n]\prime , respectively.

−10 −5 0 5 10 15 20 25
0

5

10

15

F1(x)

F
2
(x
)

(a) Pareto frontier

0 100 200 300 400 500
0

20

40

60

80

100

# of trials

#
 o

f 
o
u
te

r 
it
e
ra

ti
o
n
s

(b) Number of outer iterations

Fig. 5.4. Numerical performance of the extended Newton method in Example 5.4. The red
circle in (a) (color distinguishable online only) denotes the obtained solution that is not a Pareto
optimum.

Example 5.4. Consider problem (1.1) with F : \BbbR 2 \rightarrow \BbbR 2 defined by

F1(x) := x4
1 +x4

2  - x2
1 +x2

2  - 10x1x2 +10x1 +20 \mathrm{a}\mathrm{n}\mathrm{d} F2(x) := \| x - e\| 2 \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h} x \in \BbbR 2.

The experiment setting and the implementation of the extended Newton method
are similar to the preceding ones, except what is mentioned below. The dimensions
of variables are set from [10,100] in Example 5.3. The initial points in Example
5.3 are selected via two random strategies: (i) x0 := 2 \ast rand(n, 1) and (ii) x0 :=
2 \ast rand(n, 1). \ast [1 : n]\prime , and the ones in Example 5.4 are randomly selected from
a normal distribution x0 := 2 \ast randn(n, 1). For the nonconvex example (Example
5.4), the MATLAB solver ``fminunc"" is used to solve the corresponding nonconvex
subproblem (2.3).

The numerical results are illustrated in Figures 5.3 and 5.4, respectively. In these
figures, subfigures (a) plot the Pareto frontier generated by the extended Newton
method when using different (random) initial points, and subfigures (b) plot the
number of outer iterations used by the extended Newton method in the simulation
trials.

In Example 5.3, it is observed from Figure 5.3 that (a) most of the Pareto frontier
could be constructed by the extended Newton method via using the two random
initialization strategies; (b) the extended Newton method usually converges fast and
stably, although it employs more iterations than the preceding experiments. Each
subproblem can be solved by CVX in 1 second.
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In Example 5.4, it is indicated from Figure 5.4(a) that some of the Pareto frontier
could be constructed by the extended Newton method, but some of the estimated
solutions (over 25\%) are not the Pareto optimum of this problem. It is demonstrated
in Figure 5.4(b) that about 40\% of trials can be efficiently solved by the extended
Newton method within a few iterations, while others cannot. The main reason for
failure could be that the iterative sequence falls into some local optimum. In a word,
the extended Newton method is an efficient numerical algorithm for convex biobjective
optimization problems but may be not effective for nonconvex problems.

Acknowledgments. The authors are grateful to the editor and anonymous re-
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original presentation of the paper.
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