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Examining the controllability of complex networks has received much attention recently. The focus of many
studies is commonly trained on whether we can steer a system from an arbitrary initial state to any final state
within finite time with admissible external inputs. In order to accomplish the control at the minimum cost, we
must study how much control energy is needed to reach the desired state. At a given control distance between
the initial and final states, existing results have offered the scaling behavior of lower bounds of the minimum
energy in terms of the control time. However, to reach an arbitrary final state at a given control distance, the
minimum energy is actually dominated by the upper bound, whose analytic expression still remains elusive.
Here we theoretically show the scaling behavior of a precise upper bound of the minimum energy in terms of
the time required to achieve control. Apart from validating the analytical results with numerical simulations, our
findings are applicable to any number of nodes that receive inputs directly and any types of networks with linear
dynamics. Moreover, more precise analytical results for the lower bound of the minimum energy are derived
with the proposed method. Our results pave the way for implementing realistic control over various complex
networks with the minimum control cost.
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I. INTRODUCTION

An ultimate goal of studying complex systems is to control
them on the basis of the underlying topological structures,
where nodes indicate units of a system and edges capture
who interacts with whom [1–8]. Indeed, by implementing
appropriate external control signals, if we can drive a system
from an arbitrary initial state to any final state in finite time,
we define that the system is controllable, i.e., in principle,
we are able to steer a controllable system along our expec-
tations. Recently, the problem of finding a minimal number of
nodes that receive external inputs directly to make a network
controllable has been investigated [9,10]. Several important
results have elucidated important problems pertaining to node
classification [11,12], control profiles [13], target control [14],
control of edge dynamics [15], as well as the energy (or cost)
required for control [16–20] and the corresponding optimal
trajectories [21,22].

Beyond the basic property, namely controllability of a
system, the control energy steering the system from an initial
to a final state has received much attention recently [8,16–20].
Indeed, the energy tells the cost required to pay in practical
control, and thus represents another dimension of difficulty
in achieving control. Although methods for theoretically ap-
proximating the lower bound of control energy and its scaling
behavior in terms of the control time have been provided
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in the literature for both static and temporal networks, the
energy to reach an arbitrary final state in phase space is
usually dominated by the upper bound [16,20]. In other words,
analytical forms on the upper bound of control energy are
still missing, and the existing results are all extrapolated from
the myriad numerical calculations. In this paper, apart from
presenting more precise lower bound of the minimum control
energy, we theoretically derive a precise upper bound for the
first time. Note that the precise upper bound is the maximum
value of all the minimum control energy over all control
directions. Furthermore, we show the scaling behavior of both
bounds, and offer numerical validations for both cases.

II. THE MINIMUM ENERGY FOR CONTROLLING
COMPLEX NETWORKS

Here we consider the linear time-invariant dynamics

ẋ(t ) = Ax(t ) + Bu(t ), (1)

where x(t ) = [x1(t ) x2(t ) . . . xn(t )]T is the state of the whole
network with xi(t ) capturing the state of node i; u(t ) =
[u1(t ) u2(t ) . . . um(t )]T is the control input; A = (ai j )nn is the
adjacent matrix of the network; B = (bi j )nm is the input matrix
with size n × m; and the entry at row i and column j is bi j ,
being 1 if node i receives the external control input signal uj (t )
directly (driver node), being 0 otherwise.

The networked system (1) is said to be controllable, if
it can be driven from any initial state x0 = x(t0) toward
any target state x f = x(t f ) at a given control time t f , and
the corresponding input control energy cost is defined as
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E (t0, t f ) = ∫ t f

t0
‖u(t )‖2dt with ‖u(t )‖ being the Euclidean

norm of the vector u(t ). To minimize the above energy
cost, one can adopt the optimal energy control input u∗(t ) =
BT eAT (t f −t )G−1δ with G = ∫ t f

t0
eA(t−t0 )BBT eAT (t−t0 )dt and δ =

x f − eAt f x0 [23,24], which gives the minimum energy cost
E (t f ) = δT G−1δ from x0 to x f . By assuming t0 = 0 and x0 =
0 for simplicity, we obtain the minimum energy

E (t f ) = xT
f G−1x f (2)

and note that here the Gramian matrix G is positive definite
when system (1) is controllable [25]. Note that when we refer
to control energy later, we mean the minimum control energy.
Clearly, for the normalized control distance ‖x f ‖ = 1 we have

1

λmax(G)
� E (t f ) � 1

λmin(G)
. (3)

In what follows, for ease of presenting our framework,
we consider undirected networks, and thus A is a real
symmetric matrix accordingly. Subsequently, we have A =
P�PT with PPT = PT P = I, where P = (pi j )nn, � =
diag(λ1, λ2, . . . , λn), and λi, (i = 1, 2, . . . , n) is the eigen-
value of A with the ascending order λ1 � λ2 � · · · � λn.
By letting Q = PT BBT P = (qi j )nn and F = ( fi j )nn with
fi j = 1

λi+λ j
[e(λi+λ j )t f − 1], we have

∫ t f

0 e�t PT BBT Pe�t dt =
(qi j fi j )nn. Note that the limit of fi j is t f as λi + λ j → 0, which
keeps the above expression of fi j alive when λi + λ j = 0.
Furthermore, we can calculate G by

G = P
∫ t f

0
e�t PT BBT Pe�t dtPT = PMPT , (4)

where M = (mi j )nn with mi j = qi j fi j . Based on similarity
between matrices G and M, we know that they have the same
eigenvalues. Therefore, by calculating the eigenvalues of M
we can find the lower and upper bounds of the minimum
energy E (t f ) given in Eq. (3).

III. RESULTS

As discussed in the previous section, driver nodes are nodes
who receive external control inputs directly. In this section,
for different numbers of driver nodes, we derive the analytical
bounds of the control energy separately. For simplicity, here
we assume that each single input only injects on a single driver
node, and each node only receives an input at most.

A. n driver nodes

In the case of n driver nodes, i.e., all nodes receive external
inputs directly, we have m = n and B = Q = I, which leads
to a diagonal matrix M with mii = fii. According to the
magnitude of the control time t f , the corresponding bounds
are given as follows.

When t f is small, we have e2λit f ≈ 1 + 2λit f , and all eigen-
values of M can be approximated by t f . Then both the upper
and lower bounds of the minimum energy are t−1

f (see Fig. 1).
When t f is large and A is indefinite (ID), i.e., λi−1 <

0, λi = · · · = λi+ j = 0, 0 < λi+ j+1, the pth eigenvalue of M
is given by: (i) 1

2|λp| for p = 1, 2, . . . , i − 1; (ii) t f for p =
i, i + 1, . . . , i + j; and (iii) e2λpt f −1

2λp
for p = i + j + 1, . . . , n.

Therefore, we have λmax(M) = e2λnt f −1
2λn

and λmin(M) ≈ 1
2|λ1|

with large t f , which tell that the upper bound E ≈ 2|λ1| and
the lower bound E = 2λn

e2λnt f −1
∼ e−2λnt f → 0.

Similarly, for large t f , when A is negative definite

(ND, λi < 0), mii = e2λi t f −1
2λi

≈ −1
2λi

holds. Therefore, all eigen-

values of M are approximately 1
2|λi| , i = 1, 2, . . . , n, re-

spectively. Then we can obtain the upper bound of en-
ergy cost E ≈ 2|λ1| and the lower bound of energy cost
E ≈ 2|λn|. When A is negative semidefinite (NSD, λi−1 <

0, λi = · · · = λn = 0), all eigenvalues of M approximate
1

|2λ1| ,
1

|2λ2| , . . . ,
1

|2λi−1| , t f , t f , . . . , t f , respectively. Therefore,

λmax(M) = t f and λmin(M) ≈ 1
2|λ1| with large t f . Then

E ≈ 2|λ1| and E = 1
t f

. When A is positive semidefinite
(PSD, λ1 = · · · = λi−1 = 0, 0 < λi), all eigenvalues of M are

t f , t f , . . . , t f ,
e2λi t f −1

2λi
, e2λi+1t f −1

2λi+1
, . . . , e2λnt f −1

2λn
. Thus λmax(M) =

e2λnt f −1
2λn

∼ e2λnt f and λmin(M) = t f for large t f . Accordingly,

the upper bound of energy is E = t−1
f and the lower bound

is E = 2λn

e2λnt f −1
∼ e−2λnt f . When A is positive definite (PD,

0 < λi), all eigenvalues of M are e2λ1t f −1
2λ1

, e2λ2t f −1
2λ2

, . . . , e2λnt f −1
2λn

.

Obviously, λmax(M) = e2λnt f −1
2λn

and λmin(M) = e2λ1t f −1
2λ1

. Con-

sequently, E = 2λ1

e2λ1t f −1
∼ e−2λ1t f and E = 2λn

e2λnt f −1
∼ e−2λnt f .

All of the above analytical scaling laws are confirmed by
numerical simulations (Fig. 1).

B. One driver node

In the case of one driver node, the scaling behavior of the
lower bound E is given in Ref. [16], in which the maximum
eigenvalue of G is approximated by the trace of G. In order
to analytically obtain both the upper and lower bounds of
the control energy E shown in (3), we adopt the approach
presented in Ref. [26] to approximate the maximum and
minimum eigenvalues of M by

λmax(M) ≈ f (α, β ) (5)

and

λmin(M) ≈ 1

f (α, β )
, (6)

where f (α, β ) =
√

α
n +

√
n−1

n (β − α2

n ), α = trace(M2), β =
trace(M4), α = trace[(M−1)2], and β = trace[(M−1)4]. From
Fig. 2(a), we can see that it is feasible to employ (5) and (6)
to approximate respectively the maximum and the minimum
eigenvalues of the real symmetric matrix with high accuracy.
Specially, for positive definite matrix G, the accuracy is more
pronounced, as shown in Figs. 2(b) and 2(c).

In the literature, it is common to use the trace of G to
estimate the maximum eigenvalue of G [16,20]. For the lower
bound of E , we make a comparison of the precision between
the existing result and the result obtained in this paper. From
Fig. 3, we find that the lower bounds derived in this paper are
more exact.

052305-2



ENERGY COST FOR CONTROLLING COMPLEX NETWORKS … PHYSICAL REVIEW E 99, 052305 (2019)

-15 -9 -3 3 9 15
-5

0

5

10

15

20

-15 -11 -7 -3 1 4
-10

4

2

8

14

20

-1 8 16 24 32 40
-500

380

-260

-140

-20

100

-15 -11 -7
7

11

15

-15 -11 -7 -3 1 4
-5

0

5

10

15

20

0 1 2 3 4
-40

-28

-16

-4

8

20

-15 -11 -7
7

11

15

-15 -11 -7 -3 1 4
-10

4

2

8

14

20

(a) (b) (c)

(d) (e) (f)

~-1 ~-1

~-1

~-1
~-1

~-1

n

1

Numerical calculation
Analytical derivation

Numerical calculation
Analytical derivation

ln(tf) ln(tf)

ln(tf)ln(tf)

ln
(E

)

tf

tf

(

E)

nl

ln(E)

(

E

)

nl

ln(tf)

ln(tf)

FIG. 1. The lower and upper bounds of control energy for n driver nodes. By controlling all nodes directly, here we show the numerical and
analytical results for lower (E ) and upper (E ) bounds of control energy for different types of A. To adjust the maximum (minimum) eigenvalue
of A intuitively, we set the link weight ai j uniformly from [0, 1] in (a) to (d) and from [−1, 0] in (e) and (f); each self-loop (diagonal element)
is set as a + si with si = −∑n

j=1 ai j . In (a), we set a = −5, which guarantees A is ND with eigenvalues in [−14.0266, −5]. Similarly, in (b),
a = 0 and A is NSD with eigenvalues in [−8.5243, 0]. In (c) and (d), we have a = 5, and A is ID with eigenvalues in [−4.0266, 5]. In (e),
we set a = 0, and hence A is PSD with all eigenvalues in [0, 8.3062]. In (f), a = 5 and A is PD with all eigenvalues in [5, 13.7144]. In each
panel, triangles (blue and purple) represent results obtained by numerical calculations and full lines indicate analytical derivations under our
framework (see Sec. III A and Table I). For small t f , from each panel with horizontal axis ln(t f ), we see that all slopes are −1, which confirm
our analytical results that both E and E approximate 1

t f
for different types of A. For large t f , subgraphs with horizontal axis t f or ln(t f ) show

the analytical scaling behaviors of the bounds of energy precisely. Here we adopt the BA scale-free network with n = 50, and network is
constructed based on the preferential attachment with average degree 5.8 [27].

By (3) with (5) and (6), we have

E ≈ f (α, β ) (7)

and

E ≈ 1

f (α, β )
. (8)

With only one driver node, we denote the node h
as the sole driver node with bh1 = 1 and bi1 = 0(i �=
h). Since mi j = qi j fi j and qi j = phi ph j , we obtain
mi j = phi ph j

λi+λ j
[e(λi+λ j )t f − 1]. Furthermore, we have

M2(i, i) = ∑n
k=1

p2
hk p2

hi
(λk+λi )2 [e(λk+λi )t f − 1]2 and M4(i, i) =∑n

l=1 {∑n
k=1

p2
hk phi phl

(λk+λi )(λk+λl ) [e(λk+λi )t f − 1][e(λk+λl )t f − 1]}2
.

Note that trace(£2) = ‖£‖F for arbitrary square matrix £.
Then, we get the values of α and β as

α = trace(M2) =
n∑

i=1

n∑
k=1

p2
hk p2

hi

(λk + λi )2
[e(λk+λi )t f − 1]2 (9)

and

β = trace(M4)

=
n∑

i=1

n∑
l=1

{
n∑

k=1

p2
hk phi phl

(λk + λi )(λk + λl )

· [e(λk+λi )t f − 1][e(λk+λl )t f − 1]

}2

. (10)

Based on Eqs. (9) and (10), we have discussed and calcu-
lated the parameters α and β in different cases (see Table III).
Besides, α and β have also been obtained in different cases
(see Table IV). Accordingly, the upper and lower bounds
of energy cost are given in Tables I and II, and numerical
validations of our analytical results are shown in Fig. 4.

C. d driver nodes

In the case of d driver nodes, we label them
m1, m2, . . . , md . Hence B = [em1 , em2 , . . . , emd ] ∈ Rn×d ,
where ei = (0 . . . 0 1 0 . . . 0)T ∈ Rn with all elements as
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FIG. 2. Veracity of eigenvalues estimation based on Eqs. (5) and (6). In (a), we randomly generate 25 matrices with minimum eigenvalue
being 4i, i = 1, 2, . . . , 25, where i is the index of the matrix. The horizontal and vertical coordinates represent the true eigenvalues and
estimated eigenvalues by Eqs. (5) and (6), from which it is clear the generated pattern almost overlaps with y = x. The inset presents ratio
errors of differences between approximated eigenvalues by Eqs. (5) and (6) and the true eigenvalues, which indicates the accuracy of estimation
is reliable, especially the estimation of minimum eigenvalues by (6). In (b) and (c), we make estimations of the maximum and the minimum
eigenvalues of the matrix G for the case of d driver nodes. All validations are carried out on BA networks with 10 nodes. To be more persuasive,
we set the number of driver nodes denoted by d as 1, 2, 4, 6, 8, respectively. And for BA networks, all cases of the different A with different
properties (ND, NSD, ID, PD, PSD) are considered. In (b), the horizontal axis represents the real minimum eigenvalue of M, and the vertical
axis represents the estimated value by (6), where we set A as PD, PSD, not PD by selecting ai j from [−4, −1] uniformly and a from −4 to
4 with an interval 0.2. In (c), the horizontal axis represents the real maximum eigenvalue of M, and the vertical axis represents the estimated
value by (5), where we set A as ND, NSD, not ND by uniformly selecting ai j from [1, 3] and a from −4 to 4 with an interval 0.2. Subplots
present the ratio error similar to those in (a) with half original data, where the horizontal axis presents the matrix index and the vertical axis
indicates the ratio error.

0, except the ith element as 1. Let P1 = BT P, where P1 is a
d × n matrix constituted by the rows m1, m2, . . . , md of P.
Thus Q = PT

1 P1 with qi j = ∑d
k=1 pmk i pmk j . By comparing

the form of mi j = qi j fi j between the cases of one driver
node and d driver nodes, we find that only the form of qi j is
different. Therefore, in subsequent analysis and calculation,

we can refer to Sec. III B to derive α and β (see Appendix
B for details). We summarize the lower bound of energy
under d driver nodes for different scenarios in Table I and
the corresponding numerical validations are presented in
Fig. 5. In addition, the upper bound of energy is presented in
Table II.
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FIG. 3. The lower bound of energy comparisons between the methods shown in Ref. [16] and this paper. Here we randomly generate BA
scale-free networks with A being ND (other parameters are the same as those in Fig. 1) and ai j is selected from [1, 3] uniformly with a = −2.
For approximating the maximum eigenvalue of M, here we use the method shown in (5), while in Ref. [16], it is inferred by the corresponding
trace. Since the existing results only consider the scenario for one driver node, we follow this setting. In (a), the network size is set as 10.
In (b), the analytically derived and numerical lower bounds of E are depicted at t f = 200 for different network sizes (n) accordingly. For all
cases, we can see that the method we employed generates much more precise E compared to the existed tools.
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FIG. 4. The lower and upper bounds of energy for one driver node. The scaling behavior of the lower and upper bounds of energy cost
is given for one driver node, and the summation of analytical results are presented in Tables I and II. For scale-free networks in (a)–(f) and
random networks in (g)–(l), all parameters are the same except that the network structure is different. In (a)–(c), with small t f , E ∼ t−1

f for
all A. In (d)–(f) for upper bound, the slope of triangular trajectory is much less than −1. Parameters are selected the same as those given in
Fig. 1. The interval of the uniform distribution is [0, 1] in (a)–(c), [1, 3] in (d), [−1, 0] in (e), and [−5, −2] in (f). In (a), a = −5, by which A is
ND with eigenvalues in [−14.0266, −5]. Similarly, in (b) and (e), a = 0 such that A is NSD and PSD, respectively. In (c) and (d), a = 5 such
that A is ID. In (f), a = 3, such that the minimum eigenvalue of A is 3. In (g)–(l), the probability for adding an edge between every randomly
selected pair nodes is 0.1 [29].

IV. DISCUSSION

In this paper, we have investigated the scaling behavior
of the bounds of minimum control energy for controlling
complex networks in terms of the time given to achieve con-
trol. The bounds of minimum energy are determined by the

maximum and the minimum eigenvalues of G. The maximum
eigenvalue is usually approximated by the trace of G, while
the approximation of the corresponding minimum eigenvalue
has not been discussed until now. Here we employ an effec-
tive method which not only provides more precise analytical
expression than the conventional trace for approximating the
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FIG. 5. The lower and upper bounds of control energy for 20 driver nodes. In (a)–(c), with small t f , E ∼ t−1
f for all A. In (d)–(f) for

upper bound, the slope of triangular trajectory is much less than −1. The summation of the analytical results are presented in Tables I and
II. Parameters are selected as those given in Fig. 1. The interval of uniform distribution is [0, 1] in (a)–(d), and [−1, 0] in (e) and (f). In (a),
a = −5, by which A is ND with eigenvalues in [−12.5048, −5]. Similarly, in (b) and (e), a = 0 such that A is NSD and PSD, respectively. In
(c) and (d), a = 5 such that A is ID. Similarly, a = 5 such that A is PD.

maximum eigenvalue, but also shows the analytical form of
the minimum eigenvalues. Besides, all the derived theoretical
laws are confirmed by numerical simulations.

Our framework also applies to weighted directed networks.
When system (1) is controllable, the matrix G is positive
definite. When A is asymmetrical for directed networks, we
can still obtain the specific form of G. Based on G, the lower
bound of energy cost can be calculated by Eq. (8) with the
traces of G2 and G4. For the upper bound of energy cost, we

TABLE I. The lower bound of control energy E . No matter how
many driver nodes there are, for small t f , E ∼ t−1

f . For large t f , when
A is ND (negative definite), E approaches a constant irrespective of
t f , (C1 for one driver node, C2 for d driver nodes and 2|λn| for n driver
nodes), where C1 and C2 are given as Eq. (8) with Eqs. (A1) and (A2)
and with Eqs. (B3) and (B4), respectively. When A is NSD (negative
semidefinite) with large t f , E ≈ t−1

f under n driver nodes; while it
approaches t−1

f for one and d driver nodes [detailed forms are given
as Eq. (8) with Eqs. (A5) and (A6) and with Eqs. (B5) and (B6),
respectively]. In addition, when A is not ND (including the cases of
indefinite, positive semidefinite, and positive definite), E ∼ e−2λnt f

holds for large t f .

Number of driver nodes 1 d n

Small t f ∼ t−1
f ∼t−1

f t−1
f

ND C1 C2 2|λn|
Large t f NSD ∼ t−1

f ∼t−1
f t−1

f

Not ND ∼e−2λnt f ∼e−2λnt f ∼e−2λnt f

can apply the method proposed in this paper to get the scaling
behavior of energy by the inverse of G (see Appendix A).

Although natural systems are believed to operate with
nonlinear dynamics, the type of nonlinearity and empirical
parameterization are usually hard to detect, especially for
large systems. Besides, the generality cannot be guaranteed
for results obtained from some specific nonlinear systems.
In contrast, the linear dynamics we analyzed here allows us
to derive the theoretical insights, which are normally suit-
able for analyzing various complex networks. In general, the

TABLE II. The upper bound of control energy E . For small
t f , both N0 − Nmin and N ′

0 − N ′
min are much larger than 1, where

the detailed meanings of N0, Nmin, N ′
0, and N ′

min are given in Ap-
pendices A and B. For large t f , when A is PD (positive definite),
E ∼ e−2λ1t f for arbitrary number of driver nodes; when A is PSD
(positive semidefinite), E ∼ t−1

f ; when A is not PD (including the

cases of indefinite, negative semidefinite, and negative definite), E
approaches to a constant irrespective of the magnitude of t f for large
t f (C3 for one driver node, C4 for d driver nodes, and 2|λ1| for n driver
nodes), where C3 has different forms for different A (detailed forms
are presented in Table IV).

Number of
driver nodes 1 d n

Small t f ∼t−(N0−Nmin )
f ∼t

−(N ′
0−N ′

min )
f t−1

f

PD ∼e−2λ1t f ∼e−2λ1t f ∼e−2λ1t f

Large t f PSD ∼t−1
f ∼t−1

f t−1
f

Not PD C3 C4 2|λ1|
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linear dynamics is important to explore nonlinear systems by
investigating the linearized version of nonlinear dynamics.
Indeed, if the linearized dynamics of a nonlinear system is
controllable along some trajectory, then the nonlinear sys-
tem is locally controllable along the same trajectory [28].
Nevertheless, it is worth investigating nonlinear dynamics
or possible revisions with nonlinearity over linear dynamics
in subsequent research. Even that we only consider static
complex networks, our framework can also be extended to
explore the bounds of energy cost for controlling temporal
networks by virtue of the effective Gramian matrix given
in Ref. [8]. Specifically, by utilizing the estimations of both
maximum and minimum eigenvalues and some approximate
techniques introduced in this paper, the scaling behavior of
the energy cost for controlling temporal networks [8] can be
obtained conveniently.
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APPENDIX A: ONE DRIVER NODE

In the case of one driver node, we can obtain lower bound
of energy cost (8) by calculating α and β. For the upper bound
of energy cost (7), we apply (6) to estimate the minimum

eigenvalue of M. In the analysis process, the key step is
to get M−1. In what follows, we make detailed explanation
according to the magnitude of t f .

1. Small t f

For small t f , the expected numbers of α

and β are α ≈ ∑n
i=1

∑n
k=1 p2

hk p2
hit

2
f and β ≈∑n

i=1

∑n
l=1 (

∑n
k=1 p2

hk phi phl )
2
t4

f , where we use e(λi+λ j )t f ≈
1 + (λi + λ j )t f for small t f . Hence, we have E ∼ t−1

f .
Accordingly, we get

M ≈ t f ·

⎡
⎢⎢⎢⎢⎣

p2
h1 ph1 ph2 . . . ph1 phn

ph1 ph2 p2
h2 . . . ph2 phn

...
...

. . .
...

ph1 phn ph2 phn . . . p2
hn

⎤
⎥⎥⎥⎥⎦

and by imposing the row elementary transformation on M, we
have

M → t f ·

⎡
⎢⎢⎢⎣

p2
h1 ph1 ph2 . . . ph1 phn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦,

meaning that M is not invertible with the first-order Taylor
series expansion.

When e(λi+λ j )t f ≈ 1 + (λi + λ j )t f + (λi+λ j )2

2 t2
f , the corre-

sponding matrix M is obtained with mi j = phi ph j (1 +
λi+λ j

2 t f )t f . Then we take two row elementary transformations
on M as

�2�1M = t f ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p2
h1(1 + 2λ1

2 t f ) ph1 ph2(1 + λ1+λ2
2 t f ) . . . ph1 phn(1 + λ1+λn

2 t f )

0 p2
h2

−(λ1−λ2 )2t2
f

4(1+λ1t f ) . . . ph2 phn
(λn−λ1 )(λ1−λ2 )t2

f

4(1+λ1t f )

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

where �1 and �2 have the following forms:

�1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
∗ 1 0 . . . 0
∗ 0 1 . . . 0
...

...
...

. . .
...

∗ 0 0 . . . 1

⎤
⎥⎥⎥⎥⎦, �2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 1 0 . . . 0
0 ∗ 1 . . . 0
...

...
...

. . .
...

0 ∗ 0 . . . 1

⎤
⎥⎥⎥⎥⎦.

In this case, M also is not invertible with the second-order Taylor series expansion. Hence, we must approximate e(λi+λ j )t f

via Taylor series 1 + (λi + λ j )t f + (λi+λ j )2

2 t2
f + · · · + (λi+λ j )N

N! tN
f with large N such that the approximated M has full rank when

t f 
 N!
(λi+λ j )N , which is the basis of our subsequent calculations and analysis. Let Mi j denote the algebraic complement of mi j .

Afterward, one gets |M| ∼ tN0
f with N0 � 1 and Mi j ∼ t

Ni j

f with Ni j 
 N0. Accordingly, α and β satisfy α ∼ t2(Nmin−N0 )
f , β ∼

t4(Nmin−N0 )
f with Nmin = min{Ni j |i, j = 1, 2, . . . , n}. Therefore, we have E ∼ t−(N0−Nmin )

f .
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2. Large t f

a. A is ND

For large t f , when A is ND, e(λi+λ j )t f → 0 holds. Then (9) and (10) are further obtained with

α ≈
n∑

i=1

n∑
j=1

p2
h j p2

hi

(λ j + λi )2
, (A1)

β ≈
n∑

i=1

n∑
l=1

[
n∑

k=1

p2
hk phi phl

(λk + λi )(λk + λl )

]2

. (A2)

And the specific form mi j of M is −phi ph j

λi+λ j
for ∀ i, j = 1, 2, . . . , n. In addition, we can calculate inverse matrix of M as

M−1(i, j) = −4λiλ j

phi ph j (λi + λ j )

n∏
k=1,k �=i

λi + λk

λi − λk

n∏
k=1,k �= j

λ j + λk

λ j − λk
.

Further, we have (M−1)2 with

(M−1)2(i, j) =
n∑

r=1

16λ2
r λiλ j

p2
hr phi ph j (λr + λi )(λr + λ j )

n∏
k=1,k �=r

(
λr + λk

λr − λk

)2 n∏
k=1,k �=i

λi + λk

λi − λk

n∏
k=1,k �= j

λ j + λk

λ j − λk
.

Sequentially, we have

α = trace[(M−1)2] =
n∑

i=1

n∑
j=1

16λ2
jλ

2
i

p2
h j p2

hi(λ j + λi )2

n∏
k=1,k �= j

(
λ j + λk

λ j − λk

)2 n∏
k=1,k �=i

(
λi + λk

λi − λk

)2

(A3)

and

β =
n∑

i=1

n∑
j=1

⎡
⎣ n∑

r=1

16λ2
r λiλ j

p2
hr phi ph j (λr + λi )(λr + λ j )

n∏
k=1,k �=r

(
λr + λk

λr − λk

)2 n∏
k=1,k �=i

λi + λk

λi − λk

n∏
k=1,k �= j

λ j + λk

λ j − λk

⎤
⎦

2

. (A4)

b. A is NSD

For large t f , when A is NSD, with limλi+λ j→0
e(λi+λ j )t f −1

λi+λ j
=

t f and e(λi+λ j )t f → 0, we have

α ≈
n∑

i=1

n∑
k=1

p2
hk p2

hit
2
f ∼ t2

f (A5)

and

β ≈
n∑

i=1

n∑
l=1

(
n∑

k=1

p2
hk phi phl

)2

t4
f ∼ t4

f . (A6)

And then we can obtain E ∼ t−1
f . Assume λ1 � · · · � λl <

0, λl+1 = · · · = λn = 0. The elements mi j of the correspond-
ing matrix M are −phi ph j

λi+λ j
for i � l, j � l; −phi ph j

λ j
for i >

l, j � l; −phi ph j

λi
for i � l, j > l; and phi ph jt f for i > l, j >

l. It is easy to get that |M| ∼ t n−l
f . With Mi j denoting the

algebraic complement of mi j , we can get Mi j ∼ t n−l
f for

i � l, j � l and Mi j ∼ t n−l−1
f otherwise. Due to M−1 = M∗

|M|
with M∗ = (Mi j ) ∈ Rn×n, we can derive all elements of M−1

as M−1(i, j) ≈ ci j �= 0, for i � l, j � l , and M−1(i, j) ≈ 0
otherwise, where ci j are constants independent of t f for all
i, j � l . Consequently, α = trace[(M−1)2] = ∑l

i=1

∑l
j=1 c2

i j
is a constant as well as β. In addition, from the above
analysis, we find that in calculating α and β, only elements

M−1(i, j), i, j � l are determinant. Therefore, in order to get
the specific forms of α and β, we apply trace [(M−1

1 )2] and
trace [(M−1

1 )4] to appropriate α and β, respectively, where
M1 = (mi j ) ∈ Rl×l with mi j (i, j � l) being the correspond-
ing element of M. Hence, similar to the case of A being ND,
we can get

α = trace[(M−1)2]

≈
l∑

i=1

l∑
j=1

16λ2
jλ

2
i

p2
h j p2

hi(λ j + λi )2

n∏
k=1,k �= j

(
λ j + λk

λ j − λk

)2

·
n∏

k=1,k �=i

(
λi + λk

λi − λk

)2

(A7)

and

β ≈
l∑

i=1

l∑
j=1

⎡
⎣ l∑

r=1

16λ2
r λiλ j

p2
hr phi ph j (λr + λi )(λr + λ j )

·
n∏

k=1,k �=r

(
λr + λk

λr − λk

)2 n∏
k=1,k �=i

λi + λk

λi − λk

·
n∏

k=1,k �= j

λ j + λk

λ j − λk

⎤
⎦

2

. (A8)
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Since α and β presented as (A7) and (A8) are constants
independent of t f , the upper bound of energy cost with NSD
A is also a constant as shown in (7) with (A7) and (A8).

c. A is ID

For large t f , when A is ID, by assuming λ1 � · · · � λl <

0, λl+1 = · · · = λl+r = 0, 0 < λl+r+1 � · · · � λn, we have
that the component e4λnt f of α dominates. Thus we get

α ≈ p4
hn

4λ2
n
e4λnt f and analogously β ≈ p8

hn
16λ4

n
e8λnt f . Then the lower

bound of energy cost E ≈ 2λn

p2
hn

e−2λnt f . And M has the form

M =
⎡
⎣M1 M2 M3

MT
2 M4 M5

MT
3 MT

5 M6

⎤
⎦

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(i, j) = −phi ph j

λi+λ j
, i, j = 1, 2, . . . , l;

M2(i, j) = −phi ph j

λi
, i = 1, 2, . . . , l;

j = l + 1, . . . , l + r;
M3(i, j) = phi ph je(λi+λ j )t f , i = 1, 2, . . . , l;

j = l + r + 1, . . . , n;
M4(i, j) = phi ph jt f , i, j = l + 1, . . . , l + r;
M5(i, j) = −phi ph j

λ j
eλ j t f , i = l + 1, . . . , l + r;

j = l + r + 1, . . . , n;
M6(i, j) = −phi ph j

λi+λ j
e(λi+λ j )t f , i, j = l + r + 1, . . . , n.

Note that in current form of M3, we assume λi + λ j >

0. For other cases, subsequent analysis is not affected,
which are omitted here. For large t f , it is clear that |M| ∼
e2(λl+r+1+λl+r+2+···+λn )t f · t r

f . And the algebraic complement of
mi j is

Mi j ∼
{

eat f t r
f , with a = 2(λl+r+1 + · · · + λn), i, j < l;

ebt f t c
f , with b < a or c < r, otherwise.

Further, for each element of M−1, we have

M−1(i, j) ≈
{

ci j �= 0, i, j < l;
0, otherwise.

Similar to the case of A being NSD with large t f , both α and
β approximated by the trace[(M−1

1 )2] and trace[(M−1
1 )4], are

constants as

α = trace[(M−1)2]

≈
l∑

i=1

l∑
j=1

16λ2
jλ

2
i

p2
h j p2

hi(λ j + λi )2

n∏
k=1,k �= j

(
λ j + λk

λ j − λk

)2

·
n∏

k=1,k �=i

(
λi + λk

λi − λk

)2

(A9)
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FIG. 6. The upper bound of energy estimated by (7) with M1

representing M. All networks are BA networks with 50 nodes and
one driver node. In (a) and (b), with large t f , E converges to the
constant when A is NSD or ID. And the trajectories of E with M and
M1 handled are almost coincide. Parameters are selected as those
given in Fig. 1. In (a), we set A as NSD by setting a = 0, where
the eigenvalues of A locate in [−9.0266, 0]. In (b), we generate BA
network with A being ID by setting a = 5, where the eigenvalues of
A locate in [−5.0028, 5].

and

β ≈
l∑

i=1

l∑
j=1

⎡
⎣ l∑

r=1

16λ2
r λiλ j

p2
hr phi ph j (λr + λi )(λr + λ j )

·
n∏

k=1,k �=r

(
λr + λk

λr − λk

)2 n∏
k=1,k �=i

λi + λk

λi − λk

n∏
k=1,k �= j

λ j + λk

λ j − λk

⎤
⎦

2

.

(A10)

In addition, both α and β are constants independent of t f and

so E is.
Considering that trace[(M−1

1 )2] and trace[(M−1
1 )4] are em-

ployed to approximate α and β in the cases of A being NSD
and ID, we perform some numerical calculations to verify our
analytical results (Fig. 6).

d. A is PSD

For large t f , if A is PSD with λ1 = · · · = λl = 0, 0 <

λl+1 � · · · � λn, then the component of e4λnt f in (9) is domi-

nant for α. Hence, α ≈ p4
hn

4λ2
n
e4λnt f holds and, analogously, β ≈

p8
hn

16λ4
n
e8λnt f holds, as well as E ≈ 2λn

p2
hn

e−2λnt f .

TABLE III. The lower bound of energy for one driver node.

Large t f

Cases Small t f A ND A NSD A ID A PSD A PD

α ∼t2
f (A1) ∼t2

f ∼e4λnt f ∼e4λnt f ∼e4λnt f

β ∼t4
f (A2) ∼t4

f ∼e8λnt f ∼e8λnt f ∼e8λnt f

λmax(M) ∼t f (5) with (A1) (A2) ∼t f ∼e2λnt f ∼e2λnt f ∼e2λnt f

E ∼t−1
f (8) with (A1) (A2) ∼t−1

f ∼e−2λnt f ∼e−2λnt f ∼e−2λnt f
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TABLE IV. The upper bound of energy for one driver node.

Large t f

Cases Small t f A PD A PSD A ID A NSD A ND

α ∼t−2(N0−Nmin )
f ∼e−4λ1t f ∼(t−1

f )2 (A9) (A7) (A3)

β ∼t−4(N0−Nmin )
f ∼e−8λ1t f ∼(t−1

f )4 (A10) (A8) (A4)

λmin(M) ∼t (N0−Nmin )
f ∼e2λ1t f ∼t f (6) with (A9) (A10) (6) with (A7) (A8) (6) with (A3) (A4)

E ∼t−(N0−Nmin )
f ∼e−2λ1t f ∼t−1

f (7) with (A9) (A10) (7) with (A7) (A8) (7) with (A3) (A4)

Moreover, M can be given by

M =
[

M1 M2

MT
2 M3

]

with⎧⎪⎨
⎪⎩

M1(i, j) = phi ph jt f , i, j = 1, 2, . . . , l;

M2(i, j) = phi ph j

λ j
eλ j t f , i = 1, 2, . . . , l; j = l +1, . . . , n;

M3(i, j) = phi ph j

λi +λ j
e(λi +λ j )t f , i, j = l +1, . . . , n.

Similarly, for large t f , we have |M| ∼ e2(λl+1+λl+2+···+λn )t f · t l
f .

In addition, it is clear that

Mi j ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e2(λl+1+λl+2+···+λn )t f · t l−1
f , i, j � l;

e2(λl+1+λl+2+···+λn )t f −λ j t f · t l−1
f , i � l, j > l;

e2(λl+1+λl+2+···+λn )t f −λit f · t l−1
f , j � l, i > l;

e2(λl+1+λl+2+···+λn )t f −(λi+λ j )t f · t l
f , i, j > l.

Therefore, M−1 is

M−1(i, j) = Mi j

|M| ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t−1
f , i, j � l;

e−λ j t f t−1
f , i � l, j > l;

e−λit f t−1
f , j � l, i > l;

e−(λi+λ j )t f , i, j > l.

Since
e−λi t f t−1

f

t−1
f

→ 0 and e−(λi+λ j )t f

t−1
f

→ 0 when λi > 0 and t f is

large, we have α ∼ (t−1
f )2, β ∼ (t−1

f )4. Moreover, as shown
in Table I, the upper bound of the energy is E ∼ e−2λnt f , and
the upper bound of energy is E ∼ t−1

f .

e. A is PD

For large t f , if A is PD with 0 < λ1 � · · · � λn, then we
have E ∼ e−2λnt f . Matrix M of this case is given by mi j =
phi ph j

λi+λ j
e(λi+λ j )t f for i, j = 1, 2, . . . , n. In the same way, we get

|M| ∼ e2(λ1+λ2+···+λn )t f and Mi j ∼ e2(λ1+λ2+···+λn )t f −(λi+λ j )t f .

And then by Mi j

|M| ∼ e−(λi+λ j )t f and e−(λi2+λ j2 )t f

e−(λi1+λ j1 )t f
→ 0 for λi1 +

λ j1 > λi2 + λ j2, we have α ∼ e−4λ1t f and β ∼ e−8λ1t f . Hence,

we have E ∼ e−2λ1t f .
Finally, we also summary the aforementioned results in

Table III.

APPENDIX B: d DRIVER NODES

In this case, α and β are given by

α =‖M‖2
F = trace(M2)

=
n∑

i=1

n∑
j=1

(∑d
k=1 pmki pmk j

)2

(λ j + λi)2
[e(λ j+λi )t f − 1]2

and

β = trace(M4)

=
n∑

i=1

n∑
r=1

{
n∑

k=1

( ∑d
l=1 pml k pml i

)(∑d
l=1 pml k pml r

)
(λk + λi )(λk + λr )

· [e(λk+λi )t f − 1][e(λk+λr )t f − 1]

}2

.

With an approximation e(λi+λ j )t f ≈ 1 + (λi + λ j )t f for small
t f , we have

α = ‖M‖2
F ≈

n∑
i=1

n∑
j=1

(
d∑

k=1

pmki pmk j

)2

t2
f (B1)

and

β = ‖M2‖2
F

≈
n∑

i=1

n∑
r=1

[
n∑

k=1

(
d∑

l=1

pml k pml i

)(
d∑

l=1

pml k pml r

)]2

t4
f .

(B2)

TABLE V. The lower bound of energy for d driver nodes.

Large t f

Cases Small t f A ND A NSD A not ND

α (B1)∼t2
f (B3) (B5)∼t2

f (B7)∼e4λnt f

β (B2)∼t4
f (B4) (B6)∼t4

f (B8)∼e8λnt f

λmax(M) (5) with (B1) (B2)∼t f (5) with (B3) (B4) (5) with (B5) (B6) ∼t f (5) with (B7) (B8)∼e2λnt f

E (8) with (B1) (B2)∼t−1
f (8) with (B3) (B4) (8) with (B5) (B6) ∼t−1

f (8) with (B7) (B8)∼e−2λnt f
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When A is ND for large t f , we have

α = ‖M‖2
F ≈

n∑
i=1

n∑
j=1

(∑d
k=1 pmki pmk j

)2

(λ j + λi )2
(B3)

and

β = trace(M4)

≈
n∑

i=1

n∑
r=1

[
n∑

k=1

( ∑d
l=1 pml k pml i

)(∑d
l=1 pml k pml r

)
(λk + λi )(λk + λr )

]2

.

(B4)

When A is NSD for large t f , we have

α = ‖M‖2
F ≈

n∑
i=1

n∑
j=1

(
d∑

k=1

pmki pmk j

)2

t2
f (B5)

and

β ≈
n∑

i=1

n∑
r=1

[
n∑

k=1

(
d∑

l=1

pml k pml i

)(
d∑

l=1

pml k pml r

)]2

t4
f .

(B6)

TABLE VI. The upper bound of energy d driver nodes.

Large t f

Cases Small t f A PD A PSD A not PD

α ∼t
−2(N ′

0−N ′
min )

f ∼e−4λ1t f ∼(t−1
f )2 Constant

β ∼t
−4(N ′

0−N ′
min )

f ∼e−8λ1t f ∼(t−1
f )4 Constant

λmin(M) ∼t
(N ′

0−N ′
min )

f ∼e2λ1t f ∼t f Constant

E ∼t
−(N ′

0−N ′
min )

f ∼e−2λ1t f ∼t−1
f Constant

When A is not ND for large t f , we have

α ≈
(∑d

k=1 pmkn pmkn

2λn

)2

e4λnt f (B7)

and

β ≈
(∑d

k=1 pmkn pmkn

2λn

)4

e8λnt f . (B8)

The lower bound of energy for d driver nodes are presented in
Table V. Analogously, we can get the upper bound of energy
in different cases under d driver nodes as shown in Table VI.
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