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Abstract

This paper is concerned with maximization and minimization problems related to

a boundary value problem involving the p-Laplacian type operator. These opti-

mization problems are formulated relative to the rearrangement of a fixed function.

Under some suitable assumptions, we show that both optimization problems are

solvable. Furthermore, we show that the solution of the minimization problem is

unique and has some symmetric property if the domain considered is a ball.
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1 Introduction

Let Ω be a smooth bounded domain of RN (N ≥ 2) and g0 be a measurable function

on Ω, we denote by R(g0) the set of all measurable functions g on Ω satisfying

meas ({x ∈ Ω : g(x) ≥ a}) = meas ({x ∈ Ω : g0(x) ≥ a}) , ∀a ∈ R.

Each element of R(g0) is called a rearrangement of g0.

A rearrangement optimization problem is referred to an optimization problem in

which the admissible set consists of functions that are rearrangements of a pre-

scribed function. A great deal of attentions have been focussed on rearrangement

optimization problems for elliptic boundary value problems in addressing questions

such as existence, uniqueness, and symmetry of optimal solutions, see for example

[1–17] and the references therein.

Let 1 < p <∞, h(x, t) : Ω× R 7→ R be a Carathéodory function satisfying suitable

growth conditions and f ∈ Lq(Ω) with some 1 ≤ q < ∞. Consider the following

boundary value problem:

(P)

 divA(−∇u) + h(x, u) = f(x) in Ω,

u = 0 on ∂Ω,

where divA(−∇u) is the p-Laplacian type operator which will be defined in the

next section. The p-Laplacian type operator divA(−∇u) was introduced in [18] and

defined as follows: let α : RN 7→ [0,∞) be a convex function of class C1(RN −
{0}) satisfying

α(tξ) = tα(ξ) for t > 0 and ξ ∈ RN . (1.1)

Define A(0) = 0 and A(ξ) = αp−1(ξ)∇α(ξ) for ξ ∈ RN − {0}.

Recall that the energy functional I : W 1,p
0 (Ω) → R corresponding to (P) is given

by

I(u) = −1

p

∫
Ω
A(−∇u)∇udx+

∫
Ω
H(x, u)dx−

∫
Ω
fudx, (1.2)

where H(x, u) =
∫ u

0 h(x, t)dt.

In this paper, we are interested in the following optimization problems:

(Opt1) Find f1 ∈ R(f) such that I(uf1) = infg∈R(f) I(ug),
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(Opt2) Find f2 ∈ R(f) such that I(uf2) = supg∈R(f) I(ug),

where ug denotes the unique solution of (P) with the right-hand side term f replaced

by g (Under some conditions, we will prove that (P) has a unique solution in

W 1,p
0 (Ω), cf. Proposition 3.1 in Section 3).

An important example of the operator −divA(−∇u) is given by α(ξ) = |ξ| in

the definition of A, which corresponds to the so-called the p-Laplacian ∆pu :=

div(|∇u|p−2∇u).

Obviously, (Opt1) and (Opt2) are different optimization problems, these problems

have been investigated by several authors. In the case of h = 0 and α(ξ) = |ξ|, after

establishing some abstract results, Burton [2] proved that both the problems (Opt1)

and (Opt2) have solutions for p = 2. However, the results obtained in [2] cannot be

directly applied to the general case 1 < p <∞. So by using a new approach, Cuccu,

et al [5] showed that the problem (Opt1) has a solution for 1 < p < ∞. But their

approach is not efficient for the problem (Opt2). Marras [13] obtained the solvability

of the problem (Opt2) for 1 < p <∞ by using another method. While by replacing

f with ful (1 ≤ l < p), Cuccu, et al. [14] obtained a result of uniqueness for a class

of p-Laplace equations under non-standard assumptions. In the case of h 6≡ 0 and

α(ξ) = |ξ|, Qiu et al. [17] have considered a rearrangement optimization problem

related to the quasilinear elliptic boundary value problem for 1 < p < ∞, where

under some suitable assumptions, it is shown that both the problems (Opt1) and

(Opt2) are solvable, which extends the corresponding results in [2,5,13,14].

The purpose of the present paper is to study the optimization problems (Opt1) and

(Opt2) in the case of N < p < ∞, q = 1, α(ξ) is a convex function and h 6≡ 0.

Firstly, by introducing a truncated function and using the Clarkon inequality, we

establish the existence and uniqueness of the solution of the problem (P). Actually,

we obtain that the unique solution of the problem (P) is the global minimum

point of the energy functional I(u). Moreover, we show that the unique solution is

positive if f and h satisfy suitable sign conditions. This is the fundamental part

in the studying optimization problems (Opt1) and (Opt2). Then we show that the

problems (Opt1) and (Opt2) are solvable. At last, we show that the unique solution

of the problem (Opt1) is the Schwartz symmetric decreasing rearrangement of f and

has some symmetric property if Ω is a ball centered at the origin, which extends the
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corresponding results in [1,2,5,13,17].

This paper is organized as follows. In Section 2, we give some preliminaries. In Sec-

tion 3, we establish the existence and uniqueness of the solution of the problem (P)

in the case of p > N . Moreover, we show that the unique solution is positive if f

and h satisfy suitable sign conditions. Section 4 is devoted to proving the solvabil-

ity of problems (Opt1) and (Opt2). Furthermore, we show that the solution of the

problem (Opt1) is unique and has some symmetric property if Ω is a ball, and that

the unique solution of the problem (Opt1) is the Schwartz symmetric decreasing

rearrangement of f .

2 Preliminaries

We denote by Lr(Ω) (1 ≤ r ≤ ∞) and W 1,p
0 (Ω) (p > 1) the usual Sobolev spaces

endowed with the norms ‖u‖Lr = (
∫

Ω |u|rdx)1/r if 1 ≤ r < ∞, and ‖u‖∞ =

ess supx∈Ω|u(x)| if r =∞ and ‖u‖ = (
∫

Ω |∇u|pdx)1/p, respectively. Throughout this

paper, C will denote a positive (possibly different) constant. For the p-Laplacian

type operator −divA(−∇u)(p > 1), we always assume that A : RN 7→ RN satisfies

the following conditions: there exist positive constants Γ and γ such that

(A(ξ)− A(η)) · (ξ − η) ≥ γ(|ξ|+ |η|)p−2|ξ − η|2 (2.1)

|A(ξ)− A(η)| ≤ Γ(|ξ|+ |η|)p−2|ξ − η| (2.2)

for all ξ, η ∈ RN .

Definition 2.1 By a solution uf of the problem (P) we mean that uf ∈ W 1,p
0 (Ω)

satisfying

∫
Ω

(−A(−∇uf )∇v + h(x, uf )v − fv) dx = 0, ∀v ∈ W 1,p
0 (Ω).

Definition 2.2 [19, Definition 16.5] Let f : Ω 7→ [0,∞) be a measurable function.

The Schwarz symmetric decreasing rearrangement of f is the function f ∗ : B(0, r) 7→
[0,∞), defined by

f ∗(x) = inf
{
t ∈ [0,∞) : µf (t) ≤ ωN |x|N

}
,∀x ∈ B(0, r)
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where ωN denotes the volume of the unit ball in N-dimensions, r := (meas(Ω)/ωN)1/N

and µf : R 7→ [0,∞) is the distribution function of f defined by

µf (t) = meas({x ∈ Ω : f(x) > t}).

Let I be given in (1.2). It is easy to check that I ∈ C1(W 1,p
0 (Ω), R) and

I ′(u)v =
∫

Ω
(−A(−∇u)∇v + h(x, u)v − fv) dx, ∀v ∈ W 1,p

0 (Ω).

Therefore, u ∈ W 1,p
0 (Ω) is a weak solution if and only if I ′(u)v = 0, ∀v ∈ W 1,p

0 (Ω).

It is easy to prove that if g ∈ R(f) then g ∈ Lq(Ω) and ‖g‖Lq = ‖f‖Lq (cf. [2,

Lemma 2.1]).

The following lemmas will be used through the proofs of our main results.

Lemma 2.1 ([2, Lemma 2.2]) Assume that 1 ≤ r <∞ and given f ∈ Lr(Ω), denote

by R(f)r,w the weak closure of R(f) in Lr(Ω), then R(f)r,w is convex and weakly

compact in Lr(Ω).

Lemma 2.2 ([2, Lemma 2.9] or [7, Lemma 2.1]) Let f, g : Ω 7→ R be measurable

functions and suppose that for each t ∈ R, the level set of g at t, i.e., {x ∈ Ω :

g(x) = t}, has zero measure. Then there exists an increasing (decreasing) function

ϕ such that ϕ ◦ g is a rearrangement of f where ϕ ◦ g denotes a composite function

defined by

(ϕ ◦ g)(x) = ϕ(g(x)), ∀x ∈ Ω.

Lemma 2.3 ([2, Lemma 2.4] or [7, Lemma 2.2]) For any 1 ≤ r <∞ define r′ = r
r−1

if r > 1 and r′ = ∞ if r = 1. Let f ∈ Lr(Ω) and g ∈ Lr′(Ω). Suppose that there

exists an increasing (decreasing) function ϕ : R 7→ R such that ϕ ◦ g ∈ R(f). Then

ϕ ◦ g is the unique maximizer (minimizer) of the linear functional
∫

Ω hgdx, relative

to h ∈ R(f)r,w.

Lemma 2.4 ([10, Lemma 2.3]) Suppose that f ∈ Lr(Ω) and g ∈ Lr′(Ω), then there

exists f̂ ∈ R(f) which maximizes (minimizes) the linear functional
∫

Ω hgdx, relative

to h ∈ R(f)r,w.
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Lemma 2.5 ([19, Theorem 16.9]) Suppose that B is a ball centered at the origin,

then ∫
B
fgdx ≤

∫
B
f ∗g∗dx,

for any non-negative measurable functions f and g, where f ∗ and g∗ are respectively

the Schwarz symmetric decreasing rearrangements of f and g, defined in Definition

2.2.

It is well known that f ∗ = g∗ for each g ∈ R(f).

Lemma 2.6 ([19, Theorem 16.10]) Suppose that B is a ball centered at the origin,

u : B 7→ [0,∞) is a measurable function and φ : [0,∞) 7→ [0,∞) is a Borel function,

then ∫
B
φ ◦ u∗dx ≤

∫
B
φ ◦ udx.

The following result can be deduced from Theorem 1.1 of [20].

Lemma 2.7 Suppose that B is a ball centered at the origin. If u ∈ W 1,p
0 (B) with

1 < p < ∞ and u ≥ 0 then u−1(t,∞) is a translation of u∗−1(t,∞) for every

t ∈ [0, ess supx∈B u(x)) and∫
B
αp(−∇u)dx ≥

∫
B
αp(−∇u∗)dx. (2.3)

where α : RN 7→ [0,∞) is a convex function of class C1(RN −{0}) satisfying (1.1)

and there exists a positive constant a0, such that α(ξ) = a0, for all ξ ∈ RN and

|ξ| = 1. If the equality holds in (2.3) and the set{
x ∈ B : ∇u(x) = 0, 0 < u(x) < ess sup

y∈B
u(y)

}

has zero measure, then u = u∗.

3 Existence and Uniqueness for the Solution of Problem (P)

We make the following hypotheses on the function h(x, t):

(h1) h(x, t) is Carathéodory and is non-decreasing with respect to the second variable

for almost all x ∈ Ω.
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(h2) For each M > 0, there exists φM ∈ L1(Ω) such that for all |t| ≤M

|h(x, t)| ≤ φM(x), a.e. x ∈ Ω.

In this section, we will obtain the existence and uniqueness for the solution of the

problem (P).

Proposition 3.1 Suppose that N < p < ∞, f ∈ L1(Ω) and the assumptions (h1)

and (h2) hold. Then the problem (P) has a unique solution uf ∈ W 1,p
0 (Ω) and

I(uf ) = infv∈W 1,p
0 (Ω) I(v). Moreover, if in addition f(x) > 0 and h(x, t) ≤ 0, ∀ t ∈ R

and a.e. x ∈ Ω, then uf > 0.

Proof : For each M > 0, we introduce the truncated function hM by

hM(x, t) =


h(x, t), x ∈ Ω, |t| ≤M,

h(x,M), x ∈ Ω, t > M,

h(x,−M), x ∈ Ω, t < −M.

(3.1)

Let us consider the problem

(PM)

 divA(−∇u) + hM(x, u) = f(x) in Ω,

u = 0 on ∂Ω.

We denote the energy functional EM : W 1,p
0 (Ω) → R corresponding to the above

problem by

EM(u) =
1

p

∫
Ω
−A(−∇u)∇udx+

∫
Ω
HM(x, u)dx−

∫
Ω
fudx, u ∈ W 1,p

0 (Ω), (3.2)

where HM(x, u) =
∫ u
0 hM(x, t)dt.

Firstly, we claim that the problem (PM) has a unique solution.

By the assumption (h2), we can show that for each M > 0 the following inequality

holds.

|HM(x, t)| ≤ (|t|+M)φM(x), ∀ t ∈ R, a.e. x ∈ Ω. (3.3)

Indeed, if |t| ≤M , then by (h2),

|HM(x, t)| =
∣∣∣∣∫ t

0
hM(x, s)ds

∣∣∣∣ =
∣∣∣∣∫ t

0
h(x, s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0
φM(x)ds

∣∣∣∣ ≤MφM(x).
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If t > M , then we have

|HM(x, t)| ≤
∣∣∣∣∣
∫ M

0
h(x, s)ds

∣∣∣∣∣+
∣∣∣∣∫ t

M
h(x,M)ds

∣∣∣∣ ≤MφM(x)+(t−M)|h(x,M)| ≤ tφM(x).

If t < −M , then we get

|HM(x, t)| ≤
∣∣∣∣∣
∫ −M

0
h(x, s)ds

∣∣∣∣∣+
∣∣∣∣∫ t

−M
h(x,−M)ds

∣∣∣∣
≤MφM(x) + (−M − t)|h(x,−M)|

≤ |t|φM(x).

So that in summary (3.3) is valid. This, together with (2.1), (2.2), the Hölder in-

equality and the Sobolev imbedding theorem, implies that for each M > 0

EM(u) =
1

p

∫
Ω
−A(−∇u)∇udx+

∫
Ω
HM(x, u)dx−

∫
Ω
fudx

≥ γ

p
‖u‖p − (‖u‖L∞ +M)‖φM‖L1 − ‖f‖L1‖u‖L∞

≥ γ

p
‖u‖p − (C‖u‖+M)‖φM‖L1 − C‖f‖L1‖u‖ → ∞

(3.4)

as ‖u‖ → ∞, which shows that the functional EM is coercive.

We now prove that the functional EM is weakly lower semi-continuous (which we

will denote by w.l.s.c for short) in W 1,p
0 (Ω).

In order to do this, let vn ⇀ v in W 1,p
0 (Ω) as n → ∞. Noting that the embedding

W 1,p
0 (Ω) ↪→ C(Ω) is compact since p > N , then vn → v in C(Ω) as n→∞. So that

for each ε > 0 there exists K > 0 such that

|vn(x)− v(x)| ≤ ε, ∀ n > K, ∀ x ∈ Ω.

This, together with (3.3), implies that for all n > K and all x ∈ Ω

|HM(x, vn)| ≤ (|vn(x)|+M)φM(x) ≤ (|v(x)|+ ε+M)φM(x).

Since (|v(x)| + ε + M)φM(x) ∈ L1(Ω), we use the dominated convergence theorem

to derive that ∫
Ω
HM(x, vn)dx→

∫
Ω
HM(x, v)dx (3.5)

as n→∞. Then

lim inf
n→∞

EM(vn) ≥ EM(v)− lim sup
n→∞

‖f‖L1‖vn − v‖L∞ = EM(v).
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That is, the functional EM is weakly lower semi-continuous. So that the functional

EM has a minimizer uM ∈ W 1,p
0 (Ω) with

EM(uM) = inf
v∈W 1,p

0 (Ω)
EM(v). (3.6)

By assumptions(h1), (h2), and using a standard argument (cf. [21, Lemma 2.16]),

we can easily show that EM ∈ C1(W 1,p
0 (Ω),R), therefore uM is a solution of the

problem (PM) satisfying

E ′M(uM)v =
∫

Ω
(−A(−∇uM)∇v + h(x, uM)v − fv) dx = 0, ∀v ∈ W 1,p

0 (Ω). (3.7)

Next, we show that uM is the unique solution of the problem (PM).

Assume that w ∈ W 1,p
0 (Ω) is another solution of the problem (PM) and uM 6= w, i.e.,

there exists a subset E ⊂ Ω with positive measure suth that uM(x) 6= w(x),∀x ∈ E,

then

‖uM − w‖ > 0. (3.8)

Since h(x, ·) is non-decreasing,∫
Ω

(h(x, uM)− h(x,w))(uM − w)dx ≥ 0. (3.9)

From (3.7) and Def. 2.1 we get that for every v ∈ W 1,p
0 (Ω),∫

Ω
(−A(−∇uM)∇v + h(x, uM)v) dx =

∫
Ω
fvdx, (3.10)

∫
Ω

(−A(−∇w)∇v + h(x,w)v) dx =
∫

Ω
fvdx. (3.11)

From (3.10) and (3.11) we obtain∫
Ω

(h(x, uM)− h(x,w))vdx =
∫

Ω
(A(−∇uM)− A(−∇w))∇vdx, ∀v ∈ W 1,p

0 (Ω).

Take v = uM − w. Note that p > N ≥ 2, from the equality above, we have∫
Ω

(h(x, uM)− h(x,w))(uM − w)dx

=
∫

Ω
(A(−∇uM)− A(−∇w))∇(uM − w)dx

≤ −C
∫

Ω
|∇(uM − w)|pdx = −C‖uM − w‖p < 0,

by the Clarkon inequality (cf. [22, Lemma 4.2]), (2.1) and (3.8). Then the above

inequality contradicts (3.9). Therefore we have proved that uM is the unique solution

of the problem (PM).
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Secondly, we will prove that there exists M̃ > 0 such that the unique solution u
M̃

of the problem (P
M̃

) is also the unique solution of the problem (P). Moreover,

u
M̃

= uM ,∀ M ≥ M̃.

In fact, since h(x, ·) is non-decreasing (cf. (h1)), it follows that for all M1,M2 > 0

with M1 ≤M2,

hM1(x, t) ≤ hM2(x, t) ≤ h(x, t),∀ t ≥ 0, a.e. x ∈ Ω,

and

h(x, t) ≤ hM2(x, t) ≤ hM1(x, t),∀ t ≤ 0, a.e. x ∈ Ω,

which, together with (3.1), gives

HM2(x, t) ≥ HM1(x, t), ∀ t ∈ R, a.e. x ∈ Ω. (3.12)

By (3.4) and EM(uM) ≤ EM(0) = 0, there exists M0 > 0 such that

‖uM‖ ≤M0, ∀ M ≥M0.

This together with the Sobolev embedding inequality yields that there exists a pos-

itive constant C0 such that

‖uM‖L∞ ≤ C0‖uM‖ ≤ C0M0, ∀M > M0.

Let M̃ := max{C0M0,M0}, then by (3.1), we have

h
M̃

(x, u
M̃

) = h(x, u
M̃

), a.e. x ∈ Ω,

H
M̃

(x, u
M̃

) = H(x, u
M̃

), a.e. x ∈ Ω.
(3.13)

Noting that (3.7), (3.13) and Def. 2.1, we see that u
M̃

is in fact a solution of the

problem (P). By using the very same arguments in the above proof, we may show

that u
M̃

is the unique solution of the problem (P), which, together with (3.13),

implies that uM = u
M̃
,∀ M ≥ M̃ .

Thirdly, we shall show that u
M̃

also minimizes the functional I corresponding to the

problem (P).

Indeed, similarly as (3.12), we have

H
M̃

(x, t) ≤ H(x, t), ∀ t ∈ R, a.e. x ∈ Ω. (3.14)
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Combining (1.2), (3.2), (3.6), (3.13) and (3.14), we get that for each v ∈ W 1,p
0 (Ω),

I(u
M̃

) = E
M̃

(u
M̃

) ≤ E
M̃

(v)

=
1

p

∫
Ω
−A(−∇v)∇vdx+

∫
Ω
H
M̃

(x, v)dx−
∫

Ω
fvdx

≤ 1

p

∫
Ω
−A(−∇v)∇vdx+

∫
Ω
H(x, v)dx−

∫
Ω
fvdx

= I(v).

Therefore u
M̃

is a minimizer of the problem (P). Let uf = u
M̃

, then we have proved

the first half of this theorem.

To complete the proof, we finally show that uf > 0 if f(x) > 0 and h(x, t) ≤ 0,

∀ t ∈ R and a.e. x ∈ Ω.

In this case, obviously, H(x, ·) is decreasing and so is H
M̃

(x, ·). In particular, we

have H
M̃

(x, u+
f ) ≤ H

M̃
(x, uf ), a.e. x ∈ Ω. Since f(x) > 0, a.e. x ∈ Ω,

∫
Ω
fufdx ≤

∫
Ω
fu+

f dx.

It is easy to check that

∫
Ω
A(−∇u+

f )(−∇u+
f )dx ≤

∫
Ω
A(−∇uf )(−∇uf )dx.

Therefore, E
M̃

(u+
f ) ≤ E

M̃
(uf ), which shows that u+

f is also a minimizer of the

functional E
M̃

and then a solution of the problem (P
M̃

). Noting that uf is the

unique solution of (P
M̃

), so uf = u+
f ≥ 0. Since

divA(−∇uf (x)) = f(x)− h(x, uf (x)) > 0, a.e. x ∈ Ω,

we have uf (x) > 0, ∀ x ∈ Ω (cf. [23, Theorem 5]).

Remark 3.1 In Proposition 3.1, we obtain that not only the existence of the solu-

tion for the problem (P), but also the uniqueness and that the solution is actually

the global minimum point of the energy functional I(u) under some suitable con-

ditions. Moreover, we show that the unique solution is positive if f and h satisfy

suitable sign conditions.
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4 Existence of Solutions of Problems (Opt1) and (Opt2)

We first consider the problem (Opt1).

Theorem 4.1 Suppose that N < p <∞, f ∈ L1(Ω) and the assumptions (h1) and

(h2) hold. Then there exists f1 ∈ R(f) which solves the problem (Opt1).

Proof : We first show that K := infg∈R(f) I(ug) is finite. Similar to the proof of

Proposition 3.1, we know that there exists a constant M̃ > 0 such that ∀ g ∈ R(f)

and ∀ M ≥ M̃ , the unique solution ug of the problem

(PM,g)

 divA(−∇u) + hM(x, u) = g(x) in Ω,

u = 0 on ∂Ω

is the unique solution of the problem

(Pg)

 divA(−∇u) + h(x, u) = g(x) in Ω,

u = 0 on ∂Ω,

Moreover, ‖ug‖L∞ ≤ M̃ , where hM(x, u) is defined by (3.1). Similarly as in the proof

of (3.4), we have

I(ug) = E
M̃

(ug) ≥
γ

p
‖ug‖p − (C‖ug‖+ M̃)‖φM‖L1 − C‖g‖L1‖ug‖, (4.1)

which implies that K is finite since ‖g‖L1 = ‖f‖L1 and p > N . Now we choose a

sequence {gi} ⊂ R(f) such that I(ui) → K as i → ∞, where ui := ugi for each

i ∈ N. It follows from (4.1) that {ui} is bounded in W 1,p
0 (Ω). Going if necessary to a

subsequence, {ui} weakly converges to u ∈ W 1,p
0 (Ω) and strongly converges to u in

C(Ω) since p > N . Also, the boundedness of {gi} in L1(Ω) (since ‖gi‖L1 ≡ ‖f‖L1)

implies, going if necessary to a subsequence, that {gi} converges weakly to some

ḡ ∈ R(f)1,w, the weak closure of R(f) in L1(Ω). Therefore,∣∣∣∣∫
Ω

(giui − ḡu)dx
∣∣∣∣ ≤ ‖gi‖L1‖ui − u‖∞ +

∣∣∣∣∫
Ω

(gi − ḡ)udx
∣∣∣∣→ 0 (4.2)

as i→∞. Similarly as in the proof of (3.5), we also have

∫
Ω
H
M̃

(x, ui)dx→
∫

Ω
H
M̃

(x, u)dx. (4.3)
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By (4.2), (4.3) and the weak lower semi-continuity of the norm in the W 1,p
0 (Ω), we

obtain that

K = lim
i→∞

I(ui) ≥
1

p

∫
Ω
−A(−∇u)∇udx+

∫
Ω

(H(x, u)− ḡu)dx. (4.4)

From Lemma 2.4 we infer the existence of f̂ ∈ R(f) which maximizes the linear

functional
∫

Ω hudx, relative to h ∈ R(f)1,w. As a consequence,∫
Ω
ḡudx ≤

∫
Ω
f̂udx.

Combining with (4.4), we get

K ≥ 1

p

∫
Ω
−A(−∇u)∇udx+

∫
Ω

(H(x, u)− f̂u)dx. (4.5)

By Proposition 3.1,

I(û) = inf
v∈W 1,p

0 (Ω)

∫
Ω

(
1

p
A(−∇v)(−∇v) +H(x, v)− f̂v

)
dx

≤ 1

p

∫
Ω
−A(−∇u)∇udx+

∫
Ω

(H(x, u)− f̂u)dx,

(4.6)

where û = uf̂ .

It follows from (4.5) and (4.6) that I(û) ≤ K.

On the other hand, recall that K = infg∈R(f) I(ug) and f̂ ∈ R(f), we must have

K ≤ I(û). So that K = I(û). We complete the proof by letting f1 = f̂ .

We now consider the problem (Opt2). Our results for the problem (Opt2) are the

following.

Theorem 4.2 Suppose that N < p <∞, f ∈ L1(Ω) and the assumptions (h1) and

(h2) hold. Moreover, if f(x) > 0 and h(x, t) ≤ 0, ∀ t ∈ R and a.e. x ∈ Ω, then there

exists f2 ∈ R(f) which solves the problem (Opt2), i.e.,

I(uf2) = sup
g∈R(f)

I(ug).

By using Proposition 3.1, under assumptions of Theorem 4.1 , we can define the

functional Φ1 : L1(Ω) 7→ R by Φ1(g) = I(ug).
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Before proving Theorem 4.2, we shall show the following lemmas.

Lemma 4.1 Under the assumptions of Theorem 4.2 , we have

(I) The functional Φ1|R(f)1,w
is weakly continuous.

(II) The functional Φ1|R(f)1,w
is strictly concave.

(III) The functional Φ1 is Gâteaux differentiable at each g ∈ R(f)1,w with derivative

−ug.

Proof :

(I) Let {gn} ⊂ R(f)1,w be such that gn ⇀ g in L1(Ω) as n → ∞. By Propo-

sition 3.1, we may respectively denote by un and ug the unique solutions to the

problems (Pgn) and (Pg). Moreover,

I(ug) = inf
v∈W 1,p

0 (Ω)

∫
Ω

(
1

p
A(−∇v)(−∇v) +H(x, v)− gv

)
dx

and

I(ugn) = inf
v∈W 1,p

0 (Ω)

∫
Ω

(
1

p
A(−∇v)(−∇v) +H(x, v)− gnv

)
dx.

We claim that

lim
n→∞

Φ1(gn) = Φ1(g). (4.7)

Indeed, we have

Φ1(g) +
∫

Ω
(g − gn)ugdx

=
∫

Ω

(
1

p
A(−∇ug)(−∇ug) +H(x, ug)− gnug

)
dx

≥ Φ1(gn)

=
∫

Ω

(
1

p
A(−∇un)(−∇un) +H(x, un)− gun

)
dx+

∫
Ω

(g − gn)undx

≥ Φ1(g) +
∫

Ω
(g − gn)undx.

(4.8)

For any v ∈ L∞(Ω), since gn ⇀ g in L1(Ω) as n→∞,

lim
n→∞

∫
Ω

(gn − g)vdx = 0. (4.9)

In particular,

lim
n→∞

∫
Ω

(gn − g)ugdx = 0. (4.10)
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From (4.8) and (4.10), to prove the claim, we only need to show that

lim
n→∞

∫
Ω

(gn − g)undx = 0. (4.11)

In fact, by (4.1) and the fact that I(un) ≤ I(0) = 0, we get

0 ≥ I(un) ≥ γ

p
‖un‖p − C‖un‖,

which implies that {un} is bounded in W 1,p
0 (Ω). Since {gn} ⊂ R(f)1,w and g ∈

R(f)1,w, we clearly have ‖g‖L1 ≤ ‖f‖L1 and ‖gn‖L1 ≤ ‖f‖L1 for all n ∈ N. Hence,∣∣∣∣∫
Ω

(gn − g)undx
∣∣∣∣ ≤ C‖gn − g‖L1‖un‖ ≤ C.

Now we can choose a subsequence {unj
} such that

lim
j→∞

∣∣∣∣∫
Ω

(gnj
− g)unj

dx
∣∣∣∣ = lim sup

n→∞

∣∣∣∣∫
Ω

(gn − g)undx
∣∣∣∣ .

Noting that {unj
} is also bounded in W 1,p

0 (Ω), going if necessary to a subsequence,

we may assume that unj
⇀ u in W 1,p

0 (Ω) and unj
→ u in L∞(Ω) as j →∞.

By (4.9) and the Hölder inequality, we obtain that∣∣∣∣∫
Ω

(gnj
− g)unj

dx
∣∣∣∣ ≤ ∣∣∣∣∫

Ω
(gnj
− g)(unj

− u)dx
∣∣∣∣+ ∣∣∣∣∫

Ω
(gnj
− g)udx

∣∣∣∣
≤ ‖gnj

− g‖L1‖unj
− u‖L∞ +

∣∣∣∣∫
Ω

(gnj
− g)udx

∣∣∣∣→ 0

as j →∞. So that

0 ≤ lim inf
n→∞

∣∣∣∣∫
Ω

(gn − g)undx
∣∣∣∣ ≤ lim sup

n→∞

∣∣∣∣∫
Ω

(gn − g)undx
∣∣∣∣ ≤ 0,

which implies (4.11), and then the claim (4.7) is valid.

(II) Let g, h ∈ R(f)1,w and v ∈ W 1,p
0 (Ω), then for all t ∈ (0, 1), we have

∫
Ω

(
1

p
A(−∇v)(−∇v) +H(x, v)− (tg + (1− t)h)v

)
dx

= t
∫

Ω

(
1

p
A(−∇v)(−∇v) +H(x, v)− gv

)
dx

+ (1− t)
∫

Ω

(
1

p
A(−∇v)(−∇v) +H(x, v)− hv

)
dx.
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By taking the infimum relative to v ∈ W 1,p
0 (Ω) in both sides of the above equality,

we get

Φ1(tg + (1− t)h) ≥ tΦ1(g) + (1− t)Φ1(h),

that is, the concavity of Φ1 has been proved. Now, suppose that equality holds in the

above inequality for some t ∈ (0, 1). Then, denote by ut the solution of the problem

(P) corresponding to tg + (1− t)h, we have

t
∫

Ω

(
1

p
A(−∇ut)(−∇ut) +H(x, ut)− gut

)
dx

+ (1− t)
∫

Ω

(
1

p
A(−∇ut)(−∇ut) +H(x, ut)− hut

)
dx

= t
∫

Ω

(
1

p
A(−∇ug)(−∇ug) +H(x, ug)− gug

)
dx

+ (1− t)
∫

Ω

(
1

p
A(−∇uh)(−∇uh) +H(x, uh)− huh

)
dx.

It follows that ∫
Ω

(
1

p
A(−∇ut)(−∇ut) +H(x, ut)− gut

)
dx

=
∫

Ω

(
1

p
A(−∇ug)(−∇ug) +H(x, ug)− gug

)
dx,

∫
Ω

(
1

p
A(−∇ut)(−∇ut) +H(x, ut)− hut

)
dx

=
∫

Ω

(
1

p
A(−∇uh)(−∇uh) +H(x, uh)− huh

)
dx.

By the uniqueness of the minimizer of the functional I, we must have ut = ug = uh.

Moreover, since

divA(−∇ug(x)) + h(x, ug(x)) = g(x), a.e. in Ω,

divA(−∇uh(x)) + h(x, uh(x)) = h(x), a.e. in Ω,

if ug = uh, we must have g(x) = h(x) a.e. in Ω, and the strict concavity is proved.

(III) Let {tn} be a sequence of positive numbers such that tn → 0 as n→∞. Let

g ∈ R(f)1,w, h ∈ L1(Ω) and gn = g+tnh, the corresponding solution of the problem

(Pgn) is denoted by un. Then, by (4.8), we find

Φ1(g)−
∫

Ω
tnhundx ≤ Φ1(g + tnh) ≤ Φ1(g)−

∫
Ω
tnhugdx.
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So that

−
∫

Ω
hundx ≤

Φ1(g + tnh)− Φ1(g)

tn
≤ −

∫
Ω
hugdx.

We claim that

lim
n→∞

∫
Ω
hundx =

∫
Ω
hugdx. (4.12)

In fact, similarly as in the proof of the part (I), there exist a subsequence {unj
} and

u ∈ W 1,p
0 (Ω) such that

lim sup
n→∞

∣∣∣∣∫
Ω
h(un − ug)dx

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
Ω
h(unj

− ug)dx
∣∣∣∣ .

and unj
⇀ u in W 1,p

0 (Ω) as j →∞. We only need to show that u = ug.

Similarly as (4.4), we have

I(ug) = Φ1(g) = lim
j→∞

Φ1(gnj
)

≥ 1

p

∫
Ω
A(−∇u)(−∇u)dx+

∫
Ω

(H(x, u)− gu)dx

= I(u) ≥ I(ug).

By the uniqueness of the minimizer of the functional I, we must have u = ug so that

(4.12) is valid.

Therefore,

lim
n→∞

Φ1(g + tnh)− Φ1(g)

tn
= −

∫
Ω
hugdx.

Since the sequence {tn} is arbitrary, it follows that

lim
t→0+

Φ1(g + th)− Φ1(g)

t
= −

∫
Ω
hugdx.

In the same way we can show that

lim
t→0−

Φ1(g + th)− Φ1(g)

t
= −

∫
Ω
hugdx.

Thus we have proved that Φ1 is Gâteaux differentiable at g with derivative −ug.

Lemma 4.2 Under the assumptions of Theorem 4.2, there exists a unique f̃ ∈
R(f)1,w which maximizes Φ1|R(f)1,w

. Moreover,∫
Ω
ũf̃dx ≤

∫
Ω
ũhdx, ∀h ∈ R(f)1,w, (4.13)

where ũ = u
f̃
.
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Proof : By Lemma 2.1 and the weak continuity of Φ1|R(f)1,w
, we know that a

maximizer f̃ exists in R(f)1,w. It follows from Lemma 4.1 that Φ1|R(f)1,w
is strictly

concave, and so the maximizer f̃ is unique. For each h ∈ R(f)1,w and t ∈ (0, 1), we

define ft = f̃ + t(h− f̃), then ft ∈ R(f)1,w since R(f)1,w is convex ( cf. Lemma 2.1).

Noting that Φ1 is Gâteaux differentiable at f̃ with derivative −ũ (cf. Lemma 4.1),

we have

Φ1(ft) = Φ1(f̃)− t
∫

Ω
ũ(h− f̃)dx+ o(t).

Since Φ1(f̃) ≥ Φ1(ft), we find

Φ1(f̃) ≥ Φ1(f̃)− t
∫

Ω
ũ(h− f̃)dx+ o(t).

It follows that

0 ≥ −
∫

Ω
ũ(h− f̃)dx+

o(t)

t
.

letting t→ 0 in the above inequality, we see that∫
Ω
ũf̃dx ≤

∫
Ω
ũhdx.

We finish the proof by noting that h is chosen arbitrarily in R(f)1,w.

Proof of Theorem 4.2: Let f̃ be as in Lemma 4.2. Since ũ satisfies

divA(−∇ũ(x)) = f̃(x)− h(x, ũ(x)) > 0, a.e. x ∈ Ω,

it follows that each level set of ũ has zero measure (cf. [24, Lemma 7.7]). By

Lemma 2.2, there exists a decreasing function ϕ such that ϕ ◦ ũ is a rearrange-

ment of f , i.e., ϕ◦ ũ ∈ R(f). Hence, we can apply Lemma 2.3 to deduce that ϕ◦ ũ is

the unique minimizer of the linear functional
∫

Ω hũdx, relative to h ∈ R(f)1,w. This

and (4.13) obviously imply f̃ = ϕ ◦ ũ ∈ R(f). We complete the proof by choosing

f2 = f̃ .

By Theorem 4.1, we see that the problem (Opt1) is solvable if h and f satisfy some

suitable conditions. If, in addition, the domain Ω in the problem (P) has some

symmetric property, then the solution of (Opt1) is unique.

Theorem 4.3 Suppose that N < p < ∞, Ω is a ball centered at the origin, f ∈
L1(Ω) and f(x) > 0, the assumptions (h1) and (h2) hold, and h(x, t) = h(t) ≤ 0,
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∀ t ∈ R, a.e. x ∈ Ω. Assume that α : RN 7→ [0,∞) is a convex function of class

C1(RN−{0}) satisfying (1.1) and there exists a positive constant a0, such that α(ξ) =

a0, for all ξ ∈ RN and |ξ| = 1. Then the problem (Opt1) has a unique solution f1

and f1 = f ∗, where f ∗ is the Schwarz symmetric decreasing rearrangement of f (cf.

Def. 2.2).

Proof : By Theorem 4.1, the problem (Opt1) has a solution f1. We denote by

u1 := uf1 , the unique solution of the problem (Pf1). Since

divA(−∇u1(x)) = f1(x)− h(u1(x)) > 0, a.e. x ∈ Ω,

which implies that every level set of u1 has zero measure (cf. [24, Lemma 7.7]). By

Lemmas 2.2 and 2.3, there exists an increasing function ϕ such that ϕ ◦ u1 ∈ R(f)

is the unique maximizer of the functional
∫

Ω hu1, relative to h ∈ R(f)1,w.

Firstly, we claim that f1 is also a maximizer of the functional
∫

Ω hu1, relative to

h ∈ R(f)1,w.

In fact, we notice that for each g ∈ R(f),

1

p

∫
Ω
A(−∇u1)(−∇u1)dx+

∫
Ω

(H(u1)− f1u1)dx

= I(u1) ≤ I(ug)

=
1

p

∫
Ω
A(−∇ug)(−∇ug)dx+

∫
Ω

(H(ug)− gug)dx

≤ 1

p

∫
Ω
A(−∇u1)(−∇u1)dx+

∫
Ω

(H(u1)− gu1)dx,

which implies that ∫
Ω
f1u1dx ≥

∫
Ω
gu1dx, ∀g ∈ R(f). (4.14)

If g ∈ R(f)1,w then we may choose a sequence {gn} ⊂ R(f) such that {gn} converge

weakly to g in L1(Ω). By (4.14), we get

∫
Ω
f1u1dx ≥

∫
Ω
gnu1dx→

∫
Ω
gu1dx

as n→∞. So that ∫
Ω
f1u1dx ≥

∫
Ω
gu1dx,∀g ∈ R(f)1,w

and our claim is valid, so that f1 = ϕ◦u1 ∈ R(f) by the uniqueness of the maximizer.
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Secondly, we claim that ∫
Ω
αp(−∇u∗1)dx =

∫
Ω
αp(−∇u1)dx. (4.15)

Indeed, since
∫
Ω A(−∇u)(−∇u)dx =

∫
Ω α

p(−∇u)dx,∀u ∈ W 1,p
0 (Ω),

1

p

∫
Ω
αp(−∇u1)dx+

∫
Ω

(H(u1)− f1u1)dx

=
1

p

∫
Ω
A(−∇u1)(−∇u1)dx+

∫
Ω

(H(u1)− f1u1)dx

≤ 1

p

∫
Ω
A(−∇uf∗)(−∇uf∗)dx+

∫
Ω

(H(uf∗)− f ∗uf∗)dx

=
1

p

∫
Ω
αp(−∇uf∗)dx+

∫
Ω

(H(uf∗)− f ∗uf∗)dx

≤ 1

p

∫
Ω
αp(−∇u∗1)dx+

∫
Ω

(H(u∗1)− f ∗u∗1)dx.

Therefore, from Lemma 2.5 and Lemma 2.6 that

1

p

∫
Ω

(αp(−∇u∗1)− αp(−∇u1))dx ≥
∫

Ω
(H(u1)−H(u∗1) + f ∗u∗1 − f1u1)dx ≥ 0,

which, together with (2.3), implies that (4.15) holds.

Finally, we claim that

meas

({
x ∈ Ω : ∇u1 = 0, 0 < u1(x) < ess sup

y∈Ω
u1(y)

})
= 0. (4.16)

In fact, for each x0 ∈ Ω such that 0 < u1(x0) < ess supx∈Ω u1(x), we set S = {x ∈
Ω : u1(x) ≥ u1(x0)}, which is then a closed ball by Lemma 2.7. If we define u(x) =

u1(x)− u1(x0), then we have divA(−∇u(x)) = divA(−∇u1(x)) > 0, a.e. x ∈ Ω. By

the strong maximum principle (cf. [23, Theorem 5]), we deduce that u(x) > 0 in the

interior
◦
S of S. So that u1(x) > u1(x0) for all x ∈

◦
S. Hence x0 must be a boundary

point of S. By the Hopf boundary lemma, we derive ∂u
∂ν

(x0) = ∂u1
∂ν

(x0) 6= 0, where ν

stands for the outward unit normal to ∂S at x0. This means that{
x ∈ Ω : ∇u1 = 0, 0 < u1(x) < ess sup

y∈Ω
u1(y)

}
= ∅,

so that (4.16) is ture.

Now, by using Lemma 2.7 and noting (4.15) and (4.16), we see that u1 = u∗1. Hence

f1 = ϕ◦u∗1 is a spherically symmetric decreasing function. It follows that f1 coincides
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its Schwarz rearrangement, i.e., f1 = f ∗1 . Recall that g∗ = f ∗, ∀g ∈ R(f), we then

derive that f1 = f ∗ since f1 ∈ R(f).
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