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Abstract

We develop a power penalty approach to the discrete Hamilton-Jacobi-Bellman
(HJB) equation in RN in which the HJB equation is approximated by a nonlinear
equation containing a power penalty term. We prove that the solution to this
penalized equation converges to that of the HJB equation at an exponential rate with
respect to the penalty parameter when the control set is finite and the coefficient
matrices are M -matrices. Examples are presented to confirm the theoretical findings
and to show the efficiency of the new method.
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1 Introduction

HJB equations are widely used in characterizing many real-world phenomena in engineer-

ing, mechanics, economics and finance. Extensive studies of HJB equations have been

conducted, see the book [2] and the references therein. As HJB equations have some non-

linear and non-smooth structure, it is generally very difficult to get its analytical solution.

Hence, numerical approximation methods are widely used to solve HJB equations, such

as Markov chain method [5], valuation iteration method [6], and policy iteration method

[1]. However it seems that there is a limited investigation of penalty methods for HJB

equations, except that in [11, 12] where the linear penalty method is studied.

Consider the following discrete HJB problem:

Problem 1.1. Find x ∈ RN such that

min
q∈Q

{A (q) x − b (q)} = 0, (1)
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where Q = {q1, q2, ∙ ∙ ∙ , qM} ⊂ RM is a finite control set, for every control q ∈ Q, A (q) :

Q → RN×N and b (q) : Q → RN refer to an N × N system matrix and a vector in RN ,

respectively defined by A(q) := (aij(q)) and b(q) := (b1(q), b2(q), ∙ ∙ ∙ , bN(q))>.

For the sake of concreteness, we introduce the following notations. Denote by M

the set of real-valued N × N matrices, and let I be the set of {1, ∙ ∙ ∙ , N}. Through-

out this paper, for every x, y ∈ RN , the notation y ≥ x means that yi ≥ xi, ∀i ∈ I.

We also denote by min {x, y} (resp. max {x, y}) the vector with components min(xi, yi)

(resp. max{xi, yi}). The definitions extend trivially to other relational operators. With

these notations, Equation (1) can also be stated as the following equivalent generalized

complementarity form:

A (q1) x − b (q1) ≥ 0, ∙ ∙ ∙ , A (qM ) x − b (qM) ≥ 0,
︸ ︷︷ ︸

M

M∏

i=1

[A (qi) x − b (qi)] = 0,

where
∏M

i=1[A(qi)x − b(qi)] is the Hamard product.

The above complementarity form of the the discrete HJB equation (1) inspires us to

propose a power penalty approach to solving Problem 1.1, since the power penalty method

has been well developed to approximate standard linear and nonlinear complementarity

problems, see [4, 9, 10], etc.

2 Penalty approach

In this section we will present and analyze a power penalty method for Problem 1.1.

Consider the following problem:

Problem 2.1. Find xλ ∈ RN , such that

A (q1) xλ − b (q1) − λ
M∑

i=2

[b (qi) − A (qi) xλ]
1/k
+ = 0, (2)

where λ > 1 is the penalty parameter, [u]+ = max{u, 0}, and for any y = (y1, ∙ ∙ ∙ , yN)> ∈

RN , yα .
= [yα

1 , ∙ ∙ ∙ , yα
N ].

Problem 2.1 is the penalization corresponding to Problem 1.1, where the penalty term

penalizes the violation of all the (control) constraints, except one. The essence is to

enforce all the constraints to be satisfied by letting λ → ∞. We expect that the solution

xλ of Problem 2.1 converges to that of Problem 1.1. Clearly, the rate of convergence

depends on all the parameter in the penalty term. Penalty problems of form (2) for the

discrete HJB equation (1) are discussed in [11] when k = 1, i.e., the linear penalty method.
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Linear convergence rate are also obtained therein. In the next section we will establish

an exponential convergence rate O(λk) for the power penalty approach (2) for solving the

discrete HJB equation (1), under some mild assumptions on the system matrix A(q) and

the vector b(q).

Before further discussions, we first make the following assumptions on A(q):

(A) The matrix A (q) is a strictly diagonally dominant M -matrix for every q ∈ Q.

Remark 2.1. It is easily shown that, under the assumption (A), Problem 1.1 has a unique

solution (c.f., [12]). Moreover, for any A (q) ∈ M, q ∈ Q, both A (q) and A−1 (q) can be

bounded, since there are only finitely many composition that can be assumed. Similarly,

b(q) can be bounded as well. In the same way, we can infer that ‖A (q) ‖ ≤ C and

‖A−1 (q) ‖ ≤ C with C a constant.

Remark 2.2. It is worth noting that the above assumption is normally guaranteed by a

proper discretization method such as the upwind finite difference/finite element or a fitted

finite volume method for 2nd order elliptic partial differential equations (see, for example,

[13]).

In the rest of our discussion, we assume the assumption (A) is fulfilled.

3 Convergence analysis

We first investigate the convergence property of the power penalty method.

3.1 Monotonic convergence property

We first shown that the solution to Problem 2.1 is bounded in the following lemma.

Lemma 3.1. Let xλ be the solution to (2) for any λ. Then, xλ is bounded for any λ > 1,

i.e., there exists a positive constant C, independent of λ and k, such that

‖xλ‖∞ ≤ C. (3)

Proof. Rearranging (2), we get

A (q1) xλ = b (q1) + λ
M∑

i=2

[b (qi) − A (qi) xλ]
1/k
+ , (4)

which implies that

A (q1) xλ ≥ b (q1) .
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Note that A (q1) is a strictly diagonally dominant M -matrix. Hence, A−1(q1) > 0. Thus,

we immediately get that

xλ ≥ A−1 (q1) b (q1) . (5)

Meanwhile, it follows from (4) that for every i ∈ I, either

(A (q1) xλ)i = (b (q1))i ,

or, ∃qj(i) ∈ Q associated with i, s.t.

(
A
(
qj(i)

)
xλ

)
i
≤
(
b
(
qj(i)

))
i
.

Now, introducing a matrix, denoting A∗ ∈ M, to be the matrix having the ith row as

that of (A(qj(i)))i, i ∈ I and introducing b∗ correspondingly, we get

A∗xλ ≤ b∗.

From the construction of A∗, it follows that the new matrix A∗ is also a strictly diagonally

dominant M -matrix. Thus, the above inequality gives

xλ ≤ (A∗)−1 b∗. (6)

Combining (5) and (6) and using the fact A (q), A−1 (q) and b(q) can be bounded (see

Remark 2.1), we complete the proof. 2

We next show that the solution of the penalized Problem 2.1 is always less than the

that of the discrete HJB problem 1.1, component-wisely.

Lemma 3.2. Let λ > 1 and k > 0. Assume that xλ and x∗ are the solutions of the

penalized Problem 2.1 and that of the discrete HJB Problem 1.1, respectively. Then

xλ ≤ x∗.

Proof. Since xλ is the solution of the penalized Problem 2.1, we have

A (q1) xλ − b (q1) − λ
M∑

i=2

[b (qi) − A (qi) xλ]
1/k
+ = 0. (7)

Define two disjoint nonempty index subsets J1 and J2 of I as follows

J1 =





j

∣
∣
∣
∣
∣
∣

(
M∑

i=2

[b (qi) − A (qi) xλ]
1/k
+

)

j

= 0





, (8)

J2 =





j

∣
∣
∣
∣
∣
∣

(
M∑

i=2

[b (qi) − A (qi) xλ]
1/k
+

)

j

> 0





. (9)

We still distinguish the following two cases.
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• For j ∈ J1, it follows from (8) that (A (qi) xλ − b (qi))j ≥ 0, for all qi ∈ Q. Hence,

(A (q1) xλ − b (q1))j = 0.

Moreover, from the fact x∗ is the solution to the discrete HJB Problem 1.1 it follows

that

(A (q1) x∗ − b (q1))j ≥ (A (q∗) x∗ − b (q∗))j = min
q∈Q

(A (q) x − b (q))j = 0,

with q∗ = arg minq∈Q {A (q) x − b (q)}. Thus, combining the above two equations,

we obtain

(A (q1) (x∗ − xλ))j ≥ 0, j ∈ J1.

• For j ∈ J2, as we have shown, there exists at least one control qi(j) ∈ Q associated

with j, such that
(
b
(
qi(j)

)
− A

(
qi(j)

)
xλ

)
j
> 0,

which is equivalent to
(
A
(
qi(j)

)
xλ − b

(
qi(j)

))
j
< 0.

As the first case, it also holds that

(
A
(
qi(j)

)
x∗ − b

(
qi(j)

))
j
≥ min

q∈Q
(A (q) x − b (q))j = 0.

Thus, combining the above two equations, we obtain

(
A
(
qi(j)

)
(x∗ − xλ)

)
j
> 0, j ∈ J2.

Now, we again introduce a matrix, still denoting A∗ ∈ M, to be the matrix having the

jth row as that of (A(q1))j , j ∈ J1 and of (A(qi(j)))j , j ∈ J2. Therefore, we have

A∗ (x∗ − xλ) ≥ 0.

Hence, providing that A∗ is an M -matrix, we have that on the whole index set I

x∗ ≥ xλ.

2

Lemma 3.3. Let λ2 > λ1 > 1, and xλ1 and xλ2 be the solutions of Problem 2.1 with

λ = λ1, λ2, respectively. Then

xλ1 < xλ2 .
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Proof. From the fact that xλ1 and xλ2 be the solutions of Problem 2.1 with λ = λ1, λ2,

respectively, and λ2 > λ1 > 1, it follows that

A (q1) xλ1 − b (q1) − λ1

M∑

i=2

[b (qi) − A (qi) xλ1 ]
1/k
+ = 0

=A (q1) xλ2 − b (q1) − λ2

M∑

i=2

[b (qi) − A (qi) xλ2 ]
1/k
+ = 0

≤A (q1) xλ2 − b (q1) − λ1

M∑

i=2

[b (qi) − A (qi) xλ2 ]
1/k
+ .

This implies that

A (q1) (xλ1 − xλ2) ≤ λ1

(
M∑

i=2

[b (qi) − A (qi) xλ1 ]
1/k
+ −

M∑

i=2

[b (qi) − A (qi) xλ2 ]
1/k
+

)

. (10)

Defining two disjoint nonempty index subsets J1 and J2 of I as follows

J1 =





j

∣
∣
∣
∣
∣
∣

(
M∑

i=2

[b (qi) − A (qi) xλ1 ]
1/k
+

)

j

≤

(
M∑

i=2

[b (qi) − A (qi) xλ2 ]
1/k
+

)

j





, (11)

J2 =





j

∣
∣
∣
∣
∣
∣

(
M∑

i=2

[b (qi) − A (qi) xλ1 ]
1/k
+

)

j

>

(
M∑

i=2

[b (qi) − A (qi) xλ2 ]
1/k
+

)

j





. (12)

On one hand, it follows from (10) and (11) that

(A (q1) (x̄λ − xλ))j ≤ 0, ∀j ∈ J1.

On the other hand, (12) implies for every j ∈ J2 there exists at least one control qi(j) ∈ Q

associated with j, such that
([

b
(
qi(j)

)
− A

(
qi(j)

)
xλ1

]1/k

+

)

j
>
([

b
(
qi(j)

)
− A

(
qi(j)

)
xλ

]1/k

+

)

j
,

which, by virtue of the monotonicity of the operator [∙]1/k
+ , further implies that

(
A
(
qi(j)

)
xλ1

)
j
≤
(
A
(
qi(j)

)
xλ2

)
j
, ∀j ∈ J2,

i.e.
(
A
(
qi(j)

)
(xλ1 − xλ2)

)
j
≤ 0, ∀j ∈ J2.

Now, as we did in the proof of Lemma 3.2, we introduce a matrix, still denoting

A∗ ∈ M to be the matrix having the jth row as that of of (A(q1))j , j ∈ J1 and of

(A(qi(j)))j , j ∈ J2. Hence, we have

A∗ (xλ1 − xλ2) ≤ 0,
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which implies on the whole index set I

xλ1 ≤ xλ2 ,

since A∗ is also a strictly diagonally dominant M -matrix. 2

With the above lemmas, we now establish the following monotonic convergence result

for the l1/k penalty method.

Theorem 3.1. Let {λm} ,m = 1, 2, ∙ ∙ ∙ , be a monotonically increasing sequence tending

to positive infinity as m → ∞. Assume that xλm is the solution of Problem 2.1 with

λ = λm, and x∗ is the solution of Problem 1.1. Then the sequence {xλm} is monotonically

increasing and convergent to x∗.

Proof. It follows from Lemmas 3.3 and 3.2 that

xλ1 ≤ xλ2 ≤ ∙ ∙ ∙ ≤ xλi
≤ ∙ ∙ ∙ ≤ x∗.

This implies that there exists some x? such that

lim
m→∞

xλm = x?.

Since xλm is the solution of Problem 2.1 with λ = λm, there must hold

A (q1) xλm − b (q1) = λm

M∑

i=2

[b (qi) − A (qi) xλm ]1/k
+ ≥ 0. (13)

Letting m → ∞ in (13), we get

A (q1) x? − b (q1) ≥ 0.

Furthermore, reforming (13) gives

M∑

i=2

[b (qi) − A (qi) xλm ]1/k
+ =

A (q1) xλm − b (q1)

λm

. (14)

Thus, letting m → ∞ in (14), we get

M∑

i=1

[b (qi) − A (qi) x?]1/k
+ = 0,

since A(q1), b(q1) and xλm are bounded. This implies that b (q) − A (q) x? ≤ 0, ∀q ∈ Q.

Hence,

A (q) x? − b (q) ≥ 0, ∀q ∈ Q.
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Specifically,

min
q∈Q

{A (q) x? − b (q)} ≥ 0. (15)

In what follows we will prove that minq∈Q {A (q) x? − b (q)} ≤ 0. In doing so, we

distinguish two disjoint nonempty index subsets J1 and J2 of I as we did in (8) and (9).

On one hand, as seen in the proof of Lemma 3.2, for any given j ∈ J1, we have

(A (qi) xλm − b (qi))j ≥ 0, ∀qi ∈ Q and (A (q1) xλm − b (q1))j = 0,

which gives

min
q∈Q

(A (q) xλm − b (q))j = 0, j ∈ J1. (16)

On the other hand, for any given j ∈ J2, based on (9), we can deduce that there exists at

least one control qi(j) ∈ Q associated with j, such that

(b (qi) − A (qi) xλm)j = max
q∈Q

(b (q) − A (q) xλm)j > 0.

which means

min
q∈Q

(A (q) xλm − b (q))j < 0, j ∈ J2. (17)

Summarizing (16) and (17) we deduce that on the whole index set I

min
q∈Q

{A (q) xλm − b (q)} ≤ 0. (18)

Letting m → ∞ in (18), we get

min
q∈Q

{A (q) x? − b (q)} ≤ 0. (19)

In view of (15) and (19), we eventually have

min
q∈Q

{A (q) x? − b (q)} = 0.

This shows that x? solves the discrete HJB Problem 1.1. Since the discrete HJB Problem

1.1 has a unique solution (see, Remark 2.1), we obtain

lim
m→∞

xλm = x? = x∗.

2

Remark 3.1. Clearly, Theorem 3.1 gives a constructive proof of the existence of a solution

to Problem 1.1.
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3.2 Exponential convergence rate

We first give an error estimation of the solution to Problem 2.1.

Theorem 3.2. Assume that xλ is the solution of Problem 2.1 for every λ > 1. There

exists a constant C > 0, independent of λ, such that
∥
∥
∥
∥min

q∈Q
{A (q) xλ − b (q)}

∥
∥
∥
∥
∞

≤
C

λk
.

Proof. It follows from Lemma 3.1 and Remark 2.1 that both xλ and A (q1) are bounded,

which implies

λ

M∑

i=2

[b (qi) − A (qi) xλ]
1/k
+ = A (q1) xλ − b (q1) ≤ C.

Hence, for any q ∈ Q

[b (q) − A (q) xλ]+ ≤
C

λk
. (20)

Furthermore, for every j ∈ I, we either have

(A (q) xλ − b (q))j ≥ 0, ∀q ∈ Q

and (A (q1) xλ − b (q1))j = 0 ≤
C

λk
,

or ∃qi(j) ∈ Q associated with j, such that
(
b(qi(j)) − A(qi(j))xλ

)
j
≥ 0, which, based on

(20), gives

(
A
(
qi(j)

)
xλ − b

(
qi(j)

))
j
= −

(
b
(
qi(j)

)
− A

(
qi(j)

)
xλ

)
j
≥ −

C

λk
,

and (A (q1) xλ − b (q1))j > 0.

Hence, both cases reduce to
∥
∥
∥
∥min

q∈Q
{A (q) xλ − b (q)}

∥
∥
∥
∥
∞

≤
C

λk
.

2

With the above error estimation, we are now ready to show that the solution of

Problem 2.1 converges to that of Problem 1.1 exponentially with respect to the penalty

parameter.

Theorem 3.3. Assume that xλ and x∗ are the solution of Problem 2.1 and that of Problem

1.1, respectively. Then for sufficiently large λ, we have

‖x∗ − xλ‖∞ ≤
C

λk
, (21)

where C is a positive constant, independent of x∗, xλ and λ.
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Proof. For λ > 0, since A(q1)xλ − b(q1) = λ
∑M

i=2 [b (qi) − A (qi) xλ]
1/k
+ ≥ 0, we may define

q∗j ∈ Q to be such that for every j ∈ I,

q∗j,λ =






arg min
qi(j)∈Q

[
A
(
qi(j)

)
xλ − b

(
qi(j)

)]
j
, if (A (q1) xλ − b (q1))j > 0,

q1, if (A (q1) xλ − b (q1))j = 0,
(22)

which means, as seen in Theorem 3.2, that

∣
∣
∣
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))

j

∣
∣
∣ =

∣
∣
∣
∣ min
qi(j)∈Q

(
A
(
qi(j)

)
xλ − b

(
qi(j)

))
j

∣
∣
∣
∣ ≤

C1

λk
(23)

for some constant C1 > 0 independent of λ. This implies

(
A
(
q∗j
)
x∗ − b

(
q∗j
))

j
= min

qj∈Q
(A (qj) x∗ − b (qj))j = 0, (24)

where limλ→∞ q∗j,λ = q∗j and limλ→∞ xλ = x∗.

It follows from (24) that

(
A
(
q∗j,λ
)
x∗ − b

(
q∗j,λ
))

j
≥ min

q∈Q
(A (q) x − b (q))j =

(
A
(
q∗j
)
x∗ − b

(
q∗j
))

j
= 0.

Hence,

(
A
(
q∗j,λ
)
(xλ − x∗)

)
j
=
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))

j
−
(
A
(
q∗j,λ
)
x∗ − b

(
q∗j,λ
))

j

≤
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))

j
.

Now, using (23), we get
(
A
(
q∗j,λ
)
(xλ − x∗)

)
j
≤

C1

λk
.

Meanwhile,

(
A
(
q∗j
)
(x∗ − xλ)

)
j
=
[(

A
(
q∗j
)
x∗ − b

(
q∗j
))

−
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))]

j

+
[(

A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))

−
(
A
(
q∗j
)
xλ − b

(
q∗j
))]

j

≤
[(

A
(
q∗j
)
x∗ − b

(
q∗j
))

−
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))]

j
,

since the definition q∗j,λ in (22) implies [(A(q∗j,λ)xλ − b(q∗j,λ)) − (A(q∗j )xλ − b(q∗j ))] ≤ 0.

Moreover, it follows from (23) and (24) that

[(
A
(
q∗j
)
x∗ − b

(
q∗j
))

−
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))]

j

= −
(
A
(
q∗j,λ
)
xλ − b

(
q∗j,λ
))

j
≤

C1

λk
.

Hence,
(
A
(
q∗j
)
(x∗ − xλ)

)
j
≤

C1

λk
.
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Denoting by A∗
1, A

∗
2 ∈ M the matrices having the jth rows, j ∈ I, as those of of A(q∗j,λ)

and A(q∗j ), respectively, we obtain that

xλ − x∗ ≤
C1

∥
∥A∗−1

1

∥
∥
∞

λk
, and x∗ − xλ ≤

C1

∥
∥A∗−1

2

∥
∥
∞

λk
,

since it follows from the fact that both A∗
1 and A∗

2 are strictly diagonally dominant M -

matrices. Now, noting Remark 2.1, we infer that

‖x∗ − xλ‖∞ ≤
C

λk
,

for some constant C > 0 independent of λ, xλ and x∗. 2

4 Examples

In this section we illustrate the theoretical rates of convergence obtained in (21) and show

that the assumption (A) is only sufficient using two examples. The first one is an obstacle

problem and the second one is a generalized complementarity problem. We also use a

third example to show the efficiency of the new method.

Example 4.1. Consider the following discrete HJB equation

max
q∈Q

{A(q)x − b(q)} = 0,

with Q = {q1, q2}, and

A(q1) =

[
1 0
0 1

]

, A(q2) =

[
1 1
1 2

]

, b(q1) =

[
0
0

]

, b(q2) =

[
−1
2

]

.

This example is from [10] and the exact solution is x = (−1, 0)>. Clearly, the assump-

tion A1 is not satisfied. The power penalty approach to this example is stated as

A(q1)x − b(q1) + λ [A(q2)x − b(q2)]
1/k
+ = 0.

When k = 1, the solution of the penalized equation is xλ = (− 2λ
1+2λ

, 0)>. Thus,

‖x − xλ‖2 =

∥
∥
∥
∥

[
− 2λ

1+2λ

0

]∥∥
∥
∥

2

=
1

1 + 2λ
≤

0.5

λ
.

When k = 2, the solution of the penalized equation is xλ = (
√

λ4 + 2λ2 − 1 − λ2, 0)>.

Thus,

‖x − xλ‖2 =

∥
∥
∥
∥

[√
λ4 + 2λ2 − λ2 − 1

0

]∥∥
∥
∥

2

=
√

λ4 + 2λ2 − λ2 − 1 ≤
1

λ2
.

Both results coincide with the theoretical convergence rate O( 1
λk ) in (21).
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Example 4.2. By setting Q = {q1, q2} and

A(q1) =

[
3 −2
−4 5

]

, A(q2) =

[
4 −4
−1 2

]

, b(q1) =

[
1
1

]

, b(q2) =

[
1
1

]

,

we consider the following discrete HJB equation

min
q∈Q

{A(q)x − b(q)} = 0.

This example is from [7] and the exact solution is x = (9/4, 2)>. Noting that the

assumption (A) is not satisfied as well. The power penalty approach to this example is

A(q1)x − b(q1) − λ [A(q2)x − b(q2)]
1/k
+ = 0.

When k = 1, the solution of the penalized equation is xλ = ( 9λ+3
4λ+23

, 8λ+7
4λ+23

)>. Thus,

‖x − xλ‖2 =

∥
∥
∥
∥

[
9
4
− 9λ+3

4λ+23

2 − 8λ+7
4λ+23

]∥∥
∥
∥

2

=
39
√

26

23 + 4λ
≤

50

λ
.

When k = 2, the solution of the penalized equation is

xλ =

(
1

529
(5
√

4λ4 + 897λ2 − 10λ2 + 69),
1

529
(4
√

4λ4 + 897λ2 − 8λ2 + 161)

)>

.

Thus,

‖x − xλ‖2 =

∥
∥
∥
∥

[
9
4
− 1

529
(5
√

4λ4 + 897λ2 − 10λ2 + 69)

2 − 1
529

(4
√

4λ4 + 897λ2 − 8λ2 + 161)

]∥∥
∥
∥

2

=

√
41

2116
(8λ2 − 4

√
λ2 (4λ2 + 897) + 897)

≤
1605.64

8λ2 + 4
√

λ2 (4λ2 + 897) + 897

≤
101

λ2

These results again confirms the theoretical convergence rate O( 1
λk ) in (21).

Example 4.3. Consider the Markovian dynamic programming (MDP) problem in [8]

which can be written as

Vi = max
{
Vi−1 + f 1

i , Vi+1 + f 2
i

}
, i = 0, . . . ,M,

where f 1
0 = f 2

0 = f 1
M = f 2

M = 0, f 1
i = −1, f 2

i = −2 for all i = 1, . . . ,M − 1, and

f 1
M−1 = −1, f 2

M−1 = 2M . We apply the l1 penalty method to solve this problem, which

results in

A1Vλ − λ[b2 − A2Vλ]+ = b1, (25)
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with

A1 =












1 0 0 ∙ ∙ ∙ 0 0
0 1 −1 ∙ ∙ ∙ 0 0

0 0 1
. . . 0 0

...
. . . . . . . . . . . .

...
0 0 0 0 1 −1
0 0 0 0 0 1












, A2 =












1 0 0 ∙ ∙ ∙ 0 0
−1 1 0 ∙ ∙ ∙ 0 0

0 −1 1
. . . 0 0

...
. . . . . . . . . . . .

...
0 0 0 −1 1 0
0 0 0 0 0 1












are two (M + 1) × (M + 1) matrices and

b1 =
[
0 −2 ∙ ∙ ∙ −2 2M 0

]>
, b2 =

[
0 −1 ∙ ∙ ∙ −1 −1 0

]>

are two M + 1 vectors.

In our numerical tests we increase M from 100 to 2000. We use the generalized Newton

method to solve the semismooth equation (25). It is worth noting that though both A1

and A2 are not strictly diagonally dominant M -matrices, the penalty method works very

well. All the numerical results show that the number of iterations of the l1 penalty method

stays between 1 and 2 when the initial guess is set to be V0 = 0. However, as stated in

[3, 8], with the same initial guess (V0 = 0), the number of iteration of the policy iteration

is M − 1 since it will correct the optimal control one by one, from grid M − 1 to grid

1. This example shows that comparing the popular used policy iteration method, the

proposed penalty method works efficiently.

5 Conclusions

A power penalty approach to the discrete HJB equations with a finite control set was

developed. An exponential convergence rate estimate was obtained for the solution of the

power penalized nonlinear equation to that of the discrete HJB equation. Examples were

examined to confirm the theoretical results and show its efficiency. The convergence rate

estimates imply one advantage, that is, to achieve the same level accuracy of the approx-

imation solution to that of the discrete HJB equation, the penalty parameter required

for k > 1 is smaller than that required for k = 1. Moreover, we also showed that under

some circumstance, the penalty method is much more efficient than the popular policy

iteration method.
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