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Abstract

In this paper, we propose a generalized Newton method for solving a class of discrete-time linear
complementarity systems consisting of a system of linear equations and a linear complementarity
constraints with a Z-matrix. We obtain a complete characterization of the least element solution
of a linear complementarity problem with a Z-matrix that a solution is the least element solution
if and only if the principal submatrix corresponding to the nonzero components of the solution
is an M-matrix. We present a Newton method for solving a linear complementarity problem
with a Z-matrix. We propose a generalized Newton method for solving the discrete-time linear
complementarity system where the linear complementarity problem constraint is solved by the
proposed Newton method. Under suitable conditions, we show that the generalized Newton
method converges globally and finds a solution in finitely many iterations. Preliminary numerical

results show the efficiency of the proposed method.
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1 Introduction

Consider the following differential linear complementarity system:
(t) = Qz(t) + Cy(t) + f(¢), te][0,T],
) )

y(t) € SOL(Bz(t) + ¢(t), A), te]0,T], (1.1)
z(0) = o,

*The first author was supported by the National Nature Science Foundation of P.R.China (Grant No. 11761037 and
11501265) and the Natural Science Foundation of Jiangxi Province (Grant No. 20181BAB201009). The second author

was supported by the Research Grants Council of Hong Kong (PolyU 152342/16E).
TCollege of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi, P.R. China
iDepartment of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, P.R. China

1

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/



where Q € R™*™ C € R™" B € R™™ A € R™" is an Z-matrix (i.e., a;; < 0 for all ¢ # j
(e.g., see [1])), f : R — R™ and g : R — R"™ are two Lipschitz continuous functions with Lipschitz
constants Ly > 0 and Ly > 0, respectively. Throughout this paper, SOL(q, A) denotes the solution

set of a linear complementarity problem with a Z-matrix (abbreviated as ZLCP) in the form of
y=0, Ay+q=0,  y"(Ay+q) =0, (1.2)

where ¢ = (q1,¢2, - ,q,)T € R™. The set SOL(q, A) is nonempty if the feasible region FEA(A, q) =
{y € Ry > 0, Ay + ¢ > 0} is nonempty and the least element of FEA(A,q) is a solution of ZLCP
(1.2), which is called the least element solution of (1.2) (e.g., see [19, 9]).

The differential linear complementarity system (1.1) has many applications in the scientific and
engineering fields (e.g., see [11, 14, 15, 17]). Some systematic-theoretic results of this system on the
existence and stabilizability of solutions and how they depend on initial conditions have been studied
(e.g., see [14, 15, 25, 26]). It is worth noting that comprehensive study of a closely related topic -
differential variational inequalities (abbreviated as DVI) with applications in nonsmooth dynamical
systems - has been carried out in [20, 21] and the references therein.

The time-stepping scheme has been widely used for solving the differential linear complementarity
system (1.1), in which the time interval [0, T'] is subdivided into N subintervals [t;_1, ¢;] and a sequence

of (discrete-time) linear complementarity systems in the form of

z = hia[(1 = 0)Qx + Cy] + & + hy 1 [0Q2™ + f(ti11)],
min(y, Ay + Bx + g(t;+1)) =0, (=0,1,--- ,N —1,

h0 = 2(0), hyy1 = ti41 — t;. The parameter 6 € [0,1] is a scalar to distinguish

is solved, where x
an explicit scheme (# = 1), an implicit one (§ = 0), or a semi-implicit one (6 € (0, 1)), respectively.
For detailed discussions of the convergence of the time-stepping scheme, we refer to [13, 21]. For
simplicity, we set § = 0 and assume that hy = h = T//N},. At each time step one solves a discrete-time

linear complementarity system (abbreviated as DLCS) in the form of

(I — hQ)z — hCy — [z" + hf (t11)]
min(y, Ay + Bz + g(t;41))

, (1.3)

0
0, (1.4)

where I stands for the identity matrix. A critical part for solving DLCS (1.3)-(1.4) is to deal with
(1.4) efficiently and accurately.

To the best of our knowledge, the numerical study of DVI and DLCS (1.3)-(1.4) is very limited.
In [6, 7], linear complementarity problem (1.4) was viewed as a constraint of (1.3) and the variable
y as a function of the variable x determined by (1.4) respectively. Properties of the least element
solution of general ZLCP (1.2) was studied [6, 7]. In particular, it was proved in [7] that if y(q) €
SOL(q, A) is the least element solution of ZLCP (1.2), then the matrix I — D + DA is nonsingular



and y(q) = —(I — D + DA)"'Dq, where D = diag(dy,--- ,d,) is a diagonal matrix with diagonals

(1.5)

d; =
0, otherwise.

In addition, it was verified that y(q) is Lipschitz continuous as a function of g and —(I—D+DA)"'D €
0y(q), where 0y(q) is the generalized Jacobian of y(q), see Clarke [8]. By using these properties, DLCS

(1.3)-(1.4) were reformulated in [7] as a nonsmooth equation in the form of
H(w) & (I = hQ)z = hCy(q(w)) = [a" + hf (tr1)] =0, (1.6)

where ¢(z) = Bz + g(t;+1), and the following generalized Newton iteration was proposed for solving
this equation:
k k ~1 k
" =uF — VT H (W) (1.7)

with
Vi, =1 —h[Q — C(I — Dy + DL, A) "' DyB] € 9H (u"),

where Dy, = diag(d,--- ,d,) and d; is given by (1.5) with ¢ = g(u*). Under suitable conditions,
the iteration (1.7) was shown to converge superlinearly to a solution z*1 of (1.3)-(1.4) from the

hl. However, the iteration (1.7) encounters some practical issues. Indeed,

starting point u¥ = x
given a current iterate u¥, it needs to find the least element solution y(q) of a ZLCP in the form of
(1.2) with ¢ = Bu* + g(t;41) in order to define H(u*) and Dy, which is normally time-consuming.
Additionally, it needs to compute the inverse of the matrix I — Dy + Dy A so as to compute V.

Generalized Newton methods have been extensively studied for solving piecewise linear systems,
such as linear complementarity problems arising from the discretization of American options pricing
problems [23] and obstacle problems [16], the discrete HJB equation [2, 29] and piecewise linear
systems arising in the numerical solution of the free-surface hydrodynamics models [3, 4, 28]. It has
been verified that this type of methods possess a finite termination property, i.e., they are able to
find a solution in a finite number of iterations under suitable conditions [2, 3, 10, 12, 27, 28]. In
addition, if the generalized Jacobi matrix is an M-matrix, these methods converge globally.

In this paper, we will view DLCS (1.3)-(1.4) as a piecewise linear system with respect to variables
x and y and propose a generalized Newton method for solving it.

We first study some new characterizations of solutions of ZLCP (1.2). In particular, we establish
a complete characterization of the least element solution of ZLCP (1.2) that a solution of ZLCP
(1.2) is the least element solution if and only if the principal submatrix of A corresponding to the
nonzero components of the solution is an M-matrix, see Theorem 2.1. In addition, we show that an
x-component dominated reduced matrix is also an M-matrix, see Proposition 2.1. By virtue of this
latter property, we then propose a Newton method for solving ZLCP (1.2) and show that the method

terminates finitely under some additional conditions.



We next propose a generalized Newton method for solving DLCS (1.3)-(1.4). To this end, define
a mapping F : R™*" — R™T" by

(I = hQ)u — hCv — ™ — hf(ty31)
F(u,v) = min(v, Av + Bu + g(t;4+1)) (1.8)
—_——

q(u)

and a mapping G : Rt — Rmtn)x(m+n) 1,y

I—h —hC
Gluw) = | 11 , (1.9)
DB I—-D+DA
where
17 i > A iy
D = diag(dy, -+ ,dy),  d; = vi > [Av+qu)] (1.10)
0, otherwise.

It follows from [8] that G(u,v) is a generalized Jacobi matrix of F' at (u,v). Instead of computing

the least element solution of the following ZLCP as in [6, 7]
v>0, Av+q@F) >0,  vT(Av+q(F) =0,

we find an approximate solution ¥ and then compute Au and Av by solving the following system

of linear equations
A
Glh o) [ ) = Pt b,
Av

and the corresponding new iterates by
uF T =uF + Au and P =8 + Av.

We will show that under proper conditions, the proposed method converges globally and finds a
solution of DLCS (1.3)-(1.4) in finitely many iterations. Moreover, if the ZLCP is solved exactly at
each iteration, it converges at a linear convergence rate.

The rest of this paper is organized as follows. In Subsection 1.1, we introduce notation and
preliminary lemmas that are used in the paper. In Section 2, we study some characterizations of
the least element solution of ZLCP (1.2) and present a Newton method for solving the least element
solution of ZLCP (1.2). In Section 3, we propose a novel generalized Newton method for solving
DLCS (1.3)-(1.4) and study its convergence. Finally, in Section 4, we give numerical experiments to

illustrate the efficiency of the proposed method.

1.1 Notation and preliminary lemmas

Given a vector x € R", a matrix B € R™*", two index sets Z C {1,2,--- ,n} and J C {1,2,--- ,n},
Bz 7 denotes the submatrix of B consisting of rows and columns indexed by Z and J respectively,

and x7 denotes the subvector of x consisting of components indexed by Z. For an index i, B; denotes



the ith row of B, and in particular e; denotes the ith row of I. A vector x is nonnegative (resp.
positive), denoted by = > 0 (resp. x > 0), if its components are nonnegative (resp. positive). A
matrix B is nonnegative, denoted by B > 0, if its entries are nonnegative. We write that x > y (resp.
B > C)if z (resp. B) and y (resp. C) satisfy that x —y > 0 (resp. B — C > 0). Denote by U(z, )
the open ball centered by x with the radius of r in the /5 norm.

We end this section by introducing two lemmas, the first of which is from [1].

Lemma 1.1. Let B € R™*™ be a Z-matriz. Then, B is an M-matriz if and only if one of the
following two statements is true.

(i) B is monotone, i.e., if Bv >0, then v > 0.

(ii) There ezists v > 0 with Bv > 0.

Lemma 1.2. Suppose that B € R™*™ is a Z-matriz. Let T C {1,2,--- ;m} and Z # (). Then, the
following statements are true.

(i) Let B be an M-matriz. Then, Bz is an M -matriz.

(ii) Let Brz be an M-matriz and W € R™*™ be defined as follows:

{ B;, if ieT,
W; =

e;, otherwise.

Then, W is an M-matriz.

Proof. Let B be an M-matrix. Then, Bzz is a Z-matrix and Bzze < 0, where Z¢ = {1,2,--- ,m}/Z.
Moreover, one obtains from Lemma 1.1 that there is a vector v € R such that v > 0 and Bv > 0.
Note that (Bv)z = Bzzvz + Brzevze. It follows that Brrvr = (Bv)r — Brzevze > 0, where the strict
inequality is due to the facts that (Bv)z > 0, Bzze < 0, and vze > 0. Recall that Bzz is a Z-matrix
and vz > 0. We conclude from Lemma 1.1 that Bzz is an M-matrix.

Since Bz is an M-matrix, it follows from Lemma 1.1 that there is a positive vector v € Rl such
that Bzzv > 0. Define a vector v(e) € R™ such that vi(e) = v; for i € Z and v;(e) = € for i ¢ T.
Then, we get by a simple calculation that v(e) > 0 and Ww(e) > 0 for any € > 0 sufficiently small.
Recall that W is a Z-matrix. We conclude from Lemma 1.1 that W is an M-matrix. O

2 On the least element solution of ZLCP (1.2)

In this section, we shall obtain some new characterizations for the least element solution of ZLCP

(1.2) and propose a Newton method for solving ZLCP (1.2).

2.1 Characterizations for the least element solution of ZLCP (1.2)

In this subsection, we study characterizations of the least element solution of ZLCP (1.2). We first

give a lemma.



Lemma 2.1. Let x* € R™ be the least element solution of ZLCP (1.2). Then, the following statements
are true.

(1) If there exists an index i such that a; > 0 and g; <0, then x¥ > —q;/a;;.

(11) If there exists an index i such that a; <0, then x} = 0.

Proof. Statement (i) is from [5, 9] and we omit the proof here.

(ii) Assume for contradiction that x} > 0. Since z* is the least element solution of (1.2), one has

i >0, (A" +¢q);=0 and 2z >0, (Az"+¢q); >0, VI#i. (2.1)
Let Z = 2* — zfel. Then, it follows that #; = 0 < x} and #; = 2} > 0 for any [ # 4, which mean that
0 <z <z*and z # z*. Recall that a;; < 0 and a;; < 0. One can obtain from (2.1) that

(AZ + q)i = auZi + 3 aij®j + ¢ = ayx] + ) aix; + ¢ — agz] > (Az*™ +q); = 0,
J#i

J#i
(AZ +q); = auTi + ) ay;Zj + q = agx} + ) alja:;-‘ +q —ayz; > (Az* +q); >0, VI#i.
JF#i J#i

Therefore, it holds that AZ + ¢ > 0. This, together with the fact that z > 0, imply z € FEA(A, q).
Notice that T < z* and T # z*. One can deduce that x* is not the least element solution of ZLCP

(1.2), which yields a contradiction. Therefore, it must hold that x}, = 0. The proof is complete. O
Without loss of generality, we make assumptions on A € R™*™ and g € R" as follows.

Assumption 2.1. All diagonal elements of A € R™" are positive and there exists an index i such

that ¢; < 0.

Let € R™. In the remaining part of this section, define
I(x) £ {i] 2 >0},  J(x) = {i|a; =0}

It has been verified by Chen and Xiang [7] that if 2* € R" is the least element solution of ZLCP
(1.2), then the principal submatrix A7(2*)z(2>) 18 nonsingular. However, the converse of this result

is not necessarily true. The next theorem presents a sufficient and necessary condition for the least
element solution of ZLCP (1.2).

Theorem 2.1. Let A and q in ZLCP (1.2) satisfy Assumption 2.1. Suppose that z* € R™ is a
solution of (1.2). Then, x* is the least element solution of ZLCP (1.2) if and only if Azg)z(z+) is

an M-matriz.

Proof. Suppose that z* is the least element solution of ZLCP (1.2). Notice that A and ¢ satisfy
Assumption 2.1 and that A is a Z-matrix. One can obtain by Lemma 2.1 (i) that Z(z*) # (), which,
together with the fact that A is a Z-matrix, means that Az(,«)z(,+) is also a Z-matrix. Therefore, it
follows from Lemma 1.1 that to prove Az(«yz(,+) is an M-matrix, it suffices to show that Az, <)z,

is monotone. Assume for contradiction that Az(,«)z(,+) is not monotone. Then, we can obtain by



Lemma 1.1 that there exist a vector w € Rl where |Z(z*)| denotes the cardinality of Z(z*), and
an index 77 such that

Az () (@)W = 0, w;; < 0. (2.2)

Consider the following ZLCP
v >0, A7) (@)Y T 9z(2r) = 0, VI [Az(eyz(@ )V + az@s)] = 0. (2.3)

Recall that z* is the least element solution of ZLCP (1.2). Then, L7 () satisfies that

Ty >0, Az T T 4z =0,
which, together with (2.2), imply that there exists a constant § > 0 sufficiently small such that

Therefore, x}(x*) + 6w € FEA(Az(p\1(2+)) 4(2+))> Where FEA(Az(y)7(4+), @z(2+)) 18 a feasible region
of ZLCP (2.3). Moreover, LTy € FEA(Az(z+)Z(2+)s @7(2+))- Observe from (2.2) that w;, < 0. It
follows that

[27 () + 0wliy = [T7(uniy + dwiy < [27(pn]is-
Recall that Az(,«)z(y+) is a Z-matrix and FEA(Az(z)z(2+), 4z(2+)) # (). Tt follows from Proposition
3.11.3 of [9] that min(a% ., + 6w, 27 (,.)) € FEA(Az(z+)z(s), ¢z(s+)) and ZLCP (2.3) has a solution
7 € RIZ@)I that satisfies v < xax*) and v # :c}(x*). Define a vector T € R” by

Vi, if 1€l *7
ji:{fu if i € Z(x*) (2.4)

0, otherwise.

Then, 0 <z < z* and T # x*. Moreover, by (2.4), one has

(AZ + Q) 1(%) = AZ(e)Z(@)TZ(e*) T AZ(2) T (@) T T (%) T 4T(a*) = AT(@*)Z(2*)V T AT(2*) (2.5)

and

(AZ + @) 7(2*) = AT (@) T(@)TT() T AT (@) T @) TT (@) T 47@") = AT(@)T@)0 + 47 (26)

On the other hand, noticing that v is a solution of ZLCP (2.3), 0 < v < a:}( ) Az <0, and

:U}(x*) = 0, one derives '
Az(24)T(2*)0 + qz(z+) = 0 (2.7)

and
A7)0 + Q7@ = Aj(m*)z(m*)x}(x*) + 47 = (Az* 4+ q)j(m*) >0, (2.8)
where the last inequality in (2.8) follows from the fact that x* is a solution of ZLCP (1.2). By
combining (2.5), (2.6), (2.7), and (2.8), one further obtains that Az + ¢ > 0, which, together with
Z > 0, implies that £ € FEA(A, ¢). Recall that v < x;( ) and v # x;@*). Then, z* cannot be the

x*

7



least element of ZLCP (1.2), which yields a contradiction. Therefore, Az(y+)z(;+) must be monotone.
Recall that Az(,«z(,+) is also a Z-matrix. One can obtain by Lemma 1.1 that Az(«z(;+) is an
M-matrix.

Conversely, suppose that Az(z«)z(,+) is an M-matrix. For any € FEA(A, g), one has
T 7 (2%) >0= l’}(x*), (A.I' + q)I(m*) >0= (A.Z'* + Q)Z(:L‘*)y

which imply that
and
Az(aT(@)TT(@r) T AL T (0TI (2%) T (%) 2 AT T T T AT T (@) T 7 (@) T WT@*)-

Recall that Az(z+)7(+) < 0. It follows from (2.9) that

AZ(@) 1) [TT(er) = T7(ar)) 2 —AT@) 7 @) [T @) = TG (n)] 2 0-

Since Az(y+)z(y+) is an M-matrix, one has by Lemma 1.1 that xz(,«) > x;(:c*), which, together with
(2.9), implies that = > x*. Therefore, x* is the least element of FEA(A,q), that is, z* is the least
element solution of ZLCP (1.2). O

For any x € R", denote
a(z) 2 {i | (Az+q)i <}, Ble) £ {i| (Az+ @i =z}, (@) = {i | (Az + )i > i}, (2.10)
and
aco(z) ={i € a(z) | (Az + q); < 0}.

Let ig € B(z) and i € aco(x). If there exist indices i1,42, - ,ir—1, where i; € a(x) U S(x) for
l=1,2---,L—1,such that a;;, , <0foralll=0,1,---,L—1, then we say that iy is connected to

ir. We say that iy is connected to a<o(x), if there is an index i € a<o(x) such that iy is connected
to i. Define a subset 3(zx) of 3(x) by

B(x) = {i € B(x) | i is connected to ao(z)}.
Let 2* € R™ be the least element solution of ZLCP (1.2). Define a set S(A,q) C R™ by
S(A,q)={zeR" |z <z", z;(Ax+q); <0, Vi=1,2,--- n}. (2.11)

Proposition 2.1. Let A and q in ZLCP (1.2) satisfy Assumption 2.1. Suppose that ZLCP (1.2)
has a solution and that x* € R™ is the least element solution of ZLCP (1.2). Let x € S(A,q). Then,
a(r) U B(z) C Z(x*) and A () UB(x)a(z)Ud(z) 18 an M-matriz. Moreover, if x € S(A, q) is a solution
of ZLCP (1.2), then x is the least element solution.



Proof. Let x € S(A,q). Without loss of generality, let us assume that z; < 0 (otherwise, one has by
the fact < 2* that 27 > x; > 0 and thus ¢ € Z(2*)). Notice that z;(Az + ¢); < 0. One has z; =0
or r; < 0 and (Az + q); > 0.

Let i € a(x) be chosen arbitrarily. Then, z; = 0 and (Az 4 ¢); < 0. Since x* is the least element
solution of ZLCP (1.2), one has Az* + ¢ > 0, which, together with (Az + ¢); < 0, yields

4} + Y aga; + g = (A" 4 q)i > 0> (Az + q)i = auxi + Y aya; + ¢
J#i J#i

Recall that a;; > 0, a;; < 0 with j # 4, x; = 0 and 2* > x. One can deduce from the last formula that
x} > 0, thereby yielding ¢ € Z(z*). It follows from the arbitrariness of i € a(x) that a(z) C Z(z*).

Let ig € B(x) be chosen arbitrarily. Then, iy is connected to a—o(x), which means that there
exist indices i; € a(xr) U B(z) (I = 1,2,---,L — 1) and iy € a<o(r) such that a;;,, < 0 for all
I =0,1,---,L — 1. Recall from the facts x € S(A,q) and i;, € aco(z) that (Ax + ¢);, < 0 for
1=0,1,---,L—1 and (Az + ¢);, <0, which, together with Az* 4+ ¢ > 0, mean that

azm( .’L'zl = Zam .’L", VZ:()’l,...’L_l
J#u
and
alLlL( sz > - Z CLZL] [L" .
J#iL

Notice that a; > 0 and a;; < 0 for any ¢ and j # ¢ and that 2* > z. One further obtains
* ) Fiirgr ] _
T =y > ———— (T~ Ty, vi=0,1,---,L—1,

.. U+1
Qiyig

and

*
x;, —xi, > 0.

Since ig € B(x) and x € S(A, q), one has z;, = 0, which, along with aiiy,, <0forl=0,1,---,L—1,

imply that xj > 0. That is, ip € Z(z*). By the arbitrariness of 49, we deduce that B(z) C Z(x*).
The above discussion shows that a(z)U B(x) C Z(z*). This, along with Lemma 1.2 and Theorem

2.1, means that A, ,yU3(z)a(2)uf() 18 an M-matrix. If z € S(4, g) is a solution of (1.2), then B(z) =10

and one can deduce from Theorem 2.1 that x is the least element solution. The proof is complete. [

2.2 A Newton method for solving the least element solution of ZLCP (1.2)

In this subsection, we propose a Newton method for solving the least element solution of ZLCP (1.2).
Under suitable conditions, we study the convergence of the method. In particular, we show that the
method can find a vector Z € R" such that Z € S(4, ¢) and || min(z, AZ + q)|| < n, where n > 0.

The details of the Newton method are presented as follows.

Algorithm 2.1.



0. Input n > 0 and (¥ € S(A4,q). Let o® = a(z®), 8% C () and 4° = {1,2,--- ,n}/(a’UB’),
and set k := 0.

1. Find 2z D e R™ by solving the following system of linear equations

Aakak Aakﬁk Aak,yk Tk duok
Agrar  Apgrge  Agryk rge |+ | as | =0 (2.12)
0 0 I Tk 0

2. Stop if || min(z* Y, Az*+Y 4 ¢)|| < n; otherwise, choose

F(z(+1)

akJrl — a(x(k+1))’ BkJrl C 6(x(k+1)) and ,yk+1 _ {1’2’ . ,n}/(ak+1 Uﬂk+1).

3. Set k:=k+ 1, and go to Step 1.
End.

Proposition 2.2. Let A and q in ZLCP (1.2) satisfy Assumption 2.1. Suppose that ZLCP (1.2) has
a solution and that ©* € R™ is the least element solution. Let ¥ be the current iterate satisfying
that F(z®)) # 0 and 2®) € S(A, q). Assume that % C B(z*)). Then the system (2.12) has a unique

solution z*+t1) . Moreover, z®) < (-1 < g% oF C oFt1, and z*+t1) € S(4, q).

Proof. Suppose that z(*) is the current iterate satisfying that F(z(*)) # 0 and z*) € S(A4, q). Since
of = a(z®) and g*F C B(z®), it follows from Proposition 2.1 and Lemma 1.2 that Apkugkakygr and
AF in (2.12) are M-matrices and the system (2.12) has a unique solution z*+1).

It follows from (2.12) that x(jf U — 0. Observe that 75 > 0. T of Ut = 0, then 2* >

a*tD; otherwise, (Az* + q)grge = (AxFHD + q) ige and then, Agrgraruge (2F — 2% D) e gn >
—Agryghar (T° = $(k+1))7k > 0, which, along with the fact that A,k grorpr is an M-matrix and
f;tlﬁ)k and hence z* > z(**1)_ On the other hand, since z(*)
S(A,q), we have ng) < 0 for any i € v* and (Az® + ¢); < 0 for any i € a* U 8*. Observe from

(2.12) that 2D = 0 for any i € v* and (Az*+t1) 4 ¢); = 0 for any i € o* U BF. If oF U BF = 0,

7

then z(*t1) > 2(); otherwise, it follows that (Az(*+1 4+ Q)akupe = (Az®) 4 q)qkupe and hence,

Lemma 1.1, means that xzkuﬂk >

AkUgkak gk (x(kH) — x(k))akuﬁk > —Agkugkak (l‘(k'H) — l'(k)),yk > 0, which, along with Lemma 1.1,

(k+1) > xgi)uﬁk and hence x(++1) > (). The above discussion shows that z(*) <

means that T ok

Let of # @ and i € o* be chosen arbitrarily. It follows from z(*) € S(A4,q) that xl(k) >0. If

a:z(k) > 0, one has a:EkH) > 0, which, along with (Az*+Y 4 ¢); = 0 (see (2.12)), implies that i € a#*1;

otherwise, one has by (2.10) and (2.12) that (Az*+1) +¢); = 0 > (A2 + ¢);, which means that

xl(-kﬂ) > — > ajj (xg-kﬂ) — a;;k))/a,-i > 0 and hence, i € o**!. By the arbitrariness of 4, one concludes
J#i

that of C oFtL,

10



Observe that (Az*+D + ¢); = 0 or 2™ = 0 for any i and 2*+1) < z*. Tt follows from (2.11)

i

that z(*t1) € S(A4, q). The proof is complete. O

Proposition 2.2 shows that Algorithm 2.1 is well-defined as long as ZLCP (1.2) has a solution
and g* C j (x(k)) for each k. Next, we establish a global convergence theorem of Algorithm 2.1.

Theorem 2.2. Let A and q in ZLCP (1.2) satisfy Assumption 2.1. Suppose that ZLCP (1.2) has a
solution and that z* € R™ is the least element solution. Assume that {x®)} is a sequence of iterates
generated by Algorithm 2.1 and that B* satisfies that B* C B(ac(k)) for each k. Then, there exists

some K < n such that z(E+1) = z*,

Proof. Since {2(®)} is generated by Algorithm 2.1 and % C S(x(®)), one can get by Proposition 2.2
that o C o1 C {1,2,--- ,n} for any k, which implies that there is a positive integer K < n such

that o1 = . Therefore, one has

A =0, KD 50, ve okt

%

and
(K+1) _ 0, ViegK+ly K+

)

AgE) L g >0, =z

which mean that F(z(5*+1D) = 0, that is, 25+ is a solution of ZLCP (1.2). Observe from Proposition

2.2 that zE+Y < z*. Therefore, one has z(5+1) = 2*. The proof is complete. O

3 A generalized Newton method for solving DLCS (1.3)-(1.4)

In this section, we propose a novel generalized Newton method for solving DLCS (1.3)-(1.4) and

study its convergence. The details of the method are presented as follows.
Algorithm 3.1.

0. Input € > 0 and a sequence {1} C Ry such that n; — 0. Let u® = 2! and ¢° = Bu® + g(t;41).
Set k:=0.

1. Find a o* € S(A, ¢*) by solving the following ZLCP
v >0, Av + 4" >0, v (Av+¢*) =0 (3.1)

such that
| min(o*, Av* + ¢*)|| < . (3.2)

2. Compute Au and Av by solving the following system of linear equations

G (uF, 7 ( i“ ) — _F(u", "), (3.3)

where G(u*, o¥) and F(u*, ") are defined by (1.9)-(1.10) and (1.8), respectively.

11



3. Let
uFH = uF + Au, P =08 £ Av and  ¢FH = BuFT 4 g(ta). (3.4)

4. Stop if || min(v**+!, Avk*! 4 gF+1)|| < e. Otherwise, set k := k + 1 and go to Step 1.
End.

Remark 3.1. Compared with the existing Newton method (e.qg., see [2, 3, 4, 16, 22, 23, 24, 28, 29]),
we have added Step 1 in Algorithm 3.1, which, as seen later, turns out to be crucial in generating a

nonsingular generalized Jacobi matrix and globalizing the proposed method.

Let
k= [1Q| + LallC|l|IB]|, (3.5)

where

La = max{||A;}|| | Aaa is nonsingular for o € {1,--- ,n}}. (3.6)
For convenience, we denote the diagonal matrix D defined in (1.10) by D}, for the vector pair (u*, o%),
ie.,

Dy, = diag(df,--- ,d¥),  dF =

)

Lo > (A5 + )
{, oF > (AP + ¢F),, 57

0, otherwise.

The following lemma follows directly from (3.7), (2.10), Proposition 2.1 and Lemma 1.2.

Lemma 3.1. Let k > 0. Suppose that ZLCP (3.1) has a solution and v* € S(A,q"). Then,
I — Dy + DiA is an M-matrix.

The following proposition shows that Algorithm 3.1 is well-defined.

Proposition 3.1. Assume that h and k satisfy that hk < 1. Let k > 0. Suppose that ZLCP (3.1)
has a solution and % € S(A, ¢*). Then, the following statements are true.
(i) The following matriz Vi, is well-defined

Vi =1I—h(Q— C(I — Dy + DA)"'DyB). (3.8)

Moreover, Vi, is a nonsingular matriz satisfying |V, || < 1/(1 — hk).
(ii) The G(uF, o) in (3.3) is nonsingular, and

I —hC( — Dy, + Dy A)~}
0 I

Vi 0

G(u*, %) = )
( ) DB I — Dy + DA

(3.9)

Proof. (i) Since ZLCP (3.1) has a solution and o* € S(A4, ¢*), one can obtain from Lemma 3.1 that
I — Dy, + Dy A is an M-matrix, which means that Vi given in (3.8) is well-defined. Notice from (3.5)
and (3.6) that ||Q — C(I — Dy + Dy A) 1Dy B|| < k. In view of hk < 1, it follows directly from Lemma
2.3.2 of [18] that V} is a nonsingular matrix satisfying HVI;lH <1/(1 - hk).

12



(ii) Recall that I — Dy + DA is an M-matrix. One can derive from (1.9) that

I —hC(I — Dy + DyA)~
0 I

I —hQ +hC(I — Dy + Dy A)"'DyB 0
DB I - D+ DA

Notice that Vi, = I — hQ + hC(I — Dy, + D A)~' Dy B and V}, is nonsingular. Therefore, G(u*, o%) is

nonsingular and it can be expressed in terms of (3.9). The proof is complete. O

Proposition 3.2. Let k > 0. Assume that ZLCP (3.1) has a solution. Suppose that v**1 and ¢+
are generated by Step 3 of Algorithm 3.1. Then, v**1 € S(A, ¢**1).

Proof. Let k > 0. It then follows from (3.7) that
min(o¥, At* + ¢*) = (I — Dy)o" + Dp(AT* + ¢¥), (3.10)
which, together with (3.3) and (3.4), implies that

(I . Dk)vk'H + Dk(AUk'H + qk—f—l)
= (I — Dy)o* + (I — Dy,)Av + Dp(A9* + ¢* + AAv + BAw)

= (I — Dy.)o* + Dy (A" + ¢*) + (I — Dy + Dy A)Av + DyBAu (3.11)
= (I — Dy)o"* + Dy (A" + ¢*) — min(o*, A" + ¢¥)
=0.

Therefore, one can obtain from (3.7) that

R (AP MY =0, Vi=1,2,...,n. (3.12)
On the other hand, let y(u**!) € SOL(¢**1, A) be the least element solution. Then, one has

(I = Dp)y(**h) + Dp(Ay(u"*t) + ¢*+1) > 0,
which along with (3.11) yields

(I — Dy + DkA)y(uk'H) > (I — Dy + D}cA)vk—H.

Notice that ZLCP (3.1) has a solution and ©* € S(4,¢*). One can derive from Lemma 3.1 that
I — Dy, + DA is an M-matrix. Therefore, one gets by Lemma 1.1 that y(u**1) > v**1, Combining
this with (3.12) and (2.11) yields that v**! € S(A, ¢**1). The proof is then complete. O

Remark 3.2. Proposition 3.2 shows that v* (k > 1) can be chosen as an initial iterate when Algo-
rithm 2.1 is applied to solve ZLCP (3.1).

Proposition 3.3. Assume that h and k satisfy that hk < 1. Suppose that ZLCP (3.1) has a solution.
Let u**1 be generated by Step 3 of Algorithm 3.1. Then,

Wt =ub = VI - hQ)ut = hO — (™ + hf (1)), (3.13)
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where Vi, is defined by (3.8) and
oF = —(I — Dy + DpA) "1 Dyg. (3.14)
Moreover, for any x € R™,
WMt — 2 = V(I — hQ)x + hO(I — Dy, + Dy A) ' Dy(Bx + g(ti41)) — 2™ — hf(ti41)]. (3.15)
In particular, if ni, = 0 in (3.2), then O is the least element solution of ZLCP (3.1).

Proof. Let hx < 1. Tt follows from (3.3) and (3.9) that
Vi 0

Au
DyB I—Dy+ DA ( Av )
B (I — hQ)uF — hOv* — Mt — hf(t;11) + RC(I — Dy, + Dy A)~ min(vF, Av* + ¢F)
o < min(o%, A% + ¢¥) ) ’

which, together with (3.10), means that
Vilhu = —[(I — hQ)u* + hC(I — Dy, + D A) " Dig® — 2 — hf(t41)). (3.16)

Observe from Proposition 3.1 that Vj is nonsingular. This, along with (3.16), Step 3 of Algorithm
3.1 and (3.14), yields (3.13).
Let x € R™. Then, one has

T —p =k —x — V(T - hQ)uF — hCF — (2™ hf(th))]
=V ' Vidk — Vi — (I — hQ)u® + hCo* + 2™ + hf (1)),

This, together with (3.8) and (3.14), implies that

W — 2 =~V ' [Viw + hC(I — Dy + DpA) ' Dig(tier) — 2™ — hf (ti41))]
= -V, (I = hQ)x + hC(I — Dy, + Dy A) ' Dy(Bx + g(t141)) — 2™ — hf (ti11)).

In particular, if np = 0 in (3.2), one can derive from Proposition 2.1 that 7* is the least element
solution of ZLCP (3.1), which, together with (3.10) and (3.14), means that ©¥ = ©*. The proof is
then complete. O

Let
s h Q™ + f)[l + LallCll|| Bz"" + g(t)|| + Lyh + Lg| B|I ™)

1—hk

v (3.17)

Proposition 3.4. Let h and k satisfy that hk < 1. Assume that there exists a vector y(u) €
SOL(q(u), A) for each u € U(z™! ~). Then, Algorithm 3.1 generates a sequence of iterates {uF}
which belongs to U(z™!, ).
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Proof. Note that u® = 2" € U(2™! ). Without loss of generality, let u* € U(z™!,v). Then, we

can obtain by the assumption that ZLCP (3.1) has a solution. Recall that hx < 1. It follows from

k+1

Proposition 3.3 that u"** can be expressed in the form (3.13). Moreover, one has by (3.15)

T A ) (th’l + f(ti41) — C(I — Dy, 4+ Dy A)~1Dy[Bz™! + g(tl+1)]) : (3.18)

Recall that f and g are Lipschitz continuous functions with Lipschitz constants L; and L, respec-

tively. One has

Q" + f(tre) | < 1Qa™ + Ft)ll + 1 f (terr) — F)I < Q2" + f(t) ]| + Lyh

and
|Bz™ + g(tip1) |l < 1B + g(t)l| + llg(tisa) — g(t)|| < || Ba™ + g(t)|| + Lgh.

Observe from (3.6) and (3.7) that ||(I — Dp+ Dy A) "1 Dy|| < La. In view of this, the above inequalities

and (3.18), one can easily see that

HukH _ xh,l

<AV (1@ + Fll+ LalCHI B + g(t)| + Leh + LaL|ICIR) . (3.19)

Notice that hx < 1 and B # 0. It follows from (3.5) that LA||C||h < ||B||~!. In addition, we can get
by Proposition 3.1 that ||V, || < 1/(1 — k). These, together with (3.19) and (3.17), imply that

kit gty < QM+ £+ LAICHIBa + gt + Lyh + L BI™)
1— hk i

Thus, u**! € U(z"!, 7). Since u® = 2! € U(2™!,~), we can conclude by induction that Algorithm

3.1 generates a sequence of iterates {u*} which belongs to U(z™!,~). The proof is complete. O

Remark 3.3. The parameter v obtained here is slightly different from the one given in [7]. In-
deed, the authors in the proof of Lemma 3.1 of [7] incorrectly viewed y™ = v(z™?), where y™* €
SOL(Nz"? + g(ty;), M) and v(z™?) € SOL(Na" + g(thiv1), M), and ||H(u) — 2™ < h(]|Azht +
Byt + f(tnic)ll + (Al + LI BIIN|)Y + LL,||B||R) if v(z™%) is replaced by y™i. Additionally,
y" = —(I — Dy, + D A) " D [Bx™! + g(t141)] if me = 0 in (3.2). Finally, noting that the value of
f(tix1) is dependent on h, we replace f(t;+1) by f(t;) via using the Lipschitz continuity of f.

The following lemma is from [7].

Lemma 3.2. Let h and k satisfy that hk < 1. Assume that there is a vector y(u) € SOL(q(u), A) for

each v € U(z™,~). Then, the nonsmooth equation (1.6) has a unique solution ™'t € U(xMt ~).

Theorem 3.1. Assume that h and k satisfy that h < 1 and that there is a vector y(u) € SOL(q(u), A)

for each u € U(z™!,~). Let
__ 2LalCl|B]

3.20
Ty (3.20)

where
Ly = (1+LA)(1—|- ||A||) (3.21)
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Suppose that 0 < 7 < 1. Then, the sequence {u¥} generated by Algorithm 3.1 converges to x/!*+1.

Moreover, if g, = 0 for any k, {u*} converges Q-linearly.

Proof. Since hx < 1 and there is a vector y(u) € SOL(q(u), A) for each u € U(z™!,~), we can derive
from Lemma 3.2 that equation (1.6) has a unique solution z*1 € U (2!, ~), or equivalently, DLCS
(1.3)-(1.4) has a solution (z™!*1, y(x™+1)). This, together with Proposition 3.3, yields that

uM g = V(- hQ)a™ T — 2™t — hf (t101) + hO(I — Dy + Dy A) " Dy [Ba™ T 4 g(t141)]).

Recall that hCy(zM!*1) = (I — hQ)2z™H1 — 2t — hf(t;1). Tt follows that

Wkl phil+
= —hV; 'Cly(a""1) + (I — Dy + Dy A) " Dy(Ba"*1 + g(t141))] (3.22)
= —hV, 'C(I — Dy, + Dy A) " [(I — Dy + Dy A)y(a") + Di(Ba™*! 4 g(t144))]
= —hV 'C(I = Dy + Dy A)"M(I = Dy)y(a"1) + Dy(Ay(at1) + BahH 4 g(t141))],
which means that
Hukz—i—l _ xh,l—HH
< AV, Ol = Dy + DiA) ™ [(I = Di)y(a™1) + Di(Ay(a™) + B+ g(t10))] ).
(3.23)
Notice that (z™!*1, y(z"!*1)) is a solution of DLCS (1.3)-(1.4). Tt holds
(I — D)y (a1 + Dy [Ay (21 + BaPH 4 g(t101)] > 0. (3.24)

On the other hand, since % € S(A4, ¢*), one can see from (3.10) that
(I — Dy)v" + Dy(AT* + ¢%) <0,

which, along with (3.24) and ¢* = Bu* + g(t;41), implies

0 < (I — Dy)y(a""*1) 4+ DpAy(z™1) + B + g(t141))
< (I — Dp)y(z™1) + Dy [Ay(™) + Ba™ 4 g(t1)] — (I — Dg)3" — Dy(AD" + ¢¥)
< (I = Dy + Dy A)[y(z1) — o*] + DB (2™ —uF). (3.25)

In addition, it follows from Lemma 3.1 that I — Dy + DA is an M-matrix, which means that
(I — Dy + DpA)~! > 0. This, together with (3.25), yields

0 < (I — Dy + DpA) (I — Dp)y(z™'") + Dy (Ay (™) + Ba™ 1 g(t114))]
<y — % + (I — Dy + D A) "' Dy B2 —uP).
Therefore, we can derive from (3.23) that
HukJrl . xh,lJrlH
< BV Oy (") = 0F + (I = Dy + Dy A) ' Dy B(a™H1 — b))
= W[V, Clllly(e™) = y(u®) + y(u*) — 0% + (I = Dy + Dy A) "' DB — b)), (3.26)
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where y(u*) € SOL(¢*, A) is the least element solution of ZLCP (3.1). Notice that y(z™!*1) ¢
SOL(Bz™*1 + g(t;41), A) is the least element solution. It follows from Theorem 2.3 of [7] that

ly (@) = y(@®)|| < Lall Bl — . (3.27)

In view of (3.6) and (3.7), one can observe that ||(I — Dy + Dy A) "1 Dg|| < La, which, together with
(3.26), (3.27) and Proposition 3.1, implies that

2hLA|Cl B hlC]l _
k+1 _ h,l+1 < A k _ h,l+1 k _ k ) 328
a1 — gt < ZREAICUNBL ey g MLy g (3.29)
Let Dy = (d1,- -+ ,dy,) be a diagonal matrix with diagonals

di:{ 1, yi(u) >0,

0, otherwise.

Then, we have
(I — Dy )y(u®) + Dye[Ay(u¥) + 4" =0

and
(I — Dy )" + Dyr (AT* + ¢*) > min(a¥, A5* + ¢¥),
which mean that
—min(", AT* + ¢*) > (I — Dy + Dy A) (y(uF) — o*).
It follows from Lemma 1.2 and Theorem 2.1 that [ — D + D r A is an M-matrix. This along with

the last inequality implies

y(uk) — % < —(I — D + DqkA)_l min (7%, Av* 4 ¢¥). (3.29)

I 0
—Agr I |’
where Z = {i | y;(u*) > 0} and J = {i | yi(u¥) = 0}. This together with (3.6) and (3.21) yields
(I = Dy + Dy A)~Y| < Lps. Recall that y(u*) € SOL(q*, A) is the least element solution of

(3.1) and o* € S(A,q"*). One has y(u*) — % > 0. These, along with (3.29) and (3.2), mean that
|y(u¥) — o¥|| < Lymg. Combining this with (3.28), one further obtains

On the other hand, we have by a simple calculation

1 0

(I — Dy + Dy At = .
0 Az

2hLallCI[ Bl hLy||C||
k1 _ b4l < A k _  hl+1 3.30
fut st — gttt < ZREARCINEN oy AL, (3.30)
Below, we prove that {u*} converges to z™!*!. Consider first the case ||B|| = 0, in which 7 = 0

and it follows from (3.30) that {u*} converges to x/!*1 since ny — 0. Next, consider the case
| B|| # 0, in which one can derive from (3.30) and (3.20) that

1
[ tY — P < 7 <||uk [ QHBan) ) (3.31)
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Let € > 0 be chosen arbitrarily. Recall from Algorithm 3.1 that n; — 0. Thus, there is a positive
integer K1 and a positive constant 7 such that n; < 2||B||(1 —7)e/(37) for any ¢ > K; and n; < n for
any . These, along with (3.31), mean that

k
1 .
Huk-i—l _ xh,H—lH < 7_k-i—lHuO N xh,l—i-lH + QHBH ZTk+1 1771'

_Tk+1||u0 hl+1H+ ZTk+1 zm_‘_ Z Tk—‘rl z
1] Ry

) (Tk—K1?7+ 2HB”(1_7)6> . (3.32)

< k1,0 _ o hiltl T
S e TV T 37

Since 0 < 7 < 1, there is a positive integer Ko > Kj such that 75! < ¢/(3||u® — 2™*1||) and
TF=K1 < 2||B||(1 — 7)¢/(37n). Combining these with (3.32), we obtain that for any k > K», it holds

HukJrl . xh,lJrlH <e.

hl+1  The above discussion shows that

By the arbitrariness of ¢, it follows that {u*} converges to
{u*F} converges to 2™t as 0 < 7 < 1.

Moreover, if n; = 0, we can conclude from (3.31) that {u*} converges Q-linearly. O

Theorem 3.2. Suppose that the sequence of iterates {uF} generated by Algorithm 3.1 converges to

i+l hl+1

Then, there exists a positive integer K such that u® = x Moreover, if for any k,

G(u*,v%) in (3.3) is an M-matriz, then K <n + 1.

Proof. Suppose that {uf} — 2™+ Let y(u*) € SOL(¢*, A) and y(z"'*1) € SOL(BzM!*! +
g(ti+1), A) be the least element solution. It follows from (3.27) that {y(u*)} — y(z™*1). Re-
call that {v*} is a sequence generated by Algorithm 3.1 and {n;} — 0. One has {||7¥ — y(«*)|} — 0.

Hence,
(0%} =y, (3.33)

which, along with the facts that {u*} — 2"+ and ¢* = Bu* + g(t;;1), implies that
{AT" + ¢*Y = Ay(a"FY) + B 4 g(t144). (3.34)

Let i be an arbitrary index satisfying that y; (z!*1) > 0. In view of y(2™*1) € SOL(q(2*1), A),
we can easily see that
[Ay(a"") + Ba" 4 (1)) = 0.

Therefore, one can derive from (3.33) and (3.34) that for k sufficiently large,
E > (AT" + ¢b),.
This, together with (3.7), means that for k sufficiently large, one has df =1 and
(I = D)y (™) + Di(Ay(a"*1) + Ba"H1 4 g(t141))]i = 0.
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Let i be an arbitrary index satisfying that [Ay(z™!*1) + Bz"!*! + g(t;,1)]; > 0. We can observe from
the fact y(z™*1) € SOL(q(x™*1), A) that y;(x™*1) = 0. It, along with (3.33) and (3.34), implies
that for k£ sufficiently large,
o < (AT* + ¢F);,
which, together with (3.7), means that d¥ = 0 and
(I = Di)y(a" 1) + Di(Ay(a™ ) + Ba" + g(t41)))i = 0.
The above discussion shows that for k sufficiently large, one has

(I — Dp)y(z"") + Dy(Ay(z") + B2 4 g(t111)) = 0.

In view of this and (3.22), one can easily conclude that there exists a positive integer K such that
WK = phil+1l
If G(u*,v%) in (3.3) is an M-matrix, one can obtain by a similar argument as in the proofs of

Proposition 2.2 and Theorem 2.2 that K < n + 1. The proof is complete. O

Remark 3.4. Proposition 3.3 shows that Algorithm 3.1 reduces to the generalized Newton iteration
(1.7) as m, = 0 in (3.2). The convergence results obtained here are stronger than those in [7].
Actually, Algorithm 3.1 converges and it can find the solution in at most finitely many iterations as
. — 0, and moreover, Algorithm 8.1 converges globally Q-linearly as ni = 0. See Theorems 3.1 and
3.2 for details. However, the Newton iteration (1.7) was only verified to converge superlinearly in
Theorem 3.2 of [7].

4 Numerical experiments

In this section we conduct some preliminary numerical experiments to test the performance of our
proposed algorithm (Algorithm 3.1). All ZLCPs involved in Algorithm 3.1 are solved by Algorithm
2.1. The codes of both algorithms are written in Matlab and all computations are performed on an
iFound desktop with a 3.00 GHz Intel Core E5700 processor and 2.00 GB of RAM.

Example 4.1. Consider a differential linear complementarity system in the form of (1.1), where
T =4, m=n? z(t) e R™, y(t) € R", f(t) = CY(t) € R™, g(t) = AU(t) € R, 29 € R™,

A=21—72W, B=-2I®e1), Q=cI@W +W 1), C:T%(I@@e{)

with c = 2 x 1073, n = % — 1, I € R™™ being the identity matriz, e1 being the first row of I, ®

denoting the Kronecker product, and

nxn
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k=1 k=2 k=3
=1 22175 0.1778 0.0000
=2 8.6956 0.0000 -
=3 4.6609 0.0330 0.0000
=4 3.3617 0.0000 -
=5 22778 0.0000 -
=6 1.7678 0.0024 0.0000
=7 1.3180 0.0000 -
=8 1.0075 0 -
[=9 0.8098 0.0000 -
=10 0.7239 0.0000 -

Table 4.1. The value of || min(v*, Av* + Bu* + g(t;))|| for 7 = 1/200 and h = 0.4.

Example 4.1 arises from the spatial semi-discretization of a parabolic Signorini problem in the

form of
cAu — Ou =0 in Qp:=Qx(0,7),
0<oul (u—1¢)>0 on Mrp:=Mx(0,T),
u=0 on Sr:=8x(0,T),
u(-,0) = up on Qp:=0Qx0,

where Q = (0,1) x (0,1), M = (0,1) x {0}, S = 902\ M, 9, denotes the outer normal derivative on
092, ¢ and ug are defined by

4/(1+1), if oy — 1/2] > 1/4,

w(xla ) = . . ’U,()(.fl,xg) 221‘11}2(1 —xl)(l—xg).
sin(27t), otherwise,

See [30] for details.

We discretize the above differential linear complementarity system by the implicit Euler scheme
with time step-size h and solve the corresponding DLCS at each time step by Algorithm 3.1. It
follows from Theorem 2.4.14 of [18] that A and G(u,v) in (1.9) are M-matrices for any u and v,
which, together with Theorem 3.2, implies that Algorithm 3.1 terminates in at most n iterations.
Below, we shall verify numerically the finite termination of Algorithm 3.1 and study numerically the
dependence of the number of iterations of two algorithms (i.e. Algorithm 2.1 and Algorithm 3.1) on
the parameters (i.e., n, 1) and the initial iterate z(1).

We first test the finite termination of Algorithm 3.1. We set ¢ = 107!° and 7, = 0 in Algorithm
3.1 and z(%) = 0 in Algorithm 2.1, and fix h = 0.4. Tables 4.1 and 4.2 list the values of || min(v*, Av*+
BuF + g(t;))|| for 7 = 1/200 and 7 = 1/400, respectively. We can see from these two tables that
Algorithm 3.1 terminates in at most five iterations even if the value of the last but one iterate is

large, which shows that Algorithm 3.1 possesses finite termination.
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k=1 k=2 k=3 k=4 k=5
=1 27535 0.3572 0.0799 0.0125 0.0000
=2 13.7797 0.0000 - - -
=3 75202 0.2374 0.0568 0.0078 0.0000
=4 51764 0.0000 - - -
=5 3.7057 0.0000 - - -
=6 3.0099 0.0043 0.0000 - -
l= 2.3691  0.0000 - - -
=8 1.8233 0 - - -
=9 1.6548 0.0000 - - -
=10 13925 0.0000 - - -

Table 4.2. The value of || min(v¥, Av® + Bu* + g(#;))|| for 7 = 1/400 and h = 0.4.

h=04 h=02 h=01 h=0.05
n=99 (2,19 (3,1.9) (2,1.675) (3, 1.35)
n=199 (3,2.3) (3,2.15) (3,1.975) (3, 1.8375)
n=399 (5, 27) (4,235 (4,215 (4, 2.0875)

Table 4.3. The (N,,, N,) for different n and h.
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h =10.04 h =0.02 h =0.01

W1 W2 W1 W2 W1 W2

n=099 (1.23,1.43) (1.24,1.09) (1.065,1.22) (1.065,1.07)  (1.05, 1.205)  (1.0525, 1.05)

n=199 (1.75,2.39) (1.75,1.63) (1.455,1.81) (1.46,1.065) (1.205, 1.42)  (1.2075, 1.02)

n=399 (2.03,2.79) (2.03,2.00) (1.865, 2.56) (1.875, 1.63) (1.605,2.115) (1.61, 1.0675)

Table 4.4. The (Ng1, Nyo) for different n and h.

We then study the dependence of Algorithm 3.1 on the parameter n. We set ¢ = 107% and g, = 0
in Algorithm 3.1 and z(®) = 0 in Algorithm 2.1. Table 4.3 lists the maximum number of iterations
(abbreviated as V,,) and the average number of iterations (abbreviated as N,) for different n and
h. We can see from Table 4.3 that the maximum number of iterations and the average number of
iterations increase at most linearly with n if h is kept fixed.

We finally test the dependence of the number of iterations of two algorithms on the parameter 7y,
and the initial iterate 2(?). We set the parameters (i.e., €, m) of Algorithm 3.1 and the initial iterate
2 of Algorithm 2.1 by the following two different ways:

(W1) e=10"19, 5, = 0 and (¥ = 0;

(W2) e =10710, pp, = k%l, 2 =0ask=0and 2 =51 as k > 1 with v*~! given in (3.4).
Table 4.4 lists the average number of iterations needed by Algorithm 3.1 (abbreviated as N,;) and
the average number of iterations needed by Algorithm 2.1 (abbreviated as N,2) per time step. We
can see from Table 4.4 that the average number of iterations needed by Algorithm 3.1 is almost the
same regardless of whether ZLCP (3.1) is solved exactly or inexactly but Algorithm 2.1 requires less
iterations as ZLCP (3.1) is solved inexactly.

5 Concluding remarks

In this paper we proposed a new generalized Newton method for solving a class of discrete-time
linear complementarity system in which the coefficient matrix of linear complementarity constraint
is a Z-matrix. We first derived some new characterizations of the least element solution of the
Z-matrix linear complementarity problem (ZLCP). In particular, we proved that a solution of the
ZLCP is the least element solution if and only if the principal submatrix corresponding to the nonzero
components of the solution is an M-matrix. This characterization is stronger than that obtained by
Chen and Xiang [7]. Then, we proposed a Newton method for solving the least element solution
of the ZLCP and study its convergence. Finally, we proposed a new generalized Newton method
for solving the discrete linear complementarity system which arises from the implicit time-stepping
scheme for differential linear complementarity systems. Under suitable conditions, we proved that
the proposed method has a globally linear rate of convergence and a finite-termination property.

Preliminary numerical results showed the efficiency of the proposed method.
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The current development of this paper is based on the assumption that the matrix A in the

linear complementarity constraint is a Z-matrix. It is worthy of a further research whether it can

be extended to the case where the matrix A in the linear complementarity constraint is a positive

semidefinite matrix and the case where the complementarity constraint is a Z-function complemen-

tarity problem.
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