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Abstract: In this paper, we revisit the bi-criteria portfolio optimization model where the short7

selling is permitted, and a trade-off is sought between the expected return rate of a portfolio and8

the maximum of the uncertainty measured by a general deviation measure for all the investments9

comprising a portfolio. We solve this bi-criteria model by first converting it into a collection of10

weighted sum piecewise linear convex programs, and then analyzing their optimality conditions.11

We not only provide explicit analytical formulas for all the efficient portfolios, but also explore12

as a whole the set of all the efficient portfolios and its structure such as dimensionality and distri-13

bution. We generalize the classical Two-fund Theorem by providing some collections of finitely14

many efficient portfolios to generate or estimate the set of all the efficient portfolios. We also15

notice that our efficient portfolios are almost the risk parity ones in the sense that the risks are16

allocated equally across the investments. Moreover, we illustrate the reliability of our model by17

carrying out Monte Carlo simulations to test the performance of some efficient portfolios versus18

inefficient ones.19

Keywords: deviation measure · bi-criteria optimization · portfolio selection · risk parity20

1 Introduction21

Portfolio optimization is of both theoretical and practical interest. In portfolio optimization, the22

total return rate
∑n

j=1 x jR j of a portfolio x is normally modeled as a random variable, where x j23

is the allocation for investment to the j-th asset whose return rate R j is a random variable. The24

foundation for this line of research was laid by Markowitz with his mean-variance model [6] .25

This model can be formulated as a bi-criteria optimization problem where a trade-off is sought26

between expected return and investment risk represented by variance, or equivalently by standard27

deviation. An analytic derivation of the mean-variance efficient frontier as well as the Two-fund28

Theorem can be find in Merton [26].29

Since then, as summarized in Sawik [19,20], this basic model have been extended or modified30

from three aspects. The first path is to simplify the type and amount of input data (Bertsimas31

and Pachamanova [27]). The second direction concentrates on the introduction of an alternative32

measure of risk (Markowitz [7], Konno [8]). Finally, the third relates to the inclusion of other33

criteria and/or limitations (Qi et al. [28], Kizys et al. [18]).34

Note that variance (or equivalently the standard deviation) is a debatable measure of risk. For35
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example, it is a symmetric measure that treats positive and negative deviations from the mean1

in the same way. But for investors, they are totally different. One brings the excess return of2

investment, while the other causes the investment risk. Several alternative risk measures have3

been proposed to better capture investors risk perception, including semivariance (Markowitz [7],4

Ogryczak and Ruszczynski [21]), the absolute deviation (Konno [8] and Konno and Yamazaki5

[9]), Conditional Value-at-Risk (Rockafellar and Uryasev [11]). Meanwhile, after capturing some6

commonalities of the existing risk measures, some axiomatic risk measures are proposed, includ-7

ing coherent risk measures (Artzner et al. [22]), reward measures (De Giorgi [23]), general devi-8

ation measures (Rockafellar et al. [12]). It is noted that, most risk measures mentioned above can9

be included in the framework of general deviation measures.10

Konno and Yamazaki [9] noted that the derivation of the covariance matrix in mean-variance11

model can be cumbersome and there are computational limitations in attempting to solve quadratic12

model in practice. They suggest employing linear objectives to alleviate these computational lim-13

itations, such as the work done by [4], [10] and [24]. In particular, Cai et al. proposed in [4] a14

different way of dealing with the uncertainty by first measuring the uncertainty in x jR j for all j15

by the absolute deviation measure, and then taking the maximum of all the individual uncertainty16

as the uncertainty associated with the portfolio x. Some observations can be obtained from [4]:17

all the efficient portfolios can be analytically derived, and they are not sensitive with respect to18

the expectations of the R j’s.19

Despite many benefits from the portfolio optimization model in [4], it should be pointed out20

that the short selling is not allowed for the model, and that the set of all efficient portfolios along21

with its structure has not been explored. This motivates us to revisit such a model with some new22

features. Firstly, the short selling is now permitted (i.e., the allocation x j can be negative). Sec-23

ondly, the uncertainty in a portfolio x is defined as the maximum of all the individual measures24

D(x jR j), whereD could be any proper deviation measure [12, Definition 1], not necessarily being25

the absolute deviation adopted in [4]. In particular, deviation measures which are not symmetric26

with respect to ups and downs can be adopted for our model to deal with the downside/upside27

uncertainty in a proper way, see Remark 2.1 for more details. Finally, in order to test the per-28

formance of the efficient portfolios versus the inefficient ones, we will carry out Monte Carlo29

simulations based on the assumptions that the return rate R j is an essentially bounded random30

variable, and that its realization value falls into some interval based on the estimated expected31

return. In this paper, we will not only provide explicit analytical formulas for all the efficient32

portfolios, but also explore as a whole the set of all the efficient portfolios and its structure such33

as dimensionality and distribution. We will generalize the classical Two-fund Theorem by pro-34

viding some collections of finitely many efficient portfolios to generate or estimate the set of all35

the efficient portfolios.36

Some new trends and developments in portfolio optimization outside the classical framework37

are also worth noting, including robust optimization (Shadabfar et al. [16], Cac.ador et al. [14]),38

multi-period portfolio optimization (Guo et al. [15]), research and development project portfolio39

selection (Mavrotas et al. [17]). In particular, Kolm et al. [25] paid attention to constructing risk40

parity portfolios. The risk parity approach in portfolio construction aims to build portfolios where41

the overall portfolio risk is diversified by allocating the risk equally across the different investment42

strategies and/or securities, which can be compared to equal weighted portfolios where x j = 1/n43

for all j = 1, . . . , n. In Remark 3.1 below, we will explain why the efficient portfolios generated44
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from our model are almost the risk parity ones.1

The rest of this paper is organized as follows. In Section 2, we introduce our bi-criteria2

piecewise linear convex portfolio optimization model. In Section 3, by analyzing the optimality3

conditions for a weighted sum parametric optimization problem, we derive some explicit analyt-4

ical formulas for all the efficient portfolios and discuss the structure of the set of all the efficient5

portfolios. In Section 4, by an example, we illustrate the set of efficient portfolios and the set of6

efficient frontier, and test the performance of the efficient portfolios versus the inefficient ones by7

doing some Monte Carlo simulations. In Section 5, we conclude the paper.8

Throughout the paper we use the standard notations of convex analysis; see the seminal book9

[2] by Rockafellar. The inner product of vectors x and y is denoted by 〈x, y〉. e j ∈ R
n is a vector10

whose j-th entry is 1 while all the other entries are zero. Let A ⊂ Rn be a nonempty set. We11

denote by conv A, aff A and cone A the convex hull, the affine hull and convex cone generated by12

A, respectively. Let λ ∈ R be a scalar and K ⊂ Rn be another nonempty set. Then the scalar13

multiple of A and the sum of A and K are respectively given by14

λA = {λx | x ∈ A},
15

A + K = {x + y | x ∈ A, y ∈ K}.

Let D be a nonempty convex set in Rn, We shall say that D recedes in the direction of y, where16

y , 0, if and only if x + λy ∈ D for every λ ≥ 0 and x ∈ D. The set of all vectors y ∈ Rn satisfying17

this condition, including y = 0, will be called the recession cone of D. The dimension of a convex18

set means that of its affine hull. A polyhedral convex set in Rn is by definition a set which can19

be expressed as the intersection of some finite collection of closed half-spaces. Let P ⊂ Rn be a20

convex polyhedral. Then x ∈ P is a vertex of P if and only if there is no way to express x as a21

convex combination (1−λ)y+λz such that y ∈ P, z ∈ P and 0 < λ < 1, except by taking y = z = x.22

Meanwhile, an extreme direction of P is defined to be a direction that cannot be expressed as a23

strictly positive combination of two linearly independent recession vectors of P. For an index set24

I, |I| represents the number of elements in I.25

A vector v is said to be a subgradient of a convex function f at x̄ with f (x̄) finite, written26

v ∈ ∂ f (x̄), if27

f (x) ≥ f (x̄) + 〈v, x − x̄〉 ∀x.

A random variable will be an element of L2(Ω) = L2(Ω,M,P), where the elements ω of Ω28

represent future states,M is the filed of measurable subsets of Ω, and P is a probability measure29

onM. In particular, the space L2(Ω) contains all constant random variables, R ≡ C. The letter30

C will always stand for a constant in the real numbers R, and any (in)equalities between random31

variables are to be viewed in the sense of holding almost surely. The essential infimum and32

supremum of R will be denoted simply by inf(R) and sup(R). We adopt the notion that33

R = R+ −R− with R+ = max{0,R}, R− = max{0,−R}.
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2 The portfolio optimization model34

In this section, we introduce our bi-criteria portfolio optimization model. Throughout the paper,35

for a random variable R, we denote by E(R) the mathematical expectation of R, and by D(R)36

the general deviation measure of R defined as follows.1

Definition 2.1. (General deviation measures, [12]). By a deviation measure will be meant any2

functionalD : L2(Ω)→ [0,∞] satisfying3

(D1) D(R + C) = D(R) for all R and constants C,4

(D2) D(0) = 0 andD(λR) = λD(R) for all R and λ > 0,5

(D3) D(R +R′) ≤ D(R) +D(R′) for all R and R′,6

(D4) D(R) ≥ 0 for all R, withD(R) > 0 for nonconstant R.7

Axiom (D1) is equivalent to D(R) = D(R − E(R)) for all R. Axiom (D2) is positive ho-8

mogeneity. The combination of (D2) and (D3) is the property known as sublinearity. It implies9

that D is a convex functional on L2(Ω). Axiom (D4) means D(R) = 0 for constant R, whereas10

D(R) > 0 for nonconstant R.11

Assume that an investor has one unit initial wealth, which is to be invested in n possible assets12

S j, j = 1, · · · , n. Let R j be the return rate of the asset S j, which is a random variable. Let x j13

be the allocation for investment to S j. Note that by allowing x j < 0 we are concerned with the14

situation where short selling is permitted. Thus, in our setting, any vector x ∈ Rn can be called a15

feasible portfolio provided that16
n∑

j=1

x j = 1

is satisfied. For any given feasible portfolio x, its total return rate
n∑

j=1

x jR j is a random variable,17

whose expectation is denoted by18

π(x) := E

 n∑
j=1

x jR j

 ,
which is a criterion that investors wish to maximize. Instead of measuring the uncertainty in the19

random variable
n∑

j=1

x jR j in a direct way, we prefer to do it in a two-step way: first measure the20

uncertainty in each random variable x jR j by virtue of some deviation measure, and then take the21

maximum of these deviation measures as the degree of uncertainty in
n∑

j=1

x jR j, i.e.,22

ω(x) := max
1≤ j≤n

D(x jR j),
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is a convex criterion that investors wish to minimize (the convexity of ω comes from that of23

D). Due to the nonnegativity and the positive homogeneity of D, the latter criterion can be24

reformulated as1

ω(x) = max
1≤ j≤n

max
{
x jD(R j),−x jD(−R j)

}
.

We assume that investors wish to maximize π(x) while minimizing ω(x), which are two criteria2

in conflict. Our portfolio optimization model can be formulated as a bi-criteria piecewise linear3

convex program4

minimize (ω(x),−π(x))

subject to
n∑

j=1

x j = 1,
(1)

or explicitly,5

minimize

max
1≤ j≤n

max
{
q

j
x j,−q jx j

}
,−

n∑
j=1

x jr j


subject to

n∑
j=1

x j = 1,

where the following notations are used throughout the paper:6

r j = E(R j), q
j
= D(R j), q j = D(−R j).

Remark 2.1. For an asset in a long position, the uncertainty below the expectation is undesir-7

able, while the uncertainty above the expectation is desirable. In contrast, for an asset in a short8

position, the uncertainty below the expectation is desirable, while the uncertainty above the ex-9

pectation is undesirable. In this regard, some deviation measures may fit better for our model10

than the others, e.g.,
√

E(E(R) −R)2
+ is more suitable than

√
E(R − E(R))2

+ in measuring the11

downside uncertainty in R. We list some deviation measures that fit our model and often appear12

in the literature as follows:13

(a) The standard deviationD(R) :=
√

E(E(R) −R)2;14

(b) The absolute deviationD(R) := E(|R − E(R)|);15

(c) The lower semi-absolute deviationD(R) := E(E(R) −R)+;16

(d) The standard lower semideviationD(R) :=
√

E(E(R) −R)2
+;17

(e) The lower range deviationD(R) := E(R) − inf(R);18

(f) The CVaR-deviationD(R) := CVaRα(R − E(R)) for some α ∈ (0, 1).19

We refer the reader to [12] for more derivation measures and their properties. When the deviation20

measureD is symmetric with respect to ups and downs such as the ones listed in (a)-(c), we have21

q
j

= q j for all j. However, when the deviation measure D is not symmetric with respect to ups22
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and downs such as the ones listed in (d)-(f), we may not have q
j

= q j for all j. When D is as23

listed in (b) and x j ≥ 0 for all j, we have24

ω(x) = max
1≤ j≤n

x j E(|R j − E(R j)|),

which is exactly the same as the l∞ risk function studied in [4, Definition 2.1].1

Remark 2.2. For any ξ > 0, we have2

Pr

π(x) −
n∑

j=1

R jx j ≥ ξ

 = Pr


 n∑

j=1

(
E(x jR j) − x jR j

)
+

≥ ξ


≤ E

 n∑
j=1

(
E(x jR j) − x jR j

)
+

/ξ

≤ E

 n∑
j=1

(
E(x jR j) − x jR j

)
+

 /ξ
≤ n max

1≤ j≤n
E

(
E(x jR j) − x jR j

)
+
/ξ,

where the first inequality follows from the Markov inequality. That is, the probability that the3

downside deviation of the random variable
n∑

j=1

x jR j from its expected return π(x) is greater than4

a pre-specified level is bounded by a constant (independent of the choice of x) multiplied by5

max
1≤ j≤n

E
(
E(x jR j) − x jR j

)
+
. (2)

This probability will be small if (2) is kept small, suggesting that we can use (2) to measure the6

degree of the downside uncertainty in
n∑

j=1

x jR j. Note that (2) is equal to ω(x) when the deviation7

measureD is given as in Remark 2.1 (c), and that (2) is less thanω(x) when the deviation measure8

D is given as in Remark 2.1 (b) and (e). Roughly, the degree of the downside uncertainty in9
n∑

j=1

x jR j can be ‘measured’ in some sense by ω(x). This is the reason why we employ ω(x) as a10

criterion to be minimized in our model.11

Recall that a feasible portfolio x is said to be efficient if there exists no feasible portfolio x′12

such that13

ω(x′) ≤ ω(x), π(x′) ≥ π(x),

and at least one of the inequality holds strictly. Accordingly, the function value (ω(x), π(x)) is said14

to be an efficient point in the risk-return (i.e., ω − π) plane. Throughout this paper, we denote by15

EP the set of all efficient portfolios, and by EF the efficient frontier which consists of all efficient16

points in the ω − π plane. In section 3 below, we will provide an analytic derivation of EP and17

EF.18
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3 Analytic Derivation of Efficient Portfolios and Efficient Fron-19

tier1

Throughout the paper, we assume that all assets are risky (i.e., q j, q
j
> 0 for all j), that

r1 ≤ r2 ≤ · · · ≤ rn−1 ≤ rn,

and that there exist some j and k such that r j , rk. To seek EP and EF for the bi-criteria piecewise2

linear convex program (1), one way is to convert(1) into a parametric optimization problem3

minimize λω(x) − π(x)

subject to
n∑

j=1

x j = 1,
(3)

where λ > 0 can be considered as an investor’s risk tolerance parameter-the larger the λ, the less4

risk the investor is to tolerate.5

In what follows, we denote by E(λ) the optimal solution set of (3). As (1) is a bi-criteria6

convex program, x is an efficient portfolio if and only if there is some λ > 0 such that x ∈ E(λ),7

see [5]. This entails that8

EP =
⋃

λ∈(0,+∞)

E(λ). (4)

The aim of this section is to derive EP and EF by exploring (3) and providing some analytical9

expressions for E(λ).10

To begin with, we introduce two functions which play crucial roles in our analytic derivation.11

In terms of the following notations:12

I := {1, · · · , n},
I+(t) := { j ∈ I | r j > t},
I0(t) := { j ∈ I | r j = t},
I−(t) := { j ∈ I | r j < t},
I0+(t) := { j ∈ I | r j ≥ t},

we define g : R → R by13

g(t) :=
∑

j∈I0+(t)

r j − t
q

j

+
∑

j∈I−(t)

t − r j

q j
,

and h : R → R by14

h(t) :=
∑

j∈I0+(t)

1
q

j

−
∑

j∈I−(t)

1
q j
,

and set
m := max{ j ∈ I | h(r j) > 0}, e := (1, · · · , 1)T ∈ Rn.

Moreover, we define15

x0,1 :=
(
1/q

1
, · · · , 1/q

n

)T
/h(r1),
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and for each 2 ≤ k ≤ m with rk−1 < rk, define xk−1,k by16

xk−1,k
j :=


−

1
h(rk)

1
q j

if j ∈ {1, · · · , k − 1},

1
h(rk)

1
q

j

if j ∈ {k, · · · , n}.

The following lemma, which is very helpful for our analytic derivation, follows readily from the17

definitions of g and h.1

Lemma 3.1. The following properties of g and h hold:2

(a) h is a decreasing upper semi-continuous step function with h(t) > 0 for all t ≤ rm and h(t) ≤ 03

for all t > rm. Explicitly, we have4

h(t) =



n∑
j=1

1
q

j

if t ≤ r1,

n∑
j=k

1
q

j

−

k−1∑
j=1

1
q j

if rk−1 < t ≤ rk,

−

n∑
j=1

1
q j

if t > rn,

which yields that5

h(rk−1) − h(t) =
∑

r j=rk−1

(
1
q

j

+
1
q j

) ∀t ∈ (rk−1, rk],

and6

h(rn) − h(t) =
∑
r j=rn

(
1
q

j

+
1
q j

) ∀t ∈ (rn,+∞).

(b) g is a continuous piecewise linear convex function. Explicitly, we have7

g(t) =



g(r1) + h(r1)(r1 − t) if t ≤ r1,

g(rk) + h(rk)(rk − t) if rk−1 ≤ t ≤ rk,

n∑
j=1

t − r j

q j
if t > rn.

(c) g(t) is strictly decreasing on (−∞, rm], and min
t∈R

g(t) = g(rm) > 0.8

The following lemma, which follows directly from [1, Exercise 8.31], is helpful for deriving9

optimality conditions for (3).10
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Lemma 3.2. Let x ∈ Rn\{0}. Then v ∈ ∂ω(x) (i.e., v is a subgradient of ω at x) if and only if11

x j =


−
ω(x)
q j

if v j < 0,

ω(x)
q

j
if v j > 0,

and1 ∑
v j>0

v j

q
j

+
∑
v j<0

−
v j

q j
= 1.

Our first finding is that the portfolio having the global minimum l∞ downside risk is the 1/q
j

2

portfolio strategy, which recovers the so-called 1/N portfolio strategy [3] when all q
j
are equal.3

Proposition 3.1 (global minimum l∞ downside risk portfolio). The unique optimal solution to4

minimize ω(x)

subject to
n∑

j=1

x j = 1,
(5)

is x0,1, for which ω(x0,1) = 1/h(r1) and π(x0,1) = r1 + g(r1)/h(r1).5

Proof. According to the optimality condition for convex optimization (cf. 8.15 Theorem of Rock-6

afellar and Wets (1998)), x ∈ Rn is a solution to (5) if and only if there exists some τ ∈ R such7

that8
n∑

j=1

x j = 1, (6)

and9

−τe ∈ ∂ω(x). (7)

We have x , 0, for otherwise (6) cannot be fulfilled. Applying Lemma 3.2, we confirm that10

τ = −1/h(r1) < 0, and that there is a unique vector x = x0,1 satisfying both (6) and (7). This11

completes the proof. �12

Now we are ready for providing an analytic derivation of E(λ), the optimal solution set of the13

parametric optimization problem (3).14

Theorem 3.1. The parametric optimization problem (3) has a nonempty optimal solution set E(λ)15

if and only if λ ≥ g(rm), in which case, x ∈ E(λ) if and only if each component x j can be written16

as17

x j =

1 − θ j

q
j

−
θ j

q j

 / n∑
i=1

1 − θi

q
i

−
θi

qi

 , (8)

where θ ∈ Rn is any vector satisfying18

(a) in the case of g(r1) < λ < +∞:19

θ j = 0 for all j,

i.e., E(λ) = {x0,1} in this case;20

9



(b) in the case of g(rk) < λ < g(rk−1) for some k ∈ {2, · · · ,m}:21

θ j =


1 if j ∈ {1, · · · , k − 1},

0 if j ∈ {k, · · · , n},

i.e., E(λ) = {xk−1,k} in this case;1

(c) in the case of λ = g(rk) with rk < rm:2

θ j =


1 if r j < rk,

0 if r j > rk,

and3

0 ≤ θ j ≤ 1 if r j = rk;

(d) in the case of λ = g(rm):4

θ j =


1 if r j < rm,

0 if r j > rm,
5

0 ≤ θ j ≤ 1 if r j = rm,

and6
n∑

i=1

1 − θi

q
i

−
θi

qi

 > 0.

Proof. In view of Lemma 3.1 (c), we have 0 < g(rm) ≤ g(rm−1) ≤ · · · ≤ g(r2) ≤ g(r1) < +∞, and7

g(rk) < g(rk−1) whenever rk−1 < rk ≤ rm. To fully characterize the optimal solution set E(λ) of the8

parametric optimization problem (3) for all λ > 0, we only need to consider cases (a)-(d) and the9

case that 0 < λ < g(rm).10

According to the optimality condition for convex optimization (cf. 8.15 Theorem of Rock-11

afellar and Wets (1998)), x ∈ E(λ), i.e., x is an optimal solution to (3) if and only if there exists12

some τ ∈ R such that13

〈e, x〉 = 1, (9)

and14

r − τe ∈ λ∂ω(x). (10)

Observing that x , 0 (otherwise contradicting to (9)), we have ω(x) > 0. Depending on the value15

of τ, we can divide {1, · · · , n} into three distinct subindex sets as follows:16

I− := I−(τ), I0 := I0(τ), I+ := I+(τ).

By Lemma 3.2, (10) holds if and only if17

x j =


−
ω(x)
q j

if j ∈ I−,

ω(x)
q

j
if j ∈ I+,

(11)

10



and18 ∑
j∈I+

(r j − τ)
1
q

j

+
∑
j∈I−

(τ − r j)
1
q j

= λ.

The latter equation can be written in terms of the function g as1

g(τ) = λ. (12)

By the definition of ω(x), we have2

−
ω(x)

q j
≤ x j ≤

ω(x)
q

j

∀ j ∈ I0. (13)

In view of (11), we deduce that (9) holds if and only if there are some θ j ∈ [0, 1] with j ∈ I0 such3

that4

x j =

−θ j

q j
+

1 − θ j

q
j

ω(x) ∀ j ∈ I0, (14)

and5 ∑
j∈I+

1
q

j

−
∑
j∈I−

1
q j

+
∑
j∈I0

−θ j

q j
+

1 − θ j

q
j

 =
1

ω(x)
. (15)

By the definition of h, we have6

h(τ) −
∑
j∈I0

θ j

 1
q j

+
1
q

j

 =
∑
j∈I+

1
q

j

−
∑
j∈I−

1
q j

+
∑
j∈I0

−θ j

q j
+

1 − θ j

q
j

 > 0, (16)

where the inequality follows from (15) and the fact that ω(x) > 0. According to Lemma 3.1 (a),7

the inequality in (16) holds for some θ j ∈ [0, 1] with j ∈ I0, if and only if, τ ≤ rm. By Lemma8

3.1 (c), we conclude that the equation (12) has a (unique) solution in τ ∈ (−∞, rm] if and only if9

λ ≥ g(rm). This indicates that E(λ) , ∅ if and only if λ ≥ g(rm).10

It remains to show (a)-(d) by first identifying the unique τ ∈ (−∞, rm] satisfying (12), and then11

using the relations (11) and (14-16) to describe components x j of each x ∈ E(λ) as follows:12

x j =

1 − θ j

q
j

−
θ j

q j

 / n∑
i=1

1 − θi

q
i

−
θi

qi

 , (17)

where θ ∈ Rn is any vector satisfying13

θ j =


1 if j ∈ I−,

0 if j ∈ I+,
and 0 ≤ θ j ≤ 1 if j ∈ I0, (18)

and14
n∑

i=1

1 − θi

q
i

−
θi

qi

 > 0. (19)

11



So the key point to verify the optimality of x is to determine the value of the unique τ ∈ (−∞, rm]15

via the piecewise linear equation (12) for all particular cases (a)-(d). This can be done in an16

analytical way as in the following, where the fact pointed out in Lemma 3.1 (c) that g is strict17

decreasing on the interval (−∞, rm] plays a key role.18

In case (a), we have g(τ) = λ > g(r1) and hence τ < r1. More precisely, we have by Lemma19

3.1 (b),1

τ =
g(r1) − λ

h(r1)
+ r1. (20)

This implies that I+ = {1, · · · , n} and I− = I0 = ∅. In this case, the inequality (19) holds for the2

unique θ satisfying (18), because we have3

n∑
i=1

1 − θi

q
i

−
θi

qi

 = h(r1) > 0.

In case (b), we have g(rk) < g(τ) = λ < g(rk−1) and hence rk−1 < τ < rk. More precisely, we4

have by Lemma 3.1 (b),5

τ =
g(rk) − λ

h(rk)
+ rk. (21)

This implies that I+ = { j | r j ≥ rk}, I− = { j | r j < rk} and I0 = ∅. In this case, the inequality (19)6

holds for the unique θ satisfying (18), because we have7

n∑
i=1

1 − θi

q
i

−
θi

qi

 = h(rk) ≥ h(rm) > 0.

In case (c), we have g(τ) = λ = g(rk) and hence τ = rk < rm. This implies that I+ = { j |8

r j > rk}, I− = { j | r j < rk}, I0 = { j | r j = rk}. In this case, the inequality (19) holds for all the θ9

satisfying (18), because we have10

n∑
i=1

1 − θi

q
i

−
θi

qi

 ≥ h(rk) −
∑
j∈I0

 1
q j

+
1
q

j

 ≥ h(rm) > 0,

where the first inequality follows by setting θ j = 1 for all j ∈ I0, and the second inequality follows11

from Lemma 3.1 (a).12

In case (d), we have g(τ) = λ = g(rm) and hence τ = rm. This implies that I+ = { j | r j > rm},13

I− = { j | r j < rm}, I0 = { j | r j = rm}. Note that in this case, the inequality (19) cannot hold for all14

the θ satisfying (16), as in particular when θ j = 1 for all j ∈ I0, we get from Lemma 3.1 (a)15

n∑
i=1

1 − θi

q
i

−
θi

qi

 = h(rm) −
∑
j∈I0

 1
q j

+
1
q

j

 ≤ 0.

This completes the proof. �16
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Remark 3.1. For each efficient portfolio x in the form of (8), we have17

D(x jR j) = ω(x)

for most j’s such that θ j ∈ {0, 1}, and18

D(x jR j) < ω(x)

for only a few j’s such that 0 < θ j < 1. This suggests that our efficient portfolios are almost the19

risk parity ones in the sense that the risks are allocated equally across the investments. See [25]20

for more details on the risk parity.1

Remark 3.2. When λ moves inside the open intervals (g(r1),+∞) and (g(rk), g(rk−1)) for some2

k ∈ {2, · · · ,m} with rk−1 < rk, the parametric optimization problem (3) shares the same unique3

optimal solution, which remains as an optimal solution to the parametric optimization problem4

(3) whenever λ moves on to the left or the right endpoint of the corresponding open interval. In5

other words, all the solutions to the parametric optimization problem (3) can be found by checking6

finitely many optimal solution sets E(λ) for λ = g(rk) with k ∈ {1, · · · ,m}, and each E(g(rk−1))7

with k ∈ {2, · · · ,m} has a common point xk−1,k with E(g(rk)) as long as rk−1 < rk. Some elaborate8

properties of E(g(rk)) with k ∈ {1, · · · ,m} are presented in the following corollary.9

Corollary 3.1. Fix some k ∈ {1, · · · ,m}. In terms of10

I− := I−(rk), I0 := I0(rk), I+ := I+(rk), ξ(k) := min I0, η(k) = max I0,

and11

Θ =:
{
θ ∈ Rn | θ j = 1 ∀ j ∈ I−, 0 ≤ θ j ≤ 1 ∀ j ∈ I0, θ j = 0 ∀ j ∈ I+

}
,

the following statements on the optimal solution set E(λ) of (3) for λ = g(rk) are true:12

(i) x ∈ E(λ) if and only if π(x) = g(rk)ω(x) + rk and 〈e, x〉 = 1.13

(ii) E(λ) is the solution set of the linear system14 

−q jx j =
π(x) − rk

g(rk)
∀ j ∈ I−,

−q jx j ≤
π(x) − rk

g(rk)
∀ j ∈ I0,

q
j
x j ≤

π(x) − rk

g(rk)
∀ j ∈ I0,

q
j
x j =

π(x) − rk

g(rk)
∀ j ∈ I+,

〈e, x〉 = 1.

(22)

(iii) In the case of rk < rm, E(λ) is a bounded polyhedron satisfying15

{ω(x) | x ∈ E(λ)} =

[
1

h(rk)
,

1
h(rη(k)+1)

]
. (23)

13



In this case, x is a vertex of E(λ) if and only if16

x j =

1 − θ j

q
j

−
θ j

q j

 / n∑
i=1

1 − θi

q
i

−
θi

qi

 , (24)

where θ ∈ Θ is any vector satisfying θ j ∈ {0, 1} for all j ∈ I0, entailing that the number of
vertices of E(λ) is 2|I

0 |. In particular when I0 = {k},

E(λ) = [xk−1,k, xk,k+1],

i.e., E(λ) is a closed line segment joining xk−1,k and xk,k+1.1

(iv) In the case of rk = rm, E(λ) is an unbounded polyhedron satisfying2

{ω(x) | x ∈ E(λ)} =

[
1

h(rm)
,+∞

)
. (25)

In this case, x is a vertex of E(λ) if and only if (24) holds for any θ ∈ Θ satisfying θ j ∈ {0, 1}3

for all j ∈ I0 and4
n∑

i=1

1 − θi

q
i

−
θi

qi

 > 0. (26)

Moreover, w ∈ Rn is an extreme direction of E(λ) if and only if there are some τ > 0 and5

j0 ∈ I0 such that w = τw̄, and for all j,6

w̄ j =
1 − θ j

q
j

−
θ j

q j
, (27)

where θ ∈ Θ is any vector such that θ j ∈ {0, 1} for all j ∈ I0\{ j0} and7

n∑
i=1

1 − θi

q
i

−
θi

qi

 = 0.

In particular when I0 = {m},

E(λ) =
{
xm−1,m + t(xm−1,m − em) | t ≥ 0

}
,

i.e., E(λ) is a half-line emanating from xm−1,m, whose reverse extension passes through em.8

(v) The dimension of E(λ) is |I0| and9

E(λ) ⊂ xξ(k)−1, ξ(k) + cone
{
xξ(k)−1, ξ(k) − e j, j ∈ I0

}
,

where xξ(k)−1, ξ(k) is a vertex of E(λ) and cone
{
xξ(k)−1, ξ(k) − e j, j ∈ I0

}
is the smallest convex10

cone containing E(λ) − xξ(k)−1, ξ(k).11

14



Proof. For the sake of simplicity, we denote by x(θ) the vector whose components are in the form12

of (8). According to Theorem 3.1, x ∈ E(λ) if and only if x = x(θ) for some θ ∈ Θ in the case of13

rk < rm, while in the case of rk = rm, x ∈ E(λ) if and only if x = x(θ) for some θ ∈ Θ satisfying14

n∑
i=1

1 − θi

q
i

−
θi

qi

 > 0. (28)

Let x̃ = x(θ) with θ ∈ Θ satisfying θ j = 0 for all j ∈ I0. Clearly, we have x̃ ∈ E(λ) and15

x̃ = xξ(k)−1, ξ(k). By definition, we have1

ω(x̃) =
1

h(rk)
,

and2

π(x̃) =
1

h(rk)

∑
j∈I−
−

r j

q j
+

∑
j∈I0∪I+

r j

q
j


=

1
h(rk)

∑
j∈I−

rk − r j

q j
+

∑
j∈I0∪I+

r j − rk

q
j

 + rk

= g(rk)ω(x̃) + rk.

So we have λω(x̃) − π(x̃) = g(rk)ω(x̃) − π(x̃) = rk, meaning that the optimal value of (3) is rk.3

Therefore, x ∈ E(λ) if and only if 〈e, x〉 = 1 and λω(x) − π(x) = rk, i.e., statement (i) is true. By4

statement (i), Theorem 3.1 and the definition of ω, we can easily show that statement (ii) is also5

true, implying that E(λ) is a polyhedral set.6

To show statement (iii), assume that λ = g(rk) with rk < rm. In view of the equality

ω(x(θ)) =
1

h(rk) −
∑
j∈I0

θ j(
1
q j

+
1
q

j

)
∀θ ∈ Θ,

we get (23) immediately from Lemma 3.1 (a) and the assumption that rk < rm. It then follows7

that for all x ∈ E(λ) and all j,8

|x j| ≤ ω(x) max
1≤ j≤n

 1
q j
,

1
q

j

 ≤ 1
h(rη(k)+1)

max
1≤ j≤n

 1
q j
,

1
q

j

 ,
which implies the boundedness of E(λ). Let x ∈ E(λ) or equivalently let x =: x(θ) for some9

θ ∈ Θ. From statements (i-ii), it follows that x(θ) is a solution to the following system of linear10

15



equations:11 

−q jx j =
π(x) − rk

g(rk)
∀ j ∈ I−,

−q jx j =
π(x) − rk

g(rk)
∀ j ∈ I0−,

q
j
x j =

π(x) − rk

g(rk)
∀ j ∈ I0+,

q
j
x j =

π(x) − rk

g(rk)
∀ j ∈ I+,

〈e, x〉 = 1,

(29)

where12

I0− =: { j ∈ I0 | θ j = 1} and I0+ =: { j ∈ I0 | θ j = 0}.

In the case of θ j ∈ {0, 1} for all j ∈ I0, it follows from statements (i-ii) that each x(θ̃) with13

θ̃ ∈ Θ\{θ} violates at least one equation in (29), implying that x(θ) is the unique solution to the14

system of linear equations (29) and hence a vertex of E(λ). While in the case of 0 < θ j0 < 1 for15

some j0 ∈ I0, the vector x(θ̃) with θ̃ j = θ j for all j ∈ I0\{ j0} and θ̃ j0 = 1
2θ j0 is another distinct16

solution to the system of linear equations (29), implying that x(θ) is not a vertex of E(λ). So, x is1

a vertex of E(λ) if and only if x = x(θ) for any θ ∈ Θ satisfying θ j ∈ {0, 1} for all j ∈ I0. Clearly,2

the number of vertices of E(λ) is 2|I
0 |, and in particular xξ(k)−1,ξ(k) is a vertex of E(λ). In the case3

of I0 = {k}, E(λ) has exactly two vertices: xk−1,k and xk,k+1 (corresponding to θk = 0 and θk = 1,4

respectively).5

To show statement (iv), assume that λ = g(rm). From Lemma 3.1 (a) and the fact that m =6

max{ j | h(r j) > 0}, it follows that7

h(rm) −
∑
j∈I0

(
1
q j

+
1
q

j

) ≤ 0,

which, together with the fact that for all θ ∈ Θ satisfying (28) the following hold:

ω(x(θ)) =
1

h(rm) −
∑
j∈I0

θ j(
1
q j

+
1
q

j

)
≥

1
h(rm)

,

implies (25) and hence the unboundedness of E(λ). By the same argument as in statement (iii),8

the (nonempty) set of vertices of E(λ) can be described as required, and in particular xξ(k)−1,ξ(k) is9

a vertex of E(λ). Furthermore, w ∈ Rn is a direction of E(λ) if and only if w is a nonzero solution10

16



to the following homogeneous linear system:11 

−q jw j =
π(w)
g(rm)

∀ j ∈ I−,

−q jw j ≤
π(w)
g(rm)

∀ j ∈ I0,

q
j
w j ≤

π(w)
g(rm)

∀ j ∈ I0,

q
j
w j =

π(w)
g(rm)

∀ j ∈ I+,

〈e,w〉 = 0.

(30)

Denote by W the solution set of (30). In view of I0 , ∅, we have

π(w)
g(rm)

> 0 w ∈ W\{0}.

This suggests, by homogeneity, that each direction of E(λ) has a unique representation on the12

hyperplane {w ∈ Rn | π(w) = g(rm)}, and each extreme direction of E(λ) corresponds to a vertex1

of the bounded polyhedron defined as the solution set of the linear system2 

−q jw j = 1 ∀ j ∈ I−,

−q jw j ≤ 1 ∀ j ∈ I0,

q
j
w j ≤ 1 ∀ j ∈ I0,

q
j
w j = 1 ∀ j ∈ I+,

〈e,w〉 = 0,

π(w) = g(rm),

(31)

for which, the last equality can be removed as it is, by the definitions of π and g, a consequence of3

all the other equalities. It is rather straightforward to verify that, the set of vectors w̄ described in4

statement (v) is nothing else but the set of vertices of the above bounded polyhedron. In particular5

when I0 = {m}, the unique vertex of the above bounded polyhedron is w̄ = h(rm)(xm−1,m − em) and6

the unique vertex of E(λ) is xm−1,m.7

To show statement (v), we note that the vectors xξ(k)−1, ξ(k) − e j with j ∈ I0 are linearly inde-
pendent due to |I0| < n, and that each x ∈ E(λ) can be decomposed as

x = xξ(k)−1, ξ(k) +
∑
j∈I0

ω(x)
[

1
ω(xξ(k)−1, ξ(k))

xξ(k)−1, ξ(k) −
1

ω(x)
x
]

j

(
xξ(k)−1, ξ(k) − e j

)
,

implying that E(λ) − xξ(k)−1, ξ(k) is included in the cone

Ck =: cone
{
xkmin−1, kmin − e j, j ∈ I0

}
,

17



whose dimension is |I0|. This entails that the dimension of E(λ) is no more than |I0|.8

Now assuming that C′ is a convex cone that contains E(λ) − xξ(k)−1, ξ(k), we will show that9

Ck ⊂ C′. Let j0 ∈ I0. If h(rk) > 1
q j0

+ 1
q

j0

, we have by definition10

e j0 = x(θ) +
h(rk)

1
q j0

+ 1
q

j0

(
xξ(k)−1, ξ(k) − x(θ)

)
,

or equivalently,11  h(rk)
1

q j0
+ 1

q
j0

− 1


−1 (

xξ(k)−1, ξ(k) − e j0

)
= x(θ) − xξ(k)−1, ξ(k) ∈ E(λ) − xξ(k)−1, ξ(k) ⊂ C′,

where x(θ) is a vertex of E(λ) with θ ∈ Θ satisfying θ j0 = 1 for some j0 ∈ I0 and θ j = 0 for all12

j ∈ I0\{ j0}. Alternatively if h(rk) ≤ 1
q j0

+ 1
q

j0

(this is possible only when rk = rm), we have by13

definition1

e j0 = xξ(k)−1, ξ(k) −
w̄(θ)
h(rm)

,

or equivalently,2

xξ(k)−1, ξ(k) − e j0 = e j0 + 2
w̄(θ)
h(rm)

− xξ(k)−1, ξ(k) ∈ E(λ) − xξ(k)−1, ξ(k) ⊂ C′,

where w̄(θ) is an extreme direction of E(λ) defined by (27) with θ ∈ Θ satisfying θ j0 =
h(rm)
1

q j0
+ 1

q j0

and3

θ j = 0 for all j ∈ I0\{ j0}. This suggests that e j ∈ aff(E(λ)) and xξ(k)−1, ξ(k) − e j ∈ C′ for all j ∈ I0.4

Therefore, we have Ck ⊂ C′, implying that the smallest cone containing E(λ) − xξ(k)−1, ξ(k) is Ck.5

Moreover, as the simplex conv{xξ(k)−1, ξ(k), e j( j ∈ I0)} is included in aff(E(λ)), the dimension of6

E(λ) is clearly no less than |I0|. This completes the proof. �7

In view of (4), Theorem 3.1, Remark 3.2 and Corollary 3.1, we can summarize our main result8

on EP and EF in the following theorem whose proof are rather straightforward and thus omitted.9

Theorem 3.2. Let m′ be the number of distinct r j’s with r j < rm. Then EP consists of m′ bounded10

and one unbounded polyhedra, and accordingly, EF consists of m′ closed line segments and one11

closed half-line. Explicitly, we have12

EP =

m⋃
k=1

E(g(rk)),

and13

EF =

{
(t, f (t))T

| t ≥
1

h(r1)

}
,

where various descriptions of the polyhedra E(g(rk)) can be found in Corollary 3.1, and xk−1,k is14

the only common point of E(g(rk−1)) and E(g(rk)) whenever rk−1 < rk, and15

f (t) =


g(rk)t + rk if t ∈ [ 1

h(rk) ,
1

h(rk+1) ] with k < m,

g(rm)t + rm if t ∈ [ 1
h(rm) , +∞).

(32)
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In the case of r1 < r2 < · · · < rm, EP consists of m − 1 closed line segments and one closed16

half-line, i.e.,17

EP =

m−1⋃
k=1

[
xk−1,k, xk,k+1

]⋃{
xm−1,m + t(xm−1,m − em) | t ≥ 0

}
, (33)

and EF consists of m − 1 closed line segments and one closed half-line, i.e.,18

EF =

m−1⋃
k=1

( 1
h(rk)

,
g(rk)
h(rk)

+ rk

)T

,

(
1

h(rk+1)
,

g(rk)
h(rk+1)

+ rk

)T 
⋃

(
1

h(rm)
,

g(rm)
h(rm)

+ rm

)T

+ t (1, g(rm))T
| t ≥ 0

 .
As noted in the previous theorem that EP consists of finitely many polyhedra, it is interesting19

to know how these polyhedra distribute in the hyperplane {x ∈ Rn | x1 + · · · + xn = 1} and how to20

identify EP or its estimates by some sets having simple structures. This is done in the following21

theorem.1

Theorem 3.3. The dimension of EP is min{m, n−1}, the smallest closed and convex set containing2

EP is the polyhedral set3

conv V + cone W,

and the smallest closed and convex cone containing EP − x0,1 is the polyhedral cone4

cone(V − x0,1) + cone W,

where V consists of the distinct vertices of E(g(rk)) for all k ∈ {1, · · · ,m} and W consists of the5

extreme directions of E(g(rm)). Moreover, we have6

EP ⊂ conv V + cone W

⊂ x0,1 + cone(V − x0,1) + cone W

⊂ x0,1 + cone{xξ(1)−1, ξ(1) − e1, xξ(2)−1, ξ(2) − e2, · · · , xξ(m)−1, ξ(m) − em}

⊂ x0,1 + cone{x0,1 − e1, x0,1 − e2, · · · , x0,1 − em},

(34)

where ξ(k) =: min
{
j | r j = rk

}
.7

Proof. To begin, we note that our proof in Corollary 3.1 shows that e j ∈ aff(EP) for all j =8

1, · · · ,m, and that each x ∈ EP can be decomposed as9

x = x0,1 +

m∑
j=1

ω(x)
[

1
ω(x0,1)

x0,1 −
1

ω(x)
x
]

j

(
x0,1 − e j

)
.

Thus, EP − x0,1 is included in the polyhedral cone

C2 =: cone{x0,1 − e1, · · · , x0,1 − em},

19



whose dimension is min{m, n−1}. So the dimension of EP is no more than min{m, n−1}. To show10

the reverse, we observe that aff(EP) contains, in the case of m = n, the simplex conv{e1, · · · , en}11

with dimension n−1 = min{m, n−1}, while in the case of m < n, the simplex conv{e1, · · · , em, x0,1}12

with dimension m = min{m, n − 1}. So the dimension of EP is min{m, n − 1}.13

In view of Theorem 3.2 and Corollary 3.1, we have1

EP ⊂ conv V + cone W.

Let A be any closed and convex set containing EP. As V ⊂ EP ⊂ A, we have conv V ⊂ A. In
view of Corollary 3.1, we have

xξ(m)−1,ξ(m) + cone W ⊂ EP ⊂ A,

and hence by [1, Theorem 3.6], cone W is included in the recession cone of A. Therefore, we
have conv V + cone W ⊂ A. That is, the polyhedral set conv V + cone W is the smallest closed and
convex set containing EP. As conv V − x0,1 = conv(V − x0,1) ⊂ cone(V − x0,1), we have

EP − x0,1 ⊂ cone(V − x0,1) + cone W.

Let B be any closed and convex cone containing EP − x0,1. As V − x0,1 ⊂ EP − x0,1 ⊂ B, we have
cone(V − x0,1) ⊂ B. In view of Corollary 3.1, we have

xξ(m)−1,ξ(m) − x0,1 + cone W ⊂ EP − x0,1 ⊂ B,

and hence by [1, Theorem 3.6], cone W is included in the recession cone of B, which is nothing2

else but B itself. So we actually have cone(V − x0,1) + cone W ⊂ B. This implies that cone(V −3

x0,1) + cone W is the smallest closed and convex cone containing EP − x0,1.4

To show the third inclusion in (34), let η(k) =: max{ j | r j = rk} for each k = 1, · · · ,m. Let
v ∈ V . Then there is some k ∈ {1, · · · ,m} such that v ∈ E(g(rk)). By Corollary 3.1, we have

v − xξ(k)−1,ξ(k) ∈ cone
{
xξ(i)−1,ξ(i) − ei, i = ξ(k), · · · , η(k)

}
,

and for all j = 2, · · · , k,5

xξ( j)−1,ξ( j) − xξ( j−1)−1,ξ( j−1) ∈ cone
{
xξ(i)−1,ξ(i) − ei, i = ξ( j − 1), · · · , η( j − 1)

}
.

This implies that v − x0,1 ∈ cone
{
xξ(i)−1,ξ(i) − ei, i = 1, · · · , η(k)

}
because it holds that6

v − x0,1 = v −
k∑

j=2

(
xξ( j)−1,ξ( j) − xξ( j)−1,ξ( j)

)
− xξ(1)−1,ξ(1)

= v − xξ(k)−1,ξ(k) +

k∑
j=2

(
xξ( j)−1,ξ( j) − xξ( j−1)−1,ξ( j−1)

)
.

Thus, we have cone(V−x0,1) ⊂ cone
{
xξ(1)−1,ξ(1) − e1, · · · , xξ(m)−1,ξ(m) − em

}
. By Corollary 3.1 again,7

we have cone W ⊂ cone{xξ(i)−1,ξ(i)− ei, i = ξ(m), · · · ,m}. That is, the third inclusion in (34) holds.8
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It remains to show the last inclusion in (34). Let k ∈ {1, · · · ,m} and let j ∈ {ξ(k), · · · , η(k)}.
We have

xξ( j)−1,ξ( j) − x0,1 =

ξ(k)−1∑
i=1

ω(xξ(i)−1,ξ(i))
[

1
ω(x0,1)

x0,1 −
1

ω(xξ(i)−1,ξ(i))
xξ(i)−1,ξ(i)

]
i
(x0,1 − ei),

and thus9

xξ( j)−1,ξ( j) − e j ∈ cone{x0,1 − e1, · · · , x0,1 − eξ(k)−1, x0,1 − e j}.

This verifies the last inclusion in (34). This completes the proof. �10

Remark 3.3. From Corollary 3.1 and Theorems 3.2 and 3.3, it can be seen that EP can be11

generated or estimated from some collections of finitely many efficient portfolios. This can be12

considered as a generalization of the well-known Two-fund Theorem in Merton [26].1
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j 1 2 3 4 5 6 7
r̂ j 0.0500 0.1000 0.1500 0.2000 0.2300 0.2500 0.2800

q̂
j

0.0268 0.0339 0.0395 0.0215 0.0692 0.0803 0.0848

q̂ j 0.0400 0.0550 0.0600 0.0742 0.0827 0.0900 0.0950

h(r̂ j) 177.3367 115.0232 67.3429 25.3598 -34.6290 -61.1717 -84.7361

g(r̂ j) 18.7874 13.0362 9.6691 8.4011 9.4400 10.6634 13.2055

x0,1
j 0.2104 0.1663 0.1428 0.2623 0.0815 0.0702 0.0665

x1,2
j -0.2173 0.2565 0.2201 0.4044 0.1256 0.1083 0.1025

x2,3
j -0.3712 -0.2700 0.3759 0.6907 0.2146 0.1849 0.1751

x3,4
j -0.9858 -0.7170 -0.6572 1.8341 0.5698 0.4911 0.4650

Table 1: Estimated parameters, function values of g and h, and some key portfolios

4 Performance of Efficient and Inefficient Portfolios2

In this section, by doing some Monte Carlo simulations, we will test the performance of some3

efficient portfolios versus some inefficient ones, all of which can be calculated using the formulas4

presented in last section.5

As investment is a matter of standing in the present and looking at the future, it is impossible6

for an investor to know the true distribution information on the random return ratesR j so that the7

parameters r j := E(R j), q
j

:= D(R j), q j := D(−R j) required in our model cannot be calculated.8

However, these parameters can be estimated in one way or another, denoted respectively by r̂ j,9

q̂
j

and q̂ j. Now assume that there are n = 7 possible assets to be invested, and that values of the10

estimated parameters r̂ j, q̂ j and q̂ j are listed in Table 1. In applying the results and the formulas11

presented in last section, we use r̂ j, q̂ j and q̂ j in place of r j, q
j
and q j, respectively. The values of12

g(r̂ j), h(r̂ j) and xk−1,k
j with j = 1, · · · , 7 and k = 1, · · · , 4 are also listed in Table 1. Then we have13

m := { j | h(r̂ j) > 0} = 4. According to Theorem 3.2, we have14

EP =

3⋃
k=1

[
xk−1,k, xk,k+1

]⋃{
x3,4 + t(x3,4 − e4) | t ≥ 0

}
,

and we can plot EF in the ω − π plane as shown in Figure 1.15

Monte Carlo simulations will be done based on the assumption that the realization value ofR j16

is a random sampling on the interval [r̂ j − aq̂
j
, r̂ j + aq̂ j] for every j = 1, 2, . . . , n, where a is a pos-17

itive integer. We note that this assumption holds ifR j is an essentially bounded random variable,18

and its realization value falls into an interval based on r̂ j (point estimation). In these simulations,19

the smaller the value of a is, the more accurate the uncertainty is captured by the estimated q̂
j
and20

q̂ j. To evaluate the performance for a given portfolio x, we introduce the following performance21

indicators:1
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Figure 1: The efficient frontier and the portfolios for testing in the ω − π plane.
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(1) rateπ(x) := Nπ(x)/N, where N := 100, 000 is the number of simulations, and Nπ(x) is the number2

of times that
∑n

j=1R
t
jx j is no less than π(x),3

(2) Sample mean: µx := (1/N)
∑N

t=1(
∑n

j=1R
t
jx j), where Rt

j (t = 1, 2, . . . ,N) is the tth random4

sampling realization value of R j,5

(3) Sample standard deviation: σx :=
√

(1/(N − 1))
∑N

t=1(
∑n

j=1R
t
jx j − µx)2,6

(4) µx/σx, the ratio between sample mean and sample standard deviation (following Park et al.7

[10]).8

Thanks to Theorems 3.2 and 3.3, we are able to systematically select 7 efficient portfolios and9

14 inefficient ones to joint the comparison group. The details are as follows.10

(I) {x0,1, x1,2, x2,3, x3,4, x1, x2, x3} ⊂ EP. These efficient portfolios are marked by red dots in Figure11

1;12

(II) {x4, · · · , x10} ⊂
(
x0,1 + cone{x0,1 − e1, · · · , x0,1 − e4}

)
\EP. These inefficient portfolios are13

marked by blue dots in Figure 1;14

(III) {x11, · · · , x17} ⊂ {x ∈ R7 | x1 + · · · + x7 = 1}\
(
x0,1 + cone{x0,1 − e1, x0,1 − e2, · · · , x0,1 − e4}

)
.15

These inefficient portfolios are marked by green dots in Figure 1.16

We show the performance of the selected portfolios in Table 2 ∼ Table 4. It can be seen from17

these tables that the lower the value of π(x), the more frequently the portfolio can reach it, and18

this frequency is relatively less affected by the value of a. On the other hand, the greater the value19

of π(x), the greater the µx and σx. Besides, as the value of a increases, µx and σx also increase,20

but whether µx/σx increases or decreases is uncertain. Moreover, these data also show that the21

performance of efficient portfolios is relatively stable, while the portfolios in the cone without in22

EP perform well when a is small. But as a increases, some of them perform worse. In addition,23

it is noted that the performance of the portfolios outside the cone are the most volatile. The most24

typical one is x17. When the realization value of R j appears in the interval [r̂ j − 5q̂
j
, r̂ j + 5q̂ j],25

its performance is particularly poor. But when the realization value of R j appears in the interval26

[r̂ j − 30q̂
j
, r̂ j + 30q̂ j], its performance is quite impressive.1
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portfolio x0,1 x1 x1,2 x2 x2,3 x3 x3,4

π(x) 0.1559 0.1846 0.2133 0.2535 0.2936 0.4124 0.5313
rateπ(x) 0.8520 0.8377 0.8095 0.7788 0.7448 0.7029 0.6772
µx 0.2197 0.2567 0.2937 0.3435 0.3932 0.5521 0.7110
σx 0.0137 0.0150 0.0168 0.0188 0.0214 0.0280 0.0342

µx/σx 16.0061 17.1015 17.5067 18.2739 18.3648 19.7528 20.7845
portfolio x4 x5 x6 x7 x8 x9 x10

π(x) 0.2325 0.3203 0.6105 0.2230 0.2436 0.3608 0.4633
rateπ(x) 0.7909 0.7254 0.6665 0.6959 0.6593 0.5623 0.5314
µx 0.3183 0.4264 0.8169 0.2792 0.2975 0.4016 0.4925
σx 0.0180 0.0232 0.0380 0.0183 0.0200 0.0284 0.0343

µx/σx 17.6648 18.3866 21.5249 15.2583 14.8741 14.1371 14.3590
portfolio x11 x12 x13 x14 x15 x16 x17

π(x) 0.0889 0.0683 -0.0490 -0.1514 0.0821 0.0595 -0.0696
rateπ(x) 0.7797 0.7446 0.6405 0.6066 0.7690 0.7518 0.7123
µx 0.1602 0.1420 0.0379 -0.0530 0.2388 0.2447 0.2781
σx 0.0168 0.0185 0.0273 0.0334 0.0257 0.0291 0.0438

µx/σx 9.5192 7.6538 1.3888 -1.5902 9.2972 8.4209 6.3487

Table 2: Performance of portfolios with realization values of R j in [r̂ j − aq̂
j
, r̂ j + aq̂ j]

with a = 5

portfolio x0,1 x1 x1,2 x2 x2,3 x3 x3,4

π(x) 0.1559 0.1846 0.2133 0.2535 0.2936 0.4124 0.5313
rateπ(x) 0.8538 0.8385 0.8117 0.7816 0.7479 0.7064 0.6806
µx 0.2836 0.3289 0.3743 0.4342 0.4941 0.6943 0.8945
σx 0.0194 0.0212 0.0237 0.0265 0.0302 0.0394 0.0482

µx/σx 14.6289 15.5263 15.8123 16.3687 16.3468 17.6134 18.5401
portfolio x4 x5 x6 x7 x8 x9 x10

π(x) 0.2325 0.3203 0.6105 0.2230 0.2436 0.3608 0.4633
rateπ(x) 0.7932 0.7291 0.6698 0.6979 0.6619 0.5625 0.5314
µx 0.4045 0.5340 1.0280 0.3358 0.3519 0.4433 0.5232
σx 0.0254 0.0327 0.0535 0.0258 0.0282 0.0401 0.0484

µx/σx 15.9096 16.3109 19.2027 13.0046 12.4657 11.0527 10.8010
portfolio x11 x12 x13 x14 x15 x16 x17

π(x) 0.0889 0.0683 -0.0490 -0.1514 0.0821 0.0595 -0.0696
rateπ(x) 0.7798 0.7452 0.6400 0.6061 0.7692 0.7528 0.7134
µx 0.2313 0.2153 0.1238 0.0440 0.3959 0.4304 0.6270
σx 0.0238 0.0262 0.0386 0.0471 0.0363 0.0411 0.0619

µx/σx 9.7167 8.2069 3.2121 0.9330 10.8967 10.4728 10.1214

Table 3: Performance of portfolios with realization values of R j in [r̂ j − aq̂
j
, r̂ j + aq̂ j]

with a = 10
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portfolio x0,1 x1 x1,2 x2 x2,3 x3 x3,4

π(x) 0.1559 0.1846 0.2133 0.2535 0.2936 0.4124 0.5313
rateπ(x) 0.8538 0.8385 0.8117 0.7816 0.7479 0.7064 0.6806
µx 0.5388 0.6175 0.6961 0.7956 0.8950 1.2580 1.6210
σx 0.0336 0.0367 0.0410 0.0459 0.0523 0.0683 0.0836

µx/σx 16.0489 16.8282 16.9798 17.3172 17.0973 18.4258 19.3974
portfolio x4 x5 x6 x7 x8 x9 x10

π(x) 0.2325 0.3203 0.6105 0.2230 0.2436 0.3608 0.4633
rateπ(x) 0.7932 0.7291 0.6698 0.6979 0.6619 0.5625 0.5314
µx 0.7485 0.9614 1.8630 0.5615 0.5685 0.6082 0.6429
σx 0.0440 0.0567 0.0927 0.0447 0.0489 0.0695 0.0839

µx/σx 16.9979 16.9535 20.0917 12.5541 11.6278 8.7554 7.6635
portfolio x11 x12 x13 x14 x15 x16 x17

π(x) 0.0889 0.0683 -0.0490 -0.1514 0.0821 0.0595 -0.0696
rateπ(x) 0.7798 0.7452 0.6400 0.6061 0.7692 0.7528 0.7134
µx 0.5161 0.5092 0.4694 0.4348 1.0236 1.1724 2.0201
σx 0.0412 0.0454 0.0668 0.0816 0.0629 0.0712 0.1073

µx/σx 12.5180 11.2075 7.0297 5.3249 16.2635 16.4683 18.8280

Table 4: Performance of portfolios with realization values of R j in [r̂ j − aq̂
j
, r̂ j + aq̂ j]

with a = 30

5 Conclusions2

In this paper, we revisited the bi-criteria portfolio optimization model where the short selling3

was permitted, and a trade-off was sought between the expected return rate of a portfolio and4

the maximum of the uncertainty measured by a general deviation measure for all the investments5

comprising a portfolio. We provided not only explicit analytical formulas for all the efficient6

portfolios, but also explored as a whole the set of all the efficient portfolios and its structure such7

as dimensionality and distribution. In particular, we generalized the classical Two-fund Theorem8

by providing some collections of finitely many efficient portfolios to generate or estimate the set9

of all the efficient portfolios. We also noticed that our efficient portfolios are almost the risk10

parity ones in the sense that the risks are allocated equally across the investments. In order to11

test the performance of the efficient portfolios versus the inefficient ones, we carried out Monte12

Carlo simulations based on the assumptions that the return rate is an essentially bounded random13

variable, and that its realization value falls into some interval based on the estimated expected14

return. It was shown by the simulation results that the performance of the efficient portfolios15

were more reliable than that of the inefficient ones. Finally, it should be noted that our efficient16

portfolios do not have sparsity, which can be improved in future work by building some new17

models.18
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