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Abstract

It is well known that the classic Allen-Cahn equation satisfies the maximum bound

principle (MBP), that is, the absolute value of its solution is uniformly bounded for

all time by certain constant under suitable initial and boundary conditions. In this

paper, we consider numerical solutions of the modified Allen-Cahn equation with a

Lagrange multiplier of nonlocal and local effects, which not only shares the same

MBP as the original Allen-Cahn equation but also conserves the mass exactly. We

reformulate the model equation with a linear stabilizing technique, then construct

first- and second-order exponential time differencing schemes for its time integration.

We prove the unconditional MBP preservation and mass conservation of the pro-

posed schemes in the time discrete sense and derive their error estimates under some

regularity assumptions. Various numerical experiments in two and three dimensions

are also conducted to verify the theoretical results.
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1 INTRODUCTION

The classic Allen-Cahn equation takes the following form:

)tu(x, t) = "2Δu(x, t) + f (u(x, t)), x ∈ Ω, t > 0, (1)

where u(x, t) is the real-valued unknown function, Ω ⊂ ℝ
d (d = 2, 3) is an open, connected and bounded domain with the

Lipschitz continuous boundary )Ω, " is an interfacial parameter and f (u) = −F ′(u) with F (u) being certain nonlinear potential

function. The classic Allen-Cahn equation can be regarded as the L2 gradient flow with respect to the energy functional

E[u(x, t)] ∶= ∫
Ω

(
"2

2
|∇u(x, t)|2 + F (u(x, t))

)
dx, (2)

and its solution satisfies the energy dissipation law as follows:

d

dt
E[u(x, t)] ≤ 0. (3)
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The Allen-Cahn equation was originally introduced by Allen and Cahn2 as a model for the phase separation process of a binary

alloy under a fixed temperature. Since then the Allen-Cahn equation has been intensively studied due to its connection to the

celebrated curvature driven geometric flow. In the past few decades, many works on the Allen-Cahn equation have been devoted

to motions of interfaces, especially, motion by mean curvature, and numerous applications ranging from image processing9,33,

material sciences2 to biology32.

Many parabolic types of equations often satisfy an important property, that is, the solution must reach its maximum and/or

minimum either at the initial time or on the boundary of the domain, which is the well-studied maximum principle18. The Allen-

Cahn equation (1) satisfies a similar property, called the maximum bound principle (MBP)14,19: if the initial data and/or the

boundary values are pointwise bounded by a certain constant in absolute value, then the absolute value of the solution is also

bounded by the same constant everywhere and for all time. For example, when the double-well potential F (u) =
1

4
(u2−1)2 (and

f (u) = −F ′(u) = u − u3) is used, the constant bounding the solution is 1, i.e., ‖u(⋅, t)‖ ≤ 1 for all t ≥ 0 if ‖u(⋅, 0)‖ ≤ 1, where

‖ ⋅ ‖ denotes the supremum norm. The MBP is weaker than the conventional maximum principle in the sense that a problem

satisfying a maximum principle must satisfy an MBP. The equation (1) with a uniformly elliptic linear operator L replacing

"2Δ and f = 0 satisfies the maximum principle. There have also been many studies devoted to maximum principle preserving

numerical approximations of linear elliptic operators, such as finite difference method5,12, lumped-mass finite element method6,8,

collocation method40,41, and finite volume method42. For the equation (1) with a uniformly elliptic linear operator, the nonlinear

term f (u) leads to the existence of time-invariant regions19, in which the MBP was proved as a special invariant region of the

Allen-Cahn equation. Recently, a variety of works have been done on whether such an MBP could be preserved by some time-

stepping schemes for discretizing the Allen-Cahn equation. The discrete MBPs of a finite difference semi-discrete scheme and

its fully discrete approximations with forward and backward Euler time-stepping methods were obtained in one-dimensional

space37. Moreover, the first-order stabilized implicit-explicit schemes with finite difference spatial discretization were proved

to preserve the MBP38, which was then generalized36 to the case with more general nonlinear terms.

The Cahn-Hilliard equation, a fourth-order equation governed by the same energy functional (2), satisfies the so-called mass

conservation while the Allen-Cahn equation fails to satisfy this property. One can modify the Allen-Cahn equation to satisfy the

mass conservation by adding an extra Lagrange term of nonlocal constraint as34

)tu(x, t) = "2Δu(x, t) + f (u(x, t)) −
1

|Ω| ∫
Ω

f (u(y, t)) dy, x ∈ Ω, t > 0. (4)

Integrating both sides of the equation (4) over Ω, we can see that the modified Allen-Cahn equation (4) conserves the total mass

exactly:

d

dt ∫
Ω

u(x, t) dx = 0,

or equivalently, ∫
Ω
u(x, t) dx ≡ ∫

Ω
u(x, 0) dx. In addition, the solution to the modified Allen-Cahn equation (4) also satisfies the

same energy dissipation laws34 (3) as the classic Allen-Cahn equation (1). However, a drawback of such modification is that the

value of the solution to (4) may fall beyond the interval [−1, 1] even for the commonly used double-well potential case28,34.

Apart from the equation (4), for the Allen-Cahn equation with the double well potential, another well-known modification is

to impose a Lagrange multiplier3,7 as follows:

)tu(x, t) = "2Δu(x, t) + f (u(x, t)) −
∫
Ω
f (u(y, t)) dy

∫
Ω

√
4F (u(y, t)) dy

√
4F (u(x, t)), x ∈ Ω, t > 0, (5)

where f (u) = u−u3 andF (u) =
1

4
(1−u2)2. It is easy to show that the total mass is also exactly conserved for (5). Furthermore, the

conservation of mass is ensured by the nonlocal effect of the Lagrange multiplier −
1

|Ω| ∫Ω f (u) dy in (4), whereas the Lagrange

multiplier in (5) combines both nonlocal and local effects. Alfaro and Alifrangis have proven that the solution to (5) satisfies

the same MBP1 as that for the classic Allen-Cahn equation (1), that is, ‖u(⋅, t)‖ ≤ 1 for all t ≥ 0 if ‖u(⋅, 0)‖ ≤ 1. However, the

dissipation law with respect to the original energy functional (2) does not hold theoretically for the equation (5); instead, the

equation (5) is the L2 gradient flow with respect to a slightly different energy functional modified from (2)7.

There have been quite a few researches denoted to numerical schemes for the mass-conserving Allen Cahn equations (4). Kim

et al.27 proposed a practically unconditionally stable hybrid scheme with an exact mass-conserving update at each time step.

Zhai et al.45,46 proposed the Crank-Nicolson and operator splitting schemes. Lee31 discretized the equation by using a Fourier

spectral method in space and first-, second-, and third-order implicit explicit Runge-Kutta schemes in time.
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Recently, the exponential time differencing (ETD) (or say, the exponential integrator) has been considered for constructing

unconditionally MBP-preserving schemes for the classic Allen-Cahn equation. The ETD method comes from the variation-

of-constants formula with the nonlinear terms approximated by polynomial interpolations, followed by exact integration of

the resulting integrals. The ETD schemes have been systematically studied4 and further developed by Cox and Matthews for

the applications to stiff systems13. Hochbruck and Ostermann provided several nice reviews on ETD Runge-Kutta method21

and ETD multistep method22 for semilinear parabolic problems and the convergence of these methods were analyzed. Du and

Zhu16,17 investigated the linear stabilities of some ETD and modified ETD schemes for the Allen-Cahn equation in two- and

three-dimensional spaces. One advantage of the ETD schemes is the exact evaluation of the linear part so that they possess

good stability and accuracy even though the linear terms have strong stiffness. Thus, ETD schemes have been successfully

applied to phase-field models which often yield highly stiff ODE systems under suitable spatial discretization. Some high-

order numerical methods based on fast and stable ETD schemes were developed for solving the Allen-Cahn equation26, the

Cahn-Hilliard equation25, the elastic bending energy model39, and the no-slope-selection thin film equation10,11. A localized

compact ETD method was firstly presented44 for time integration with large step sizes for phase-field simulations of coarsening

dynamics on the Sunway TaihuLight supercomputer. In addition, MBP-preserving numerical schemes have been also studied for

the fractional Allen-Cahn equation with the Crank-Nicolson time-stepping23, the nonlocal Allen-Cahn equation by using first-

and second-order ETD schemes15, and the conservative Allen-Cahn equation (4) using the ETD schemes28. In a very recent

work, an abstract framework was established14 for analyzing the MBPs of semilinear parabolic equations and unconditionally

MBP-preserving ETD schemes, and it was claimed that the classic ETD methods with order higher than 2 cannot preserve the

MBP unconditionally. Several third- and fourth-order MBP-preserving schemes were developed for the Allen-Cahn equation by

considering the integrating factor Runge-Kutta schemes24,29,43. An arbitrarily high-order ETD multistep method was presented

in30 by enforcing the maximum bound via an extra cutoff postprocessing.

In this paper, we are interested in developing stable linear schemes for solving the mass-conserving Allen-Cahn equation (5)

based on the ETD approach. The rest of the paper is organized as follows. In Section 2, we first reformulate the model equation

(5) based on the linear stabilizing technique, and then propose first- and second-order ETD schemes for time integration of the

transformed equation, which are shown to be unconditionally mass-conserved and MBP-preserving in the time discrete sense.

In Section 3, we prove the convergence of the proposed ETD schemes under certain regularity assumptions. Various numerical

experiments in two and three dimensions are performed in Section 4 to validate the theoretical results. Finally, some concluding

remarks are drawn in Section 5.

2 UNCONDITIONALLY MBP-PRESERVING EXPONENTIAL TIME DIFFERENCING
SCHEMES

Let us restate the mass-conserving Allen-Cahn equation with local and nonlocal effects as follows:

)tu(x, t) = "2Δu(x, t) + f̄ [u](x, t), x ∈ Ω, t > 0, (6)

with

f̄ [u](x, t) = f (u(x, t)) −
∫
Ω
f (u(y, t)) dy

∫
Ω
g(u(y, t)) dy

g(u(x, t)). (7)

where f (u) = u − u3 and g(u) =
√
4F (u) = 1 − u2 (the notation of absolute value is dropped off since 1 − u2 ≥ 0 due to the

MBP in the time-space continuous setting), subject to the initial value condition

u(x, 0) = u0(x), x ∈ Ω, (8)

for some u0 ∈ C(Ω) with Ω = Ω∪ )Ω. We impose either the periodic boundary condition (such as a regular rectangular domain

Ω =
d∏
i=1

(ai, bi)) or homogeneous Neumann boundary condition given by

)u(x, t)

)n
= 0, x ∈ )Ω, t ≥ 0,
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where n is the outer unit normal vector on the boundary )Ω. Integrating both sides of the equation (6) over Ω, it is easy to verify

its mass-conserving property:

∫
Ω

u(x, t) dx = M0 ∶= ∫
Ω

u0(x) dx, t ≥ 0.

The nonlinear functions f and g are continuously differentiable and

f (−1) = f (1) = 0, g(−1) = g(1) = 0. (9)

The MBP property with the bounding constant 1 then becomes a result of the invariant set for the equation (6)1. In addition, the

two constant functions u(⋅, t) ≡ 1 or u(⋅, t) ≡ −1 are clearly trivial solutions to the equation (6). Hence we always assume that

‖u0‖ ≤ 1 and |M0| ≠ |Ω| (i.e., u0 ≢ ±1) to avoid the these two trivial solution cases.

Remark 1. In comparison with the original Allen-Cahn equation, the modified Allen-Cahn equation (6) can preserve the mass

conservation by introducing the local and nonlocal Lagrange multiplier. However, the energy dissipation law does not hold

with respect to the orginal energy functional (2). To the best of our knowledge, the mass-conserving Allen-Cahn equation (6)

with the double-well potential function has been proved to possess the MBP1, while whether or not the MBP also holds for

the logarithmic potential case or other forms is still an open question. Therefore, in this paper we only focus on studying the

unconditional MBP-preserving schemes for the double-well potential function case.

2.1 Linear splitting for stabilization

Let us define

�u(t) =
∫
Ω
f (u(x, t)) dx

∫
Ω
g(u(x, t)) dx

, (10)

then we can write the equation (6) as

)tu(x, t) = "2Δu(x, t) + f (u(x, t)) − �u(t)g(u(x, t)). (11)

Next we present a result on the boundedness of �u(t).

Lemma 1. For any function � ∈ C(Ω) with ‖�‖ ≤ 1 and � ≢ ±1, it holds that

|��| ≤ 1. (12)

Proof. Since ‖�‖ ≤ 1 we have g(�(x)) = 1− �2(x) ≥ 0 for any x ∈ Ω. Furthermore, it is clear ∫
Ω
g(�(x)) dx > 0 since � ∈ C(Ω)

and � ≢ ±1. Thus we have

|��| =
|||||

∫
Ω
f (�(x)) dx

∫
Ω
g(�(x)) dx

|||||
=

||∫Ω �(x) − �(x)3 dx||
∫
Ω
1 − �(x)2 dx

≤∫
Ω
‖�‖(1 − �(x)2) dx

∫
Ω
1 − �(x)2 dx

= ‖�‖ ≤ 1,

which completes the proof.

Remark 2. Note that for any function � ∈ C(Ω) with ‖�‖ ≤ 1, the condition � ≢ ±1 is equivalent to | ∫
Ω
�(x) dx| ≠ |Ω|. In the

case of the constant functions � ≡ ±1, the above result can be understood in the limit sense. The boundedness of �u(t) plays an

important role on ensuring that the solutions to the mass-conserving Allen-Cahn equation (6) and the corresponding temporally

discretized equation analyzed later are always located in the interval [−1, 1].

Next, let us introduce the stabilizing constant � > 0. Correspondingly, the mass-conserving Allen-Cahn equation (6) can be

written in the following equivalent form

)tu(x, t) = �u(x, t) + [u](x, t), x ∈ Ω, t > 0, (13)

where the linear operator

� = "2Δ − �
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and the nonlinear term

 [u](x, t) = �u(x, t) + f̄ [u](x, t)

= �u(x, t) + f (u(x, t)) − �u(t)g(u(x, t)).

We require that the stabilizing constant � always satisfies

� ≥ max
|�|≤1(|f

′(�)| + |g′(�)|) = max
|�|≤1(|1 − 3�2| + | − 2�|) = 2 + 2 = 4, (14)

Then we have the following lemma on the nonlinear term.

Lemma 2. Suppose that the requirement (14) holds. For any function � ∈ C(Ω) with ‖�‖ ≤ 1 and � ≢ ±1, we have

‖ [�]‖ ≤ �. (15)

Proof. For any � ∈ C(Ω) such that ‖�‖ ≤ 1, we have from (14) that

0 ≤ � + f ′(�(x)) − ��g
′(�(x)) ≤ 2�, ∀ x ∈ Ω, (16)

where we have used the result ‖��‖ ≤ 1 guaranteed by Lemma 1. Then, the combination of (9) and (16) yields

−� = −� + f (−1) − ��g(−1) ≤  [�](x) = ��(x) + f (�(x)) − ��g(�(x))

≤ � + f (1) − ��g(1) = � (17)

for any x ∈ Ω, which completes the proof.

2.2 Exponential time differencing for time integration

Now we propose and analyze first- and second-order linear schemes for time integration of the mass-conserving Allen-Cahn

equation (6) based on the equivalent form (13) and the exponential time differencing approach.

Let us divide the time interval by {tn = n�}n≥0 with a time step size � > 0. The essence of the ETD method is to approximate

the nonlinear operators  [u] by some interpolation. We define w(x, s) = u(x, tn + s) for s ∈ [0, �], then we have the following

problem:
{

)sw = �w + [w], x ∈ Ω, s ∈ (0, �],

w(x, 0) = u(x, tn), x ∈ Ω,
(18)

equipped with the periodic boundary condition or homogeneous Neumann boundary condition.

Setting  [u(tn + s)] ≈  [u(tn)] in (18) gives the first-order ETD (ETD1) scheme: for n ≥ 0 and given un, find un+1 = wn(�)

solving
{

)sw
n = �w

n + [un], x ∈ Ω, s ∈ (0, �],

wn(x, 0) = un, x ∈ Ω,
(19)

subject to the periodic or homogeneous Neumann boundary condition, where un represents an approximation of u(tn) and u0 =

u0(⋅) is given.

First we have the following lemma regarding the Laplace operator.

Lemma 3. 14 For any w ∈ {u ∈ C(Ω) | Δu ∈ C(Ω)} and x0 ∈ Ω, if

w(x0) = max
x∈Ω

w(x),

then Δw(x0) ≤ 0. The Laplace operator Δ, enforced by the periodic or homogeneous Neumann boundary condition, generates a

contraction semigroup {eΔt}t≥0 with respect to the supremum norm on the subspace of C(Ω)14, and for any � ≥ 0, it holds that

‖et(Δ−�)u‖ ≤ e−�t‖u‖, t ≥ 0, (20)

for any u ∈ C(Ω).
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Proposition 1 (Mass conservation of the ETD1 scheme). The ETD1 scheme (19) conserves the mass unconditionally, i.e., for

any time step size � > 0, the ETD1 solution satisfies

∫
Ω

un dx = M0, ∀ n ≥ 0. (21)

Proof. By induction, assuming that ∫
Ω

un dx = M0 is given, we only need to show ∫
Ω

un+1 dx = M0. Taking the L2 inner

product of (19) with 1, we immediately obtain

d

ds ∫
Ω

wn dx + � ∫
Ω

wn dx = � ∫
Ω

un dx = �M0.

Let V (s) = ∫
Ω
wn(s) dx, then we have

dV (s)

ds
+ �V (s) = �M0,

with V (0) = M0. Multiplying by the exponential term e�s and integrating on the interval [0, �], we immediately get

V (�)e�� −M0 = M0(e
�� − 1),

which implies ∫
Ω

un+1 dx = V (�) = M0.

Proposition 1 implies that if u0 ≢ ±1 (i.e., |M0| ≠ |Ω|), then un ≢ ±1 for any n ≥ 0.

Theorem 1 (Discrete MBP of the ETD1 scheme). Suppose that the requirement (14) holds and ‖u0‖ ≤ 1 with |M0| ≠ |Ω|.
Then the ETD1 scheme (19) preserves the discrete MBP unconditionally, i.e., for any time step size � > 0, the ETD1 solution

satisfies ‖un‖ ≤ 1 for any n ≥ 0.

Proof. By induction, we just need to show that ‖un‖ ≤ 1 and un ≢ ±1 deduce ‖un+1‖ ≤ 1 for any n. The integration form of the

ETD1 scheme (19) reads as

un+1 = e��un +

�

∫
0

e(�−s)� [un] ds. (22)

According to Lemmas 2-3 and ‖un‖ ≤ 1, we obtain

‖un+1‖ ≤ ‖e��‖‖un‖ +
�

∫
0

‖e(�−s)�‖‖ [un]‖ ds

≤ e−�� +

�

∫
0

e−(�−s)�� ds

= e−�� + �
1 − e−��

�
= 1,

which completes the proof.

Remark 3. By approximating e−�� ≈  − �� in the ETD1 scheme (22), one can obtain

un+1 − un

�
= �u

n+1 + [un],

which is exactly the standard stabilized implicit-explicit Euler (IMEX1) scheme, linear, and also preserves the MBP38 uncondi-

tionally. Such an observation suggests that the IMEX1 scheme is actually an approximation of the ETD1 scheme, and the ETD1

solution is more accurate since it preserves completely the exponential behavior of the linear operator and partially the nonlinear

term25,26 while the IMEX1 scheme only uses the first-order leading term.
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The second-order ETD scheme of Runge-Kutta (ETDRK2) type is given by: find un+1 = wn(�) solving
{

)sw
n = �w

n +
(
1 −

s

�

) [un] +
s

�
 [ũn+1], x ∈ Ω, s ∈ (0, �],

wn(x, 0) = un, x ∈ Ω,
(23)

with u0 = u0(⋅), subject to the periodic or homogeneous Neumann boundary condition, where ũn+1 is generated by the ETD1

scheme (19). It is worth noting that both ETD1 and ETDRK2 schemes are linear. We now prove the mass conservation and the

discrete MBP for the ETDRK2 scheme.

Proposition 2 (Mass conservation of the ETDRK2 scheme). The ETDRK2 scheme (23) conserves the mass unconditionally,

i.e., for any time step size � > 0, the ETDRK2 solution satisfies

∫
Ω

un dx = M0, ∀ n ≥ 0. (24)

Proof. Similar to the proof for Proposition 1, by taking the L2 inner product with (23) by 1, we have

d

ds ∫
Ω

wn dx + � ∫
Ω

wn dx =
(
1 −

s

�

)
� ∫

Ω

un dx +
s

�
� ∫

Ω

ũn+1 dx = �M0,

where we have used ∫
Ω

ũn+1 dx = M0 from Proposition 1. Thus we obtain ∫
Ω

un+1 dx = M0, which completes the proof.

Theorem 2 (Discrete MBP of the ETDRK2 scheme). Suppose that the requirement (14) holds, ‖u0‖ ≤ 1 with |M0| ≢ |Ω|.
Then the ETDRK2 scheme (23) preserves the discrete MBP unconditionally, i.e., for any time step size � > 0, the ETDRK2

solution satisfies ‖un‖ ≤ 1 for any n > 0.

Proof. By induction, let us assume that ‖un‖ ≤ 1 and un ≢ ±1 for some n. From the ETDRK2 scheme (23), we have

un+1 = e��un +

�

∫
0

e(�−s)�

[(
1 −

s

�

) [un] +
s

�
 [ũn+1]

]
ds. (25)

According to Lemmas 2-3, ‖un‖ ≤ 1 and ‖ũn+1‖ ≤ 1 (by Theorem 1), we obtain

‖un+1‖ ≤ ‖e��‖‖un‖ +
�

∫
0

‖e(�−s)�‖
[(

1 −
s

�

)
‖ [un]‖ + s

�
‖ [ũn+1]‖

]
ds

≤ e−�� +

�

∫
0

e−�(�−s)
[(

1 −
s

�

)
� +

s

�
�
]
ds

= e−�� + �
1 − e−��

�
= 1,

which completes the proof.

Remark 4. Different from the IMEX1 scheme, it was shown in43 that the IMEX Runge-Kutta schemes with order greater than 1

only preserves the MBP conditionally; more precisely, their MBP preservation still has the constraint on the time step size and

the spatial mesh size.

Remark 5. As claimed in14, the classic ETD Runge-Kutta approximations with order greater than 2 fail to maintain the MBP

unconditionally since the higher-order interpolation polynomials contain negative coefficients, and this also happens to the mass-

conserving Allen-Cahn equation (6). In addition to the Runge-Kutta type approach, multistep methods have also been widely

used to design high-order schemes for gradient flow models, such as the third-order ETD multistep scheme and the BDF3

scheme for the no-slope-selection thin film model11,20. However, the ETD multistep approach is based on the extrapolation

for the nonlinear term. Due to the existence of negative coefficients, the extrapolation polynomials cannot be bounded by the

maxima and minima of the extrapolated data, and thus the resulting ETD multistep schemes with order greater than 1 fail to

unconditionally preserve the MBP14. More recently, the integrating factor Runge-Kutta (IFRK) method was considered for time
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integrartion of the classic Allen-Cahn equation in24,29, which successfully gives some high-order MBP-preserving schemes,

thus it remains very interesting to apply them to the mass-conserving Allen-Cahn equation (6).

2.3 Fully discrete schemes

In the following, we briefly discuss the fully-discrete ETD schemes corresponding to (19) and (23), which are also uncondition-

ally MBP preserving. To this end, we recall the continuity of a function defined on a set D ⊂ ℝ
d as35:

w is continuous at x∗ ∈ D ⇐⇒ ∀ xk → x
∗ in D implies w(xk) → w(x∗).

Thus, under the same theoretical framework, the MBP property of the mass-conserving Allen-Cahn equation (6) can be further

extended to the case of finite-dimensional operators in space, such as replacing Δ by its discrete approximation denoted by

Δℎ. As shown in14, it is easy to verify that the central difference operator and lumped-mass finite element operator for spatial

discretization of the Laplace operator Δ also satisfy Lemma 3. In this case, Δℎ can be simply regarded as a square matrix

and generates a contraction semigroup {eΔℎt}t≥0 on the subspace of C(X) satisfying the periodic or homogeneous Neumann

boundary condition, where X is the set of all spacial grid points (boundary and interior points). The resulting space-discrete

equation of (6) with Δ replaced by Δℎ becomes an ordinary differential equation (ODE) system taking the same form:

ut = "2Δℎu + f̄ [u], x ∈ X∗, t > 0

with u(x, 0) = u0(x) for any x ∈ X, where X∗ = X for the homogeneous Neumann boundary condition and X∗ = X ∩Ω
+

with

Ω
+
=

d∏
i=1

(ai, bi] for the periodic boundary condition.

We present below the formulas of the fully-discrete ETD1 and ETDRK2 schemes, which can be directly implemented for

computation. Let �,ℎ = "2Δℎ − � and define the �-functions as follows:

�0(a) = ea,

�1(a) =
ea − 1

a
,

�2(a) =
ea − 1 − a

a2
,

for any a ≠ 0. Then the fully-discrete ETD1 scheme is given by

un+1 = e��,ℎun +

�

∫
0

e(�−s)�,ℎ [un] ds,

or equivalently,

un+1 = �0(��,ℎ)u
n + ��1(��,ℎ) [un], (26)

and the fully-discrete ETDRK2 scheme by
{

ũn+1 = e��,ℎun + ∫ �

0
e(�−s)�,ℎ [un] ds,

un+1 = e��,ℎun + ∫ �

0
e(�−s)�,ℎ

{
(1 −

s

�
) [un] +

s

�
 [ũn+1]

}
ds,

or equivalently,
{

ũn+1 = �0(��,ℎ)u
n + ��1(��,ℎ) [un],

un+1 = ũn+1 + ��2(��,ℎ)
( [ũn+1] − [un]

)
.

(27)

3 ERROR ESTIMATES

In the following, we carry out convergence analysis for the ETD schemes (19) and (23) in the space-continuous setting. We first

derive some useful results as follows.
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Lemma 4. Let  be any constant such that |Ω| >  > 0. For any �1, �2 ∈ C(Ω) with ‖�i‖ ≤ 1 and ∫
Ω
g(�i(x, t)) dx ≥  (i = 1, 2),

we have

‖��1g(�1) − ��2g(�2)‖ ≤ C‖�1 − �2‖, (28)

where C =
4|Ω|


+
2|Ω|2

2
.

Proof. We first have for any x ∈ Ω,

��1g(�1(x)) − ��2g(�2((x)) =
∫
Ω
f (�1(y)) dy

∫
Ω
g(�1(y)) dy

g(�1(x)) −
∫
Ω
f (�2(y)) dy

∫
Ω
g(�2(y)) dy

g(�2(x))

=

(

∫
Ω

f (�1(y)) − f (�2(y)) dy

)
g(�1(x))

∫
Ω
g(�1(y)) dy

+ ∫
Ω

f (�2(y)) dy

(
g(�1(x))

∫
Ω
g(�1(y)) dy

−
g(�2(x))

∫
Ω
g(�2(y)) dy

)

=

(

∫
Ω

f (�1(y)) − f (�2(y)) dy

)
g(�1(x))

∫
Ω
g(�1(y)) dy

+

(

∫
Ω

f (�2(y)) dy

)
g(�1(x)) − g(�2(x))

∫
Ω
g(�2(y)) dy

+ ∫
Ω

f (�2(y)) dy

(
g(�1(x))

∫
Ω
g(�2(y)) − g(�1(y))dy

∫
Ω
g(�1(y)) dy ∫Ω g(�2(y)) dy

)

=∶ I1 + I2 + I3.

Notice that |g(�(x))| ≤ 1, |f (�(x))| ≤ 1, |g′(�(x))| ≤ 2 and |f ′(�(x))| ≤ 2 for any � ∈ C(Ω) with ‖�‖ ≤ 1, then we get

|I1| ≤ 1


|g(�1(x))|∫

Ω

||f (�1(y)) − f (�2(y))
|| dy ≤ 2|Ω|


‖�1 − �2‖,

|I2| ≤ |Ω|


‖f (�2)‖ ||g(�2(x)) − g(�1(x))
|| ≤ 2|Ω|


‖�1 − �2‖,

|I3| ≤ |Ω|
2

‖f (�2)‖|g(�1(x))|∫
Ω

||g(�2(y)) − g(�1(y))
||dy ≤ 2|Ω|2

2
‖�1 − �2‖.

By combining the above results, we obtain

‖��1g(�1) − ��2g(�2)‖ ≤
(
4|Ω|


+
2|Ω|2

2

)
‖�1 − �2‖, (29)

which completes the proof.

Lemma 5. Suppose that the requirement (14) holds and let  be any constant such that |Ω| >  > 0. For any �1, �2 ∈ C(Ω)

with ‖�i‖ ≤ 1 and ∫
Ω
g(�i(x, t)) dx ≥  (i = 1, 2), we have

‖ [�1] − [�2]‖ ≤ C∗

�‖�1 − �2‖, (30)

where C∗

=

3

2
+

C

4
.

Proof. It is easy to check that for any x ∈ Ω,

| [�1](x) − [�2](x)| = |�(�1(x) − �2(x)) + (f (�1(x)) − f (�2(x)) − (��1g(�1(x)) − ��2g(�2(x)))|
≤ �|�1(x) − �2(x)| + |f (�1(x)) − f (�2(x))| + |��1g(�1(x)) − ��2g(�2(x))|
≤ (� + 2 + C )‖�1 − �2‖

≤ (
3

2
+

C

4

)
�‖�1 − �2‖,

where we have used Lemma 4 and the requirement � ≥ 4. The proof is completed.

Next, we study the convergence for the ETD schemes (19) and (23). Let T > 0 be a given fixed terminal time. For any

u ∈ C([0, T ];C(Ω)) with ‖u(t)‖ ≤ 1 and ∫
Ω
u(x, t) dx = M0 ≠ |Ω| for any t ∈ [0, T ], there always exists a constant u > 0 such

that ∫
Ω
g(u(x, t)) dx ≥ u for any t ∈ [0, T ] due to the continuity and boundedness of u.
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Theorem 3 (Error estimate of the ETD1 scheme). Suppose that the requirement (14) holds and ‖u0‖ ≤ 1 with |M0| ≠ |Ω|.
Assume that the exact solution u to the model problem (6) belongs to C1([0, T ];C(Ω)) and let {un ∈ C(Ω)}n≥0 be the approx-

imate solution generated by the ETD1 scheme (19). Furthermore, we also assume that there exists a constant d > 0 such that

∫
Ω
g(un(x)) dx ≥ d for any n with n� ≤ T and define  = min(u, d). Then we have

‖u(tn) − un‖ ≤ C∗


C∗

−1
Ce(C

∗

−1)�tn�, ∀ tn ≤ T , (31)

for any � > 0, where the constant C > 0 is independent of �,  and �.

Proof. Let en
1
= un − u(tn). The difference between (19) and (18) yields

en+1
1

= e� �en
1
+

�

∫
0

e� (�−s)
{ [un] − [u(tn)] +R1(s)

}
ds, (32)

where R1(s) is the truncation error as

R1(s) =  [u(tn)] − [u(tn + s)], s ∈ [0, �].

By the MBP property of u and Lemma 5, we have

‖R1(s)‖ = ‖ [u(tn)] − [u(tn + s)]‖ ≤ C∗

�‖u(tn) − u(tn + s)‖ ≤ C1C

∗

��, ∀s ∈ [0, �],

where the constant C1 depends on the C1([0, T ];C(Ω) norm of u, but independent of � and �. Similarly, since ‖un‖ ≤ 1 due to

Theorem 1, we also obtain by Lemma 5 that

‖ [un] − [u(tn)]‖ ≤ C∗

�‖un − u(tn)‖ = C∗


� ‖‖e

n
1
‖‖ . (33)

Then, we derive from (32) and Lemma 3 that

‖en+1
1

‖ ≤ e−��‖en
1
‖ +

�

∫
0

e−�(�−s)
{
‖ [un] − [u(tn)]‖ + ‖R1(s)‖

}
ds

≤ e−��‖en
1
‖ + C∗


�
(
‖en

1
‖ + C1�

)
�

∫
0

e−�(�−s) ds

=e−��‖en
1
‖ + 1 − e−��

�
C∗

�
(
‖en

1
‖ + C1�

)

= (C∗

− (C∗


− 1)e−��)‖en

1
‖ + 1 − e−��

��
C∗

C1��

2

≤ (1 + (C∗

− 1)��)‖en

1
‖ + C∗


C1��

2, (34)

where in the last step we have used the fact that 1 − e−a ≤ a for any a > 0. By induction, we have

‖en
1
‖ ≤ (1 + (C∗


− 1)��)n‖e0

1
‖ + C∗


C1��

2

n−1∑

k=0

(1 + (C∗

− 1)��)k

= (1 + (C∗

− 1)��)n‖e0

1
‖ + C∗


C1

C∗

−1
�[(1 + (C∗


− 1)��)n − 1]

≤ e(C
∗

−1)�n�‖e0

1
‖ + C∗



C∗

−1
C1e

(C∗

−1)�n��.

Finally we obtain (31) by letting C = C1 since e0
1
= 0 and n� = tn.

Theorem 4 (Error estimate of the ETDRK2 scheme). Suppose that the requirement (14) holds and ‖u0‖ ≤ 1 with |M0| ≠
|Ω|. Assume that the exact solution u to the model problem (6) belongs to C2([0, T ];C(Ω)) and let {un ∈ C(Ω)}n≥0 be the

approximate solution generated by the ETD2 scheme (23). Furthermore, we also assume that there exists a constant d > 0 such

that ∫
Ω
g(un(x)) dx ≥ d for any n with n� ≤ T and define  = min(u, d). Then we have

‖u(tn) − un‖ ≤ Ce(C
∗

−1)�tn�2, ∀ tn ≤ T , (35)

for any � > 0, where the constant C > 0 is independent of �.
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Proof. The proof strategy is quite similar to that for the ETD1 scheme. Let en
2
= un − u

(
tn
)
, then we have

en+1
2

= e��en
2
+

�

∫
0

e� (�−s)
{(

1 −
s

�

)( [un] − [u(tn)]
)
+

s

�

( [ũn+1] − [u(tn+1)]
)
+ R2(s)

}
ds, (36)

where R2(s) is the truncation error given by

R2(s) =
(
1 −

s

�

) [u(tn)] +
s

�
 [u(tn+1)] − [u(tn + s)], s ∈ [0, �].

Using the estimation of the linear interpolation, we have

‖R2(s)‖ ≤ C2�
2, ∀ s ∈ [0, �],

where the constant C2 depends on the C2([0, T ], C(Ω)) norm of u and  but is independent of �. From the last inequality in (34),

we know

‖ũn+1 − u(tn+1)‖ ≤ (1 + (C∗

− 1)��)‖un − u(tn)‖ + C∗


C1��

2.

By combining the above inequality with Theorem 2 and Lemma 5, we have, for any s ∈ [0, �],

‖‖‖‖

(
1 −

s

�

) ( [un] − [u(tn)]
)
+

s

�

( [ũn+1] − [u(tn+1)]
)‖‖‖‖

≤ C∗

�
((

1 −
s

�

)
‖‖e

n
2
‖‖ +

s

�

(
(1 + (C∗


− 1)��) ‖‖e

n
2
‖‖ + C∗


C1��

2
))

= C∗

�‖en

2
‖ + C∗


(C∗


− 1)�2s‖en

2
‖ + C∗


2C1�

2�s.

Then, we obtain from (36) and Lemma 3 that

‖en+1
2

‖ ≤ e−��‖en
2
‖ +

�

∫
0

e−�(�−s)
{
C∗

�‖en

2
‖ + C∗


(C∗


− 1)�2s‖en

2
‖ + C∗


2C1�

2�s + C2�
2
}

ds

=e−��‖en
2
‖ +

(
C∗

� ‖‖e

n
2
‖‖ + C2�

2
) �

∫
0

e−�(�−s) ds +
(
C∗

(C∗


− 1)�2‖en

2
‖ + C∗


2C1�

2�
) �

∫
0

se−�(�−s) ds

=e−�� ‖‖e
n
2
‖‖ +

1 − e−��

�

(
C∗

�‖en

2
‖ + C2�

2
)
+

e−�� − 1 + ��

�2

(
C∗

(C∗


− 1)�2‖en

2
‖ + C∗


2C1�

2�
)

=
(
(C∗


− 1)2e−�� + C∗


(C∗


− 1)�� − C∗


(C∗


− 2)

)
‖en

2
‖ + 1 − e−��

�
C2�

2 +
e−�� − 1 + ��

�2
⋅ C∗


2C1�

2�

≤ (
1 + (C∗


− 1)�� +

1

2
(C∗


− 1)2(��)2

)
‖en

2
‖ +

(
C2 +

1

2
C∗

C1�

2
)
�3,

where we have used the inequality 1 − a ≤ e−a ≤ 1 − a +
a2

2
for any a > 0. By induction, we obtain

‖en
2
‖ ≤ (

1 + (C∗

− 1)�� +

1

2
(C∗


− 1)2(��)2

)n

‖e0
2
‖

+
(
1

2
C∗

C1�

2 + C2

)
�3

n−1∑

k=0

(
1 + (C∗


− 1)�� +

1

2
(C∗


− 1)2(��)2

)k

≤ (
1 + (C∗


− 1)�� +

1

2
(C∗


− 1)2(��)2

)n

‖e0
2
‖

+

(
C∗


2(C∗

− 1)

C1� +
C2

(C∗

− 1)�

)

�2
((

1 + (C∗

− 1)�� +

1

2
(C∗


− 1)2(��)2

)n

− 1

)

≤ e(C
∗

−1)�n�‖e0

2
‖ +

(
C∗


2(C∗

− 1)

C1� +
C2

(C∗

− 1)�

)

e(C
∗

−1)�n��2.

By letting C =
C∗


2(C∗

−1)

C1� +
C2

(C∗

−1)�

, we finally obtain (35) since e0
2
= 0 and n� = tn.

Remark 6. In Theorems 3 and 4, we additionally assume that there exists a constant d > 0 such that ∫
Ω
g(un(x)) dx ≥ d for any

n with n� ≤ T . While this assumption on the approximate solution {un} is necessary to our current proofs of the error estimates,

it remains an interesting question whether such assumption can be removed with other analysis techniques. Here, we only give
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the temporal convergence analysis for the ETD1 and ETDRK2 schemes in the space-continuous setting. In the similar spirit of

the analysis in15, the convergence analysis for the fully discrete version is also available by taking the truncation error for spatial

discretization into account.

4 NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to demonstrate the performance (convergence rates, mass conservation

and MBP preservation) of the proposed ETD schemes (19) and (23) for the mass-conserving Allen-Cahn equation (6). We take

the domain Ω = (−0.5, 0.5)d with d = 2 or 3. Moreover, the ETDRK2 scheme is used in all examples while the ETD1 scheme is

only considered in temporal convergence tests due to its lack of high accuracy. For simplicity, we here only consider the case of

periodic boundary condition and the case of homogeneous Neumann boundary condition is similar. The stabilizing coefficient

is set to be � = 4 in all experiments. The spatial discretization is performed by the central difference discretization to form

the fully-discrete schemes (26) and (27), in which the products of matrix exponentials with vectors are computed using the fast

Fourier transform based implementation26.

4.1 Convergence tests

We run the first- and second-order ETD schemes for the mass-conserving Allen-Cahn equation (6) in 2D with " = 0.01 and the

initial value u0(x, y) = cos(2�x) cos(2�y). The terminal time is chosen to be T = 1. In order to accurately catch the convergence

rate in time, the spatial mesh size must be small enough and we set ℎ = 1∕1024. To compute the solution errors under different

time step sizes � = 1∕2k for k = 2, 3,… , 8, we treat the approximate solution obtained by the ETDRK2 scheme with � = 1∕1024

as the benchmark. TABLE 1 reports the L∞ and L2 norms of the solution errors at the terminal time T = 1 and corresponding

temporal convergence rates, which clearly verifies the first-order temporal accuracy for ETD1 and the second-order temporal

accuracy for ETDRK2 respectively.

TABLE 1 L2 and L∞ solution errors at T = 1 and corresponding convergence rates in time by the ETD1 and ETDRK2 schemes

respectively.

�
ETD1 ETDRK2

L2 Error Rate L∞ Error Rate L2 Error Rate L∞ Error Rate

1∕4 2.28e-1 1.51e-1 1.49e-1 9.57e-2

1∕8 1.57e-1 0.54 1.01e-1 0.58 6.98e-2 1.09 4.36e-2 1.13

1∕16 9.40e-2 0.74 5.95e-2 0.77 2.53e-2 1.47 1.55e-2 1.49

1∕32 5.12e-2 0.87 3.19e-2 0.90 7.72e-3 1.71 4.69e-3 1.72

1∕64 2.61e-2 0.97 1.61e-2 0.98 2.13e-3 1.85 1.29e-3 1.86

1∕128 1.25e-2 1.06 7.70e-3 1.06 5.57e-4 1.94 3.37e-4 1.94

1∕256 5.43e-3 1.20 3.33e-3 1.20 1.36e-4 2.03 8.23e-5 2.03

Next, we test the spatial convergence of the central difference using the ETDRK2 scheme. We fix the time step size

� = T ∕1024 and regard the approximate solution produced by the ETDRK2 scheme with ℎ = 1∕2048 as the benchmark for

computing the solution errors with different spatial mesh sizes. The L∞ and L2 norms of the solution errors at T = 1 and cor-

responding convergence rates are presented in TABLE 2. It is observed that the convergence rates with respect to ℎ are clearly

of second order as expected.
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TABLE 2 L2 and L∞ solution errors at T = 1 and corresponding convergence rates in space by the ETDRK2 scheme.

ℎ L2 Error Rate L∞ Error Rate

1/64 9.98e-4 3.14e-4

1/128 3.09e-4 1.69 9.21e-5 1.77

1/256 8.38e-5 1.88 2.40e-5 1.94

1/512 2.12e-5 1.97 6.07e-6 1.98

1/1024 5.33e-6 1.99 1.52e-6 1.99

4.2 Tests of mass-conservation and MBP-preservation

We numerically simulate and investigate the discrete MBP in long-time phase separation processes governed by the mass-

conserving Allen-Cahn equation (6) in 2D and 3D spaces. The ETDRK2 scheme is used. We set " = 0.01 and the time step size

� = 0.1. The spatial grid size is selected to be ℎ = 1∕1024 in 2D and ℎ = 1∕256 in 3D .

We start the 2D simulations with an initial configuration of u0 = 0.9 rand (⋅) (here rand (⋅) represents the quasi-uniform

random distribution between −1 and 1). In this case, we also compare the simulation results with those produced by the classic

Cahn-Hilliard equation25

)tu(x, t) = −Δ("2Δu(x, t) + f (u(x, t))), x ∈ Ω, t > 0, (37)

with " = 0.01 and the same initial configuration. FIGURE 1 presents the configurations of the simulated solutions at t = 1, 100,

1000, and 2500 for the mass-conserving Allen-Cahn equation (6). The steady state is gradually reached after about t = 2000.

The evolutions of the mass, the supremum norm and the energy are plotted in FIGURE 2. It is easy to see that the mass is

exactly conserved and the discrete MBP is preserved perfectly along the time. Although there is no energy dissipation law for

the equation (6) theoretically, we still observe that the energy decays monotonically for this example. The configurations of the

simulated solutions at t = 1, 10, 50, and 300 for the Cahn-Hilliard equation are presented in FIGURE 3, where the same steady

state is reached after around t = 80. This implies that the evolution of the phase structure in the mass-conserving Allen-Cahn

equation is much slower than that in the Cahn-Hilliard equation. FIGURE 4 shows the corresponding evolutions of the mass,

the supremum norm and the energy. We observe that the mass is conserved and the energy decays monotonically along the

time. However, the supremum norm of the numerical solution is beyond the constant 1 after about t = 1 since the Cahn-Hilliard

equation does not have the MBP property.

Our 3D simulations start with the quasi-uniform initial state u0 = 0.9 rand(⋅) as well. FIGURE 5 presents the configurations of

the computed solution at t = 1, 30, 200, and 4000 for the mass-conserving Allen-Cahn equation. The corresponding evolutions

of the mass, the supremum norm and the energy are plotted in FIGURE 6. We observed again that the mass is exactly conserved,

the discrete MBP is preserved perfectly, and the energy decays monotonically along the time.

4.3 The expanding bubble test

We use the ETDRK2 scheme to simulate the expansion process of the bubble in 3D, governed by the mass-conserving Allen-

Cahn equation beginning with a discontinuous initial configuration

u0 =

{
−0.5, x2 + y2 + z2 < 0.252,

0.5, otherwise.
(38)

The temporal and spatial step size are set as � = 0.1 and ℎ = 1∕256. FIGURE 7 presents the simulated process of the expanding

bubble, that is, the isosurface views of the numerical solutions at t = 1, 10, 15, and 100, respectively. FIGURE 8 illustrates the

evolutions of the mass, the supremum norm, the energy and the radius of the bubble along the time. It is again observed that the

mass is conserved, the discrete MBP is well preserved, and the energy decays monotonically. The radius of the bubble increases

monotonically and the steady state is reached (a bubble with radius r ≈ 0.407 as expected28) after about t = 18.
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(a) t = 1 (b) t = 100

(c) t = 1000 (d) t = 2500

FIGURE 1 The simulated solutions at t = 1, 100, 1000 and 2500 respectively for the mass-conserving Allen-Cahn equation

with an initial quasi-uniform state in 2D by the ETDRK2 scheme.
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FIGURE 2 Evolutions of the mass, the supremum norm and the energy of the simulated solutions for the mass-conserving

Allen-Cahn equation with an initial quasi-uniform state in 2D by the ETDRK2 scheme.

5 CONCLUSIONS

In this paper, we propose and analyze first- and second- order linear schemes for solving the mass-conserving Allen-Cahn

equation with local and nonlocal effects (in the double-well potential case), which are based on the combination of the linear

stabilizing technique and the exponential time differencing method. We prove that the proposed schemes are unconditionally

MBP-preserving and mass-conserved in the time-discrete sense. Error estimates of these schemes are also rigorously derived

under some assumptions. It remains an open problem whether a more delicate analysis can relieve the extra assumption on the
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(a) t = 1 (b) t = 10

(c) t = 50 (d) t = 300

FIGURE 3 The simulated solution at t = 1, 10, 50 and 300 respectively for the Cahn-Hilliard equation with an initial quasi-

uniform state in 2D.
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FIGURE 4 Evolutions of the mass, the supremum norm and the energy of the simulated solutions for the Cahn-Hilliard equation

with an initial quasi-uniform state in 2D.

numerical solutions {un} in Theorems 3 and 4 as discussed in Remark 6. In addition, it is worth mentioning that the Flory-

Huggions potential is also widely-used in the classic Allen-Cahn model and how to extend the current work to that case is subject

to future investigation as well.
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(a) t = 1 (b) t = 30

(c) t = 200 (d) t = 4000

FIGURE 5 The simulated phase structures at t = 1, 30, 200 and 4000 respectively for the mass-conserving Allen-Cahn equation

with an initial quasi-uniform state in 3D.
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FIGURE 6 Evolutions of the mass, the supremum norm and the energy of the simulated solutions for the mass-conserving

Allen-Cahn equation with an initial quasi-uniform state in 3D.
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(a) t = 1 (b) t = 10

(c) t = 15 (d) t = 100

FIGURE 7 The simulated phase structures at t = 1, 10, 15 and 100 respectively for the expanding bubble test in 3D.
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