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Abstract

The minimum cut problem, MC, and the special case of the vertex separator problem, consists
in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the
number of edges cut after removing the k-th set. Previous work on approximate solutions uses,
in increasing strength and expense: eigenvalue, semidefinite programming, SDP, and doubly
nonnegative, DNN, bounding techniques. In this paper, we derive strengthened SDP and
DNN relaxations, and we propose a scalable algorithmic approach for efficiently evaluating,
theoretically verifiable, both upper and lower bounds.

Our stronger relaxations are based on a new gangster set, and we demonstrate how facial
reduction, FR, fits in well to allow for regularized relaxations. Moreover, the FR appears to be
perfectly well suited for a natural splitting of variables, and thus for the application of splitting
methods. Here, we adopt the strictly contractive Peaceman-Rachford splitting method, sPRSM.

Further, we bring useful redundant constraints back into the subproblems, and show em-
pirically that this accelerates sPRSM. In addition, we employ new strategies for obtaining
lower bounds and upper bounds of the optimal value of MC from approximate iterates of the
sPRSM thus aiding in early termination of the algorithm. We compare our approach with
others in the literature on random datasets and vertex separator problems. This illustrates the
efficiency and robustness of our proposed method.
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1 Introduction

We present strengthened doubly nonnegative, DNN, (both positive semidefinite, SDP, and non-
negative elementwise) relaxations for the min-cut problem, MC; i.e., for the problem of partitioning
the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges
cut after removing the k-th set. Our relaxations are aimed at specifically applying splitting methods
based on using the regularization technique facial reduction, FR. We see that the FR technique
both provides an excellent splitting of variables, as well as reducing the singularity degree to zero
(equivalent to strict feasibility) and thus providing regularization for improving accuracy. In addition,
we employ new so-called gangster constraints. The result is strengthened and theoretically verifiable
upper and lower bounds for MC.

We consider an undirected graph G = (V, E) with vertex and edge sets V, E , respectively, and
|V| = n. We let m = (m1 m2 . . . mk)

T ,
∑k

i=1mi = n, denote a given partition of n into k sets.
The special type of minimum cut problem, MC, we consider consists in partitioning the vertex
set V into k subsets, with given sizes in m, in order to minimize the cut obtained after removing
the k-th set, i.e., we minimize the number of edges connecting distinct sets other than those edges
connected to the k-th set, see e.g., [21]. This problem can be modelled as a linearly constrained
quadratic 0, 1 program

cut(m) = min 1
2 traceAXBXT

s.t. X ∈Mm,
(1.1)

where the matrices A,B and the set of 0, 1 partition matrices M are defined below in Section 1.2,
see (1.2).

This problem arises for example when finding an ordering to bring the sparsity pattern of a large
sparse positive definite matrix into a block-arrow shape so as to minimize fill-in within a Cholesky
factorization, e.g., [4, 9, 26]. The MC has further applications in computer program segmentation,
solving symmetric systems of equations, microchip design and circuit board, floor planning and
other layout problems [20]. In particular herein, we include consideration of the vertex separator
problem, i.e., finding a vertex set whose removal splits the graph into two disconnected subsets, see
e.g., [8, 22].

It is well known that MC is an NP-hard problem when k ≥ 3, see e.g., [15,21]. Solution techniques
rely on efficiently calculating lower and upper bounds. We refer the readers to [7,10,19,21,22] and the
references therein for recent results for finding bounds and solving MC; and also to [22, Section 2]
for a recent overview of existing relaxation techniques for solving MC. An important tool for finding
lower bounds is the semidefinite programming, SDP , relaxation of MC; this is included in [19].
Moreover, this relaxation uses facial reduction FR to guarantee strict feasibility and robustness for
both the relaxation and its dual. However, these SDP problems are typically solved by interior point
methods. These methods often do not scale well, cannot properly exploit sparsity, and generally do
not provide high accuracy solutions. Moreover, while lower bounds from SDP can be strengthened
to yield better approximations to MC by adding extra nonnegativity and cutting plane constraints,
the resulting optimization problems can be prohibitively expensive to solve for interior point solvers.
And, the lack of accuracy in solutions means that both lower and upper bounds are not necessarily
true bounds. Thus, in order to improve MC approximations, besides deriving tighter theoretical
upper and lower bounds, one also needs to design efficient, accurate, and scalable algorithms for
computing these bounds.
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1.1 Main contributions

In this paper, we derive tighter (lower and upper) bounds and design efficient algorithms for
their evaluation. The bounds are based on strengthened SDP and doubly nonnegative, DNN,
relaxations within a FR framework. The bounding techniques are theoretically verifiable. Moreover,
we introduce a random weighted sampling of eigenvectors to strengthen the upper bounds.

Our stronger relaxations use a new gangster set; see Definition 2.3. This set can be larger than
the one used in the literature, e.g., [19, 29], when some of the set sizes mi = 1. Then we show that
the facially reduced problems satisfy the Robinson regularity condition. In addition, we show that
many of the constraints are redundant in the facially reduced problem.

Our final DNN relaxation can be very difficult and time consuming to solve for interior point
solvers. Therefore, we propose a scalable and regularized algorithmic approach. The key idea is
that FR gives a natural way of reformulating the facially reduced DNN relaxation into a separable
convex programming problem with linear coupling constraints. This sets the stage for an application
of splitting methods such as alternating direction method of multipliers, ADMM [3]. These methods
typically involve updating the multiplier(s) and solving several subproblems at each iteration. Their
efficiency depends highly on the simplicity of the subproblems, and accurate solutions can take
many iterations.

Herein we employ a particular variant of ADMM, the strictly contractive Peaceman-Rachford
splitting method, sPRSM , [11, 12]. This method involves two subproblems and two updates of the
multiplier at every iteration. While a direct application of this method can be slow (i.e., takes a
lot of iterations), we introduce two key ingredients for empirical acceleration. First, instead of just
using the natural splitting induced by FR, as in the recent work [18], we bring back some provably
redundant constraints that are not redundant for the subproblems and do not significantly increase
the computational cost. Second, we derive new strategies for obtaining lower and upper bounds
of the true optimal value of MC. This helps with early termination of sPRSM when the two
bounds agree. Specifically, we compute a lower bound by looking at the Fenchel dual. Moreover, we
mimic the now classical Goeman-Williamson’s approach for MAXCUT and use a random weighted
sampling of eigenvectors of an iterate of the sPRSM before projecting it onto the set of partition
matrices for computing an upper bound.

In the numerical experiments, we illustrate the efficiency of our proposed algorithmic approach
(based on the strengthened DNN relaxation model) by comparing with the DNN relaxation model
in [19], as well as the SDP4 model in [22]. Our experiments show that our approach takes less
computational time and the bounds obtained are generally strengthened.

1.1.1 Outline

In Section 2 we discuss properties of our new gangster sets and our facially reduced SDP and
DNN relaxations. Our algorithmic sPRSM approach is presented in Section 3. In addition, we
discuss the usefulness of redundant constraints and include details of the subproblems of sPRSM.
And, we describe the methods for obtaining both lower and upper bounds from possibly inaccurate
solutions of the sPRSM. Our numerical results are presented in Section 4. Concluding remarks are
given in Section 5.
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1.2 Preliminaries

Let A be the adjacency matrix of our graph, G = (V, E). Let ej , Ej = eje
T
j , Ij denote, respectively,

the all ones vector (of dimension j), all ones matrix, and identity matrix. We use e, E, I, when the
dimensions are clear. We set

B =

[
Ek−1 − Ik−1 0

0 0

]
∈ Sk,

where Sk is the space of real symmetric k × k matrices equipped with the trace inner product ,
〈S, T 〉 = traceST , and the corresponding Fröbenius norm, ‖S‖F . We use ‖S‖ = ‖S‖F , when the
meaning is clear.

Let m = (m1, . . . ,mk)
T ∈ Zk+, k > 2, and let n = |V| = mT e. Let S = {S1, S2, . . . , Sk} be a

partition of the vertex set with cardinalities |Si| = mi > 0, i = 1, . . . , k, i.e., the sets are nonempty,
pairwise disjoint, and the union is S. In addition, we let M = Diag(m) denote the diagonal matrix
formed from the vector m. More generally, for a vector x ∈ Rj , we define Diag : Rj → Sj to be the
linear transformation that maps x to the diagonal matrix whose diagonal is x; we denote its adjoint
linear transformation by diag, i.e, diag := Diag∗. Next, we define the set of edges between two sets
of nodes by

δ(Si, Sj) := {uv ∈ E : u ∈ Si, v ∈ Sj}.

The cut of a partition S, δ(S), is then defined as the union of all edges cut by the first k − 1 sets of
the partition, i.e.,

δ(S) := ∪{δ(Si, Sj) : 1 ≤ i < j ≤ k − 1} .

Our objective is to minimize the cardinality of the cut, i.e., |δ(S)|. In [21], it is shown that |δ(S)|
can be represented in terms of a quadratic form of the partition matrix X. This quadratic form for
the MC problem in the trace formulation is

cut(m) = min 1
2 traceAXBXT

s.t. X ∈Mm,
(1.2)

where the set of partition matrices, Mm is defined by

Mm =
{
X ∈ Rn×k : Xe = e, XT e = m,Xij ∈ {0, 1}

}
,

i.e., column j of a partition matrix X is the indicator vector for set Sj . We let x = vec(X) ∈ Rnk
denote the columnwise vectorization of the matrix X. The inverse and adjoint linear transformation
Mat : Rnk → Rn×k is

X = Mat(x) = vec∗(x) = vec−1(x).

One way to derive an SDP relaxation for (1.2) is to start by considering a Lagrangian relaxation
of a quadratic-quadratic model of MC. Taking the dual of the dual of this Lagrangian relaxation then
gives the SDP relaxation for (1.2); see also [29,31] for the development for other hard combinatorial
problems. Alternatively, we can obtain the same SDP relaxation directly using the well-known
lifting process, e.g., [2, 16,25,29,31].

We denote the matrix lifting

Y :=

(
1
x

)(
1
x

)T
, x = vec(X). (1.3)
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Then Y ∈ Snk+1
+ and is rank-one. The rows and columns of Y are indexed from 0 to nk. Note that

Y in (1.3) can be blocked appropriately as

Y =

[
Y00 Y T

1:nk 0

Y1:nk 0 Y

]
, Y1:nk 0 =


Y(10)

Y(20)
...

Y(k0)

 , Y =


Y

(11)
Y

(12)
· · · Y

(1k)

Y
(21)

Y
(22)
· · · Y

(2k)
...

. . .
. . .

...

Y
(k1)

. . .
. . . Y

(kk)

 , (1.4)

with
Y

(ij)
∈ Rn×n, ∀i 6= 0,∀j 6= 0, and Y(j0) ∈ Rn, ∀j = 1, . . . , k.

With the matrix lifting for Y , we rewrite the objective function in (1.2) in the linearized form:

1

2
traceAXBXT =

1

2
traceLAY, LA :=

[
0 0
0 B ⊗A

]
. (1.5)

In [19,29], a preliminary SDP relaxation is derived for the model (1.2). After applying facial
reduction to the SDP relaxations, the variable Y is expressed as Y = Ṽ RṼ T , for some full column
rank matrix Ṽ ∈ R(nk+1)×((k−1)(n−1)+1), and the following SDP is obtained in [19] after removing
some redundant constraints:

min 1
2 trace

(
Ṽ TLAṼ

)
R

s.t. G
Ĵ
(Ṽ RṼ T ) = u0

R � 0,

(1.6)

where the linear transformation G
Ĵ
(·) is called the gangster operator and u0 is the first unit vector.

The Slater constraint qualification, holds for both (1.6) and its dual, see [29, Theorem 4.1, Theorem
4.2]. We refer to [29] for details on the derivation of this facially reduced SDP .

We now provide the details for Ṽ , the gangster operator G
Ĵ
, and the gangster index set, Ĵ .

1. Such choices of the matrix Ṽ are discussed in [19,29]1. To be specific, here we use the following
Vj ∈ Rj×(j−1) that has full column rank with V T

j e = 0; set

Vj :=

[
Ij−1

−eTj−1

]
, y :=

1

n
(m⊗ en), Ṽ :=

[
1 0
y Vk ⊗ Vn

]
∈ R(nk+1)×((k−1)(n−1)+1). (1.7)

One can show that every feasible Y = Ṽ RṼ T of the SDP relaxation (1.6) is contained in the
following minimal face, F of Snk+1

+ with properties:

F = Ṽ S(n−1)(k−1)+1
+ Ṽ T � Snk+1

+ ;

Y ∈ F =⇒ range(Y ) ⊆ range(Ṽ ), Y ∈ relint(F) =⇒ range(Y ) = range(Ṽ ).

1There are several ways of constructing such a matrix Ṽ . Another way is presented in (2.46), below.
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2. We let GΩ represent the coordinate projection map on Snk+1 that chooses the elements in the
index set Ω, i.e,

GΩ(Y ) =
(
Yij
)
ij∈Ω

∈ R|Ω|, Ω ⊆ ∆0:nk := {ij : 0 ≤ i ≤ j ≤ nk}.

By abuse of notation, we assume that the (gangster2 ) indices are restricted to the upper
triangular indices ∆0:nk, even when not specified so. We denote the complement of Ω in ∆0:nk

by Ωc. The adjoint of GΩ, denoted by G∗Ω : R|Ω| → Snk+1, is given by

(G∗Ω(w))ij =


1
2wij if i 6= j and ij or ji ∈ Ω,
wii if i = j and ij ∈ Ω,
0 otherwise.

3. The gangster index set Ĵ is defined to be the union of the top left index (00) and the set of

indices J corresponding to the diagonal elements in the off-diagonal blocks in Y
(i j)

for all

i < j in (1.4).

2 SDP and DNN relaxations of MC

In this section, we show the details of how to derive a stronger DNN relaxation of MC with
redundant constraints. First, in Section 2.1, we show that the gangster set Ĵ in the relaxation (1.6)
can be enlarged when some of the set sizes mi = 1. Then in Section 2.2 we derive a strengthened
SDP relaxation (2.33) with the new larger gangster set. Next, in Section 2.3, we investigate
some useful redundant constraints of the SDP relaxation (2.33); these constraints will be used for
strengthening our algorithm in Section 3. Finally, in Section 2.4 we present our facially reduced
DNN relaxation (2.49).

2.1 Gangster constraints

Proposition 2.1 shows an important observation about the gangster set.

Proposition 2.1. Let K := {1, . . . , k}, I := {i ∈ K : mi = 1}, and the complement Ic := K\I.
Define mone ∈ Rk by

(mone)i =

{
1 if i ∈ I,
0 if i ∈ Ic.

(2.1)

Let X ∈Mm and let x := vec(X). Then the following hold:

[(Ek − Ik)⊗ In] ◦ (xxT ) = 0 and [Diag(mone)⊗ (En − In)] ◦ (xxT ) = 0.

Proof. The results can be easily obtained by manipulating with the constraints in set Mm.

Proposition 2.1 naturally gives rise to our definition of full gangster set J0.

2The name gangster refers to shooting holes in the matrix, a term coined originally by Philippe Toint.
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Definition 2.2 (full gangster set, J0). Let mone be defined in (2.1). We define J0 ⊆ ∆0:nk to be
the set of (gangster) indices corresponding to the ones in (Ek − Ik)⊗ In + Diag(mone)⊗ (En − In),
i.e.,

J0 := ∆0:nk ∩ (Θo ∪ΘI), (2.2)

where
Θo := {all diagonal positions of all off-diagonal blocks in Y },

ΘI := {all off-diagonal positions of the ith diagonal blocks in Y if mi = 1}.

Let Ĵ0 := J0 ∪ (00), J0 in (2.2). Replacing the gangster set Ĵ in (1.6) by Ĵ0, we obtain the
following “strengthened” SDP relaxation immediately:

min 1
2 trace

(
Ṽ TLAṼ

)
R

s.t. G
Ĵ0

(Ṽ RṼ T ) = u0

R � 0.

(2.3)

Note that when I 6= ∅, the gangster set J0 is larger than J used in [19]. In particular, we see that
if mi = 1, ∀i ∈ K, then necessarily all the diagonal elements of all off-diagonal blocks and all the
off-diagonal elements of all diagonal blocks are zero. This is precisely the case for the quadratic
assignment problem, QAP, e.g., [18, 31].

We indeed show below in Theorem 2.11 that the Slater condition, strict feasibility, holds for (2.3).
It can also be shown that the singularity degree is one, i.e., only one step is needed to obtain
strict feasibility.3 However, there are redundant linear equality constraints in (2.3). Regarding
this concern, the gangster constraint in (2.3) plays a crucial role. In this section, we study further
properties of the gangster set J0 and the restricted gangster set JI defined in Definition 2.3. Then
in Section 2.2, we present our SDP relaxation (2.33) (which uses JI in place of J0 in (2.3)) and
establish some desirable regularity conditions. Specifically, we show that Robinson regularity4 holds
for (2.33) below.

Now, we carefully define the various parts of the restricted gangster set.

Definition 2.3 (restricted gangster set, JI). Let K := {1, . . . , k}, I := {i ∈ K : mi = 1}. Fix
a j0 ∈ Ic. Define the gangster subsets, Ji, i = 1, 2, 3, by

J1 := all diagonal positions of the (i, k) (and (k, i)) blocks, ∀i ∈ I\{k};
J2 := all diagonal positions of the (j0, k) (and (k, j0)) blocks;

J3 := all diagonal positions of the (k − 2, k − 1) (and (k − 1, k − 2)) blocks.

Given J0 in (2.2), the restricted gangster set, JI⊆ ∆0:nk, is:

JI =


J0, if I = ∅
J0\J1, if k /∈ I 6= ∅
J0\(J1 ∪ J2), if k ∈ I 6= K
J0\(J1 ∪ J3), if I = K.

(2.5)

3The singularity degree is essentially the minimum number of FR steps needed to find the so-called minimal face,
the smallest face containing the feasible set. The singularity degree depends on the data of the problem, i.e., the
linear constraints, A(X) = b, and the semidefinite cone. For the original SDP relaxation before FR, it can be shown
that the singularity degree is one, i.e., one can use the lifted linear equality constraints to find an exposing vector and
use it to construct the matrix V̂ .

4Robinson regularity: strict feasibility holds and the linear constraints are onto, [23].
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Remark 2.4. Note that the restricted gangster set JI is obtained from J0 by removing some indices.
We see below in Remark 2.9, that JI is in some sense the largest effective subset in J0.

We next show in Theorem 2.6 below that the nullspaces of GJI (Ṽ · Ṽ T ) and GJ0(Ṽ · Ṽ T ) are the
same. First, we recall the following.

Lemma 2.5 ( [29, Lemma 4.1]5). Let R ∈ S(n−1)(k−1)+1 be given, Ṽ be as in (1.7), and let

Y = Ṽ RṼ T .

Then the block notation of (1.4) yields:

miY
T

(j0) = eTY
(ij)
, ∀ i, j ∈ {1, . . . , k}; (2.6)

k∑
i=1

diag(Y
(ij)

) = Y(j0), ∀ j ∈ {1, . . . , k}. (2.7)

Theorem 2.6. Let J0, JI , Ṽ be as in (1.7), (2.2) and (2.5); and let Y = Ṽ RṼ T , for some
R ∈ S(n−1)(k−1)+1. Then

GJI (Y ) = 0⇐⇒ GJ0(Y ) = 0. (2.8)

Proof. The equivalence in (2.8) is trivially true if I = ∅, since in this case necessarily JI = J0. Thus,
without loss of generality, we assume I 6= ∅.

Since JI ⊆ J0, we trivially have GJ0(Y ) = 0 =⇒ GJI (Y ) = 0. Hence, to establish (2.8), it
remains to prove the converse implication, i.e., to show that

GJI (Y ) = 0 =⇒ GJ0(Y ) = 0. (2.9)

In view of the definition of JI , to prove (2.9), it amounts to proving the following three implications:
GJ0\J1

(Y ) = 0 =⇒ GJ1(Y ) = 0 if k /∈ I 6= ∅;
GJ0\(J1∪J2)(Y ) = 0 =⇒ GJ1(Y ) = 0,GJ2(Y ) = 0 if k ∈ I 6= K;

GJ0\(J1∪J3)(Y ) = 0 =⇒ GJ1(Y ) = 0,GJ3(Y ) = 0 if I = K.
(2.10)

To prove these implications, we write Y in the block matrix form (1.4). Since mi = 1, ∀ i ∈ I,

from (2.6), we obtain Y T
(i0) = eTY

(ii)
, ∀ i ∈ I. This, together with GJ0\(J1∪J2∪J3)(Y ) = 0, yields that

Y(i0) = diag
(
Y

(ii)

)
, ∀ i ∈ I. (2.11)

We can now prove the first assertion in (2.10). Using (2.7) and GJ0\J1
(Y ) = 0, we have

Y(j0) = diag
(
Y

(jj)

)
+ diag

(
Y

(kj)

)
, ∀ j ∈ I\{k}.

Combining this with (2.11) and the symmetry of Y , we see that

diag
(
Y

(jk)

)
= diag

(
Y

(kj)

)
= 0, ∀ j ∈ I\{k}, (2.12)

5There is a misprint error in [29, Lemma 4.1]: the variable Z in item (c) should be Y .

8



i.e., GJ1(Y ) = 0.
Next, we prove the second assertion in (2.10). The reasoning for GJ1(Y ) = 0 is the same as in

the previous case. In addition, from GJ0\(J1∪J2)(Y ) = 0, (2.12) and (2.7), we have

Y(k0) = diag
(
Y

(j0 k)

)
+ diag

(
Y

(kk)

)
.

Since k ∈ I, from (2.11), we have

Y(k0) = diag
(
Y

(kk)

)
.

In view of the above two equations and the symmetry of Y , we obtain

diag
(
Y

(k j0)

)
= diag

(
Y

(j0 k)

)
= 0,

i.e., GJ2(Y ) = 0.
Finally, we prove the third assertion in (2.10). It follows from (2.7) and GJ0\(J1∪J3)(Y ) = 0 that

Y(j0) = diag(Y
(jj)

) + diag(Y
(kj)

), ∀ j ∈ I\{k − 2, k − 1, k}.

Together with (2.11) and the symmetry of Y , we have

diag(Y
(jk)

) = diag(Y
(kj)

) = 0, ∀ j ∈ I\{k − 2, k − 1, k}. (2.13)

Combining this with (2.7) and GJ0\(J1∪J3)(Y ) = 0 gives
diag(Y

(k−2 k−2)
) + diag(Y

(k−1 k−2)
) + diag(Y

(k k−2)
) = Y(k−2 0)

diag(Y
(k−2 k−1)

) + diag(Y
(k−1 k−1)

) + diag(Y
(k k−1)

) = Y(k−1 0)

diag(Y
(k−2 k)

) + diag(Y
(k−1 k)

) + diag(Y
(k k)

) = Y(k 0)

Using this together with (2.11) and the symmetry of Y , we obtain
diag(Y

(k−2 k−1)
) + diag(Y

(k−2 k)
) = 0

diag(Y
(k−2 k−1)

) + diag(Y
(k−1 k)

) = 0

diag(Y
(k−2 k)

) + diag(Y
(k−1 k)

) = 0

Therefore, we have

diag(Y
(k−2 k)

) = diag(Y
(k−1 k)

) = diag(Y
(k−2 k−1)

) = diag(Y
(k−1 k−2)

) = 0.

This together with (2.13) yields that GJ1(Y ) = 0 and GJ3(Y ) = 0.

Next, in the following Theorem 2.8, we show that, together with the facial structure defined by
Ṽ · Ṽ T , the gangster constraint only needs the smaller set JI , and the corresponding linear map is
onto. First, we need the following lemma for use in Theorem 2.8.
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Lemma 2.7. Let Vn be defined in (1.7), and let Z ∈ Sn. If Z = Diag(a) for some a ∈ Rn or
diag(Z) = 0, then we have

V T
n ZVn = 0 =⇒ Z = 0.

Proof. Case 1: Let Z = Diag(a) ∈ Sn. Then

V T
n ZVn =

 a1 . . . 0
...

. . .
...

0 . . . an−1

+ anE = 0 =⇒ a = 0 =⇒ Z = 0.

Case 2: Let Z ∈ Sn with diag(Z) = 0 be blocked as Z =

[
C b
bT 0

]
, for some C ∈ Sn−1, diag(C) = 0,

and b ∈ Rn−1. Then

V T
n ZVn = C − ebT − beT = 0 =⇒ b = 0, C = 0 =⇒ Z = 0.

We now show in Theorem 2.8 the onto property of the linear map defining the restricted gangster
constraints, GJI (Ṽ RṼ T ) = 0. A related result for the general graph partitioning problem but with
another gangster set is given in [29, 30]. The basic idea is to show that the null space of its adjoint
Ṽ TG∗JI (·)Ṽ is zero.

Theorem 2.8. Let Ṽ be defined in (1.7) and JI be defined in (2.5). If w ∈ R|JI |, then

Ṽ TG∗JI (w)Ṽ = 0 =⇒ w = 0.

Proof. Let Y = G∗JI (w) ∈ Snk+1. Then we immediately have Ṽ TY Ṽ = 0. On the other hand, using

the definition of G∗JI , we can block Y as Y =

[
0 0

0 Y

]
, Y as in (1.4), where diag Y

(ii)
= 0, and Y

(ij)

is diagonal whenever i 6= j. Let

Z := (Vk ⊗ Vn)TY (Vk ⊗ Vn). (2.14)

It follows from Ṽ TY Ṽ = 0 that Z = 0. Note that

Vk ⊗ Vn =


Vn . . . 0
...

. . .
...

0 . . . Vn
−Vn . . . −Vn

 .
Therefore, if we write the above matrix Z in (2.14) as Z(1 1) . . . Z(1 k−1)

...
. . .

...
Z(k−1 1) . . . Z(k−1 k−1)

 ,
we have

Z(ij) = V T
n

(
Y

(ij)
− Y

(kj)
− Y

(ik)
+ Y

(kk)

)
Vn = 0, ∀ i, j ∈ {1, . . . , k − 1}. (2.15)

10



Furthermore, using the fact that Y
(ij)

is diagonal whenever i 6= j, we have

Z(ii) = V T
n

(
Y

(ii)
− 2Y

(ik)
+ Y

(kk)

)
Vn = 0, ∀ i ∈ {1, . . . , k − 1}. (2.16)

It follows from (2.15) and (2.16) that

V T
n

(
2Y

(ij)
− Y

(ii)
− Y

(jj)

)
Vn = 0, ∀ i, j ∈ {1, . . . , k − 1}. (2.17)

We now claim that
Y

(ii)
= 0, ∀ i ∈ {1, . . . , k}, (2.18)

holds under the different choices of I in JI given in (2.5).

• If I = ∅, by (2.5), we have JI = J0, i.e., (2.18) holds.

• If k /∈ I 6= ∅, then by (2.5), we have JI = J0\J1, i.e., the following equalities hold:

Y
(kk)

= 0 (2.19)

Y
(ik)

= Y
(ki)

= 0, ∀ i ∈ I (2.20)

Y
(ii)

= 0, ∀ i ∈ {1, . . . , k − 1}\I. (2.21)

From (2.16), (2.19) and (2.20), we get V T
n Y (ii)

Vn = 0, ∀ i ∈ I. Notice that Y
(ii)

is a symmetric

matrix with zeros on the diagonal, by Lemma 2.7, we get Y
(ii)

= 0, ∀ i ∈ I. This, together

with (2.19) and (2.21), yields (2.18).

• If k ∈ I 6= K, then Ic 6= ∅. By (2.5), we have JI = J0\(J1 ∪ J2), i.e

Y
(ii)

= 0, ∀ i ∈ Ic (2.22)

Y
(kj0)

= Y
(j0k)

= 0, for the j0 ∈ Ic (2.23)

Y
(ki)

= Y
(ik)

= 0, ∀ i ∈ I\{k}. (2.24)

It follows from (2.16), (2.22) and (2.23), and Lemma 2.7 that

Y
(kk)

= 0. (2.25)

In view of (2.16), (2.24) and (2.25) and Lemma 2.7, we have Y
(ii)

= 0, ∀ i ∈ I\{k}. This,

together with (2.22) and (2.25), yields (2.18).

• If I = K, then by (2.5), we have JI = J0\(J1 ∪ J3), i.e.,

Y
(k−1,k−2)

= Y
(k−2,k−1)

= 0,

Y
(ki)

= Y
(ik)

= 0, ∀ i ∈ {1, . . . , k − 1}. (2.26)

With i = k−1, j = k−2 in (2.15), by (2.26) and Lemma 2.7, we have Y
(kk)

= 0. This together

with (2.26), (2.16) and Lemma 2.7 yields (2.18).

11



In summary, the claim (2.18) holds. Combining (2.18) and (2.16), we get

V T
n Y (ki)

Vn = V T
n Y (ik)

Vn = 0 ∀i ∈ {1, . . . , k − 1}. (2.27)

In addition, it follows from (2.18) and (2.17) that

V T
n Y (ij)

Vn = 0 ∀i, j ∈ {1, . . . , k − 1}. (2.28)

Combining (2.27), (2.28) and (2.18), we have

V T
n Y (ij)

Vn = 0 ∀i, j ∈ {1, . . . , k}.

Since Y
(ij)

is either a diagonal matrix or a matrix with diagonal equal to zeros, by Lemma 2.7 we

have Y
(ij)

= 0, for all i, j ∈ {1, . . . , k}. Therefore, Y = 0. Thus, it follows that w = 0.

Remark 2.9. Combining Theorem 2.6 with Theorem 2.8, we see that the linear map GJ0(Ṽ · Ṽ T ) is
not onto but GJI (Ṽ · Ṽ T ) is, and the two linear maps have the same nullspace. Since the restricted

gangster set JI is obtained by removing indices in J0 and the linear map GJI (Ṽ · Ṽ T ) is onto
according to Theorem 2.8, this suggests that we have removed just the right number of indices from
J0. By Theorem 2.6, all the indices in J0\JI are redundant. Hence, we conclude that there does not
exist a larger set that contains JI such that Theorem 2.8 holds, i.e., there are no redundant indices
in JI .

We extend this result in Corollary 2.10 to show that the operator G
ĴI

(Ṽ · Ṽ T ) is onto when

considered as a linear transformation mapping into R|JI |+1, where ĴI := JI ∪ {00} with JI defined
in (2.5).

Corollary 2.10. Let Ṽ be as in (1.7), JI as in (2.5), and ĴI := JI ∪ {00}. If w ∈ R|JI |+1, then

Ṽ TG∗
ĴI

(w)Ṽ = 0 =⇒ w = 0.

Moreover, the linear transformation G
ĴI

(Ṽ · Ṽ T ) is onto R|JI |+1.

Proof. For w ∈ R|JI |+1, write w =
[
w00 w̆T

]T
, where w̆ ∈ R|JI |. Then we have

G∗JI (w̆) =

[
0 0

0 W

]
and G∗

ĴI
(w) =

[
w00 0

0 W

]
for some W ∈ Snk. A direct computation using the definition of Ṽ yields

Ṽ TG∗
ĴI

(w)Ṽ =

[
w00 + yTWy yTW (Vk ⊗ Vn)

(V T
k ⊗ V T

n )Wy (V T
k ⊗ V T

n )W (Vk ⊗ Vn)

]
, (2.29)

Ṽ TG∗JI (w̆)Ṽ =

[
yTWy yTW (Vk ⊗ Vn)

(V T
k ⊗ V T

n )Wy (V T
k ⊗ V T

n )W (Vk ⊗ Vn)

]
. (2.30)

Now, assume that Ṽ TG∗
ĴI

(w)Ṽ = 0. Then we see from (2.29) that (V T
k ⊗ V T

n )W (Vk ⊗ Vn) = 0.

Following the same argument as in the proof of Theorem 2.8 (start from (2.14) and use W in place of

12



Y there), we conclude that W = 0. Combining this with (2.29) and the assumption Ṽ TG∗
ĴI

(w)Ṽ = 0

gives [
w00 0
0 0

]
= Ṽ TG∗

ĴI
(w)Ṽ = 0,

showing that w00 = 0. On the other hand, we can deduce from (2.30) and the fact W = 0 that

Ṽ TG∗JI (w̆)Ṽ = 0.

This implies w̆ = 0, according to Theorem 2.8. Consequently, w =
[
w00 w̆T

]T
= 0.

Note that when G
J̃I

(Ṽ · Ṽ T ) is considered as a linear transformation into R|JI |+1, its adjoint

operator is Ṽ TG∗
J̃I

(·)Ṽ . Since the kernel of Ṽ TG∗
ĴI

(·)Ṽ is zero, we conclude that G
J̃I

(Ṽ · Ṽ T ) is onto.

This completes the proof.

2.2 Facially reduced SDP relaxation

Now we present our facially reduced SDP relaxation (2.33) (which uses ĴI in place of Ĵ0 in (2.3))
and establish some desirable regularity conditions. Specifically, we show that Robinson regularity6

holds for (2.33) below.
To obtain primal strict feasibility, we proceed as in [29, Theorem 4.1], and make use of the

barycenter of the rank-1 matrices of the lifting [29, Equation (3.3), Theorem 3.1]):

Ŷ := m1!...mk!
n!

∑
Mat(x)∈Mm

[
1 xT

x xxT

]

=


1 m1

n e
T
n . . . mk

n e
T
n

m1
n en

(
m1
n In + m1(m1−1)

n(n−1) (En − In)
)
. . .

(
m1mk
n(n−1)

)
(En − In)

...
...

. . .
...

mk
n en

(
m1mk
n(n−1)

)
(En − In) . . .

(
mk
n In + mk(mk−1)

n(n−1) (En − In)
)

 .
(2.31)

On the other hand, to analyze dual strict feasibility, we define the following matrices:

W̃ := β

[
α 0
0 2QI

]
and QI := TI ⊗ In + SI ⊗ (En − In), α < 0 < β; (2.32)

(TI , SI) =


(Ek − Ik, 0) if I = ∅,
(Ek − Ik − M̂one, e

TmoneMone) if k /∈ I 6= ∅,
(Ek − Ik − Ê,Mone) if k ∈ I 6= K,
(0, Ik) if I = K,

where mone, I and K are defined in Definition 2.3,

Ê =

[
0 ek−1

eTk−1 0

]
∈ Sk, Mone = Diag(mone), M̂one =

[
0 m̂one

m̂T
one 0

]
∈ Sk,

with m̂one ∈ Rk−1 being the vector that contains the first k − 1 entries of mone.

6Strict feasibility holds and the linear constraints are onto, [23].
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Theorem 2.11. The following holds:

1. The facially reduced SDP (2.3) is equivalent to the following equality constrained problem

cut(m) ≥ p∗SDP = min 1
2 trace

(
Ṽ TLAṼ

)
R

s.t. G
ĴI

(Ṽ RṼ T ) = G
ĴI

(u0u
T
0 )

R � 0.

(2.33)

2. The primal model (2.33) satisfies strict feasibility, with Slater point

R̃ =

 1 0

0 1
n2(n−1)

(nDiag(m̂k−1)− m̂k−1m̂
T
k−1)⊗ (nIn−1 − En−1)

 ∈ S(k−1)(n−1)+1
++ , (2.34)

where m̂k−1= (m1, . . . ,mk−1)T ∈ Zk−1
+ . Moreover, Ṽ R̃Ṽ T = Ŷ given in (2.31); and Robinson

regularity holds for (2.33).

3. The dual problem of (2.33) is

max 1
2w00

s.t. Ṽ TG∗
ĴI

(w)Ṽ � Ṽ TLAṼ .
(2.35)

Moreover, with W̃ as in (2.32), and with sufficiently positive β and sufficiently negative α, we

get that the point w̃I := G
J̃I

(W̃ ) is strictly feasible for (2.35).

Proof. Item 1: By Theorem 2.6, the nullspaces of GJI (Ṽ · Ṽ T ) and GJ0(Ṽ · Ṽ T ) are the same.

Therefore, the equivalence of (2.33) and (2.3) is obvious. Item 2: The strict feasibility of R̃ follows
immediately from [29, Theorem 4.1], which asserts R̃ � 0 and established Ṽ R̃Ṽ T = Ŷ in its proof.
The Robinson regularity holds in view of the strict feasibility of R̃ and Theorem 2.8.

Item 3: It is standard to show that the dual problem of (2.33) is given by (2.35). We now prove
the claim concerning strict feasibility.

With the y in (1.7), the Ṽ in (1.7), the definitions of W̃ and w̃I , and the definition of JI in
Definition 2.3, we can compute that

Ṽ TG∗
J̃I

(w̃I)Ṽ = β

[
1 yT

0 V T
k ⊗ V T

n

] [
α 0
0 QI

] [
1 0
y Vk ⊗ Vn

]
= β

[
α+ yTQIy yTQI(Vk ⊗ Vn)

(V T
k ⊗ V T

n )QIy (V T
k ⊗ V T

n )QI(Vk ⊗ Vn)

]
.

(2.36)

Now, recall the following relations, which are immediate consequences of the definition of Vj :

V T
j =

[
Ij−1 −ej−1

]
, V T

j Ej = V T
j eje

T
j = 0, and V T

j Vj = Ej−1 + Ij−1.

Then we have

(V T
k ⊗ V T

n )QIy = (V T
k ⊗ V T

n )(TI ⊗ In + SI ⊗ (En − In))y

= (V T
k TI ⊗ V T

n + V T
k SI ⊗ V T

n (En − In))y
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= (V T
k TI ⊗ V T

n − V T
k SI ⊗ V T

n )y

= (V T
k (TI − SI)⊗ V T

n )(m⊗ en)/n

= (V T
k (TI − SI)m)⊗ V T

n en/n = 0

and

(V T
k ⊗ V T

n )QI(Vk ⊗ Vn) = (V T
k ⊗ V T

n )(TI ⊗ In + SI ⊗ (En − In))(Vk ⊗ Vn)

= V T
k TIVk ⊗ V T

n Vn + V T
k SIVk ⊗ V T

n (En − In)Vn

= V T
k TIVk ⊗ V T

n Vn − V T
k SIVk ⊗ V T

n Vn

= V T
k (TI − SI)Vk ⊗ V T

n Vn

= V T
k (TI − SI)Vk ⊗ (In−1 + En−1).

Combining the above two displays with (2.36), we obtain

Ṽ TG∗
J̃I

(w̃I)Ṽ = β

[
α+ yTQIy 0

0 V T
k (TI − SI)Vk ⊗ (In−1 + En−1)

]
. (2.37)

We next show that Vk(TI − SI)Vk ≺ 0 in each of the four cases in the definition of JI .

• If I = ∅, then V T
k (TI − SI)Vk = V T

k (Ek − Ik)Vk = −V T
k Vk = −(Ik−1 + Ek−1) ≺ 0,

• If k /∈ I 6= ∅, then we have

V T
k (TI − SI)Vk = V T

k (Ek − Ik − M̂one − eTmoneMone)Vk

= −Ik−1 − Ek−1 − V T
k (M̂one + eTmoneMone)Vk

� −Ik−1 − Ek−1 − V T
k (M̂one +monem

T
one)Vk

= −Ik−1 − Ek−1 − V T
k

([
0 m̂one

m̂T
one 0

]
+

[
m̂one

0

] [
m̂T

one 0
])

Vk

= −Ik−1 − Ek−1 −
[
Ik−1 −ek−1

] [m̂onem̂
T
one m̂one

m̂T
one 0

] [
Ik−1

−eTk−1

]
= −Ik−1 − Ek−1 − (m̂onem̂

T
one − ek−1m̂

T
one − m̂onee

T
k−1)

= −Ik−1 − (ek−1 − m̂one)(ek−1 − m̂one)
T

� −Ik−1 ≺ 0,

where the first “�” follows from the observation that eTmoneMone � monem
T
one.

• If k ∈ I 6= ∅, then we have

V T
k (TI − SI)Vk = V T

k (Ek − Ik − Ê −Mone)Vk

= −Ik−1 − Ek−1 − V T
k (Ê +Mone)Vk

= −Ik−1 − Ek−1 −
[
Ik−1 −ek−1

] [Diag(m̂one) e
eT 1

] [
Ik−1

−eT
]

= −Ik−1 − Ek−1 − (Diag(m̂one)− Ek−1)

= −Ik−1 −Diag(m̂one) ≺ 0

15



• If I = K, then we have V T
k (TI − SI)Vk = V T

k (−Ik)Vk = −(Ek−1 + Ik−1) ≺ 0.

In summary, we have Vk(TI − SI)Vk ≺ 0, which together with In−1 + En−1 � 0 yields that
V T
k (TI −SI)Vk⊗ (In−1 +En−1) ≺ 0 in (2.37). Therefore, with α� 0� β, we have Ṽ TG∗

J̃I
(w̃I)Ṽ �

Ṽ TLAṼ , i.e., w̃I is strictly feasible for (2.35).

We emphasize that (2.33) is a SDP relaxation of model (1.2). It uses facial reduction to guarantee
strict feasibility for both the relaxation and its dual. The Robinson regularity condition holds and
thus we obtain robustness.

2.3 Redundant constraints of the SDP relaxation

In this section, we identify important redundant constraints of (2.33). These redundant constraints
are used in the numerical implementations in Section 3, below. We first define some useful linear
transformations on Snk+1.

Definition 2.12. Let Y ∈ Snk+1 be blocked as in (1.4). Define the linear transformations on Snk+1:

1. arrow :

arrow(Y ) := diag(Y )−
[

0
Y1:nk 0

]
∈ Rnk+1.

2. Dt, Dd, and Do :

Dt(Y ) :=
(

traceY
(ij)

)
∈ Sk; Dd(Y ) :=

∑k
i=1 diag Y

(ii)
∈ Rn;

Do(Y ) :=
(∑

s 6=t

(
Y

(ij)

)
st

)
∈ Sk.

The following Theorem 2.13 shows that the constraints in (2.38) and (2.39) below based on
the linear transformations arrow, Dt, Dd, and Do are redundant for the SDP relaxation (2.33).
Though redundant, these constraints are useful for strengthening the subproblems of the sPRSM
in Section 3.

Theorem 2.13. Let Y = Ṽ RṼ T , where R is feasible for (2.33), and M̂ := mmT −M . Then the
following holds:

arrow(Y ) = u0; (2.38)

Dt(Y ) = M ; Dd(Y ) = en; Do(Y ) = M̂. (2.39)

Proof. Note that in (2.33), it holds that GJI (Y ) = 0. Thus by Theorem 2.6, we have GJ0(Y ) = 0,

i.e., all the diagonal elements of off-diagonal blocks of Y (see the block structure in (2.39)) are zero.
From (2.7) in Lemma 2.5, we have that (2.38) holds. Also, as shown in [19, Theorem 5.1], the
gangster constraint GJ0(Y ) = 0 together with Y00 = 1 and R � 0 shows that Y = Ṽ RṼ T satisfies
all the constraints in (2.39) except for

Do(Y ) = M̂. (2.40)

Now it suffices to show that Y satisfies (2.40). Let D2 be defined as

D2 :=

[
mTm −mT ⊗ eTn
−m⊗ en Ik ⊗ (ene

T
n )

]
=

[
−mT

Ik ⊗ en

] [
−mT

Ik ⊗ en

]T
� 0.
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Recall that Ṽ is selected such that range(Ṽ ) ⊆ null(D2) in [19, Page 351]. Thus trace(D2Y ) = 0.

Since R � 0 and G
ĴI

(Ṽ RṼ T ) = u0, we have Y � 0, Y00 = 1. Let v1 =
[
1 Y T

1:nk 0

]T
. Then we have

Y − v1v
T
1 =

[
1 Y T

1:nk 0

Y1:nk 0 Y

]
−
[

1
Y1:nk 0

] [
1

Y1:nk 0

]T
=

[
0 0

0 Y − Y1:nk 0Y
T

1:nk 0

]
. (2.41)

Note that Y − Y1:nk 0Y
T

1:nk 0 is the Schur complement of Y00 in Y and Y � 0. Hence, it holds that

Y − Y1:nk 0Y
T

1:nk 0 � 0. Consequently, we deduce from (2.41) that Y � v1v
T
1 .

Let X = Mat(Y1:kn 0). Since

traceD2Y = 0, D2 � 0, and Y � v1v
T
1 ,

we see that

0 = trace(D2Y ) ≥ trace(D2v1v
T
1 ) = ‖XT e−m‖2 and Y

[
−mT

Ik ⊗ en

]
= 0. (2.42)

Using the second relation in (2.42) together with the block partition of Y in (1.4), we have

−Y1:nk 0m
T + Y (Ik ⊗ en) = 0.

Multiplying the above relation on the left by Ik ⊗ eTn , we obtain further that

− (Ik ⊗ eTn )Y1:nk 0m
T + (Ik ⊗ eTn )Y (Ik ⊗ en) = 0. (2.43)

Next, recall from the first relation in (2.42) that (Ik ⊗ eTn )Y1:nk 0 = XT en = m. Moreover, a direct

computation shows that (Ik ⊗ eTn )Y (Ik ⊗ en) =
(
eTnY (ij)

en

)
. Combining these with (2.43) yields(

eTnY (ij)
en

)
= mmT .

Finally, it follows from the above equation and Dt(Y ) = M in (2.39) that

Do(Y ) =

∑
s 6=t

(
Y

(ij)

)
st

 =
(
eTnY (ij)

en

)
−Dt(Y ) = mmT −M = M̂.

In Corollary 2.14 we provide a useful shift for our implementation of the objective function of
(2.33).

Corollary 2.14. Let Y = Ṽ RṼ T , where R is feasible for (2.33). Partition Y in blocks as in (1.4).
Then we have

traceY = n+ 1, eTY(i 0) = mi, i = 1, . . . , k. (2.44)

Moreover, the objective value in (1.5) satisfies

trace(LA + αI)Y = traceLAY + α(n+ 1), ∀α ∈ R. (2.45)

Proof. It follows from (2.38), Dt(Y ) = M in (2.39) and mT e = n that both constraints in (2.44)
hold. Thus, the equality (2.45) holds evidently.
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2.4 DNN relaxation

For our DNN relaxation and algorithm in Section 3, below, we need the following matrix V̂ that
have orthonormal columns.

Assumption 2.15. Without loss of generality, by using a QR or SVD factorization on Ṽ in (1.7),
or some other special construction if needed, we assume that the columns of V̂ form an orthonormal
basis for the range of Ṽ . One such choice of V̂ is

V̂ =

[
s 0

sy V̂k ⊗ V̂n

]
, (2.46)

where s :=
√

n
n+‖m‖2 with ‖m‖ denoting the `2 norm of m; and V̂j is a matrix with orthonormal

columns that satisfies V̂ T
j ej = 0.

Since the range of V̂ is the same as the range of Ṽ , we obtain the same minimal face

V̂ S(k−1)(n−1)+1
+ V̂ T = Ṽ S(k−1)(n−1)+1

+ Ṽ T .

Using V̂ in place of Ṽ , the facially reduced SDP (2.33) can be equivalently written as

cut(m) ≥ p∗SDP = min 1
2 trace

(
V̂ TLAV̂

)
R

s.t. G
ĴI

(V̂ RV̂ T ) = G
ĴI

(u0u
T
0 )

R � 0.

(2.47)

The dual problem of (2.47) is

max 1
2w00

s.t. V̂ TG∗
ĴI

(w)V̂ � V̂ TLAV̂ .
(2.48)

The SDP relaxation (2.47) can be further strengthened by adding additional constraints. With the
additional nonnegativity box constraint 0 ≤ (V̂ RV̂ T )

Ĵc
0
≤ 1, where Ĵc0 is the complement of Ĵ0, we

obtain the following doubly nonnegative, DNN, relaxation,

cut(m) ≥ p∗DNN = min 1
2 trace

(
V̂ TLAV̂

)
R

s.t. G
ĴI

(V̂ RV̂ T ) = G
ĴI

(u0u
T
0 )

R � 0

0 ≤
(
V̂ RV̂ T

)
Ĵc

0

≤ 1.

(2.49)

Note that the term DNN refers to the two cones constraints in (2.49), i.e., the positive semidefinite
cone and the nonnegative cone. By Theorem 2.8 and Theorem 2.6, there are no redundant
constraints in (2.49). Therefore, model (2.49) is somewhat the “most simplified” DNN relaxation
of the MC problem.

The following Theorem 2.16 shows that the Slater point w̃I for (2.35) found in Theorem 2.11 is
still strictly feasible for (2.48). Moreover, starting from the Slater point R̃ in (2.34) for (2.33), one
can construct a Slater point for both (2.47) and (2.49): the fact that (2.49) has a Slater point will
be important for our algorithmic development later.
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Theorem 2.16. The strictly feasible point w̃I for (2.35) found in Theorem 2.11 is strictly feasible
for (2.48). Moreover, define

R̂ := V̂ †Ṽ R̃Ṽ T (V̂ †)T , (2.50)

where R̃ is defined in (2.34), V̂ † is the pseudoinverse of V̂ , and Ṽ and V̂ are given in (1.7) and (2.46),
respectively. Then it holds that R̂ is strictly feasible for both (2.47) and (2.49), and V̂ R̂V̂ T = Ŷ ,
where Ŷ is defined in (2.31).

Proof. 1. Note that Range(V̂ ) = Range(Ṽ ) by construction. This implies that V̂ V̂ †Ṽ = Ṽ .
Thus, we have

Ṽ T (V̂ T )†V̂ T (LA − G∗ĴI (w̃I))V̂ V̂
†Ṽ = Ṽ T (LA − G∗ĴI (w̃I))Ṽ � 0,

where the positive definiteness follows from the fact that w̃I is strictly feasible for (2.35).
Since (V̂ †Ṽ )T = Ṽ T (V̂ T )† is a square matrix, we conclude from the above display that the
matrix Ṽ T (V̂ T )† is nonsingular. Thus, we deduce further that

V̂ T (LA − G∗ĴI (w̃I))V̂ = [Ṽ T (V̂ T )†]−1Ṽ T (LA − G∗ĴI (w̃I))Ṽ [V̂ †Ṽ ]−1 � 0,

i.e., w̃I is strictly feasible for (2.48).

2. The positive definiteness of R̂ follows immediately from the fact that R̃ � 0 (see Theo-
rem 2.11 Item 2) and the nonsingularity of Ṽ T (V̂ T )† just established. In addition, since
Range(V̂ ) = Range(Ṽ ), we have V̂ V̂ †Ṽ = Ṽ . Using this and the definition of R̂, we see further
that

V̂ R̂V̂ T = V̂ V̂ †Ṽ R̃Ṽ T (V̂ †)T V̂ T = Ṽ R̃Ṽ T = Ŷ ,

where the last equality follows from Theorem 2.11 Item 2. Then we obtain immediately that
G
ĴI

(V̂ R̂V̂ T ) = G
ĴI

(Ŷ ) = 0. Consequently, R̂ is strictly feasible for (2.47).

Finally, notice that entries of Ŷ in Ĵc0 are strictly positive and strictly less than 1. Hence, we

also have 0 <
(
V̂ R̂V̂ T

)
Ĵc

0

< 1. Thus, we have shown that R̂ is strictly feasible for (2.49) and

V̂ R̂V̂ T = Ŷ .

The DNN problem (2.49) is extremely difficult for interior point methods, especially when the
dimension is large. Motivated by the recent success in the application of splitting methods to the
quadratic assignment problem in [18], we adopt a similar approach here. We first introduce a new
variable and add the constraint Y = V̂ RV̂ T to (2.49). By doing so, we essentially double the number
of variables and transform the original problem (2.49) to the following equivalent model,

p∗DNN = min 1
2 traceLAY

s.t. Y = V̂ RV̂ T

G
ĴI

(Y ) = G
ĴI

(u0u
T
0 )

R � 0
0 ≤ G

Ĵc
0
(Y ) ≤ 1.

(2.51)

This is a separable convex programming problem with linear coupling constraints from the facial
reduction. One can then apply first order splitting methods, which allows us to take advantage
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of the two variables and the two cones to obtain two separate subproblems. We discuss one such
method and the efficient solutions of the corresponding subproblems in closed form, in Section 3
below.

In passing, we would like to emphasize that the problem (2.51) is stable in that it has no
redundant equality constraints, even though we added an extra linear constraint and a new variable
Y . In detail, let T : Snk+1 × S(n−1)(k−1)+1 → Snk+1 × R|JI |+1 be the linear operator defined as

T (Y,R) =

[
Y − V̂ RV̂ T

G
ĴI

(Y )

]
, (2.52)

where V̂ is defined in (2.46). Then its adjoint operator is

T ∗(W,w) =

[
W + G∗

ĴI
(w)

−V̂ TWV̂

]
.

We show in Proposition 2.17 below, that the operator T is an onto linear transformation.

Proposition 2.17. 1. Suppose that T is given in (2.52) and (W,w) ∈ Snk+1 × R|JI |+1. Then

T ∗(W,w) = 0 =⇒ (W,w) = 0.

2. Primal Slater points of model (2.51) are given by R̂ in (2.50) and Ŷ in (2.31).

Proof. 1. Algebraic manipulation of T ∗(W,w) = 0 yields the following two equations,

W + G∗
ĴI

(w) = 0 and V̂ TWV̂ = 0. (2.53)

Combining the above two equations, we have V̂ TG∗
ĴI

(w)V̂ = 0. This implies that

Ṽ T (V̂ T )†V̂ TG∗
ĴI

(w)V̂ V̂ †Ṽ = 0.

Next, recall that Range(V̂ ) = Range(Ṽ ) by construction. Thus, we have V̂ V̂ †Ṽ = Ṽ .
Combining this with the above display yields Ṽ TG∗

ĴI
(w)Ṽ = 0. Then we deduce from

Theorem 2.8 that w = 0. This together with the first relation in (2.53) gives W = 0 and
completes the proof.

2. This follows immediately from Theorem 2.16.

3 sPRSM for DNN relaxation

In this section, we adapt the P-R splitting method [11] to solving our DNN relaxation (2.51).
In essence, we separate the semidefinite cone constraints from the polyhedral constraints and
obtain two subproblems. However, we also add back some provably redundant constraints. This is
because these constraints are not redundant when the subproblems are considered as independent
optimization problems. We take advantage of this and bring a constraint back if it does not increase
the computational cost excessively. We denote this new method by FRSMR.

20



3.1 FRSMR, A facially reduced splitting method with redundancies

Let Ls := 1
2LA. We can clearly rewrite (2.51) as

p∗DNN = min traceLsY + 1Yo(Y ) + 1Ro(R)

s.t. Y = V̂ RV̂ T .
(3.1)

where we use the indicator function, 1S(S), that takes the value 0 on the set S and ∞ outside of S;
and the two constraint sets in (3.1) are

Ro := S(k−1)(n−1)+1
+ , Yo := {Y ∈ Snk+1 : G

ĴI
(Y ) = G

ĴI
(u0u

T
0 ), 0 ≤ G

Ĵc
0
(Y ) ≤ 1}. (3.2)

While this trivial decomposition is intuitive, a splitting method might benefit by operating on tighter
constraint sets in the variables R and Y . Here, we shrink the sets in (3.2) by adding the following
redundant constraints to (3.1):

1. traceR = n+ 1, whose redundancy follows from Corollary 2.14, Y = V̂ RV̂ T and V̂ T V̂ = I.

2. Do(Y ) = M̂ , whose redundancy follows from Theorem 2.13.

3. G
Ĵ0\ĴI (Y ) = G

Ĵ0\ĴI (u0u
T
0 ), whose redundancy follows from Theorem 2.6.

4. eTY(i 0) = mi for i = 1, . . . , k, whose redundancy follows from Corollary 2.14.

We thus arrive at the following equivalent problem of (3.1):

p∗DNN = min traceLsY + 1Y(Y ) + 1R(R)

s.t. Y = V̂ RV̂ T ,
(3.3)

where
R :=

{
R ∈ S(k−1)(n−1)+1

+ : traceR = n+ 1
}

;

Y := {Y ∈ Snk+1 : G
Ĵ0

(Y ) = G
Ĵ0

(u0u
T
0 ), 0 ≤ G

Ĵc
0
(Y ) ≤ 1,

Do(Y ) = M̂, eTY(i0) = mi, i = 1, . . . , k}.

Notice that the sets R,Y are much smaller than Ro,Yo, respectively. This property can help bring
the iterates of R, Y closer to the optimal solution set more quickly, when a splitting method is
applied. In addition, we see below in Sections 3.1.1 and 3.1.2, that these redundant constraints do
not significantly increase the computational cost.

We now describe our splitting method for solving (3.3) (which is equivalent to solving (2.51)).
We start by writing down the augmented Lagrangian function for (3.3):

Lβ(R, Y, Z) = fR(R) + gY(Y ) + 〈Z, Y − V̂ RV̂ T 〉+ β
2

∥∥∥Y − V̂ RV̂ T
∥∥∥2
,

where β > 0 is a penalty parameter for the quadratic penalty term, and fR(R) and gY(Y ) are
defined respectively as

fR(R) = 1R(R), gY(Y ) = traceLsY + 1Y(Y ).

Our main Algorithm 3.1 for solving (3.3) is a standard application of the strictly contractive
Peaceman-Rachford splitting method, sPRSM [11] to (3.3). It can be summarized as follows:
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• alternate minimization of Lβ in the variables Y and R interlaced by an update of the
Z variable;
• update the dual variable Z both after the R-update and the Y -update (both R and
Y updates in (3.4) are well defined as both constraint sets are closed, convex, and
V̂ T V̂ = I).

Algorithm 3.1: FRSMR for DNN relaxation

Step 1. Pick any Y 0, Z0 ∈ Snk+1. Fix β > 0 and γ ∈ (0, 1). Set t = 0.

Step 2. For each t = 0, 1, . . ., update (precise stopping criteria: Section 4.2, item 2)

Rt+1 = arg min
R∈R

Lβ(R, Y t, Zt) = arg min
R

fR(R)− 〈Zt, V̂ RV̂ T 〉+
β

2

∥∥∥Y t − V̂ RV̂ T
∥∥∥2
,

Zt+
1
2 = Zt + γβ(Y t − V̂ Rt+1V̂ T ),

Y t+1 = arg min
Y ∈Y

Lβ(Rt+1, Y, Zt+
1
2 ) = arg min

Y
gY(Y ) + 〈Zt+

1
2 , Y 〉+

β

2

∥∥∥Y − V̂ Rt+1V̂ T
∥∥∥2
,

Zt+1 = Zt+
1
2 + γβ(Y t+1 − V̂ Rt+1V̂ T ).

(3.4)

We next discuss convergence of the sequence generated by Algorithm 3.1. Recall from Proposi-
tion 2.17 that (2.51) has primal Slater points. Consequently, (Y ∗, R∗) solves (3.3) if, and only if,
there exists Z∗ so that the following first order optimality conditions hold:

0 ∈ −V̂ TZ∗V̂ +NR(R∗),
0 ∈ Ls + Z∗ +NY(Y ∗),

Y ∗ = V̂ R∗V̂ T ,

(3.5)

where NS(x) denotes the normal cone of S at x. The following Theorem 3.1 states that the
sequence generated by Algorithm 3.1 converges to a point satisfying (3.5). Its proof can be found
in [11].

Theorem 3.1. Let {Rt}, {Y t}, {Zt} be the sequences generated by Algorithm 3.1. Then {(Rt, Y t)}
converges to an optimal solution (R∗, Y ∗) of (3.3), and {Zt} converges to some Z∗ so that
(R∗, Y ∗, Z∗) satisfies (3.5).

In Algorithm 3.1, the explicit Z-update in (3.4) is simple and easy. We now show that we have
explicit expressions for the R, Y -updates as well.
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3.1.1 R-subproblem

Recall that Assumption 2.15 guarantees that V̂ is normalized so that V̂ T V̂ = I. Then the R-
subproblem can be explicitly solved by projecting onto the set R

Rt+1 = arg min
R∈R

−〈Zt, V̂ RV̂ T 〉+ β
2

∥∥∥Y t − V̂ RV̂ T
∥∥∥2

= arg min
R∈R

β
2

∥∥∥Y t − V̂ RV̂ T + 1
βZ

t
∥∥∥2

= arg min
R∈R

β
2

∥∥∥R− V̂ T (Y t + 1
βZ

t)V̂
∥∥∥2

= PR(V̂ T (Y t + 1
βZ

t)V̂ ),

where PR denotes the projection (nearest point) onto the intersection of the positive semidefinite

cone S(k−1)(n−1)+1
+ and the hyperplane {R ∈ S(k−1)(n−1)+1 : traceR = n+ 1}. For any symmetric

matrix W ∈ S(n−1)(k−1)+1, we have

PR(W ) = U Diag(PΛ̄(diag(Λ)))UT ,

where (U,Λ) contains the eigenpairs of W , and PΛ̄ denotes the projection of the vector of eigenvalues,

i.e., diag(Λ), onto the simplex Λ̄ = {λ ∈ R(k−1)(n−1)+1
+ : λT e = n+ 1}. Projection onto simplices

can be performed efficiently via some standard root-finding strategies; see, for example, [6, 28].

3.1.2 Y -subproblem

The Y -subproblem involves projection onto the polyhedral set Y, i.e.,

Y t+1 = arg min
Y ∈Y

〈Ls, Y 〉+ 〈Zt+
1
2 , Y − V̂ Rt+1V̂ T 〉+ β

2

∥∥∥Y − V̂ Rt+1V̂ T
∥∥∥2

= arg min
Y ∈Y

β
2

∥∥∥Y − V̂ Rt+1V̂ T + 1
β (Ls + Zt+

1
2 )
∥∥∥2
.

(3.6)

To present a closed form solution for the update, we let Υ := V̂ Rt+1V̂ T − 1
β (Ls +Zt+

1
2 ) and assume

that Υ is blocked as in (1.4). We now partition the set of indices of Jc0 into the following three
disjoint sets:

• ζr: it includes the 0-th row of Υ except for the 00-element.

• ζo(⊆ Jc0): it includes all off-diagonal elements of the blocks in Υ whenever these off-diagonal
elements belong to Jc0 .

• ζd: it includes the diagonal of Υ except for the 00-element.

We also define the following subsets:

Yg := {Y ∈ Snk+1 : G
Ĵ0

(Y ) = G
Ĵ0

(u0u
T
0 )};

Yr := {Y ∈ Snk+1 : 0 ≤ Gζr(Y ) ≤ 1, eTY(i0) = mi, i = 1, . . . , k};
Yo := {Y ∈ Snk+1 : 0 ≤ Gζo(Y ) ≤ 1,Do(Y ) = M̂};
Yd := {Y ∈ Snk+1 : 0 ≤ Gζd(Y ) ≤ 1}.
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Note that Y = Yg ∩ Yd ∩ Yr ∩ Yo. The next iterate Y t+1 can now be computed as follows:

(Y t+1)ij =


1 if i = j = 0,
0 if ij ∈ J0,

(PYr(Υ))ij if ij ∈ ζr,
(PYo(Υ))ij if ij ∈ ζo,

min(1,max(Υij , 0)) if ij ∈ ζd,

where PYr and PYo denote the orthogonal projection onto the Yr and Yo respectively. Both Yr
and Yo are intersections of a hyperplane and a box. The projection can be obtained efficiently via
standard root-finding algorithms; see, for example, [14, 17].

Denote the inexact approximate solution from FRSMR by (Rout, Y out, Zout). In the following
two subsections, we illustrate how we compute the lower and upper bounds with the obtained Zout

and Y out , respectively.

3.2 Lower bound from inaccurate relaxation

Since (3.3) is a relaxation of MC, we conclude that exact solutions provide a lower bound for the
original MC. However, the problem size of (3.3) can be extremely large, and it is generally too
expensive to obtain highly accurate solutions. In the following, we provide an inexpensive way to
get a valid lower bound from the output of our algorithm even when the solution is only obtained
to a moderate accuracy. Our approach is based on the following function

g(Z) := min
Y ∈Ỹ
〈Ls + Z, Y 〉 − (n+ 1)λmax(V̂ TZV̂ ), (3.7)

where λmax(V̂ TZV̂ ) denotes the largest eigenvalue of V̂ TZV̂ , and the constraint set

Ỹ := {Y ∈ Snk+1 : G
Ĵ0

(Y ) = G
Ĵ0

(u0u
T
0 ), 0 ≤ G

Ĵc
0
(Y ) ≤ 1,

Do(Y ) = M̂, Dt(Y ) = M, eTY(i0) = mi, i = 1, . . . , k}.

In the following Theorem 3.2, we show that maxZ g(Z) is indeed a Fenchel dual problem of (3.3).
Since the Fenchel dual problem is an unconstrained maximization problem, evaluating g in (3.7) at
the t-th iterate Zt returned by Algorithm 3.1 always yields a lower bound for p∗DNN .7

Theorem 3.2. Consider the problem

d∗Z := max
Z

g(Z), (3.8)

where g is defined in (3.7). Then (3.8) is a concave maximization problem and strong duality holds
between (3.3) and (3.8), i.e.,

d∗Z = p∗DNN, and d∗Z is attained.

Proof. We derive (3.8) as a Fenchel dual problem of (3.3) by finding a best lower bound as follows.

p∗DNN = min
R∈R,Y ∈Y

max
Z

{
〈Ls, Y 〉+

〈
Z, Y − V̂ RV̂ T

〉}
7This strengthens [18, Lemma 3.2].
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= min
R∈R,Y ∈Ỹ

max
Z

{
〈Ls, Y 〉+

〈
Z, Y − V̂ RV̂ T

〉}
(3.9a)

= max
Z

min
R∈R,Y ∈Ỹ

{
〈Ls, Y 〉+

〈
Z, Y − V̂ RV̂ T

〉}
(3.9b)

= max
Z

{
min
Y ∈Ỹ
{〈Ls, Y 〉+ 〈Z, Y 〉}+ min

R∈R
〈Z,−V̂ RV̂ T 〉

}
= max

Z

{
min
Y ∈Ỹ
{〈Ls, Y 〉+ 〈Z, Y 〉}+ min

R∈R
〈V̂ TZV̂ ,−R〉

}
= max

Z

{
min
Y ∈Ỹ
〈Ls + Z, Y 〉 − (n+ 1)λmax(V̂ TZV̂ )

}
= d∗Z , (3.9c)

where:

1. (3.9a) follows from the redundancy of the constraint Dt(Y ) = M as guaranteed by Theo-
rem 2.11; 8

2. (3.9b) follows from [24, Corollary 28.2.2], [24, Theorem 28.4] and the fact that (3.3) has Slater
points (see Proposition 2.17); 9

3. (3.9c) follows from the definition of R and the Rayleigh Principle.

The concavity of g is clear, and we see from [24, Corollary 28.2.2] and [24, Corollary 28.4.1] that
the dual value d∗Z is attained.

3.3 Upper bound from a feasible solution

We now move from lower bounds to finding upper bounds for cut(m). Let Y out be the output from
our algorithm FRSMR , i.e., Y out is obtained from solving (3.6). The procedures for computing
upper bounds are:

1. We extract a column vector v from Y out in one of the following three ways:10

(a) use column 0 of Y out;

(b) use the eigenvector corresponding to the largest eigenvalue of Y out;

(c) sum of random weighted-eigenvalue eigenvectors of Y out, i.e.,

v =
r∑
i=1

wiλivi,

where λ1 ≥ · · · ≥ λr > 0, are the ordered eigenvalues of Y out with eigenpairs (λi, vi), and
1 ≥ w1 ≥ . . . ≥ wr > 0 are random ordered weights. The r here is the numerical rank of
Y out. 11

8Note that the inner maximization forces Y = V̂ RV̂ T .
9Note that the Lagrangian is linear in R, Y and linear in Z. Moreover, both constraint sets R,Y are convex and

compact. Therefore, the result also follows from the classical Von Neumann-Fan minmax theorem.
10Note that if Y out is rank-1 and feasible, then the first two methods in Item 1a and Item 1b yield exact solutions

to MC. This motivates the use of eigenvector information.
11MATLAB: r = min(sum(λ/(n+ 1) > 0.1) + 1, n+ 1);
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2. For each vector v obtained in Step 1, we extract its last nk elements as a subvector v◦ and set
X◦ = Mat(v◦).

3. For each X◦ obtained, we find the nearest partition matrix X∗ to it. (See Proposition 3.4,
below.)

4. For each X∗ obtained, an upper bound of MC is found as 1
2 trace(AX∗BX∗T ). We save the

best (smallest) upper bound obtained and the corresponding X∗. (We repeat the random
choice in Item 1c dlog(n)e times.)

Remark 3.3. 1. First of all, the projection in Item 3 can be done efficiently using linear
programming. (Actually in strongly polynomial time if one uses something like the classical
Hungarian algorithm.) This is similar to what is done in [18, 19, 31].

2. In [18], we adopt a similar procedure for calculating an upper bound but with only one column
vector v from Y out using Items 1a and 1b. In Figure 4.1, we compare with the method in [18]
and see that Item 1c provides a significant improvement to the upper bound.

Proposition 3.4 ( [19, Theorem 6.1]). Let X◦ ∈ Rn×k. Then the nearest partition matrix X∗ ∈Mm

to X◦ can be found by solving the transportation type linear program

X∗ ∈ arg min − traceX◦TX
s.t. Xe = e

XT e = m
X ≥ 0.

(3.10)

Note that we get an exact solution if rank(Y out) = 1 and Y out = V̂ RoutV̂ T . Proposition 3.5
below suggests that the methods described in Item 1a and Item 1b above likely yield reasonable
approximate partition matrices. Recall that

convMm = {X ∈ Rn×k : Xe = e,XT e = m,X ≥ 0}.

Proposition 3.5 ( [19, Proposition 5.2]). Let Y be feasible for (2.51). Let v1 = Y1:nk 0, and let[
v0 vT2

]T
denote a unit eigenvector of Y corresponding to the largest eigenvalue. Then v0 6= 0, and

both
X◦1 := Mat(v1), X◦2 := Mat(v0

−1v2) ∈ convMm.

However, in general Y out is not an exact solution of the DNN relaxation. Then Item 1c in
Remark 3.3 plays an important role in generating many vectors v for finding an upper bound.
We see this in Section 4.3.3 below. In fact, this allows us to stop the algorithm with much fewer
iterations when we see that both the upper and lower bounds are not improving.

4 Numerical experiments

In this section we apply the proposed FRSMR method in Algorithm 3.1 to solve the DNN relaxation
in (3.3). All the tests are performed using Matlab R2017a on a ThinkPad X1 with an Intel CPU
(2.5GHz) and 8GB RAM running Windows 10.
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4.1 Classes of problems and parameters

We consider three classes of problems, see Sections 4.3.1 to 4.3.3. We outline them here:

(a) (random structured graphs, Section 4.3.1.) We compare with the DNN relaxation in [19].12

The latter relaxation is solved using an interior point approach with Mosek version 8.0.0.60. [1].
See Table 4.2.

(b) (partially random graphs with various sizes, Section 4.3.2.) There are four kinds of random
graphs, classified by the number of 1’s, |I|, in the vector m. In particular, in the three cases
where I 6= ∅, we almost always obtain a zero gap and thus the optimal solution. See Tables 4.3
to 4.6.

(c) (vertex separator instances, Section 4.3.3.) We compare with the bounds obtained by solving
the relaxation SDP4 in [22]. In addition, we include comparisons on the upper bounds on the
size of the vertex separator. See Table 4.7.

4.2 Parameters, initialization, stopping criteria

In our implementation, we first shift the objective to obtain positive definiteness.

L← L+ αI, α = 0.1 + max{0,−λmin(L)}.

This does not change the optimum Y ∗ but it changes the dual Z and promotes Z � 0, as can be
seen from the expression for the Y -subproblem in (3.6). This in turn promotes a better lower bound
from (3.9c).

We now specify the parameters used in FRSMR in Sections 4.3.1 to 4.3.3.

1. The penalty and step parameters are β = 3k/n and γ = 0.9, respectively.

2. We terminate once one of the following Items 2a to 2c holds:

(a) the number of iterations reaches 10000;

(b) the relative gap, rel-gap, is either zero13 or does not change in max{5, dn/10e} consecutive
iterations,

rel-gap =
(best upper bound− best lower bound)

(best upper bound + best lower bound + 1)/2
;

(c)

max
{∥∥∥Y t+1 − V̂ Rt+1V̂ T

∥∥∥, ∥∥Y t+1 − Y t
∥∥} < 10−12; (4.1)

This criterion (4.1) is the same as that suggested in [12, Remark 2.3].

3. We calculate: the lower bound and the upper bound every 100th iteration, using Theorem 3.2
(to compute a lower bound as dg(Zt)e) and the procedures in Section 3.3. In the computation
of the upper bound, we sample the random weight vector dlog(n)e times. The linear program
(3.10) involved in the computation of the upper bound is solved with Mosek using their
function ‘mosekopt’ and the dual-simplex method.

12The DNN relaxation in [19] imposes the additional nonnegativity constraints V̂ ZV̂ T ≥ 0 onto their SDPfinal

relaxation.
13Note that our data are integral and we round up the lower bound, therefore the gap is integer valued. Thus,

finding a zero duality gap is reasonable. Moreover, the lower bounds are nonnegative.
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4. The data terminology in our Tables are described in Table 4.1.

Table 4.1: Data terminology.

imax the maximum size of each set
k the number of sets
n the number of nodes, i.e., the sum of the sizes of the sets
p the density of the graph, i.e., 2|E|/(|V |(|V | − 1))
l = eTmone the number of 1’s in m
Iters the number of iterations
Time CPU time in seconds
Bounds best lower and upper bounds and relative gap

Residuals final values
∥∥∥Y t+1 − V̂ Rt+1V̂ T

∥∥∥ (∼= ∆Z);
∥∥Y t+1 − Y t

∥∥ (∼= ∆Y )

5. In Section 4.3.3 we consider the special class of vertex separator problems.

(a) The penalty and step parameters in FRSMR are β = 0.001 and γ = 0.9 respectively.

(b) The stopping criterion is set as the same as in Sections 4.3.1 and 4.3.2.

(c) We calculate the lower bound every 100-th iteration using Theorem 3.2. We compute the
upper bound every iteration using the procedures in Section 3.3. Other settings in the
computation of the upper bound are the same as in Sections 4.3.1 and 4.3.2.

4.3 Three classes of problems

4.3.1 Random structured graphs

The structured graphs are generated as in [19, Sect. 7.1]. That is, we first generate k disjoint cliques
of sizes m1, . . . ,mk, randomly chosen from {2, ..., imax}. We then join the first k − 1 cliques to
every node of the k-th clique, and add u0 edges between the first k − 1 cliques, chosen uniformly
at random from the complement graph. In our experiments below, we set u0 = becdc, where ec
is the number of edges in the complement graph and d is the density (percentage of edges in the
complement graph to be added). By construction, u0 ≥ cut(m).

We use small instances with k = 4, 5, d = 10% and imax = 6, 8. We compare our approach
with the DNN relaxation model in [19] solved by Mosek [1]. The results in Table 4.2 illustrate the
improvement in solution time.

4.3.2 (Partially) random graphs with various sizes

We test four groups of random graphs corresponding to different values of I:

1. (I = ∅) vector m is generated by choosing k integers randomly from {2, ..., imax};

2. (k /∈ I 6= ∅) after generating m as in Item 1 above, we randomly select elements from
{m1,m2, . . . ,mk−1} and set them to be 1;14

14In this case and the next, we have mi = 1 for some i. One typical application is the side chain positioning problem
that involves rotamer selections in protein folding. Some rotamer sets typically often only one rotamer, see [5, 13].
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Table 4.2: Small structured graphs; comparisons with DNN relaxation model in [19].

Data Lower bounds Upper bounds Rel-gap Time (cpu)
n k |E| u0 FRSMR Mosek FRSMR Mosek FRSMR Mosek FRSMR Mosek

20 4 136 6 6 6 6 6 0.00 0.00 0.14 5.41
25 4 222 8 8 8 8 8 0.00 0.00 0.22 10.24
25 5 170 14 14 14 14 14 0.00 0.00 0.27 30.36
31 5 265 22 22 22 22 22 0.00 0.00 1.15 126.11

3. (k ∈ I 6= K) after generating m as in Item 1 above, we set mk = 1 and randomly select no
more than k − 2 elements from {m1,m2, . . . ,mk−1} and set them to be 1;

4. (I = K) simply set imax = 1 and set all the elements of m to be 1.15

Then, as n = mT e is the total number of nodes in the simple, undirected graph, we randomly
generate an adjacency matrix A of a graph on n nodes with density = densityA, and construct the
Laplacian matrix.16

In Tables 4.3 to 4.6, we consider the four groups of random graphs in Items 1 to 4, above. In
each group of random graphs, we generate m and A by choosing k and imax as given in the tables
with various values for densityA; the density p of the graphs is also reported.

From Table 4.3, i.e, in the case of I = ∅, we can see that the FRSMR in general takes a
reasonably short time to converge. Moreover, in most instances, the rel-gap is very small; sometimes
we even obtain a zero gap and hence the instance is solved to optimality. FRSMR appears to
perform better in the cases when I 6= ∅. The corresponding results are shown in Tables 4.4 to 4.6.
We can see that in most instances, the rel-gap is zero and the problem is solved exactly. Moreover,
the CPU times taken are reasonably small.

Table 4.3: Results for random graphs with I = ∅.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
4 5 17 0.43 0 500 0.94 16 17 0.06 9.51e-04 1.01e-04
4 5 17 0.32 0 100 0.19 10 10 0.00 1.93e-02 1.75e-02
5 6 23 0.35 0 500 1.75 37 42 0.13 1.81e-03 1.92e-04
5 6 23 0.30 0 600 1.92 30 34 0.12 1.07e-03 1.68e-04
6 7 30 0.28 0 900 5.99 42 48 0.13 1.65e-03 1.28e-04
6 7 30 0.22 0 600 4.14 31 40 0.25 3.24e-03 3.88e-04
7 8 37 0.18 0 700 9.03 32 38 0.17 6.29e-03 1.56e-03
7 8 37 0.14 0 700 9.13 18 22 0.20 5.22e-03 1.18e-03
8 9 49 0.10 0 1200 47.09 14 19 0.29 5.68e-03 8.18e-04
8 9 49 0.05 0 1000 45.52 0 6 1.71 1.31e-04 1.83e-04

15As pointed out by one reviewer, in this case, we have n = k, and the objective function in (1.1) is the number of
nonzero entries that remain in the upper triangular part of XTAX after removing the last row and column. Thus, an
optimal solution X ∈Me is a permutation matrix that puts the vertex with the highest degree as vertex n. Here, we
include these instances to test the effectiveness of our new gangster constraints.

16In MATLAB: A = abs(sprandsym(sum(m),densityA))> 0; A = A - diag(diag(A)); Note that densityA is different
from the density of the graph p defined in Table 4.1.
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Table 4.4: Results for random graphs with k /∈ I 6= ∅.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
4 5 14 0.37 1 100 0.17 6 6 0.00 1.59e-02 1.26e-02
4 5 14 0.37 1 100 0.17 5 5 0.00 2.88e-02 4.62e-02
5 6 16 0.35 2 400 0.92 11 11 0.00 1.70e-03 4.32e-04
5 6 16 0.32 2 100 0.24 11 11 0.00 2.81e-02 3.22e-02
6 7 19 0.27 4 500 1.79 8 9 0.11 2.73e-03 3.29e-04
6 7 19 0.22 4 500 1.76 4 5 0.20 1.75e-03 4.32e-04
7 8 12 0.20 7 100 0.21 0 0 0.00 1.20e-02 1.54e-02
7 8 12 0.17 7 100 0.21 0 0 0.00 2.19e-02 1.97e-02
8 9 16 0.12 8 100 0.38 0 0 0.00 4.78e-02 6.50e-02
8 9 16 0.06 8 100 0.38 0 0 0.00 3.06e-02 3.10e-02

Table 4.5: Results for random graphs with k ∈ I 6= K.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
4 5 12 0.45 2 100 0.16 11 11 0.00 1.41e-03 2.03e-03
4 5 12 0.39 2 100 0.14 9 9 0.00 1.08e-02 1.38e-02
5 6 15 0.33 3 100 0.21 13 13 0.00 2.43e-02 3.80e-02
5 6 15 0.29 3 100 0.21 10 10 0.00 3.12e-02 5.09e-02
6 7 18 0.27 4 100 0.37 13 13 0.00 8.97e-02 1.03e-01
6 7 18 0.22 4 300 0.95 10 10 0.00 3.82e-03 2.76e-03
7 8 13 0.21 7 100 0.23 5 5 0.00 7.67e-03 8.75e-03
7 8 13 0.18 7 100 0.23 4 4 0.00 1.56e-02 1.94e-02
8 9 16 0.11 8 100 0.47 2 2 0.00 5.51e-02 1.04e-01
8 9 16 0.06 8 100 0.49 0 0 0.00 1.30e-02 1.47e-02

4.3.3 Vertex separator problem

We now test some vertex separator problems from https://sites.google.com/site/sotirovr/

the-vertex-separator. We compare against the bounds obtained from the model SDP4 in [22].
In each instance, the m has the special structure that k = 3, |m1 −m2| ≤ 1 and cut(m) > 0. In
this case, by solving MC , one can separate the nodes of the graph into S1, S2 and S3 so that the
number of edges between S1 and S2 is minimized. If cut(m) = 0, for some m = (m1,m2,m3)T , then
we say that S3 separates S1 and S2, and S3 is called a vertex separator. If cut(m) > 0, on the other
hand, it means that no separator S3 for the cardinalities specified in m exists. However, we can
experiment with different choices of m, i.e, transferring nodes from S1 and S2 to S3, in the hope of
eventually producing a separator. In this way, we can obtain an upper bound of the cardinality of
a vertex separator. Here, we follow the approach described in [22, Section 8] to derive an upper
bound of the cardinality of a vertex separator, using solutions obtained from FRSMR .

In Table 4.7, we compare the lower and upper bounds for cut(m) obtained from (3.3) and from the
model SDP4 in [22]. We also report the upper bound of the cardinality of vertex separator obtained
for each instance. The (upper and lower) bounds for SDP4 are obtained directly from [22, Table 3].17

From Table 4.7, we can see that the MC upper bounds from the model (3.3) are very competitive

17These results use extra cutting planes, and therefore they obtain stronger lower bounds on cut(m).
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Table 4.6: Results for random graphs with I = K.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
1 8 8 0.64 8 100 0.17 12 12 0.00 4.22e-04 6.08e-04
1 10 10 0.69 10 100 0.26 23 23 0.00 9.94e-03 1.26e-02
1 12 12 0.47 12 100 0.39 23 23 0.00 1.86e-02 3.32e-02
1 14 14 0.46 14 100 0.66 33 33 0.00 6.37e-02 8.99e-02
1 16 16 0.44 16 100 1.04 43 43 0.00 1.69e-01 2.49e-01
1 18 18 0.39 18 200 3.71 48 48 0.00 1.45e-02 2.22e-02
1 20 20 0.29 20 200 7.31 47 47 0.00 3.75e-02 4.04e-02
1 22 22 0.25 22 200 11.24 47 47 0.00 1.39e-01 1.58e-01
1 24 24 0.13 24 200 16.41 31 31 0.00 1.06e-01 1.13e-01
1 26 26 0.05 26 200 23.75 10 10 0.00 1.19e-01 8.14e-02

with those obtained from the model SDP4. For most instances, the upper bounds are equal except
for two instances, “grid3dt(5)” and “grid3dt(7)”; as for the comparison of upper bounds for vertex
separator, still most upper bounds are equal, except for “can-144”,“gridt(15)”,“ gridt(5)”,“gridt(6)”
and “gridt(7)”.

Figure 4.1 shows the comparison between the upper bound using Items 1a to 1c in Section 3.3
and the one using only Items 1a and 1b there. It shows that the former strategy can produce much
better upper bounds than those obtained by the latter strategy.

Table 4.7: Comparing bounds for MC and bounds for the cardinality of separators.
Name n |E| m1 m2 m3 MC by SDP4 MC by (3.3) Separator by SDP4 Separator by (3.3)

lower upper lower upper lower upper upper

Example 1 93 470 42 41 10 0.07 1 0 1 11 11 11
bcspwr03 118 179 58 57 3 0.56 1 0 2 4 5 5
Smallmesh 136 354 65 66 5 0.13 1 0 1 6 6 6
can-144 144 576 70 70 4 0.90 6 0 6 5 6 8
can-161 161 608 73 72 16 0.31 2 0 2 17 18 18
can-229 229 774 107 107 15 0.40 6 0 6 16 19 19
gridt(15) 120 315 56 56 8 0.29 4 0 4 9 11 12
gridt(17) 153 408 72 72 9 0.17 4 0 4 10 13 13
grid3dt(5) 125 604 54 53 18 0.54 2 0 4 19 19 22
grid3dt(6) 216 1115 95 95 26 0.28 4 0 4 27 30 31
grid3dt(7) 343 1854 159 158 26 0.60 22 0 27 27 37 44
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Figure 4.1: Comparison of upper bounds with/without randomness; Item 1c, Section 3.3
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5 Conclusion

In this paper we introduced new methods for finding strengthened lower and upper bounds for the
MC problem. SDP relaxations provide strong bounds that are further strengthened by nonnegativity
constraints, i.e., by using the DNN relaxation. However, in general solving the DNN relaxation by
interior-point methods is extremely expensive.

The FR appears to provide a natural splitting for the variables Y = V̂ RV̂ T , where Y,R
are restricted to the polyhedral and cone constraints, respectively. We exploit this within a
sPRSM framework.

We bring back previously redundant constraints to strengthen the two subproblems in Y,R. In
addition, we periodically find lower and upper bound estimates in order to stop the algorithm early,
i.e., with low accuracy.

Our numerical experiments show that our approach for solving MC improves on the existing
approach in [19]. And furthermore it is also competitive with the approach of [22] in the context of
the vertex separator problem.
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